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Abstract

This thesis studies trajectory tracking and coordination control problems for single and
multi unmanned aerial vehicle (UAV) systems. These control problems are addressed for
both quadrotor and fixed-wing UAV cases. Despite the fact that the literature has some ap-
proaches for both problems, most of the previous studies have implementation challenges
on real-time systems. In this thesis, we use a hierarchical modular approach where the
high-level coordination and formation control tasks are separated from low-level individual
UAV motion control tasks. This separation helps efficient and systematic optimal control
synthesis robust to effects of nonlinearities, uncertainties and external disturbances at both
levels, independently. The modular two-level control structure is convenient in extending
single-UAV motion control design to coordination control of multi-UAV systems. There-
fore, we examine single quadrotor UAV trajectory tracking problems to develop advanced
controllers compensating effects of nonlinearities and uncertainties, and improving robust-
ness and optimality for tracking performance. At first, a novel adaptive linear quadratic
tracking (ALQT) scheme is developed for stabilization and optimal attitude control of the
quadrotor UAV system. In the implementation, the proposed scheme is integrated with
Kalman based reliable attitude estimators, which compensate measurement noises. Next,
in order to guarantee prescribed transient and steady-state tracking performances, we have
designed a novel backstepping based adaptive controller that is robust to effects of under-
actuated dynamics, nonlinearities and model uncertainties, e.g., inertial and rotational
drag uncertainties. The tracking performance is guaranteed to utilize a prescribed perfor-
mance bound (PPB) based error transformation. In the coordination control of multi-UAV
systems, following the two-level control structure, at high-level, we design a distributed hi-
erarchical (leader-follower) 3D formation control scheme. Then, the low-level control design
is based on the optimal and adaptive control designs performed for each quadrotor UAV
separately. As particular approaches, we design an adaptive mixing controller (AMC) to
improve robustness to varying parametric uncertainties and an adaptive linear quadratic
controller (ALQC). Lastly, for planar motion, especially for constant altitude flight of fixed-
wing UAVs, in 2D, a distributed hierarchical (leader-follower) formation control scheme at
the high-level and a linear quadratic tracking (LQT) scheme at the low-level are developed
for tracking and formation control problems of the fixed-wing UAV systems to examine
the non-holonomic motion case. The proposed control methods are tested via simulations
and experiments on a multi-quadrotor UAV system testbed.
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Chapter 1

Introduction

1.1 General Overview and Motivation

Recent robotic interests have focused on improvements of human-like decision-making sys-
tems such as humanoid robots, animal-like robots, unmanned vehicle systems because of
their self-control mechanisms and autonomous decision abilities without any external com-
mand. These kinds of studies aim at reaching fully-autonomous systems to use in different
environments and in many tasks instead of human in the near future. By this motiva-
tion, control researchers over the last decades are interested in autonomous unmanned
aerial vehicles (UAVs) which are used for various defense and civilian applications. Fur-
thermore, UAVs have been critical flight systems to perform in dangerous and unsuitable
environments compared to conventional aerial vehicles since they have dynamical and de-
sign advantages such as their smaller sizes, dynamical simplicities, maneuverabilities, high
performances and being unpersonalized.

In the existing UAV literature, researchers have utilized various types of UAVs in
research and development of autonomous flight tasks. According to the importance of
demand and supply in-flight duties, UAVs can be classified into three main types, namely,
fixed-wing [20, 23], rotary, including single-rotor helicopters [1, 80], multi-rotor aerial
copters [135], quadrotors [8, 30, 35], and hybrid aircrafts, including tilt-rotor UAVs [164].

Small fixed-wing UAVs recently have gained attention for particular flight tasks and
especially been preferred in air defense missions instead of large and expensive aerial vehi-
cles, e.g. Predator, Global Hawk, and Aerosonde. In particular, fixed-wing UAVs are very
effective for surveillance tasks in high altitudes and they can be easily developed in different
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Figure 1.1: Autonomous system architecture for a UAV.

sizes depending on flight mission requirements. As mentioned in [21], design and control
methods of small fixed-wing UAVs differ from larger fixed-wing UAVs and conventional
aircrafts. In earlier studies [21, 23], autonomous fixed-wing UAVs have been developed
successfully with a small and strong lightweight platform, low-power consumption and
facilitated system architectures including navigation, guidance and control units.

For rotary type UAVs, there are several varieties of them such as single-rotor, tri-rotor,
quad-rotor, hexa-rotor, octo-rotor copters. Rotary type UAVs are able to take off and
land vertically inside dangerous and hard-to-reach areas in 3D thanks to their actuator
design and holonomic motion capabilities. One of the rotary type UAVs is quadrotor
UAV that recently has been popular for researchers and customers. Quadrotor UAVs have
favorable accurate dynamic models and stability characteristics as well as hovering at close
proximity of specified locations compared to other rotary and fixed-wing UAVs. As another
reason to gain more fame, they have lower cost and simple structure in design. Therefore,
for research studies and commercial usage, control researchers have been interested in
developing new controllers for quadrotor UAVs to provide well-formed performances for
various complicated indoor and outdoor tasks such as patrol duties, agricultural activities,
delivery services, surveillance and rescue. Some earlier research prototypes have been
studied in [8, 30, 35, 108, 145]. In the last decade, for difficult mission applications of
quadrotor UAVs, technical requirements have been increased, and accordingly it has been
needed to develop new control methods and improve their performances.
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Figure 1.2: Formation control approaches for a multi-UAV system.

In autonomous flight control missions of single-UAV systems, overall system archi-
tectures and their components are discussed using different approaches in [23, 84]. These
components are gathered into three main groups: navigation, guidance, and control (NGC)
systems as presented in Figure 1.1. In the literature, NGC systems are not only developed
to accomplish their objectives separately, but also interrelated throughout autonomous
flight missions. The purpose of NGC systems is briefly explained as follows. Navigation
system (NS) provides motion (state) and environmental information to other parts of NGC
systems to support the overall system architecture. The motion (state) information can
be orientation, position, angular and linear velocities which are measured or estimated by
using hardware equipments on single-UAVs such as inertial measurement unit (IMU) and
global positioning system (GPS) as well as using software computing algorithms: Kalman
filter and observers. To detect environmental information during autonomous flights, NS
contains visual monitoring and sensing methods using camera, sound navigation and rang-
ing (SONAR), light detection and ranging (LIDAR), ranging or radio direction and ranging
(RADAR), infrared sensor, etc. to support guidance system (GS). In GS algorithms, de-
sired trajectories are produced by way-point tracker to supply control system (CS) using
motion and environmental information from NS. Before the desired trajectory generation,
GS also includes path planning strategies to locate way-points, optimally. Overall, GS
algorithms are to guide single-UAVs, e.g., both fixed-wing and quadrotor UAVs, by gen-
erating the desired position. CS is responsible for controlling and stabilizing single-UAVs
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using information from NS and GS, and then it completes autonomous flight tasks.

Another research field that has recently gained significant attention is cooperative con-
trol of multi-UAV systems. Cooperative multi-UAV systems are potentially more effective
than the use of single-UAV systems in various complicated tasks including defense patrol
duties, agricultural monitoring, surveillance, and rescue. One particular aspect of such co-
operative multi-UAV tasks, is coordinated motion control, which involves path planning,
flocking, consensus, obstacle and inter-agent avoidance, formation acquisition and mainte-
nance [20, 22, 57, 89, 93, 112, 134]. In coordinated motion of multi-UAV systems, formation
is used for a UAV team to perform certain cooperative mission requirements, optimally
[163]. As presented in Figure 1.2, formation control schemes of multi-UAV systems can be
classified into two main approaches as centralized and decentralized [120]. The centralized
approach needs a global supervisor to coordinate all members of a UAV team, and its
theoretical analysis gets complicated when the number of UAVs enlarges. Therefore, the
literature works mostly focus on the decentralized approach to design easy and practical
control solutions.

In this thesis, we focus on two UAV types: rotary and fixed-wing, in particular, quadro-
tor and small fixed-wing UAVs. By motivation of contributing to tracking control problems
of single-UAVs, we develop novel and advanced (adaptive and optimal) control methods
using model-based (linear and nonlinear) approaches in the CS. Also, we partially deal
with the design problems of the NS and the GS during real-time flight tests. As another
motivation, with the easiness of proposed flight control architectures and distributed ap-
proach in high (formation) level, we extend single UAV control designs to formation control
of Multi-UAVs. Proposed techniques as presented in the main contribution chapters are
practical and easily implementable as verified by experiments and real-data based high-
fidelity simulations.

1.2 Contributions of the Thesis

This thesis contributes to the literature on tracking and formation control of single and
multi-UAV systems, with focus on adaptive, optimal and nonlinear aspects. The main
contributions of the thesis chapters are stated as follows:

• Chapter 3: A novel adaptive linear quadratic tracking (ALQT) control scheme is
designed for optimal attitude tracking of a quadrotor UAV based on IMU sensor
data fusion [91].
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(i) The proposed control design is experimentally validated in the presence of real-
world uncertainties in quadrotor UAV parameters and sensors measurement.

(ii) To improve tracking in the presence of IMU sensor noises, reliable attitude
estimation schemes based on Kalman and complementary filters are designed
and compared with each other via experimental tests on the quadrotor UAV.

• Chapter 4: A backstepping based robust adaptive control with guaranteed tracking
error performance is proposed for trajectory tracking of a quadrotor UAV [90].

(i) The under-actuated nonlinear dynamics is separated into three sub-models: lat-
eral, altitude and attitude dynamics, and considered in the two-layer: position
and attitude. The separation allows to easily design particular controllers for
each model based on their different control demands.

(ii) Transient and steady-state tracking performances of the quadrotor UAV are
guaranteed within prescribed bounds in the presence of inertia and drag un-
certainties. The effectiveness of the proposed control design is experimentally
validated.

• Chapter 5: A distributed adaptive mixing control design is presented for formation
maintenance of a multi quadrotor UAV system during commanded path tracking
maneuvers.

(i) A two-level control structure is introduced for constructing high (formation)
and low (individual) level controllers, separately. The low-level controllers are
designed to compensate effect of real dynamics issues for enhancing tracking
performance and robustness while the rigid graph theory based tools are utilized
for formation maintenance at the high level.

(ii) At the low-level by using a smooth switching method based on online estimation,
the adaptive mixing control (AMC) scheme is proposed to increase individual
tracking performance and robustness as well as formation maintenance.

• Chapter 6: Optimal trajectory tracking control of fixed-wing UAVs and formation
control of a multiple fixed-wing UAV system are designed for 2D surveillance tasks.

(i) The proposed single-UAV LQT control and multi-UAV two-level control de-
signs are extended and applied to fixed-wing UAV systems for fixed altitude 2D
trajectory tracking and formation control problems.
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1.3 Organization of the Thesis

The thesis consists of one background and literature review chapter and four contribution
chapters. Results, discussions, and summaries of numerical simulations and experiments
are provided in each contribution chapter to make it self-contained.

Chapter 2 presents modeling of UAV motion dynamics for quadrotor and small fixed-
wing UAV systems. Then, the literature is reviewed for single-UAV motion control and
multi-UAV formation control of quadrotor and small fixed-wing UAV systems. Lastly,
control architectures are presented and discussed.

Chapter 3 presents an infinite-horizon ALQT control scheme for optimal attitude
tracking of a quadrotor UAV. The proposed control scheme is experimentally validated in
the presence of real-world uncertainties in quadrotor system parameters and sensor mea-
surement. The designed control scheme guarantees asymptotic stability of the closed-loop
system with the help of complete controllability of the attitude dynamics in applying op-
timal control signals. To achieve robustness against parametric uncertainties, the optimal
tracking solution is combined with an on-line least squares based parameter identifica-
tion scheme to estimate the instantaneous inertia of the quadrotor. Sensor measurement
noises are also taken into account for the on-board IMU sensors. To improve controller
performance in the presence of sensor measurement noises, two sensor fusion techniques
are employed, one based on Kalman filtering and the other based on complementary fil-
tering. The ALQT control performance is compared for the use of these two sensor fusion
techniques.

In Chapter 4, a backstepping based robust adaptive control design with guaran-
teed transient and steady-state tracking performances is proposed for a quadrotor UAV.
Backstepping techniques, combined with a prescribed performance function based error
transformation, are employed to achieve the bounded transient and steady-state tracking
errors of the strict-feedback position system which comprises of the lateral position and
the altitude dynamics. To compensate the effects of model uncertainties such as inertia
and drag uncertainties on attitude regulation, an indirect adaptive control scheme is de-
signed, where the least squares based parameter identification algorithm is combined with
a backstepping based nonlinear control law. Simulation and experimental test results are
provided to verify the effectiveness of the proposed control design.

Chapter 5 presents a distributed adaptive mixing control design for the formation
maintenance of a multi quadrotor UAV system during commanded path tracking maneu-
vers. The formation control design is constructed at the two-level: At the high (formation)
level, the rigid and persistent motion is satisfied in 3D to maintain the predefined for-
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mation shape. At the low (individual) level, an indirect adaptive mixing control (AMC)
law is designed based on Least Squares (LS) parameter identification (PI) to ensure bet-
ter tracking performances and robustness to parametric uncertainties and disturbances in
quadrotor UAV equations of motion. The proposed scheme adaptively blends a set of
pre-designed linear quadratic control gains based on the bump function, and it provides
smooth transition between pre-designed control sets. The proposed scheme is also com-
pared with an adaptive linear quadratic control (ALQC) design. Stability analyses of both
controllers are provided. Formation performances are tested and compared by real-time
based simulations.

In Chapter 6, a linear quadratic tracking (LQT) control design is studied for the
lateral motion tracking of fixed-wing UAVs. Then, the low-level LQT control design is
extended to the formation control of a multiple fixed-wing UAV system by using the two-
level, hierarchical, distributed formation structure. For both cases, the proposed control
designs are validated for 2D surveillance tasks by numerical simulations.

Chapter 7 offers conclusions and discussions on the proposed methods.
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Chapter 2

Background and Control
Architecture

This chapter first introduces equations of motion for quadrotor and small fixed-wing UAV
systems. Then, regarding current control strategies and problems, the literature is reviewed
on tracking and formation control of single and multi-UAV systems for both UAV types.
Lastly, control architectures of single and multi-UAV systems are discussed and presented.

2.1 Modeling of UAV Motion Dynamics

UAV systems can be classified according to many different aspects based on their dynamics,
design structure, motion facility or working environment, etc. In this thesis, depending on
the taking-off and landing abilities of UAV systems, we consider that there are two types,
namely, quadrotor and small fixed-wing UAV systems. In the literature, both systems have
various equations of motion models as presented in [8, 20, 23, 30, 35, 41, 64, 88, 108, 133].
These motion models can consist of highly nonlinear dynamics with coupled states and
aerodynamics parameters, simplified nonlinear models with ignored effects, linearized forms
neglecting many important aspects, kinematic models avoiding complex control design,
dynamical uncertainties, and environmental or model disturbances.

We first define the equations of motion models in the form of a generic nonlinear
representation for both UAV types to efficiently utilize in further control analyses. On R3,
the equations of motion models are written in the nonlinear model as

Ẋ = F (X, u), (2.1)
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whereX ∈ Rn and u ∈ Rm are state and control input vectors of UAV systems, respectively.

