175 research outputs found

    Sub-Optimality of a Dyadic Adaptive Control Architecture

    Get PDF
    The dyadic adaptive control architecture evolved as a solution to the problem of designing control laws for nonlinear systems with unmatched nonlinearities, disturbances and uncertainties. A salient feature of this framework is its ability to work with infinite as well as finite dimensional systems, and with a wide range of control and adaptive laws. In this paper, we consider the case where a control law based on the linear quadratic regulator theory is employed for designing the control law. We benchmark the closed-loop system against standard linear quadratic control laws as well as those based on the state-dependent Riccati equation. We pose the problem of designing a part of the control law as a Nehari problem. We obtain analytical expressions for the bounds on the sub-optimality of the control law

    A tracking error–based fully probabilistic control for stochastic discrete-time systems with multiplicative noise

    Get PDF
    This article proposes the exploitation of the Kullback–Leibler divergence to characterise the uncertainty of the tracking error for general stochastic systems without constraints of certain distributions. The general solution to the fully probabilistic design of the tracking error control problem is first stated. Further development then focuses on the derivation of a randomised controller for a class of linear stochastic Gaussian systems that are affected by multiplicative noise. The derived control solution takes the multiplicative noise of the controlled system into consideration in the derivation of the randomised controller. The proposed fully probabilistic design of the tracking error of the system dynamics is a more legitimate approach than the conventional fully probabilistic design method. It directly characterises the main objective of system control. The efficiency of the proposed method is then demonstrated on a flexible beam example where the vibration quenching in flexible beams is shown to be effectively suppressed

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Adaptive and Optimal Motion Control of Multi-UAV Systems

    Get PDF
    This thesis studies trajectory tracking and coordination control problems for single and multi unmanned aerial vehicle (UAV) systems. These control problems are addressed for both quadrotor and fixed-wing UAV cases. Despite the fact that the literature has some approaches for both problems, most of the previous studies have implementation challenges on real-time systems. In this thesis, we use a hierarchical modular approach where the high-level coordination and formation control tasks are separated from low-level individual UAV motion control tasks. This separation helps efficient and systematic optimal control synthesis robust to effects of nonlinearities, uncertainties and external disturbances at both levels, independently. The modular two-level control structure is convenient in extending single-UAV motion control design to coordination control of multi-UAV systems. Therefore, we examine single quadrotor UAV trajectory tracking problems to develop advanced controllers compensating effects of nonlinearities and uncertainties, and improving robustness and optimality for tracking performance. At fi rst, a novel adaptive linear quadratic tracking (ALQT) scheme is developed for stabilization and optimal attitude control of the quadrotor UAV system. In the implementation, the proposed scheme is integrated with Kalman based reliable attitude estimators, which compensate measurement noises. Next, in order to guarantee prescribed transient and steady-state tracking performances, we have designed a novel backstepping based adaptive controller that is robust to effects of underactuated dynamics, nonlinearities and model uncertainties, e.g., inertial and rotational drag uncertainties. The tracking performance is guaranteed to utilize a prescribed performance bound (PPB) based error transformation. In the coordination control of multi-UAV systems, following the two-level control structure, at high-level, we design a distributed hierarchical (leader-follower) 3D formation control scheme. Then, the low-level control design is based on the optimal and adaptive control designs performed for each quadrotor UAV separately. As particular approaches, we design an adaptive mixing controller (AMC) to improve robustness to varying parametric uncertainties and an adaptive linear quadratic controller (ALQC). Lastly, for planar motion, especially for constant altitude flight of fixed-wing UAVs, in 2D, a distributed hierarchical (leader-follower) formation control scheme at the high-level and a linear quadratic tracking (LQT) scheme at the low-level are developed for tracking and formation control problems of the fixed-wing UAV systems to examine the non-holonomic motion case. The proposed control methods are tested via simulations and experiments on a multi-quadrotor UAV system testbed