2.1.1 Quadrotor UAV Motion Dynamics

The coordinates of the quadrotor UAV system’s body frame {Ob, xb, yb, zb} centered at
the center of gravity (CG), the global frame {Og, x, y, z}, thrusts, moments and gravity

are represented in Figure 2.1. Using Euler angles ϕ
M
= [φ, ϑ, ψ]T and the rotational matrix

Rm ∈ SO(3) from Ob to Og, and following the Newton-Euler formalism, nonlinear dynamics
of the quadrotor UAV are described in terms of applied forces and moments, as

F = RmFb = mp̈ ∈ R3 and M = Jϕẇϕ + wϕ × Jϕwϕ ∈ R3, (2.2)

where Fb = [Fxb, Fyb, Fzb]
T = [0, 0,

∑4
r=1 Tr]

T is the applied force vector generated by
actuators’ thrust forces Tr, r = 1, 2, 3, 4, in the body frame; m is the total mass of the
system; Jϕ = diag(Jφ, Jϑ, Jψ) is the rotational inertia matrix in the body frame; wϕ =
[φ̇, ϑ̇, ψ̇]T is the angular velocity of Ob. Equations (2.2) lead to the following equations of
motion [89]:

p̈x =
(T1 + T2 + T3 + T4)(sinψ sinφ+ cosφ sinϑ cosψ)

m
,

p̈y =
(T1 + T2 + T3 + T4)(− sinφ cosψ + cosφ sinϑ sinψ)

m
,

p̈z =
(T1 + T2 + T3 + T4)(cosφ cosϑ)

m
− g,

φ̈ =
l(T1 − T2)

Jφ
+

(Jϑ − Jψ)ψ̇ϑ̇

Jφ
− dφφ̇,

ϑ̈ =
l(T3 − T4)

Jϑ
+

(Jψ − Jφ)ψ̇φ̇

Jϑ
− dϑϑ̇, (2.3)

ψ̈ =
Kψ(T1 + T2 − T3 − T4)

Jψ
+

(Jφ − Jϑ)ϑ̇φ̇

Jψ
− dψψ̇,

where p = [px, py, pz]
T is the position of Ob; dϕ = [dφ, dϑ, dψ]T are rotational drag pa-

rameters; Tr, r = 1, ., 4 are thrust forces generated on each actuator; l is the distance
between the center of gravity (Ob) and each propeller; Kψ is thrust-to-moment gain; g is
gravitational acceleration.
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Figure 2.1: The quadrotor UAV’s attitude motion: (a) pitch; (b) roll; (c) yaw, and (d)
coordinate representation with thrusts, moments and gravity force.

Besides, as an attempt to generate thrust forces using actuators, we use the first-order
thrust-input model [172] in the Laplace domain as follows:

Tr(s) = K
b

s+ b
vr(s) (2.4)

where b is the actuator bandwidth; K is a positive armature gain.

In the control design, we separate the attitude and altitude dynamics. Using the con-
trol inputs of separated dynamics, a pulse width modulation (PWM) input generator is
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obtained as

vr = Gu =


0 1 1 1

0 −1 1 1

1 0 −1 1

−1 0 −1 1


 uϕ

uz

 , (2.5)

where vr = [v1, v2, v3, v4]T ∈ R4 is the PWM input for each actuator; G is the PWM
generator matrix; uϕ = [uφ, uϑ, uψ]T ∈ R3 is attitude control inputs; uz ∈ R is altitude
control input. Employing (2.5) we map the generated control signals u = [uTϕ , uz]

T to the
actual PWM signals v for the four motors. Similar to (2.5), we define the effective altitude
thrust Tz and attitude thrusts Tϕ = [Tφ, Tϑ, Tψ]T as follows:

Tz
M
=(T1 + T2 + T3 + T4)/4, (2.6)

Tφ
M
=(T1 − T2)/2, (2.7)

Tϑ
M
=(T3 − T4)/2, (2.8)

Tψ
M
=(T1 + T2 − T3 − T4)/4. (2.9)

Combining the nonlinear dynamics (2.3), thrust-input model (2.4) and the relation
(2.6)-(2.9), we derive the nonlinear state variable model in the form of (2.1) as

Ẋ = F (X, u) =



X3

X4

4
m
f1(X2)X6 − ζ

A1X4 + A2f2(X4) + BX5

−bX5 +Kbuϕ

−bX6 +Kbuz


, (2.10)

with state and control input vectors of the quadrotor UAV

X = [X1, X2, X3, X4, X5, X6]T ∈ R16 and u = [uTϕ , uz]
T ∈ R4, (2.11)

where X1 = p = [pTl , pz]
T , X2 = ϕ

M
= [φ, ϑ, ψ]T , X3 = Ẋ1 = v,X4 = Ẋ2 = wϕ, X5 =

Tϕ
M
= [Tφ, Tϑ, Tψ]T are 3-D vectors; X6 = Tz; ζ = [0, 0, g]T ; A1 = diag(dφ, dϑ, dψ); A2 =
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diag(
Jϑ−Jψ
Jφ

,
Jψ−Jφ
Jϑ

,
Jφ−Jϑ
Jψ

); f1(X2) =

 cosφ sinϑ cosψ + sinφ sinψ

cosφ sinϑ sinψ − sinφ cosψ

sinφ cosϑ

; f2(X4) =

 ϑ̇ψ̇

φ̇ψ̇

φ̇ϑ̇

; B =

diag(σϕ
Jϕ

) = diag( 2l
Jφ
, 2l
Jϑ
,

4Kψ
Jψ

).

In order to have a more feasible problem setting for further advanced control design,
we now present the separated dynamics of (2.10) as follows.

Lateral Position Model: The separated lateral position dynamics is

ṗl = vl, (2.12)

p̈l =
4Tz
m
f1l, (2.13)

where f1l
M
=

[
cosφ sinϑ cosψ + sinφ sinψ

cosφ sinϑ sinψ − sinφ cosψ

]
.

Altitude Model: The separated altitude dynamics is

ṗz = vz, (2.14)

p̈z =
4

m
(cosφ cosϑ)Tz − g, (2.15)

Ṫz = −bTz +Kbuz, (2.16)

Attitude Model: The separated attitude dynamics is

ϕ̇ = wϕ, (2.17)

ϕ̈ = A1wϕ + A2f2(wϕ) + BTϕ, (2.18)

Ṫϕ = −bTϕ +Kbuϕ. (2.19)

Remark 2.1.1. We are now able to design separated controllers to obtain more feasible
control performances based on the self-control demands of the sub-models. In both altitude
and attitude dynamics, an additional dynamics is defined to obtain uz and uϕ which can
be utilized to generate the PWM control inputs vr of (2.4).

2.1.2 Fixed-wing UAV Motion Dynamics

Fixed-wing UAV systems have the six-degree-of-freedom (DOF) and servo command in-
puts which are aileron (a), elevator (b), rudder (c), and throttle (d) as shown in Figure 2.2.
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Figure 2.2: An example fixed-wing UAV and its motion axes.

The dynamics of fixed-wing UAVs consists of twelve-states which contain coupled states,
model nonlinearities, nonlinear aerodynamics parameters, wind and other disturbances
[23]. These complexities in the motion dynamics do not allow to develop advanced con-
trol methodologies, easily. On the other hand, small fixed-wing UAV systems are mainly
considered to develop advanced control methods compared with large fixed-wing UAVs
and conventional aircrafts. Small fixed-wing UAV’s simplified equations of motion models
(piccolo-controlled type) are suitable for advanced control solutions as studied in [20, 133].

In general, roll and yaw dynamics provide the lateral motion of the small fixed-wing
UAV since there is a coupling between each other. In the piccolo-controlled type lateral
motion, roll dynamics is ignored, and it is stabilized by autopilot devices. Hence, the
simplified yaw and lateral velocity models provide lateral motion control [20, 133]. Since
the angle of attack and pitch models are ignored and stabilized by autopilot devices, the
altitude (longitudinal) motion only depends on the piccolo-controlled type height dynamics
[20, 133]. Therefore, the simplified nonlinear equations of the small fixed-wing UAV motion
(piccolo-controlled type) are considered for the position (lateral and altitude) and attitude
as follows.

ṗx = v cos(ψ), (2.20)

ṗy = v sin(ψ), (2.21)

p̈z = − 1

αż
ṗz +

1

αz
(pzc − pz), (2.22)

v̇ =
1

αv
(vc − v), (2.23)

ψ̇ = ω, (2.24)

ω̇ =
1

αω
(ωc − ω), (2.25)
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where p = [px, py, pz]
T are the position of Og; v is lateral speed; ψ is heading angle; vc, wc

and pzc are lateral speed, heading and altitude control inputs. Then, the nonlinear state
variable model in the form of (2.1) is derived as

Ẋ = F (X, u) =



X3 cos(X4)

X3 sin(X4)

− 1
αv
X3 + 1

αv
vc

X5

− 1
αw
X5 + 1

αw
wc

X7

− 1
αż
X7 − 1

αz
X6 + 1

αz
pzc


, (2.26)

with state and control input vectors of the small fixed-wing UAV

X = [X1, X2, X3, X4, X5, X6, X7]T ∈ R7 and u = [vc, wc, pzc]
T ∈ R3, (2.27)

where X1 = px, X2 = py, X3 = v, X4 = ψ, X5 = w, X6 = pz, and X7 = ṗz;
αv, αw αż and αz are inertial related dynamical parameters.

For further control designs, (2.26) are separated to the lateral and the altitude motion
models as follows.

Lateral Model: The separated lateral dynamics is

ṗx = v cos(ψ), (2.28)

ṗy = v sin(ψ), (2.29)

ψ̇ = ω, (2.30)

ω̇ =
1

αω
(ωc − ω), (2.31)

v̇ =
1

αv
(vc − v). (2.32)

Altitude Model: The separated height dynamic is

p̈z = − 1

αż
ṗz +

1

αz
(pzc − pz). (2.33)
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2.2 Literature on Single-UAV Motion Control

In the literature, various control techniques and approaches have been studied extensively
for quadrotor and fixed-wing UAV systems since both have different motion characteristics
and control demands. This section presents a brief summary of the single-UAV motion
control literature for both UAV systems. As discussed in the following subsections, it is
noticed that some control methods have been studied for nonlinearity, uncertainty and
optimality problems. However, the literature still needs advanced and feasible control
solutions and analyses for realistic model issues such as model nonlinearities, parametric
uncertainties, sensor noises and disturbances. By this motivation, new control strategies
can be developed and combined with each other to design real-time implementable, optimal
and robust controllers with guaranteed tracking error performance.

2.2.1 Quadrotor UAV Motion Control: Nonlinearities

It is well known that linear methods are easy and straightforward in terms of control
designs and stability analyses. However, linear control schemes perform poorly for highly
nonlinear systems since ignored dynamical terms affect linearized models, negatively. On
the other hand, nonlinear control schemes have some disadvantages since they require
more sophisticated hardware and equipment with larger memory and faster processor in
real-time implementation. Also, their stability analysis is not easy for proof.

In the literature, the dynamics of quadrotor UAVs may consist of highly coupled states,
nonlinear aerodynamic coefficients, external disturbances or uncertain parameters. To han-
dle these effects, more advanced control designs are required. Before advanced methods
were developed, there exist proportional-integral-derivative (PID) and linear quadratic
(LQ) control based classical studies for simplified and linearized dynamics [29, 30, 36].
On the other hand, some earlier works [31, 107, 108] are studied solving nonlinear ef-
fects by using nonlinear control techniques such as feedback linearization, sliding mode,
and backstepping control methods. These studies are partially implemented on quadrotor
UAVs with restricted dynamics and without full autonomous flights. Using visual feedback
without GPS and accelerometer, the approach described in [8] presents feedback lineariza-
tion and backstepping-like control laws. The implementation of the study is not fully
autonomous since the quadrotor UAV is restricted in vertical and yaw motion.

Unlike Newton-Euler modeling, [35] uses Lagrange approach to derive the motion dy-
namics for the control analyses. The authors use a nested saturation strategy to design the
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proposed controllers, and the system is stabilized based on Lyapunov analysis. The exper-
iment is technically not full autonomous flight since position and orientation sensing are
provided via cables. In [41], the coupled dynamics derived by Lagrangian method is used
to design backstepping control. The control structure is considered in two parts; attitude
inner and position outer loop controllers. The control design is not easy and straightfor-
ward since position dynamics is bilinear. In the design, two neural networks are used for
the estimation of system unknowns. In [107, 108], the dynamics is analyzed into three
interconnected subsystems: under-actuated (for lateral and rotation), fully-actuated (for
altitude and yaw) and propeller (for four rotors) subsystems. Then, the full-state back-
stepping methods are used for tracking control of the quadrotor UAV. The system stability
is based on Lyapunov theorem. In [108], tests are lack of autonomous flight because of
restricted yaw and altitude motions.

In contrast to the studies mentioned above, [145, 146] use the quaternion representation
to define the attitude behavior. This helps to avoid singularities in the calculation of
control laws comparing with Euler representation. In particular, [145] focuses on the
attitude stabilization using the quaternion-based feedback control. Then, orientation is
stabilized using PD2 feedback control. This stabilized controller achieves a good transient
and disturbance rejection performances during the high speed and large angle motions.
[146] also contains the unit-quaternion, which is globally nonsingular, without velocity
measurement to design a controller for tracking of desired attitude motion. Another control
method is geometric tracking control to avoid singularities of Euler angles and ambiguities
of quaternions in the attitude behavior during the complex and acrobatic maneuvers. This
approach presents a global dynamic definition for the avoidances. Using the geometric
method, [96] present nonlinear tracking controller which is used on the Euclidean group
SE(3). The study is extended to [97] which presents nonlinear output-tracking controllers
for tracking of translational and rotational models. In this work, the authors consider that
both dynamics contain the bounded uncertainties which are neglected in [96].

For robust nonlinear solutions on quadrotor UAVs, the sliding mode controllers (SMC)
are designed in [142, 143] to track the desired position and yaw, and stabilization. For over-
all control design, the motion equations are considered in two parts: fully-actuated and
under-actuated subsystems. The authors use a continuous approximation of sign function
to avoid chattering effects in the controller. In [25], a feedback linearization-based controller
is designed together with high order sliding mode (HOSM) observer against external distur-
bances such as wind and noise. The HOSM observer is also used for state measurements.
Although the feedback linearization avoids nonlinearities, there still occurs the external
disturbances. Hence, the HOSM observer is not only used to restraint the disturbances
by estimation, but it also supports the stability and robustness of the closed-loop system.
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[94] presents two nonlinear controllers based on either Feedback linearization (FL) and
adaptive sliding mode (ASM) controllers. The FL controller is sensitive for external dis-
turbances and sensor noises since it includes the high-order derivative terms. In the ASM,
the controller has a robust structure to cancel model errors, external disturbances, and sen-
sor noises. Without estimation of model uncertainties, sliding mode controller generates
large input gains, and this causes application problems because of the motor-limitations of
actual systems. Therefore, to avoid these uncertain effects, the authors use an adaptation
in the SMC design. To make more easier analyses, the authors have simplified nonlinear
dynamics for both control design.

For robust controllers against uncertainties and external disturbances, researchers have
developed several control approaches such as robust nonlinear control methods, observers,
robust compensators. In [27], the SMC based on disturbance observer is studied. This
approach gives a robust continuous control in the presence of uncertainties and distur-
bances. The control design also avoids high control gains which cause inapplicable cases
in practice. [139] presents a linear matrix inequality based controller gain synthesis. Using
an approximate FL, the control gains are easily tuned. The design is not only achieved
optimal gains for the cost function, but it also guarantees robust stability performance.
[138] focuses on attitude performance. By using Lyapunov methodology, the nonlinear
control design is developed to eliminate model uncertainties. The on-line estimation model
is designed using a time-delay approach. Combining the anti-windup technique with the
controller, the robustness of the system is proven.

Compared with the above mentioned robust designs, [102, 103, 104, 105] use a robust
compensation approach combining with nominal control designs such as PD. The overall
control design eliminates the effects of model nonlinearities, model uncertainties, and ex-
ternal disturbances. In these studies, nonlinearities and external disturbances are gathered
into an uncertainty representation in the linear model, and they are taken as multiple
uncertainties. Nonlinear dynamics are not ignored since they are taken into account as
multiple uncertainties. Then, the robust decentralized control is designed within two con-
trol loops: the nominal control design which are position and attitude controllers, and the
robust external compensator which deals with the control inputs. The nominal control de-
sign provides translational and rotational tracking. In the robust compensator, the system
inputs are regulated. Combining the nominal control inputs and the compensator inputs,
the effective control inputs are generated for the actual quadrotor UAV.
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2.2.2 Quadrotor UAV Motion Control: Model Uncertainties

In some cases, quadrotor UAVs face model (dynamical) uncertainties while they operate to
achieve trajectory tracking and stability objectives. These uncertainties come from unmea-
surable or unknown parameters in the motion dynamics. One of the control techniques in
the literature to solve dynamical uncertainties is adaptive control by using a direct method
or estimating unknown parameters via an indirect method. Direct adaptive control ap-
proach updates uncertain parameters in control laws, directly. Indirect adaptive law is
designed to estimate unknown parameters, separately and then calculating control gains.

In [115], the direct adaptive control is developed using backstepping methods for the
tracking problem. Considering the unknown mass parameter, [73] uses an under-actuated
model divided into three subsystems to design an adaptive backstepping controller. The
authors use Lyapunov theorem to prove the stability of translational and yaw tracking. The
stability analyses are considered to ensure adaptive control laws and estimation models. In
[166], the authors develop on-line estimation laws to design a nonlinear adaptive regulation
controller. In the proposed design, unknown parameters, moments of inertia, aerodynamic
damping coefficients, length, and force-to-moment factor are estimated, then using esti-
mated parameters, the effects of uncertainties are compensated via the control design. The
stability of the system is proven by Lyapunov method under parametric uncertainties.

[45] presents a direct adaptive control application by using model reference adaptive
control (MRAC) method. The control design is applied to the linearized model under
parametric uncertainties. The authors also develop a nominal controller to compare per-
formances of both design. The flight tests show that the MRAC design is more effective
for robust responses than the nominal control design. In [46], nominal control, MRAC and
combined/composite MRAC (CMRAC) design based on Lyapunov theorem are compared.
The MRAC uses the direct adaptive method following [45]. In the CMRAC, the authors
develop a combination of direct and indirect adaptive control. The proposed CMRAC
aims to accomplish a smoother transient performance than others. All control designs are
compared to each other using an indoor test facility. Both adaptive controllers give more
robust responses against parametric uncertainties, in particular, actuator failure.

There are several studies on indirect adaptive control designs for linear models of
quadrotor UAVs. A method proposed in [9] utilizes an indirect adaptive controller by using
recursive least squares (LS) estimation for developing a linear parameter varying (LPV)
controller. The study lacks altitude and yaw analyses. [89] presents an indirect adaptive
linear quadratic controller (ALQC) considering inertial uncertainties for the pitch/roll dy-
namics. An on-line parameter identification (PI) is developed via the LS algorithm. In
[33], an indirect mixing adaptive method is combined with the actuator failure problem.
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Regarding intelligent estimation, [170] presents a neural network-based adaptive control
under various uncertainties. In the design, the author uses a norm estimation approach
instead of element-wise estimation to improve the real-time capability of the system, and
the estimation method also saves the on-board computational resource. In [19], a radial
basis function neural network (RBFNN) is used to approximate the perturbations and
combined with backstepping. Adjustment of the RBFNN is based on on-line learning, and
the RBFNN design does not need prior knowledge of uncertainties and disturbances.

Unlike most of the existing estimation based adaptive control literature, [119] develops a
nonlinear function approximator, direct approximate, based on the Cerebellar Model Arith-
metic Computer (CMAC). This method has fast adaptation and computation performance,
and it is well-fit for applying with a direct adaptive controller. However, the control design
has a weakness against sinusoidal disturbances. In the CMAC, the controller is adapted
to the unknown payload and compensated disturbances. For the system robustness, the
update method limits weight growth by catching large enough values to compensate the
effects of unknown payloads. Under parametric and non-parametric uncertainties, a de-
centralized adaptive control method is presented in [114] to stabilize altitude and attitude
dynamics and to cancel the effects of the uncertainties. The controller is asymptotically
stabilized by a Lyapunov-based MRAC technique. Each dynamic channel is tuned by itself
based on its error, and this model has a simple structure compared with existing adap-
tation methods. [63] uses a novel unified passivity-based adaption with the backstepping
procedure to overcome the effects of the uncertain mass. The control approach consists of
two main objectives which are velocity field following and timed trajectory tracking.

In some instances, uncertainties and disturbances are considered together to develop
robust controllers. [167] presents a robust adaptive nonlinear control design to satisfy
tracking performances. The robust integral of the signum of the error (RISE) method and
the immersion/invariance-based adaptive control method are used in inner and outer loops
of the quadrotor UAV to overcome the effects of parametric uncertainties and unknown
external disturbances. Using Lyapunov and LaSalle’s invariance-based analyses, the sta-
bility of the system is proven. In [76, 77], considering modeling error and disturbance
uncertainties associated with aerodynamic and gyroscopic effects, payload mass, and other
external forces/torques which come from the flying environment, the authors develop a
robust adaptive tracking controller for nonlinear and linear models using the same control
methodology. Using Lyapunov-energy function, the controllers are developed, and the sta-
bilities are proven. For both, adaptive laws are designed to overcome modeling errors and
disturbance uncertainties, and they do not need prior bound knowledge. In [77], PD-like
control, gravity compensator, desired acceleration and desired angular acceleration models,
and adaptive laws are combined to obtain position and attitude controllers.
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In some cases, external uncertainties arise from disturbances such as external forces,
wind, noises, etc. As a solution, disturbance rejection methods are used for these uncer-
tainties. For constant wind disturbances, [34] present a globally stabilized robust path
tracking controller by utilizing a disturbance rejection design. The control is based on
Lyapunov-based backstepping methods to guarantee zero tracking error. Simulation and
experimental results show the effectiveness and robustness of the design. In [148], the
authors design a disturbance rejection control for internal and external disturbances in
attitude dynamics. The design includes a robust disturbance-observer (DOB) and a non-
linear feedback control strategy. The DOB design uses an optimal approach, H∞ theory,
to overcome disturbance effects. The attitude tracking error model is developed using
modified Rodrigues parameters (MRPs). The nonlinear feedback control is also based on
backstepping techniques. In [147], the authors present another DOB based control strategy
to overcome the effects of modeling error and external disturbances.

2.2.3 Quadrotor UAV Motion Control: Optimality

In the literature, one of the main control interests is to generate optimal control actions
for quadrotor UAVs. These control methods provide effective control actions with optimal
tracking and low energy consumption. Comparing with other control approaches, there
are a few optimal control solutions applied to quadrotor UAVs. linear quadratic regulator
(LQR), H∞ and model predictive control (MPC) are generally used as earlier solutions.

In the earlier works, there firstly exist LQR implementations on linearized models
[29, 30, 36]. The LQR method is combined with adaptive and fault tolerance solutions
under parametric uncertainties in [33, 89]. These studies are experimentally validated, and
the results show the effectiveness of adaptive LQR designs. Furthermore, H∞ techniques
are used in some studies. Despite several H∞ strategies are developed using a linear model,
there exists an H∞ design for 2DOF based on the simplified nonlinear model in [37]. [125]
present a nonlinear H∞ control to stabilize rotation and to support backstepping strategy
in translational, optimally. In [126], a robust nonlinear H∞ control and integral MPC
models are used for inner and outer loops in the overall design. As an optimal nonlinear
control, [148] present a robust disturbance observer based on H∞ strategy to provide a
robust and optimal performance during the disturbance rejection.

Taking into account model constraints and disturbances, MPC is used as another op-
timal approach. [4] presents a robust and optimal MPC design under constraints and
wind-gust disturbance for the attitude model. A set of Piecewise Affine (PWA) models is
designed for each linearized subset attitude model. In [6], the authors extend the attitude
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control [5] to the full motion control design. A switching MPC is used for translation and
rotation dynamics. A robust MPC is designed in [7] to decrease the effects of disturbances
for tracking performance. As existing optimal control methods, in [3], a constrained finite
time optimal control (CFTOC) is designed to stabilize the experimental attitude model
under constraints and wind disturbance. In another study, [156] uses L1 optimal robust
control for a quadrotor UAV system. The control strategies are developed using feedback
linearization. The control design is implemented for no measurement noise and noise cases.

2.2.4 Fixed-wing UAV Motion Control

This subsection reviews control methodologies that are studied and applied to small fixed-
wing UAVs in the earlier works. Regarding advanced nonlinear, optimal and adaptive
approaches studied on the low-level control design of fixed-wing UAVs, the literature is
restricted since the motion dynamics of fixed-wing UAVs are complicated and highly non-
linear [23, 55, 66, 106]. In some studies [20, 81, 133], fixed-wing UAVs are considered
and studied as small vehicles with simplified kinematic and dynamic motion models to
avoid highly nonlinearities. Therefore, by applying their control methods on the simplified
models, the commanded heading angle, velocity, and altitude are generated for autopilot
avionic devices which are inner-loop control equipment to generate actual motor inputs
for aileron, elevator, rudder, and throttle. Furthermore, these control approaches can be
efficiently utilized on unmanned ground vehicles (UGVs) for experimental validations in
2D since the simplified planar motion models of fixed-wing UAVs are well-suited to UGVs
(since same non-holonomic motion characteristics). As a case study, [132] presents an
experimental validation of the trajectory tracking control design by using a mobile robot
platform as a fixed-wing UAV motion control at the fixed-level.

In [133], the authors develop a constrained nonlinear tracking control for the simpli-
fied kinematic and dynamic motion models of the fixed-wing UAV. The control model is
designed with low-level altitude-hold, velocity-hold and heading-hold autopilots which are
represented lateral and longitudinal motion. These autopilots reduce the 12-state strongly
nonlinear model to 6-state equations of motion model which uses altitude, heading and
velocity command inputs. Hence, using the 6-state motion model and considering system
constraints, Control Lyapunov Function (CLF) approach is used for the overall control
design. By the help of equipping low-level autopilots, [131] also uses an accurate 7-state
kinematic model for nonlinear backstepping control to derive high-level velocity and roll
angle control laws. In another study, [81] considers the kinematic model with the au-
topilots as low-level and develops a nonlinear model predictive control (NMPC) for the
high-level controller before the low-level autopilot avionics. This study deals with solving
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on-line an optimal trajectory tracking problem under limited turn. In [20], the authors use
the Piccolo-controlled model, which is another simplified motion model with autopilots,
to develop a Lyapunov-based backstepping controller in lateral and longitudinal motion.
For lateral motion tasks, [61] presents a direct model reference adaptive approach with
constant speed for the low-level heading control. As a realistic perspective, [18] presents
the state estimation techniques via various methods and real-time sensors equipped with
the fixed-wing UAV. It also discusses the control and stability details of autopilot avionics
before the decoupled lateral and longitudinal dynamics controllers. As for adaptive, opti-
mal and nonlinear control solutions at the high (guidance) control level, [55, 128, 160, 168]
present path-following laws before the low-level control design.

2.3 Literature on Multi-UAV Formation Control

In the literature, various formation control architectures have been used. Regarding for-
mation control schemes, there exist two main approaches: centralized and decentralized.
The Centralized approach offers a global decision-making unit for multi-agent systems,
and complexities may occur in mathematical analyses of large-scale systems. However,
the Decentralized (distributed) approach provides a sub-decision making units for each
agent in multi-agent systems. Hence, the distributed approach is more practical and easy
to implement on real systems. In another categorization based on interaction topology
of multi-agent systems, formation structures have been classified as hierarchical and non-
hierarchical. For these structures, there are three main approaches used in the litera-
ture, namely, leader-follower, virtual-leader and behavioral-based [11, 15, 42]. The leader-
follower approach works in a hierarchy and does not need sophisticated sensors in most
cases. This approach depends on leader performance. The virtual-follower method uses
a virtual leader for each agent to follow with non-hierarchy. This approach needs more
complex communication capabilities; however, its performance is more robust than leader-
follower. The behavioral-based approach needs predefined behaviors, such as formation-
keeping and obstacle-avoidance. This approach mostly needs more complex computing
capabilities. Moreover, symmetrical and asymmetrical information flows have been used
in hierarchical and non-hierarchical patterns to ease the communication complexities.

A survey study [120] gives another overview of formation control for multi-agent sys-
tems based on sensing and interaction topology. So that, three categories are presented
position-based, displacement-based, and distance-based controls. Position-based controls
are usually not required interaction topologies, but they need long-range and more ad-
vanced sensors. Distance-based controls need interaction topology (rigid or persistence)
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among members of multi-agent systems. The distance-based controls have sensing ad-
vantages since they only need inter-agent distances. In displacement-based controls, both
sensing capabilities and interaction topologies of multi-agent systems are used equally.
In the above categorizations, authors have been reviewed literature mostly depending on
sensed variables, controlled variables, coordinate systems, and interaction topology.

In distanced-based control of an asymmetric (directed), hierarchical formation, a rigid
or persistent interaction (communication) graph is needed to achieve desired positions
and then maintain desired formation shape by controlling inter-agent distances. Hence,
algebraic graph theory is used to design required communication topologies in this kind
of formation structures. For graph theory analyses, the literature mostly considers single-
integrator agents and lacks local (individual) control performance effects on formations.
Graph rigidity and formation stabilization are discussed with detail in the earlier studies
[12, 121, 163]. In particular, [20, 53] discuss cohesive motion control tasks using the
distributed approach and present general characteristics of cohesive motion tasks.

In some of the recent works, formation control designs are studied for multi quadrotor
and fixed-wing UAV systems. [123] examines a distributed formation control design with
the robust local controller utilized on multi-quadrotor helicopters. In [59], using a nonlinear
dynamic model in the leader-follower structure, a consensus-based formation control is
designed for a two-quadrotor system. Using directed topology in the formation graph, [150]
also studies a consensus problem for a multi-quadrotor system under bounded disturbance.
[60] deals with the impact of communication design over information flows of directed and
undirected graphs for the consensus task of the multi-quadrotor systems. [20] present a
distributed cohesive motion control for multiple fixed-wing UAV and quadrotor systems.
The study introduces solutions for the maintenance of rigid and persistent motion during
trajectory tracking tasks. In [61], the authors present a distributed formation control using
more realistic lateral motion dynamics for surveillance tasks of the multi fixed-wing UAV
system. Using range-based measurement, [165] study a rigidity maintenance control for a
multi-UAV system. Using simplified quadrotor motion dynamics, [38, 137] study nonlinear
control approaches combined with formation level. As N-vehicle cases, [81, 82] present
single-integrator model based formation control designs for a group of the quadrotor UAVs
in 2D. The authors do not consider the performance effects of local controllers of the
quadrotor UAVs on formation maintenance and robustness, especially, in case of modeling
issues on actual quadrotor UAVs such as uncertainties or disturbances.

As discussed above the studies, literature mostly focuses on high-level control and
stability using simple models such as single or double integrator dynamics. However,
literature lacks low-level control design and analysis to study and compensate the effect of
realistic model issues such as uncertainties and disturbances on formation maintenance.
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Figure 2.3: Motion control architecture of quadrotor UAVs [90].

2.4 Single UAV Motion Control Architecture

In this section, single UAV motion control architectures of quadrotor and small fixed-wing
UAV systems are discussed and presented as follows.

2.4.1 Quadrotor UAVs

Motion control architecture of quadrotor UAVs within navigation, guidance, and control
(NGC) systems consists of path planner (P ), control schemes (H and L) and system
sensors (S) as seen in Figure 2.3. The control system (CS) is considered in the two-level
as high-level (H) and low-level (L). The separated dynamics (2.12)-(2.19) are located
into the reference angle, altitude and attitude models to accommodate the proposed two-
level control structure. In the CS, the on-line trajectory generator provides the desired
positions pd(t). Reference angle model is responsible for generating the desired attitude
angles ϕd(t) = [φd(t), ϑd(t), ψd(t)]

T . The reference angle generator and the attitude
dynamics (Cat) provide lateral and attitude motion of the quadrotor UAV as a cascade
control system. The altitude dynamics (Cal) controls the longitudinal motion. In the low-
level, control laws generate control signals uz(t) and uϕ(t). Then, the control signals are
converted to actuator PWM motor inputs vr(t) by using the equation (2.5).
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Figure 2.4: Motion control architecture of small fixed-wing UAVs [133].