    Dynamical systems : control and stability

    Get PDF
    Proceedings of the 13th Conference „Dynamical Systems - Theory and Applications" summarize 164 and the Springer Proceedings summarize 60 best papers of university teachers and students, researchers and engineers from whole the world. The papers were chosen by the International Scientific Committee from 315 papers submitted to the conference. The reader thus obtains an overview of the recent developments of dynamical systems and can study the most progressive tendencies in this field of science

    Technology for large space systems: A bibliography with indexes (supplement 12)

    Get PDF
    A bibliography listing 516 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1, 1984 and December 31, 1984 is presented. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of Large Space System Technology. Subject matter is grouped according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Continuous control of lunar orbits via electric propulsion

    Get PDF
    To find definite answers for the presence of water on the poles of Moon, to facilitate selection of future lunar landing sites and aid in construction of architectural bases, to assist proper lunar resource utilization and to improve lunar gravity models there is a great interest and need for highly accurate, reliable and efficient lunar surface mapping and communication. This thesis is intended to aid in proper selection of orbits for future lunar missions by demonstrating the impact of using electric propulsion on the search space of feasible and useful lunar orbits. The requirements for future lunar mapping and communication are studied and possible options to meet them are investigated. Based on coverage analysis, a constellation of three satellites in high altitude, circular and polar geo-synchronous orbit is proposed to provide an improved lunar communications architecture compared to those previously recommended in literature. Low altitude, circular and polar Sun-synchronous orbits are found to be the best candidate to meet future lunar mapping needs. The feasibility of using electric propulsion for stationkeeping and providing the orbit plane rotation required by these lunar mapping and communication options is determined --Abstract, page iii

    Guidance, navigation and control system for autonomous proximity operations and docking of spacecraft

    Get PDF
    This study develops an integrated guidance, navigation and control system for use in autonomous proximity operations and docking of spacecraft. A new approach strategy is proposed based on a modified system developed for use with the International Space Station. It is composed of three V-bar hops in the closing transfer phase, two periods of stationkeeping and a straight line V-bar approach to the docking port. Guidance, navigation and control functions are independently designed and are then integrated in the form of linear Gaussian-type control. The translational maneuvers are determined through the integration of the state-dependent Riccati equation control formulated using the nonlinear relative motion dynamics with the weight matrices adjusted at the steady state condition. The reference state is provided by a guidance function, and the relative navigation is performed using a rendezvous laser vision system and a vision sensor system, where a sensor mode change is made along the approach in order to provide effective navigation. The rotational maneuvers are determined through a linear quadratic Gaussian-type control using star trackers and gyros, and a vision sensor. The attitude estimation mode change is made from absolute estimation to relative attitude estimation during the stationkeeping phase inside the approach corridor. The rotational controller provides the precise attitude control using weight matrices adjusted at the steady state condition, including the uncertainty of the moment of inertia and external disturbance torques. A six degree-of-freedom simulation demonstrates that the newly developed GNC system successfully autonomously performs proximity operations and meets the conditions for entering the final docking phase --Abstract, page iii

    NASA thesaurus. Volume 3: Definitions

    Get PDF
    Publication of NASA Thesaurus definitions began with Supplement 1 to the 1985 NASA Thesaurus. The definitions given here represent the complete file of over 3,200 definitions, complimented by nearly 1,000 use references. Definitions of more common or general scientific terms are given a NASA slant if one exists. Certain terms are not defined as a matter of policy: common names, chemical elements, specific models of computers, and nontechnical terms. The NASA Thesaurus predates by a number of years the systematic effort to define terms, therefore not all Thesaurus terms have been defined. Nevertheless, definitions of older terms are continually being added. The following data are provided for each entry: term in uppercase/lowercase form, definition, source, and year the term (not the definition) was added to the NASA Thesaurus. The NASA History Office is the authority for capitalization in satellite and spacecraft names. Definitions with no source given were constructed by lexicographers at the NASA Scientific and Technical Information (STI) Facility who rely on the following sources for their information: experts in the field, literature searches from the NASA STI database, and specialized references
    corecore