2.4.2 Fixed-wing UAVs

As studied in [23, 133], motion control architecture of small fixed-wing UAVs within NGC
systems consists of five main parts: path planner (P ), trajectory smoother (D), trajec-
tory tracker (T ), low-level autopilots (A) and sensors (S) as shown in Figure 2.4. In the
navigation system (NS), hardware equipment and estimation algorithms are used to sense
system states. In the guidance system (GS), trajectory smoother generates a more smooth
desired trajectory using generated way-points and tracking errors. Since fixed-wing UAV
motion dynamics is represented by the highly nonlinear model, the control system (CS) is
considered in two control parts. At the first part, the trajectory tracker T , the simplified
motion model (2.26) is used to design controllers. The separated dynamics (2.28)-(2.32)
of the simplified model are located into lateral and altitude models as presented in Section
2.1.2 to accommodate the proposed two-level control structure. Then, trajectory tracker
T within the two-level control structure generates velocity, angular velocity and altitude
commands to the autopilots. The second part is autopilot devices, and they are responsible
for generating actual motor inputs of aileron, elevator, rudder, and throttle using control
commands generated in the first control part.
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2.5 Multi-UAV Formation Control Architecture

This section presents a distributed formation control architecture of multi-UAV systems
as shown in Figure 2.5 where high (formation) level control design is separated from low
(individual) level motion control design via the proposed two-level control structure. In the
two-level structure of the distributed formation control architecture, the high (formation)
level controller (Hi) of ith UAV is designed using a hierarchal leader-follower formation,
and it consists of two submodules. Formation supervisor (PS) and desired attitude gen-
erator (PH) generate the desired position and attitude to guide ith UAV for formation
maintenance. In the low-level (Li), proposed control laws are designed for ith individual
UAV tracking control as well as maintaining desired formation shape via the guidance
of the formation level module. Actual control inputs ui(t) of the ith UAV system are
generated in this level control.
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Chapter 3

Adaptive Linear Quadratic Attitude
Tracking Control with Sensor Fusion

3.1 Introduction

In the literature, various control approaches have been proposed for quadrotor UAV systems
as discussed in Chapter 2. For attitude tracking control and stabilization, researches have
developed solutions such as quaternion-based feedback control for exponential attitude
stabilization [145], robust adaptive attitude tracking control [95], robust attitude control
for uncertain quadrotors with proportional-derivative (PD) controller combined with a
robust compensator [102], robust nonlinear design under uncertainties and delays [105],
and fractional sliding modes based attitude control [78].

One of the main control interests for quadrotors UAV is optimization of time and energy
(battery) consumption by designing optimal path planning and optimal tracking control.
For such optimal attitude tracking, [30] has designed a linear quadratic regulation (LQR)
based attitude stabilization. For solving a more general form of the same problem under
wind gust disturbances, a switching model predictive attitude controller is developed in [5].
[156] presents L1 optimal robust tracking control to compensate persistent disturbances in
translational and rotational (attitude) dynamics.

Linear-quadratic (LQ) based optimal control frameworks constitute a systematic toolset
for calculating ideal control gains with guaranteed system stability under LQ design con-
ditions. LQ-based control schemes provide robust and precise steady-state tracking while
the performance index (quadratic cost function) adjusts optimality trade-off between track-
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ing/regulator performance and battery consumption. A particular LQ-based control ap-
proach is infinite-horizon optimal regulation based on linear time-invariant (LTI) models.
This approach is widely used in real-time applications since its solution does not have
computational complexities for obtaining constant state-feedback control (Kalman) gains
by solving algebraic Riccati Equation (ARE). The infinite-horizon LQR has been mostly
used in many earlier works as studied for the quadrotor UAV in [30] for attitude state
regulation and stability.

On the other hand, Linear-quadratic tracking (LQT) problems have gained less atten-
tion compared to LQR problems, since time-varying reference trajectories lead to further
analysis and computational complexities. LQT control schemes typically consist of two
state-feedback and feed-forward terms. The state-feedback terms guarantee system sta-
bility by state-feedback (Kalman) gains which are calculated off-line solving differential
Riccati equation (DRE). The feed-forward terms provide optimal tracking of time-varying
bounded reference trajectories utilizing differential auxiliary vector signal equation. In
practice, computational complexities arise because of the time variations in the feed-
forward terms. Accordingly, the literature on LQT control design and applications on
real-time systems is limited. [17] presents an off-line solution to the infinite-horizon LQT
problem by solving the feed-forward term based on calculating the initial condition of the
auxiliary vector signal. The authors present a real-time implementation of this solution
on flexible beams system in [2]. Other than the classical solution, [113] presents an on-line
reinforcement learning algorithm to solve LQT problem without requiring the knowledge
of the system drift dynamics or the command generator dynamics.

Regarding LQT of quadrotor UAV systems, [161] presents a finite-horizon LQT con-
trol design with time-varying control gains which are calculated solving off-line discrete
time matrix Riccati equations for the linearized full dynamics of the quadrotor UAV. Con-
sideration of finite-horizon LQT with known boundary conditions at the initial and final
time instants prevents the computational complexity issues with implementation of this
design. However, in many practical cases, including the cases considered in this chapter,
since the boundary conditions are unknown, infinite-horizon LQT needs to be considered
for designing an alternative optimal linear tracking controller.

In this chapter, by the motivations of LQ-based optimal control advantages as stated
above and lack of infinite-horizon LQT control schemes with their applications on real-
time systems in literature, we present an infinite-horizon LQT control design, its practical
solution and its experimental validation on the real-time quadrotor UAV with inertial
parametric uncertainties and Inertial Measurement Unit (IMU) sensor noises. Furthermore,
to improve robustness against parametric uncertainties, the presented LQT control design
is combined with an adaptive parameter identification (PI) scheme based on least-squares
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(LS) estimation. Combining the LQT control design and the PI scheme, an adaptive LQT
(ALQT) control scheme is developed for optimal attitude tracking of quadrotor UAVs,
with reduced tracking error and battery consumption.

Reliable attitude estimation is one of the main challenges for quadrotor UAV tracking
control. Euler angles (φ, ϑ and ψ) and Quaternions are two common types of attitude
representation for UAV systems. IMUs, formed by 3-axis inertial sensors of gyroscopes,
accelerometers and magnetometers, measures angular velocities, linear accelerations and
the Earth’s magnetic field. Ideally, accelerometer measurements or numerical integration
of angular velocities of gyroscopes should be enough for ideal sensors to determine attitude
angles. However, in real-world conditions, individual usage of these sensors is not suffi-
cient to determine attitude angles due to large amounts of system noise, drift errors and
vibrations.

To obtain fast and accurate attitude states, sensor fusion techniques have been applied
to IMU measurements, including wide ranges of complementary filters [14, 26, 65, 101, 109,
110, 153, 158] and Kalman filters [49, 52, 54, 65, 67, 87, 98, 101, 111, 129, 145, 151, 154, 155].
A complementary filter typically combines accelerometer output for low-frequency attitude
estimation with integrated gyroscope output for high-frequency estimation. Complemen-
tary filters are computationally less demanding, and due to their simplicity and efficiency,
these filters are still used for attitude estimation. A variety of complementary filters has
been used to estimate attitude quaternions [109, 110, 158] or Euler angles for relatively
small roll and pitch aerial vehicle angles [14, 65, 101, 145]. Complex rotations of simulta-
neous roll, pitch and yaw angles require nonlinear complementary filter fusion techniques
[130].

Kalman filter is an optimal recursive estimation scheme that uses a system’s dynamic
model, known control inputs, and multiple sequential measurements from sensors to form
an estimate of the system states fusing prediction and measurement on-line [47, 52, 67,
129, 151]. The extended Kalman filter (EKF) is developed for nonlinear system state
estimation and has been widely used for real-time UAV systems for Euler angle based
attitude estimation [49, 54, 65, 101] as well as quaternion based attitude estimation [87, 98,
111, 154, 155]. Unscented Kalman filter (UKF) [29, 40, 43, 159] and adaptive Kalman filter
(AKF) [100] are another widely used sensor fusion algorithms. In [49], a novel Kalman
filter algorithm is proposed, which consists of an EKF and an inverse Φ-algorithm in a
master-slave configuration to estimate reliable angular acceleration signals by fusing IMU
sensor data. In [98], it is shown that even for applications with strong real-time constraints,
EKF can properly estimate the UAV attitudes, even in the presence of data loss.

As discussed in Chapter 2 and the earlier work [90], we consider the quadrotor UAV con-
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trol structure in two levels: high-level and low-level. High-level is mainly about guidance
and position controlling in the autonomous motion tasks and generating the trajectories to
be tracked by the low-level controller. Provided the trajectory from high-level, the low-level
control is responsible for the quadrotor UAV’s attitude and altitude tracking performance
and stability. In this chapter, we focus on the low-level control design, following a de-
centralized approach, considering the three motion dynamics modes separately: adaptive
LQT control for the attitude dynamics, proportional (P) control for the yaw dynamics,
and proportional-integral-derivative (PID) control for the altitude dynamics, as shown in
Figure 3.1. In the overall structure, the attitude measurement noises, which come from
IMU sensors, are compensated using a Kalman filter to obtain a more reliable attitude
estimation. The effectiveness of the employed Kalman filter is investigated over the exper-
iments that compare the Kalman filter results with a complementary filter. In the next
step, we developed an infinite-horizon ALQT controller and validated its effectiveness by
performing two set of experiments.

3.2 Quadrotor UAV Dynamics

A nonlinear dynamic model of quadrotor UAV motion dynamics (2.10) is presented in
Chapter 2. In this chapter, we have simplified and partitioned this nonlinear dynamic
model to obtain separate linear models for each of attitude, yaw, and altitude dynamics.

3.2.1 Attitude Model

Ignoring inertial and drag effects, we obtain a linearized attitude (roll/pitch) dynamics
from (2.17)-(2.19) of the nonlinear dynamic model (2.10). Hence, we write the attitude
model in the state-space form as

ẋϕ(t) = Aϕxϕ(t) +Bϕuϕ(t), ϕ ∈ {ϑ, φ}, (3.1)

ϕ(t) = Cϕxϕ(t),

where Aϕ =


0 1 0

0 0 2lK
Jϕ

0 0 −b

, Bϕ =


0

0

b

, Cϕ =


1

0

0


T

and xϕ =


ϕ

ϕ̇

Tϕ

. xϕ, uϕ, ϕ, ϕ̇, Tϕ, Jϕ,

K, b and l represent states, control inputs, Euler angles, angular velocities, thrust forces,
rotational inertias, positive armature gain, the actuator bandwidth in attitude (roll/pitch)
dynamics and the distance between the center of gravity Ob and each propeller, respectively.
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Remark 3.2.1. Attitude (ϕ) dynamics represents roll (ϑ) and pitch (φ) dynamics, and
yaw (ψ) is separated from attitude dynamics for the proposed control design.

3.2.2 Yaw Model

We obtain linearized yaw dynamic as

ψ̈ =
4KψK

Jψ

b

(s+ b)
uψ, (3.2)

where uψ is the yaw control input, Kψ is thrust-to-moment gain and Jψ is the rotational
inertia in yaw motion. Finally, we write the linearized yaw model in form of an input-output
transfer function as:

ψ =
4KψKb

s2(s+ b)Jψ
uψ. (3.3)

3.2.3 Altitude Model

We have linearized the nonlinear altitude model (2.14)-(2.16) by the use of small angle
approximation and taking the effect of gravity as an offset in the linearized model. Ac-
cordingly, we obtain the simplified linear altitude model as

p̈z =
4K

m

b

(s+ b)
uz, (3.4)

where pz is z-position of Ob, uz is the altitude control input and m is the total mass of the
quadrotor UAV system. Finally, we obtain the linearized altitude model in the form of an
input-output transfer function as

pz =
4Kb

s2(s+ b)m
uz. (3.5)

3.3 Problem Statement

Considering a quadrotor UAV with attitude (roll/pitch) dynamics (3.1), yaw dynamics
(3.3), and altitude dynamics (3.5), as illustrated in Figure 3.1, the objectives of this chapter
are threefold:
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Figure 3.1: The overall quadrotor UAV control block diagram.

1. Given the IMU sensor measurements of the attitude angles, design a data fusion
algorithm based on (i) Kalman filtering and , for comparative analysis purposes, (ii)
complementary filtering, to cancel the IMU sensor noise effects and produce accurate
attitude state estimates

2. Design the control units to generate the command signals uz, uψ, uϑ, uφ for feeding
the PWM generator that generates the motor control input signal vr, per the dia-
gram in Figure 3.1: (a) Design an infinite-horizon ALQT controller to generate the
optimal attitude control signal uϕ(t) = u∗ϕ(t) so that ϕ(t) tracks its desired trajectory
ϕd(t), minimizing the predefined quadratic performance optimal tracking and energy
consumption cost function

J =
1

2

∫ ∞
0

(Qe2
ϕ(t) +Ru2

ϕ(t))dt, (3.6)
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where Q and R are positive constant weighting terms and

eϕ(t) = ϕ(t)− ϕd(t) (3.7)

is the attitude tracking error. (b) Design a P yaw controller to generate uψ(t) and a
PID altitude controller to generate uz(t).

3. Combining the designs in 1 and 2, above, real-time implement and experimentally
validate the overall control scheme

3.4 Control Approach

In our infinite-horizon ALQT control design, the optimal control law consists of two terms:
the state-feedback and the feed-forward. The state-feedback term maintains the stability of
the attitude dynamics. This term is obtained solving an algebraic Riccati equation (ARE).
The feed-forward term depends on the desired trajectory and is used for establishing trajec-
tory tracking performances. The above optimal control law is combined with an LS based
adaptive PI algorithm to make it robust, adaptive and avoid inertial uncertainties in the
attitude dynamics. After this combination, because of the uncertainties, the ARE needs to
be solved on-line as well. In the implementation, by comparing the on-line estimates of the
uncertain parameters with some critical parameters calculated and stored in a look-up ta-
ble, the time-varying state-feedback (from the PI) and then the time-varying feed-forward
(from slowly-varying desired attitude and the PI) terms are calculated on-line. In the
real-time implementation of the designed ALQT scheme, we utilize a practical real-time
computation technique based on parameterized analytical solutions of the state-feedback
and the feed-forward terms.

3.5 IMU Sensor Data Fusion

The quadrotor UAV needs a robust estimation scheme for denoising the attitude angle
measurements to provide reliable feedbacks to the proposed ALQT control scheme. The
attitude angles are measured using an ADIS16405 IMU as shown in Figure 3.2. Then a
Kalman filter is employed to attenuate the effect of measurement noises. The IMU contains
a 3-axis gyroscope to measure angular velocities (ϑ̇, φ̇, ψ̇), a 3-axis accelerometer to measure
accelerations due to Earth’s gravity (ax, ay, az) and a 3-axis magnetometer to measure the
magnetic field intensities (mx,my,mz). The specifications are listed in Table 3.1.
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Table 3.1: The ADIS16405 IMU Specifications [171].

Gyroscope Accelerometer Magnetometer

Range ±305(deg/s) ±18(g) ±3.5(gauss)

Sensitivity 0.05(deg/s/LSB) 3.33(mg/LSB) 0.5(mgauss/LSB)

Figure 3.2: The ADIS16405 IMU Module on the Qball-X4 quadrotor UAV.

3.5.1 Attitude Determination from IMU Sensors

Roll and pitch angles are obtained based on accelerometer and gravity vector relation. The
rotation matrix from the body frame to the inertial frame is defined with the Euler angles
as:

Rb2i =


cosψ cosϑ − sinψ cosφ+ cosψ sinϑ sinφ sinψ sinφ+ cosψ sinϑ cosφ

sinψ cosϑ cosψ cosφ+ sinψ sinϑ sinφ − cosψ sinφ+ sinψ sinϑ cosφ

− sinϑ cosϑ sinφ cosϑ cosφ

 .
(3.8)

Assuming constant translational velocities [49, 152], i.e., ignoring translational acceler-
ations, we obtain the following relation between the accelerometer output, rotation matrix
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and earth gravity: 
ax

ay

az

 = Ri2b


0

0

g

 =


− sinϑ

cosϑ sinφ

cosϑ cosφ

 g, (3.9)

where Ri2b = RT
b2i. From (3.9), attitude angles are calculated as

ϕacc =

[
ϑacc

φacc

]
=

[
atan2(−ax,

√
a2
y + a2

z)

atan2(ay, az)

]
, (3.10)

where atan2(ay, az) denotes arc tangent of ax and ay while it uses the signs of both argu-
ments to determine the quadrant of the result. By determining the roll and pitch angles, the
rotation matrix from the body frame to the magnetometer local (NED:North-East-Down)
frame is rearranged as

mx

my

mz

 =


cosϑ sinϑsinφ sinϑ cosφ

0 cosφ − sinφ

− sinϑ cosϑ sinφ cosϑ cosφ



mxb

myb

mzb

 . (3.11)

Hence, yaw (heading) is calculated as

ψc =
[
atan2(my,mx)

]
. (3.12)

In practice, the yaw (heading) is updated by gyroscope data integration instead of a Kalman
filter or a complementary filter since the laboratory environment has magnetic (metallic)
disturbances on the heading calculation (3.12). Solution methods of magnetic disturbances
on heading calculation are discussed with the details in [50].

3.5.2 Attitude Estimation Using Kalman Filter

To filter IMU accelerometer noises, a linear Kalman filter is employed in this chapter.
At each time step k, this Kalman filter first predicts the state propagation using the
dynamic model of the quadrotor UAV, the control inputs applied at step k − 1 and the
state measurement at step k − 1. Then, it incorporates new measurement data of step k,
to determine the state estimate.
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Consider the following discrete-time linear time-invariant model of the attitude dynam-
ics, with additive Gaussian measurement noise and disturbance, based on (3.1):

x[k + 1] = Adx[k] +Bdu[k] + w, (3.13)

y[k] = Cdx[k] + v, (3.14)

where w is zero mean Gaussian disturbance noise with covariance QK, v is zero mean
Gaussian measurement noise with covariance RK, and

Ad =


1 Ts 0

0 1 2lK
Jϕ
Ts

0 0 1− bTs

 , Bd =


0

0

bTs

 , Cd =

[
1 0 0

0 1 0

]
, (3.15)

with sampling time Ts. Note that in implementation of (3.15), since the value of the
rotational inertia Jϕ is uncertain, the nominal value of this parameter is used, as detailed
in Remark 3.6.1 in Section 3.6.1. For this system model, the Kalman filter prediction and
update equations are as follows.
Prediction:

x̂[k + 1|k] = Adx[k|k] +Bdu[k], (3.16)

P [k + 1|k] = AdP [k|k]ATd +QK, (3.17)

Update:

ȳ[k] = y[k]− Cdx̂[k|k − 1], (3.18)

M [k] = P [k|k − 1]CT
d (CdP [k|k − 1]CT

d +RK)−1, (3.19)

x̂[k|k] = x̂[k|k − 1] +M [k]ȳ[k], (3.20)

P [k|k] = (I −M [k]Cd)P [k|k − 1]. (3.21)

where P [k + 1|k] and M [k] are the predicted error covariance and the optimal Kalman
gain, respectively.

Remark 3.5.1. Measurement covariance matrix is specified by calculating the variance of
the sensor noise from off-line sample measurement of IMU sensors. Disturbance covariance
matrix is tuned by trial and error method via experimental tests. The states are initialized
at zero and the sampling time is selected same as used in overall experiment design.
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3.5.3 Attitude Estimation by Complementary Filter

As an alternative to Kalman filtering, we also study the utilization of complementary
filter in denoising and fusion of measurement data from accelerometers and gyroscopes.
Typically, an accelerometer based orientation estimation works better in static conditions,
and on the other hand a gyroscope based orientation estimation gives better results in
dynamic conditions. A complementary filter passes the accelerometer signals through a
low-pass filter and the gyroscope signals integral through a high-pass filter. Then, the
resulting signals are summed up to estimate the attitude angles more reliably in both
dynamic and static condition cases. The schematic complementary filter block diagram is
depicted in Figure 3.3.

3.6 Adaptive Optimal Attitude Tracking Control De-

sign

In this section, the proposed ALQT control scheme for attitude tracking of a quadrotor
UAV is presented.

3.6.1 Adaptive Parameter Identification Scheme

We employ an LS based PI scheme to estimate the uncertain inertial parameters. From
the attitude dynamics equation (3.1), following the procedure in [74, 89], we first define
a linear parametric model avoiding the need for signal differentiation and the associated
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noise sensitivity issue by use of the stable filter 1
(s+λ)

, λ > 0, as follows:

zϕ = θ∗ϕΦϕ, (3.22)

zϕ =
s

(s+ λ)
ϕ̇, θ∗ϕ =

1

Jϕ
,Φϕ =

2lKb

(s+ λ)(s+ b)
uϕ,

noting that the Euler rate ϕ̇ (obtained using the IMU and the filters in Section 3.5) and
the control signal uϕ are measurable, and l,K, b are known constant parameters.

Assumption 3.6.1. The upper and lower limits of θ∗ϕ(t) are known, i.e. 0 < θϕ ≤ θ∗ϕ(t) ≤
θ̄ϕ for some known θϕ, θ̄ϕ > 0.

Remark 3.6.1. For the setup used in this chapter, the limits of θ̂ϕ(t) are taken 10 ≤
θ̂ϕ(t) ≤ 49. Accordingly, the nominal value of Jϕ is calculated as Jϕ0 = 2

θϕ+θ̄ϕ
≈ 0.03.

To generate the estimate θ̂ϕ of the uncertain inertia parameter θ∗ϕ, we apply the following
recursive LS algorithm [74] based on the parametric model (3.22):

˙̂
θϕ(t) = Pr(P(t)ε(t)Φϕ(t)) =

{
P(t)ε(t)Φϕ(t), if θϕ < θ̂ϕ < θϕ

0, otherwise
, θ̂ϕ(0) = θ̂ϕ0, (3.23)

Ṗ(t) =

{
βP(t)− Φ2

ϕ(t)

m2
n(t)

P2(t), if θϕ < θ̂ϕ < θϕ

0, otherwise
,

ε(t) =
zϕ(t)− θ̂ϕ(t)Φϕ(t)

m2
n(t)

, m2
n(t) = 1 + αnΦ2

ϕ(t), 1� αn > 0,

where P(t) is the positive covariance (time varying gain) term with P(0) = P0 > 0, mn is
the normalizing signal, and ε is the estimation error. Pr(.) is a projection operator which
maintains θ̂ϕ ∈ [θϕ, θϕ].

Lemma 3.6.2 (Stability and Convergence). Consider the LS based PI scheme (3.23),
applied to the attitude dynamics (3.1). It is guaranteed that all the signals in (3.23),
including P and P−1, are bounded and θ̂ϕ ∈ [θϕ, θϕ]. Further, if Φϕn = Φϕ

mn
is persistently

exciting, i.e. if 1
T

∫ t+T
t

Φ2
ϕndτ ≥ α0 for all t ≥ 0 and some T, α0 > 0, then (3.23) ensures

that θϕ(t)→ θ∗ϕ as t→∞. The convergence of θϕ(t)→ θ∗ϕ is exponential for β > 0.

Proof. The result is a direct corollary of the more general Theorem 3.7.4 and 3.10.1 in
[74].
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3.6.2 Generic Linear Quadratic Tracking Control Design

To construct the base optimal control law of the proposed ALQT scheme, we follow an
infinite-horizon LQT control design approach [116], explained in the sequel for a linear
system in the generic state-space form

ẋ(t) = Ax(t) +Bu(t), (3.24)

y(t) = Cx(t),

where x ∈ <n, u ∈ <r and y ∈ <m are state, control input and output vectors. A ∈
<n×n, B ∈ <n×r and C ∈ <m×n are state, input and output matrices. m, n, and r are
generic system dimensions. The objective is to generate u(t) so that y(t) tracks a given
desired continuous and differentiable output trajectory z(t) ∈ <m as close as possible with
minimum consumption of control effort for all t. Thus, let us define the error vector

e(t) = z(t)− y(t), (3.25)

and the cost function

J =
1

2

∫ ∞
0

(eT (t)Qe(t) + uT (t)Ru(t))dt, (3.26)

where Q ∈ <m×m and R ∈ <r×r are symmetric, positive definite weighting matrices.

In order to generate the optimal control signal u(t) = u∗(t) that minimizes the cost
function (3.26), following Hamiltonian calculation [116], at first, the following DRE is
formed:

Ṗ = −PA− ATP + PBR−1BTP − CTQC, (3.27)

where P ∈ <n×n is a symmetric, positive definite matrix. Since the infinite-horizon LQT
design [116] is studied, there is no terminal F (tf ) = 0 in cost function (3.26). Therefore,
P (t) tends to its steady-state value limtf→∞(P (tf )) = P̄ as the solution of the following
ARE:

−P̄A− AT P̄ + P̄BR−1BT P̄ − CTQC = 0, (3.28)

where P̄ ∈ <n×n is a symmetric, positive definite matrix calculated by the analytical
solution of the ARE (3.28).

Then, as the next step in the LQT design steps with Hamiltonian approach a vector
signal g(t) ∈ <n is generated via the differential equation

ġ(t) = −[AT − PBR−1BT ]g(t)− CTQz(t). (3.29)
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The final optimal control signal is generated as

u∗(t) = −R−1BT P̄ x(t) +R−1BTg(t), (3.30)

where −R−1BT P̄ x(t) is the state feedback term and R−1BTg(t) is the feedforward term.
Note that the control law (3.30) is established in [116] to bear the following optimal tracking
property:

Proposition 3.6.3. [116]: The control law (3.30) guarantees that (3.24) is closed loop
stable and (3.26) is minimized, for any given slowly-varying desired output trajectory z(t).

To simplify and ease the calculation of the vector signal g(t), we use an approximation
[10] as follows:

Approximate vector signal ḡ(t): It is established in [10], if z(·) is slowly varying
then ġ(t) in (3.29) can be approximated as ġ(t) ≈ 0 leading to the approximate solution

g(t) ≈ ḡ(t) = [AT − P̄BR−1BT ]−1[−CTQz(t)]. (3.31)

3.6.3 Adaptive Linear Quadratic Tracking (ALQT) Control De-
sign

For attitude control, our approach is to apply the control law (3.28), (3.30), (3.31) to the
system (3.1). Note that the implementation of the control law (3.30) requires P̄ from
(3.28) and ḡ(t) from (3.31), and hence requires knowledge of the system matrices A,B,C.
In our case, in (3.1), although Bϕ, Cϕ are known, Aϕ is unknown. Hence, following the
certainty equivalence approach [74, 116], the following adaptive version of the LQT control
law (3.28), (3.30), (3.31) for the cost function (3.6) and the attitude tracking error (3.7)
is designed.

The time-varying adaptive ARE, the approximate vector signal ḡ(t) and the adaptive
optimal control signal are obtained, respectively as

−P̄ Âϕ(t)− ÂTϕ(t)P̄ + P̄BϕR
−1BT

ϕ P̄ − CT
ϕQCϕ = 0, (3.32)

ḡ(t) = [ÂTϕ(t)− P̄BϕR
−1BT

ϕ ]−1[−CT
ϕQz(t)], (3.33)

û∗ϕ(t) = −R−1BT
ϕ P̄ xϕ(t) +R−1BT

ϕ ḡ(t), (3.34)
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where Âϕ(t) =


0 1 0

0 0 2lKθ̂ϕ(t)

0 0 −b

, Bϕ =


0

0

b

, Cϕ =


1

0

0


T

. Solving (3.32) for P̄ =


P̄1 P̄2 P̄3

P̄2 P̄4 P̄5

P̄3 P̄5 P̄6

 ∈ <3×3, we obtain

0 = −(P̄ 2
3 b

2/R) +Q, (3.35a)

0 = −P̄1 + ((P̄3P̄5b
2)/R), (3.35b)

0 = −(2lKθ̂ϕP̄2) + P̄3b+ (P̄3P̄6b
2/R), (3.35c)

0 = −2P̄2 + (P̄ 2
5 b

2/R), (3.35d)

0 = −(2lKθ̂ϕP̄4) + P̄5b− P̄3 + (P̄5P̄6b
2/R), (3.35e)

0 = −(4lKθ̂ϕP̄5)− 2P̄6b+ (P̄ 2
6 b

2/R). (3.35f)

Solving (3.33) for ḡ(t) = [ḡ1(t) ḡ2(t) ḡ3(t)]T ∈ <3, we obtain

ḡ1(t) = [(P̄5Q)/(P̄3R)]ϕd(t), (3.36a)

ḡ2(t) = [(P̄6bQ+RQ)/(2lKθ̂ϕP̄3)]ϕd(t), (3.36b)

ḡ3(t) = [(RQ)/(P̄3b
2)]ϕd(t). (3.36c)

Remark 3.6.4. There is also no constraint on the control signal ûϕ(t) considered in the
control design. However, we consider a limit −0.025 6 uϕ(t) 6 0.025 to prevent damages
on the quadrotor motors due to high torque commands.

3.7 Yaw and Altitude Control

To provide the overall motion in experiments, P and PID controllers are designed respec-
tively, for yaw and altitude dynamics as follows.

3.7.1 Yaw Control

Since yaw dynamics is not directly affecting the lateral motion of the quadrotor UAV
system, the yaw motion control is considered independently. Therefore, the following P
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control law is used based on the dynamic model (3.3):

uψ = Kpψeψ, (3.37)

where eψ = (ψd − ψ).

3.7.2 Altitude Control

Altitude controller is derived for keeping the quadrotor UAV system in its desired altitude
and providing stability at the longitudinal motion. The following PID control law is used
based on the dynamic model (3.5):

uz = Kpz(ez) +Kiz

∫ t

0

(ez)dt+Kdz(ėz), (3.38)

where ez = (pzd − pz).

Remark 3.7.1. With the attitude, yaw and altitude control schemes as designed above, the
control inputs û∗ϕ, uψ and uz are generated. Then, we combine these inputs [90] to generate
each motor PWM inputs vr. for flight control of the Qball-X4 quadrotor UAV system.

3.8 Experimental Tests and Comparative Simulations

3.8.1 Test Platform

The test platform consists of a Qball-X4 quadrotor UAV and a ground control and commu-
nication station (host computer) as illustrated in Figure 3.4. The Qball-X4 is developed by
Quanser Inc. and equipped with a sonar sensor and an IMU to provide altitude, accelera-
tion, angular rate and magnetometer measurements [172]. It has an on-board avionics data
acquisition card (DAQ) and Gumstix embedded computer for interfacing with on-board
sensors and driving the four rotor motors. Each motor is linked to one of the four PWM
servo output channels on the DAQ. The Qball-X4 dynamic parameters as specified in [172]
are presented in Table 3.2. The ground station computer is used for coding the designed
control algorithms, and embedding on the Qball-X4 on-board computers before tests as
well as generating the high-level control inputs in the form of desired attitude and altitude
trajectories on-line during the tests. For control algorithm coding and embedding, Quarc,
a MATLAB/Simulink R© based interface software developed by Quanser Inc., is used.
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Table 3.2: The Qball-X4 quadrotor UAV dynamic parameters [172].

m (kg) l (m) K (N) Kψ (Nm) b (rad/sec) Jϕ0 (kgm2) Jψ (kgm2)

1.4 0.2 120 4 15 0.03 0.04

IMU/ Sonar/ Embedded Computer

 

Ground Control and 
Communication Station

Qball-X4 UAV

Desired roll ϑd,(t), 
pitch ϕd,(t),
yaw ψd =0, 

and altitude pzd(t)
via WLAN 

Host computer
(High level control and 
trajectory generation)

Figure 3.4: The Qball-X4 quadrotor UAV test platform.

3.8.2 Control Design Specifications and On-line Calculation of
Control Parameters

In the implementation of the ALQT control design explained in detail in Section 3.6.3,
the error and the control weighting parameters are chosen as Q = 100 and R = 30000.
Following (3.35a), the constant entry P̄3 of P̄ (t) is calculated as P̄3 =

√
(QR)/b = 115.4701.

The other entries of P̄ (t) are calculated solving (3.35) online, noting the dependence of
these entries to each other and the parameter estimate θ̂ϕ. From (3.35d), the entry P̄2 is
found in the form of the entries P̄5 and written in (3.35c). Then, the equations (3.35c) and
(3.35f) are obtained in the form of the entries P̄5 and P̄6 as follows:

0 = −(lKθ̂ϕP̄
2
5 b

2/R) + P̄3b+ (P̄3P̄6b
2/R), (3.39a)

0 = −(4lKθ̂ϕP̄5)− 2P̄6b+ (P̄ 2
6 b

2/R). (3.39b)
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Figure 3.5: Off-line calculation of P̄6 for the estimate θ̂ϕ ∈ [θϕ, θϕ].

Solving the equations (3.39a) and (3.39b) by using Maple R© and MATLAB R© softwares,
P̄6, which is chosen as a critical parameter, is off-line calculated for the estimate θ̂ϕ ∈ [θϕ, θϕ]
of θ∗ϕ. Then, a lookup table is prepared as plotted in Figure 3.5. The remaining entries of

P̄ are simultaneously calculated using P̄6 and the estimate θ̂ϕ as follows:

P̄5 = ((2P̄6b) + ((P̄ 2
6 b

2)/R))/(4lKθ̂ϕ), (3.40a)

P̄2 = (P̄ 2
5 b

2)/(2R), (3.40b)

P̄1 = (P̄3P̄5b
2)/R, (3.40c)

P̄4 = ((−P̄3)/2lKθ̂ϕ) + ((P̄5b)/2lKθ̂ϕ) + ((P̄5P̄6b
2)/2lKθ̂ϕR). (3.40d)

After obtaining P̄ , by (3.36) and the reference input ϕd(t), the vector signal ḡ(t) is found
at each time instant, as well. For example, for the nominal value θ̂ϕ0 = 33 [1/kgm2], the
Riccati coefficient matrix P̄ is obtained using (3.39a), (3.39b), (3.40a), (3.40b), (3.40c),
(3.40d) as follows:

P̄ =


20.0886934 2.0177780 115.4700538

2.01777802 480969.75 23.19642512

115.470053 23.196425 1727.886987

 . (3.41)
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After that, the vector signal ḡ(t) is found by (3.41) and (3.36) as follows:

ḡ(t) =


20.08869343750145 ϕd(t)

2.017798199381859 ϕd(t)

115.4700538758503 ϕd(t)

 . (3.42)

The ALQT control design with specifications above is used for pitch and roll control. For
yaw tracking a P controller is used with gain Kpψ = 0.015, and for altitude tracking a PID
controller is used with gains Kpz = 0.006, Kiz = 0.008 and Kdz = 0.002.

In implementation of the adaptive PI scheme (3.23), the forgetting factor, the initial
covariance, and the initial parameter estimate, are selected as, respectively, β = 0.001,
P0 = 105 and θ0 = 10 [1/kgm2]. In the Kalman filter implementation, QK and RK matrices
are taken as QK = 10−3I3 and RK = 2x10−4I2. Ad, Bd and Cd matrices are numerically
obtained for the nominal value of Jϕ0 = 0.03 [kgm2] and the sampling time Ts = 0.005 as

Ad =


1 0.005 0

0 1 8

0 0 0.925

 , Bd =


0

0

0.075

 , Cd =

[
1 0 0

0 1 0

]
.

For the complementary filter, ϕacc is passed through a low pass filter with transfer function
Ga(s) = (20s+1)/(100s2 +20s+1), and ϕ̇ is passed through a high pass filter with transfer
function Gg(s) = (100s)/(100s2 + 20s+ 1).

3.8.3 Experimental Results

After setting all control parameters with the sampling rate 200 [Hz] by using MATLAB/
Simulink R© and Quarc interface in the host computer, as explained in Sections 3.8.1 and
3.8.2, we have implemented the proposed control scheme on the Qball-X4 as seen in Figure
3.6 for the following two cases:
Test 1. ALQT with complementary filter: The video of the experiment is presented in
URL: https://www.youtube.com/watch?v=OVZ_zg4SS0Y.
Test 2. ALQT with Kalman filter: The video of the experiment is presented in URL:
https://www.youtube.com/watch?v=wsKiPJJjj68.

In both tests, the Qball-X4 starts to perform the tracking control task after hovering
for 15 seconds. The real-time IMU data measurements in Test-2 from the gyroscope, the
accelerometer and the magnetometer are presented in Figures 3.7, 3.8 and 3.9, respectively.
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Figure 3.6: The Qball-X4 quadrotor during the experiment.

Applying the methodology explained in Section 3.5.1, the IMU measurements shown
in Figure 6 are used to obtain the raw calculation of the roll and pitch parameters (yellow
plots), and then to generate the estimates by complementary filter (blue plots) and Kalman
filter (red plots) shown in Figures 3.11 and 3.12. Kalman filter provides more reliable data
less sensitive to noise. For the yaw estimation, gyroscope data integration is used instead,
due to distortion effects by metallic objects of the test environment, as explained in Section
3.5.1.

The tracking error performances of both tests verify that the control objective is satisfied
as seen in Figure 3.13 and 3.14. In both tests, the controllers maintain attitude angles close
to their desired angles with small attitude tracking errors ±0.1[rad]. However, as seen in
3.14, ALQT control with Kalman filter is more robust to sensor noises and uncertainties,
and results in smaller tracking errors.

As seen in Tables 3.3 and 3.4, ALQT control with Kalman filter gives significantly
smaller mean-square error and consumes less battery (energy). It is also observed in
additional simulations that the proposed controller consumes less battery energy with
more robust control action compared to other classical controllers such as PID.

In real-time, the motor PWM control inputs have the constraint −0.1 6 vr(t) 6 0.1
since they work with limited voltage to prevent damages due to high torque commands.
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Table 3.3: Mean square error of eϕ.

ALQT Roll [rad] Pitch [rad]

with Kalman filter 0.0012 0.0012

with comp. filter 0.0027 0.0029

Table 3.4: Average battery consumption by û∗ϕ.

ALQT Roll [voltage/sec] Pitch [voltage/sec]

with Kalman filter 0.00071 0.00066

with comp. filter 0.00086 0.00140

Hence, a limit is applied for the optimal attitude control inputs as mentioned in Remark
3.6.4 even though LQT design procedure does not have any constraints. As seen in Figures
3.15, 3.16 and 3.17, the proposed controller satisfies admissible and optimal control actions
for all t > 0 during the tests. Figures 3.15, 3.16 and 3.17 show that the motor PWM and
the optimal attitude control inputs are kept within the allowed limits.

The LS based estimation of the uncertain inertia parameters θ̂ϑ and θ̂φ is presented
in Figure 3.10. The estimates, which are purposely initialized at values away from the
nominal values (to test the expected convergence), successfully converge to the vicinity of
the nominal value 33 [1/kgm2] in around 40 [sec]. The convergence rate of the estimation
can be adjusted easily adjusting the design parameters of the LS based adaptive law.

3.8.4 Comparative Simulations and Observations

For optimal performance comparison with the existing literature, in ideal simulation con-
ditions without noises, we simulate the ALQT control design and compare with a classical
PID controller with control gains Kp = 0.0017; Ki = 8.98; Kd = 0.005. As seen in Figure
3.18 and 3.19, the ALQT controller gives smaller tracking errors with less control action.
Therefore, in the actual settings with noises, it is expected that the ALQT with a reli-
able filter will give us better tracking and control input performances compared to a PID
controller. Figure 3.20 presents the estimates of the simulation. It is also observed from
the literature that the proposed controller gives a good control performance in terms of
optimal attitude tracking compared to the attitude tracking errors of [5, 156].
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Figure 3.7: IMU data measurements from gyroscope.
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Figure 3.8: IMU data measurements from accelerometer.
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Figure 3.9: IMU data measurements from magnetometer.
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Figure 3.10: LS based estimate θ̂ϕ of the uncertain inertia parameter θ∗ϕ.
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Figure 3.11: Attitude estimation of the Qball-X4.
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Figure 3.12: Attitude angle estimation of the Qball-X4 from 50 to 100 [sec].
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Figure 3.13: Attitude tracking error of the Qball-X4 using complementary filter.
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Figure 3.14: Attitude tracking error of the Qball-X4 using Kalman filter.
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Figure 3.15: Optimal attitude control inputs for the complementary filter.
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Figure 3.16: Optimal attitude control inputs for Kalman filter.
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Figure 3.17: Motor PWM control inputs vr.
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Figure 3.18: PID vs ALQT performance comparison: attitude tracking error.
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Figure 3.19: PID vs ALQT performance comparison: attitude control input.
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Figure 3.20: LS based estimate θ̂ϕ of the uncertain inertia parameter θ∗ϕ for the simulation.
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3.9 Summary and Remarks

The adaptive linear quadratic tracking (ALQT) scheme has been developed to control and
stabilize the attitude of the Qball-X4 quadrotor UAV system in an optimal sense. The
proposed adaptive controller is designed by indirect approach and combined with the LS
based parameter identification (PI) to eliminate the influences of inertial uncertainties.
Additionally, Kalman filter has been designed for canceling noise effects on the attitude
estimation data to provide more reliable feedbacks to the controller and it is compared
with Complementary filter. All analytical analyses and designs are verified by the two
experimental tests. We witness that the ALQT design in experiments works satisfactorily
in terms of the optimal tracking performance. In Kalman filter vs Complementary filter,
although both filter designs are good to canceling noise effects on the estimated attitude
data, Kalman filter gives a better accuracy and reliable attitude estimation. Thus, the
experimental results show that the quadrotor UAV has more robust behavior and bet-
ter tracking error with the estimated attitude data by Kalman filter comparing with the
Complementary filter.
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Chapter 4

Robust Adaptive Control of a
Quadrotor UAV with Guaranteed
Tracking Performance

4.1 Introduction

In the literature, some advanced nonlinear control methods have been studied for tracking
problem of the quadrotor UAV, including the backstepping, sliding-mode and feedback
linearization based ones [13, 39, 90, 107]. The above mentioned studies rely on the full
knowledge of dynamics for robust tracking performances. For the purpose of ensuring the
control robustness in case of model uncertainties and disturbances, [103] introduces a robust
three-loop design, which comprises of the nominal position and attitude controllers with a
robust compensator, to deal with nonlinearities, parametric uncertainties and disturbances.
In [127], a robust backstepping control scheme based on integral sliding modes is used to
compensate bounded disturbances, including wind gust, side-slip aerodynamics, and drags
in both position and the attitude dynamics. In [141], terminal sliding mode control (TSMC)
is studied for position and attitude tracking, subject to such disturbances. [140] extends
the TSMC approach to the globally fast dynamic TSMC, which not only provides finite-
time position and attitude tracking control and eliminates the chattering, but also rejects
the external disturbances.

Guaranteeing transient and steady-state tracking performances for highly nonlinear
systems with model uncertainties and disturbances is a challenging and important control
task. The earlier studies [24, 149] have introduced a prescribed performance function based
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error transformation approach, which is capable of transferring the original constrained
tracking error system to an unconstrained form. As a big advantage of this approach, the
unconstrained system is capable of guaranteeing prescribed performance when the stability
of the unconstrained system is proven. Hence, the maximum overshoot/undershoot, the
convergence rate and steady-state error are easily tunable.

In [124], a fault tolerant control is studied and prescribed performance bound (PPB)
technique is also used to improve the transient attitude tracking performance of UAV
system. In [169], a robust controller with guaranteed certain predefined transient perfor-
mance is designed for the attitude of the rigid spacecraft system on SO(3). [157] studies
the backstepping based adaptive compensation control strategy with guaranteed transient
attitude tracking performance for the quadrotor UAV with partial loss of rotational speed,
limited air flow disturbance and inertial uncertainties. In [72], a robust adaptive control
strategy based on sliding mode and PPB techniques for time-varying payload and wind
gust disturbance. In [71], a PPB based formation control scheme is designed for systems
of multiple quadrotor UAVs.

In this chapter, inspired by [24, 149], we design and implement a robust adaptive con-
troller with guaranteed transient and steady-state tracking error performances in case of
under-actuated dynamics, nonlinearities and model uncertainties. To achieve this goal,
we design a backstepping based position controller using a PPB based error transforma-
tion approach which ensures bounded trajectory tracking errors, and a backstepping based
adaptive attitude controller combined with a least squares (LS) based parameter identifi-
cation (PI) algorithm.

4.2 Quadrotor UAV Dynamics

A nonlinear dynamic modeling of the quadrotor UAV motion dynamics (2.10) is considered
from Chapter 2. The nonlinear dynamics is separated into three strict-feedback sub-systems
as follows:

a) Lateral position dynamics is

ṗl = [ṗx, ṗy]
T = [vx, vy]

T , (4.1)

v̇l = [v̇x, v̇y]
T =

4Tz
m

[f1x, f1y]
T , (4.2)

f1x = {cosφ sinϑ cosψ + sinφ sinψ},
f1y = {cosφ sinϑ sinψ − sinφ cosψ},

57



where pl, vl and Tz are lateral position, lateral velocity and thrust in the body frame Ob;
m is total mass; {φ, ϑ, ψ} are Euler angles.

b) Altitude dynamics is

ṗz = vz, (4.3)

v̇z =
4

m
(cosφ cosϑ)Tz − g, (4.4)

Ṫz = −bTz +Kbuz, (4.5)

where pz and vz are position and velocity in longitudinal motion of the Ob; g is gravity; b
is actuator bandwidth; K is positive armature gain.

c) Attitude dynamics is

ϕ̇ = wϕ, (4.6)

ẇϕ = A1wϕ + A2f2(wϕ) + BTϕ, (4.7)

Ṫϕ = −bTϕ +Kbuϕ, (4.8)

where A1 = diag(a11, a12, a13) = diag(dφ, dϑ, dψ); A2 = diag(a21, a22, a23) = diag(
Jϑ−Jψ
Jφ

,

Jψ−Jφ
Jϑ

,
Jφ−Jϑ
Jψ

); f2(wϕ) = [f21(wϕ), f22(wϕ), f23(wϕ)]T =


ϑ̇ψ̇

φ̇ψ̇

φ̇ϑ̇

; B = diag(b1,b2,b3) =

diag( 2l
Jφ
, 2l
Jϑ
,

4Kψ
Jψ

); ϕ
M
= [ϕ1, ϕ2, ϕ3]T = [φ, ϑ, ψ]T , wϕ = [wϕ1, wϕ2, wϕ3]T = [φ̇, ϑ̇, ψ̇]T , Tϕ

M
=

[Tϕ1, Tϕ2, Tϕ3]T = [Tφ, Tϑ, Tψ]T , uϕ
M
= [uϕ1, uϕ2, uϕ3]T = [uφ, uϑ, uψ]T , Jϕ ∈ (Jφ, Jϑ, Jψ) and

dϕ ∈ (dφ, dϑ, dψ) are Euler angles, angular velocities, attitude thrusts, attitude control
inputs, inertias and drags in the Ob, respectively.

4.3 Control Problem

Consider the position (lateral and altitude) dynamics (4.1)-(4.5) and the attitude dynamics
(4.6)-(4.8). The following practical assumptions are made.

Assumption 4.3.1. Attitude angles are bounded as

−π
2
< φ <

π

2
, − π

2
< ϑ <

π

2
, − π

2
< ψ <

π

2
. (4.9)
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Figure 4.1: The overall control structure for the quadrotor UAV

Assumption 4.3.2. The desired trajectory pd(t) ∈ R3 and its derivatives are known and
bounded function of time.

Assumption 4.3.3. The states pl, vl, pz, vz, Tz, ϕ, wϕ, Tϕ of the quadrotor UAV are
measurable.

The control problem of the chapter is stated as follows:

Problem 4.3.1. Design the control units to generate the command signals uz and uϕ
for feeding the PWM generator that generates the motor control input signal vr, per the
diagram in Figure 4.1 such that the system output p(t) = [px(t), py(t), pz(t)]

T tracks the
desired trajectory pd(t) = [pxd(t), pyd(t), pzd(t)]

T :

(a) Design a backstepping based position controller using a PPB based error transfor-
mation to generate ϕd and uz so that the transient and steady-state behaviors of the
tracking error

e(t) = p(t)− pd(t) = [ex(t), ey(t), ez(t)]
T (4.10)

are guaranteed within the prescribed bounds.
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(b) Design a backstepping based adaptive attitude controller combined with a least squares
(LS) based parameter identification (PI) algorithm to generate uϕ so that ϕd tracks the
desired attitude ϕd and robustness is increased in presence of the model uncertainties.

4.4 Robust Adaptive Tracking Control Design with

Guaranteed Error Performance

The low-level closed-loop system (L) is considered in the two-layer: position (P ) and
attitude (A) control schemes for the three sub-systems of the quadrotor UAV as seen in
Figure 4.1. As formally stated in Problem 4.3.1, the proposed control scheme is designed
in the following sections.

4.4.1 Position Control Design with Guaranteed Error

The position control scheme is designed by using backstepping procedures combined with
the PPB based error transformation system [24, 149]. The following subsection first in-
troduces the error transformation for each component ej, j ∈ x, y, z of the tracking error
(4.10). Then, the lateral and the altitude control designs are presented.

Error Transformed System

a) Performance function: To transform the prescribed performance characteristics into ej
similar to [24, 149], a decreasing smooth performance function ρj(t) : R+ → R+\{0} with
limt→∞ ρj(t) = ρj∞ > 0 is defined. In this thesis, the function is chosen as

ρj(t) = (ρj0 − ρj∞)e(−kjt) + ρj∞, (4.11)

where ρj0 > ρj∞ and kj > 0 are design parameters. Then, the control performance
condition is defined as satisfaction of

δjρj(t) > ej(t) > −δjρj(t), ∀t ≥ 0, (4.12)

where 1 ≥ δj and δj > 0 are prescribed scalars. δjρj(0) and −δjρj(0) are the upper and
the lower bounds of the overshoot and the undershoot of ej(t). Use of (4.12) is illustrated
in Figure 4.2.
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Figure 4.2: Graphical representation of (4.12) for prescribed tracking error behavior with
δ = 0.2 and δ = 1.

b) Error transformation: To solve the control Problem 1-(a), tracking error transforma-
tion will be established by transforming condition (4.12) into an equivalent unconstrained
one. For this purpose, we define a smooth, strictly increasing and invertible function Sj(.)
with following properties:

(i) δj > Sj(ε) > −δj, for any ε ∈ R

(ii) lim
ε→+∞

Sj(ε) = δj and lim
ε→−∞

Sj(ε) = −δj,

(iii) Sj(0) = 0.

A function satisfying these properties is Sj (ε) =
δ̄je

(ε+c)−δje−(ε+c)

e(ε+c)+e−(ε+c) where c =
ln(δj/δ̄j)

2
[149].

The condition (4.12) is satisfied [24, 149] if

εj = S−1
j (Λj(t))

=
1

2
ln(δ̄jΛj(t) + δ̄jδj)−

1

2
ln(δ̄jδj − δ̄jΛj(t)), (4.13)

where Λj(t) =
ej(t)

ρj(t)
, is guaranteed to be bounded.
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The time derivative of εj is in (4.13) computed as

ε̇j =
∂εj
∂Λj

Λ̇j

=
1

2

(
1

Λj + δj
− 1

Λj − δ̄j

)(
ėj
ρj
− ej ρ̇j

ρ2
j

)
= Θj

(
ėj −

ej ρ̇j
ρj

)
, (4.14)

where Θj = 1
2ρj

(
1

Λj+δj
− 1

Λj−δ̄j

)
6= 0 is well defined by (i) and (4.13).

To guarantee the transient and steady-state tracking performances, we now combine
the PPB based error transformation (4.11)-(4.14) with the lateral position and the altitude
dynamics (4.1)-(4.5) by replacing the error dynamics of the equations (4.1) and (4.3) with
ε̇j in (4.14) for j ∈ {x, y, z}.

Lateral Position Backstepping Control with PPB

The reference angle ϕd is generated to drive the quadrotor UAV to the desired lateral
position pjd ∈ {pxd, pyd}. The backstepping procedure is combined with the PPB based
transformation as presented in subsection 4.4.1 to guarantee the prescribed lateral tracking
error performance.

For each of j ∈ {x, y}, first define

zj1 = εj and zj2 = vj − αj1, (4.15)

where αj1 is to be chosen in the sequel.

From (4.14) and the definition of zj2 in (4.15), we have

żj1 = Θj

(
ṗj − ṗjd −

ej ρ̇j
ρj

)
= Θj

(
zj2 + αj1 − ṗjd −

ej ρ̇j
ρj

)
. (4.16)

To stabilize (4.16), αj1 is chosen

αj1 =

(
−k1zj1

Θj

+ ṗjd +
ej ρ̇j
ρj

)
, k1 > 0, (4.17)
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so that

żj1 = Θjzj2 − k1zj1. (4.18)

This leads to

żj2 = v̇j − α̇j1 =
4Tz
m
f1j − α̇j1. (4.19)

To stabilize (4.19), choosing f1l such that

f1j =
m

4Tz
(−Θjzj1 − k2zj2 + α̇j1) , k2 > 0, (4.20)

where α̇j1 =
∂αj1
∂pj

vj +
∂αj1
∂pjd

vjd +
∂αj1
∂vjd

v̇jd +
∂αj1
∂ρj

ρ̇j +
∂αj1
∂ρ̇j

ρ̈j, we have

żj2 = −Θjzj1 − k2zj2. (4.21)

Using the equations (4.2) and (4.20), the desired pitch and roll angles are generated as

φd = arcsin (sinψf1x − cosψf1y) , (4.22)

ϑd = arcsin

(
f1x − sinφ sinψ

cosφ cosψ

)
, (4.23)

and to prevent yaw motion’s direct effect on the lateral motion of the quadrotor UAV, the
desired yaw angle is set to zero; as ψd(t) = 0 for all t ≥ 0. Therefore, the desired attitude
angle is designed as ϕd = [ϕd1, ϕd2, ϕd3]T = [φd, ϑd, 0]T .

Remark 4.4.1. The total thrust force is Tz > 0, ∀t ≥ 0 so that the system avoids singu-
larity during the operation.

Altitude Backstepping Control with PPB

The backstepping technique is utilized to design the altitude controller with the PPB by
defining

z3 = εz, z4 = vz − α4, and z5 = Tz − α5. (4.24)

where α5 is to be chosen in the sequel.
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From (4.14) and the definition of z4 in (4.24), we then write

ż3 = Θz

(
ṗz − ṗzd −

ezρ̇z
ρz

)
= Θz

(
z4 + α4 − ṗzd −

ezρ̇z
ρz

)
. (4.25)

To stabilize (4.25), α4 is chosen as

α4 =

(
−k3z3

Θz

+ ṗzd +
ezρ̇z
ρz

)
, k3 > 0, (4.26)

so that

ż3 = Θzz4 − k3z3. (4.27)

This leads to

ż4 = v̇z − α̇4 =
4 cosφ cosϑ

m
Tz − g − α̇4

=
4 cosφ cosϑ

m
(z5 + α5)− g − α̇4. (4.28)

To stabilize (4.28), α5 is chosen as

α5 =
m

4 cosφ cosϑ
(g − k4z4 + α̇4 −Θzz3) , k4 > 0, (4.29)

where α̇4 = ∂α4

∂pz
vz + ∂α4

∂pzd
vzd + ∂α4

∂vzd
v̇zd + ∂α4

∂ρz
ρ̇z + ∂α4

∂ρ̇z
ρ̈z, so that

ż4 = −Θzz3 +
4 cosφ cosϑ

m
z5 − k4z4. (4.30)

We further have

ż5 = Ṫz − α̇5 = −bTz +Kbuz − α̇5. (4.31)

To stabilize (4.31), the altitude control input is designed as

uz =
1

Kb

[
bTz − k5z5 −

4 cosφ cosϑ

m
z4 + α̇5

]
, k5 > 0, (4.32)

where α̇5 = ∂α5

∂pz
vz + ∂α5

∂vz
v̇z + ∂α5

∂pzd
vzd + ∂α5

∂vzd
v̇zd + ∂α5

∂v̇zd
v̈zd + ∂α5

∂ρz
ρ̇z + ∂α5

∂ρ̇z
ρ̈z + ∂α5

∂ρ̈z
ρ

(3)
z , so that

(4.31) becomes

ż5 = −4 cosφ cosϑ

m
z4 − k5z5. (4.33)
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Remark 4.4.2. Assumption 4.3.1 guarantees that the designed control law (4.32) is always
well-defined with the coefficient −4 cosφ cosϑ

m
of z4 always negative.

4.4.2 Adaptive Attitude Control Design

The proposed backstepping based adaptive control scheme is composed of two-parts: a
parameter identification (PI) algorithm and an indirect adaptive backstepping control law
as follows.

Parameter Identification Algorithm

The attitude dynamics equation (4.7) can be rewritten for each of i ∈ {1, 2, 3} in the form
of

b−1
i ẇϕi = b−1

i a1iwϕi + b−1
i a2if2i(wϕ) + Tϕi, (4.34)

which leads to the equation

Tϕi = ā1iwϕi + ā2if2i(wϕ)− ā3iẇϕi, (4.35)

where ā1i = b−1
i a1i, ā2i = b−1

i a2i and ā3i = b−1
i .

To avoid numerical differentiation, (4.35) is rewritten using the stable filter 1
(s+λ)

, λ > 0,
as

1

(s+ λ)
[Tϕi] = ā1i

1

(s+ λ)
[wϕi] + ā2i

1

(s+ λ)
[f2i(wϕ)]− ā3i

s

(s+ λ)
[wϕi], (4.36)

where the Euler rates in wϕi ∈ R and the control thrust inputs in Tϕi = Kb
(s+b)

uϕi ∈ R are

measurable; K and b are constant parameters. Based on (4.36), a parametric model is
defined

zϕi = θ∗Tϕi Φϕi, (4.37)

zϕi =
1

(s+ λ)
[Tϕi] ∈ R, θ∗ϕi = [ā1i, ā2i, ā3i]

T ∈ R3,Φϕi =


1

(s+λ)
[wϕi]

1
(s+λ)

[f2i(wϕ)]

− s
(s+λ)

[wϕi]

 ∈ R3.

Assumption 4.4.1. The upper and lower limits of θ∗ϕi3(t) are known, i.e. 0 < θϕi3 ≤
θ∗ϕi3(t) ≤ θ̄ϕi3 for some known θϕi3, θ̄ϕi3 > 0.
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Next, the recursive LS algorithm [74] is applied with forgetting factor to (4.37) to
produce the estimate θ̂ϕi(t) = [ˆ̄a1i, ˆ̄a2i, ˆ̄a3i]

T of θ∗ϕi as follows:

˙̂
θϕi(t) = Pr(P(t)Φϕi(t)εi(t)), θ̂ϕi(0) = θ̂ϕ0, (4.38)

Ṗ(t) =

 βP−P
ΦϕiΦ

T
ϕi

m2
ni

P, ifθϕi3 < θ̂ϕi3 < θ̄ϕi3

0, otherwise
,

εi(t) =
zϕi(t)− ẑϕi(t)

m2
ni(t)

, m2
ni(t) = 1 + ΦT

ϕi(t)Φϕi(t),

ẑϕi(t) = θ̂Tϕi(t)Φϕi(t), (4.39)

where P(0) = P0 ∈ R3×3 is a positive definite (covariance) matrix, mn is the normalizing
signal and ε is the estimation error, and Pr(.) is the parameter projection operator [74]
used to guarantee that θ̂ϕi3 ∈ [θϕi3, θ̄ϕi3].

Lemma 4.4.3 (Stability and Convergence). Consider the LS based PI algorithm (4.38),
applied to the attitude dynamics (4.6)-(4.8). It is guaranteed that all the signals in (4.38),

including P and P−1, are bounded. Further, if Φϕni =
Φϕi
mni

persistently exciting, i.e. if
1
T

∫ t+T
t

ΦT
ϕniΦϕnidτ ≥ α0 for all t ≥ 0 and some T, α0 > 0, then (4.38) ensures that

θϕi(t)→ θ∗ϕi as t→∞. The convergence of θϕi(t)→ θ∗ϕi is exponential for β > 0.

Proof. The result is a direct corollary of the more general Theorem 3.7.4 in [74].

Adaptive Control Design

A backstepping based indirect adaptive controller is proposed for tracking the desired
attitude angles. For each of i ∈ {1, 2, 3}, we first define the error system

z6i = ϕi − ϕdi ∈ R, z̄7i = wϕi − α7i ∈ R. (4.40)

where α7 is to be selected in the sequel.

From (4.40) and (4.6), we have

ż6i = ϕ̇i − ϕ̇di = z̄7i + α7i − ϕ̇di. (4.41)

To stabilize (4.41), α7 is chosen as

α7i = −k6z6i + ϕ̇di, k6 > 0, (4.42)
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so that

ż6i = z̄7i − k6z6i. (4.43)

At the second step, from (4.40), we define

z7i = b−1
i z̄7i = b−1

i wϕi − b−1
i α7i, (4.44)

then from (4.34), (4.35) and (4.44), we obtain

ż7i = b−1
i ẇϕi − b−1

i α̇7i

= b−1
i a1iwϕi + b−1

i a2if2i(wϕ) + Tϕi − b−1
i α̇7i

= ā1iwϕi + ā2if2i(wϕ)− ā3iα̇7i + Tϕi. (4.45)

To stabilize (4.45), Tϕi is chosen as

Tϕi = −ˆ̄a1iwϕi − ˆ̄a2if2i(wϕ) + ˆ̄a3iα̇7i − k7ˆ̄a3iz7i − z6i, (4.46)

where α̇7i = ∂α7i

∂ϕi
ϕ̇i + ∂α7i

∂ϕdi
ϕ̇di + ∂α7i

∂ϕ̇di
ϕ̈di and k7 > 0, so that

ż7i = −k7z7i − z6i − ˜̄a1iwϕi − ˜̄a2if2i(wϕ) + ˜̄a3iα̇7i, (4.47)

where ˜̄a1i = ˆ̄a1i − ā1i; ˜̄a2i = ˆ̄a2i − ā2i; ˜̄a3i = ˆ̄a3i − ā3i.

Remark 4.4.4. Since the actuator dynamics have been fully considered in the altitude and
attitude design process, the control laws (4.32) and (4.46) can be regarded as the actual
PWM control signals of the motors, which makes an easier way to application in practice.
After all, the altitude uz and the attitude uϕ control inputs generated via Tϕi are mixed
and converted to the actuator motor PWM inputs vr(t), r = 1, .., 4 as discussed in [90] for
providing the overall motion.

4.5 System Stability Analysis

The stability of the overall closed-loop system is analyzed in this section, where the analysis
results are summarized in the following theorem.

Theorem 4.5.1. Consider the adaptive control scheme (4.15), (4.20), (4.24), (4.32),
(4.38), (4.39), (4.40), (4.46) applied to Problem 4.3.1. Assume that Φϕni in Lemma 1
is persistently exciting. It is guaranteed that all the signals are bounded and the track-
ing error e(t) = [ex(t), ey(t), ez(t)]

T asymptotically converges to zero. Further, pre-defined
control performance condition (4.12) is satisfied.
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Proof. For proving the stability of the lateral position control system, define the Lyapunov
function

Vla(z1, z2) =
1

2

2∑
i=1

z2
i . (4.48)

From (4.17) and (4.20), the time derivative of (4.48) is obtained as

V̇la(z1, z2) =z1(Θlz2 − k1z1) + z2(−Θlz1 − k2z2)

=− k1z
2
1 − k2z

2
2 ≤ −2min{k1, k2}Vla. (4.49)

Therefore, the origin z1 = z2 = 0 of the error system (4.15)-(4.21) is exponentially stable.

Then, by defining the Lyapunov function for the altitude as

Val(z3, z4, z5) =
1

2

5∑
i=3

z2
i . (4.50)

From (4.26), (4.29) and (4.32), the time derivative of (4.50) is obtained as

V̇al(z3, z4, z5) = Θzz3z4 − k3z
2
3 −Θzz3z4 +

4 cosφ cosϑ

m
z4z5 − k4z

2
4 −

4 cosφ cosϑ

m
z4z5 − k5z

2
5

= −k3z
2
3 − k4z

2
4 − k5z

2
5 ≤ −2min{k3, k4, k5}Val. (4.51)

Therefore, the origin z3 = z4 = z5 = 0 of the error system (4.24)-(4.33) is exponentially
stable.

The stability of the attitude motion is established by defining the Lyapunov function
as

Vat(z6i, z7i) =
1

2
z2

6i +
1

2
biz

2
7i. (4.52)

From (4.42) and (4.46), the time derivative of (4.52) is obtained as

V̇at(z6i, z7i) = z6iż6i + z7ibiż7i (4.53)

= −k6z
2
6i − k7biz

2
7i − θ̃Tϕi[wϕiz̄7i, f2i(wϕ)z̄7i,−α̇7iz̄7i]

T ,

where bi is positive inertial based parameter under Assumption 4.4.1 and by Lemma 4.4.3
with the boundedness of the PI algorithm (4.38) guarantees that θ̃ϕi asymptotically con-
verges to zero, which implies that as t→∞

V̇at(z6i, z7i)→ −k6z
2
6i − k7biz

2
7i ≤ −2min{k6, k7}Vat. (4.54)

Hence, the origin z6i = z7i = 0 of the error system (4.40)-(4.47) is asymptotically
stable.
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4.6 Alternative Adaptive Attitude Control Design

To design an alternative adaptive attitude control scheme that does not require persistent
excitation for solving Problem 4.3.1, we redefine the Lyapunov function (4.52) as

Vat(z6i, z7i, θ̃ϕi) =
1

2
z2

6i +
1

2
biz

2
7i +

γ−1

2
θ̃Tϕiθ̃ϕi, (4.55)

where γ is positive design parameter.

The time derivative of (4.55) is obtained, similarly to Section 4.5, as

V̇at(z6i, z7i, θ̃ϕi) = z6iż6i + z7ibiż7i + γ−1θ̃Tϕi
˙̃θϕi (4.56)

= −k6z
2
6i − k7biz

2
7i − θ̃Tϕi[wϕiz̄7i, f2i(wϕ)z̄7i,−α̇7iz̄7i]

T + γ−1θ̃Tϕi
˙̃θϕi.

Choosing the update law ˙̃θϕi =
˙̂
θϕi in (4.56) as

˙̂
θϕi = −γ[wϕiz̄7i, f2i(wϕ)z̄7i,−α̇7iz̄7i]

T , (4.57)

we obtain

V̇at(z6i, z7i, θ̃ϕi) = −k6z
2
6i − k7biz

2
7i, (4.58)

which implies that z6i and z7i asymptotically converge to zero and
˙̂
θϕi asymptotically

converges to a constant. Therefore, we have the following result.

Theorem 4.6.1. Consider the adaptive control scheme (4.15), (4.20), (4.24), (4.32),
(4.40), (4.46), (4.57) applied to Problem 4.3.1. It is guaranteed that all the signals are
bounded and the tracking error e(t) = [ex(t), ey(t), ez(t)]

T asymptotically converges to zero.
Further, pre-defined control performance condition (4.12) is satisfied.

4.7 Simulations and Experimental Tests

4.7.1 Testbed Platform and Benchmark Controllers

In simulations and experiments, the quadrotor UAV testbed platform is Qball-X4, de-
veloped by Quanser Inc. [172]. Designed controllers are implemented via MATLAB
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Table 4.1: The Qball-X4 quadrotor UAV dynamic parameters

Parameter Definition Value

m Total mass 1.4 [Kg]

l Distance between Ob 0.2 [m]

and the motor

g Gravity 9.81 [m/s2]

K Positive armature gain 120 [N]

Kψ Thrust-to-moment gain 4 [Nm]

b Actuator bandwidth 15 [rad/s]

Jφ0 Nominal pitch inertia 0.03 [Kgm2]

Jθ0 Nominal roll inertia 0.03 [Kgm2]

Jψ0 Nominal yaw inertia 0.04 [Kgm2]

dφ0 Nominal drag on pitch -0.01 [Nms2]

dθ0 Nominal drag on roll -0.012 [Nms2]

dψ0 Nominal drag on yaw -0.009 [Nms2]

Simulinkr and Quanser Quarc interfaces. The dynamic parameters of the Qball-X4 are
specified as shown in Table-4.1. The nominal values of inertias and drags are used for
non-adaptive designs. Detailed description of the platform can be found in Section 3.8.1.

Three different benchmark controllers are used in comparison with the proposed control
design as follows. Benchmark controller-1 is composed of a PID position control with
Kpb = 0.006, Kib = 0.01 and Kdb = 0.008, and a LQR attitude control with KL =
[0.0616, 0.0126, 1.1066]. Benchmark controller-2 is composed of a full backstepping control
by using backstepping gains with k1 = 0.1, k2 = 0.4, k3 = 5, k4 = 20, k5 = 100, k6 = 5 and
k7 = 5. Benchmark controller-3 is composed of a full backstepping control with guaranteed
tracking error by using specified PPB parameters and same control settings as used in
benchmark controller-2. The proposed adaptive backstepping control with guaranteed
tracking error is designed by using PI model parameters which are specified as the forgetting
factor β = 0.001, the initial covariance matrix P0 = 105I3×3 and the initial parameter
matrix θϕ0 = [−0.75;−0.5; 0.05], and same control and PPB settings as used in benchmark
controller-3.
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4.7.2 Simulation Tests

In simulations, a spiral trajectory is considered as

pd(t) = [10 cos(0.04t), 10 sin(0.04t), 0.025t]T , (4.59)

with the initial position p(0) = [9, 1, 0.2]T . The PPB parameters are specified as ρl0 = 3.58,
ρl∞ = 0.08, kl = 0.2, δl = 0.7, δl = 0.7, ρz0 = 1.25, ρz∞ = 0.04, kz = 0.3, δz = 1 and
δz = 0.4.

The simulation results of the proposed controller compared with benchmark controllers
are presented in Figures 4.3-4.4. The proposed design works successfully; the tracking
errors remain within the intended bounds while the attitude dynamics model uncertainties
are compensated. As seen in Figure 4.4, it is verified that PPB based error transformation
gives flexibility in tuning transient and steady-state behaviors of the nonlinear system. The
maneuvering, tracking and parameter estimation details with the proposed controller are
shown in Figures 4.5-4.7. Next, the alternative direct adaptive controller in Section 4.6 is
simulated and compared with the proposed control scheme in Section 4.4.2 in Figures 4.8.
Both design methods work effectively to satisfy attitude tracking.

4.7.3 Experimental Tests

In experiments, a sinusoidal altitude trajectory is considered as

pd(t) = [0, 0, 0.5 + 0.2 sin(0.05t)]T , (4.60)

with the initial position p(0) = [0, 0, 0.2]T . The PPB parameters are specified as ρl0 = 2.3,
ρl∞ = 0.3, kl = 0.2, δl = 0.9, δl = 1, ρz0 = 2.3, ρz∞ = 0.3, kz = 0.2, δz = 1 and δz = 0.9.

Transient and steady-state tracking errors with the proposed controller, compared with
the benchmark controllers, are presented in Figure 4.9. The video of the experimental tests
is presented in URL: https://www.youtube.com/watch?v=KsILES17DDk. The proposed
controller is observed to guarantee bounded error performances with adjustable error con-
vergence rates. The error convergence rate is clearly improved around 20 [sec] using tuning
flexibility of the proposed control design. The experimental results of the proposed con-
troller are shown in Figures 4.10-4.13, indicating high tracking performance and robustness
to modeling uncertainties. While sinusoidal altitude motion is performing, lateral tracking
is freely worked within the specified bound 0.3 [m] as shown in Figure 4.10.

Two different motion cases are tested at the fixed-level altitude to investigate hovering
performance of the proposed indirect adaptive control design. The results of the circular
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Figure 4.3: Spiral trajectory tracking errors of the proposed control design, compared with
the benchmark controllers.

trajectory tracking test are shown in Figures 4.14-4.17 and the video of the circular hovering
experiment is presented in URL: https://www.youtube.com/watch?v=fuTXh-JeRyk. The
results of the square-waypoint tracking test are shown in Figures 4.18-4.21, and the video of
the square hovering experiment is presented in URL: https://www.youtube.com/watch?
v=G1x4r-hDU48. The proposed controller works successfully for both motion cases.
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Figure 4.5: Spiral motion with proposed control design.
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Figure 4.6: Attitude tracking of the proposed control design.
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Figure 4.7: LS based estimation θ̂ϕ of θ∗ϕ.
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Figure 4.8: Tracking errors with the proposed indirect adaptive control design Section 4.4.2
and the direct adaptive control in Section 4.6.
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Figure 4.10: Trajectory tracking of the proposed control design.
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Figure 4.11: Attitude tracking of the proposed control design.
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Figure 4.12: LS based estimation θ̂ϕ of θ∗ϕ.
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Figure 4.13: Motor PWM inputs vr for the proposed control design.
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Figure 4.14: Circular hovering test motion.
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Figure 4.15: Trajectory tracking for the circular hovering test.
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Figure 4.16: Mean Square tracking error for the circular hovering test.
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Figure 4.17: LS based estimation θ̂ϕ of θ∗ϕ for the circular hovering test.
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Figure 4.18: Square hovering test motion.

Figure 4.19: Waypoint tracking for the square hovering test.
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Figure 4.20: Mean Square tracking error for the square hovering test.

Figure 4.21: LS based estimation θ̂ϕ of θ∗ϕ for the square hovering test.
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4.8 Summary and Remarks

Robust adaptive motion control of quadrotor UAVs with guaranteed tracking error perfor-
mance has been studied and tested on a Qball-X4 quadrotor testbed. The proposed control
schemes have been developed for position (lateral position and altitude) and attitude dy-
namics, separately. The position control schemes have been designed utilizing prescribed
performance bound (PPB) based error transformation and backstepping techniques. These
control schemes have ensured bounded trajectory tracking error with tunable transient and
steady-state behaviors. Effects of nonlinearities and model (inertia and drag) uncertainties
in attitude dynamics are compensated making the control design adaptive via use of LS
based PI algorithms. The overall stability and convergence of the closed-loop system have
been proved. The effectiveness of the proposed design has been verified via simulations
and experiments.

82



Chapter 5

Adaptive Mixing Formation Control
of a Multi-UAV System

5.1 Introduction

In formation, several architectures have been studied e.g., decentralized (distributed) vs.
centralized, hierarchical vs. non-hierarchical and symmetric vs. asymmetric [22, 53, 89] as
high-level designs. Hierarchical architectures are more practical and better suited for real-
time implementation in multi-UAV systems without long-range sensors. In this chapter, a
distributed formation control scheme is designed for a system of N ≥ 4 quadrotor UAVs in
the asymmetric and hierarchical (leader-follower) structure with leader, first, second and
ordinary followers, for a robust maintenance of predefined formation geometry , utilizing
tools of rigid graph theory [12, 163] for performing cohesive motion in 3D.

Formation control literature works mostly use simple dynamical models such as single-
integrator, point-mass (double integrator) or kinematic UAV model [11, 56, 70]. A single
integrator model based formation control design is presented in [82] for a group of quadro-
tor UAVs in 2D. [83] extends the study to a global convergence in formation. In both
studies, the authors do not deal with low-level control design of the quadrotor UAVs and
its performance effects on the formation maintenance and robustness. In [89], an adaptive
formation control of a multi quadrotor UAV system considering the realistic dynamic mod-
eling is studied for parametric uncertainties. The quadrotor UAV dynamics is considered
in three separated sub-models: reference angle, altitude, and attitude dynamics to make
more proper and effective low-level control analyses, separately. In this chapter, the main
contribution is to design an adaptive mixing controller (AMC) to enhance tracking perfor-
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mance and robustness at the low-level while using rigid graph theory tools for formation
maintenance of a multi quadrotor UAV system in 3D.

The quadrotor UAV dynamics consists of highly coupled states, aerodynamic coeffi-
cients, disturbances, and uncertainties. To compensate these effects, more advanced control
designs are required. In the literature, there exist proportional-integral-derivative (PID)
and linear quadratic (LQ) control based classical studies for simplified and linearized dy-
namics [30, 36] as well as advanced control schemes [25, 27, 39, 90, 103] that use nonlinear
effects by utilizing nonlinear control techniques such as feedback linearization, sliding mode
and backstepping control methods.

To compensate the effects of parametric uncertainties, there exist two main adaptive
control approaches: direct and indirect [74]. Indirect approaches calculate controller gains
using estimated system parameters at each instant time [33, 46, 89], while direct methods
update controller parameters directly [46, 53]. In this chapter, we develop indirect adaptive
controllers using the least squares (LS) based parameter identification (PI) algorithm to
cancel the effects of inertial uncertainties in the attitude of quadrotor UAVs. This approach
gives us some advantages, e.g. avoiding negative effects of adaptation time on control
performances. By this approach, control performances can be adjusted easily. An integral
state is also added into the controllers for dealing with disturbances which come from
ignored terms, e.g. drag and Coriolis.

Although there are many theoretical accomplishments and successful applications of PI
based indirect adaptive control designs, this area still needs an effort to solve difficulties
in robustness performance [92]. Since PI algorithms need a time to converge uncertain
parameters to actual values, indirect adaptive control schemes perform poorly for tran-
sient tracking performance with overshoot/undershoot and more chattering during the
convergence time. By this motivation, as the main contribution of the chapter, the AMC
scheme is designed to improve the individual tracking of each quadrotor UAV by providing
smoother control action as well as formation maintenance performance. In the proposed
scheme, the multiple model adaptive control approach [16, 32, 33, 92] is used for quadrotor
UAVs. Based on inertial changes, the proposed scheme is aimed to blend outputs of a set
of controllers, each of which is pre-designed to provide desirable stability and performance
properties for a certain parametric setting of the system environment. Since mixing strate-
gies provide a smooth transition between control gains based on the estimated parameters,
the AMC scheme aims to increase the robustness of tracking performances and formation
maintenances. The proposed AMC is compared with the adaptive linear quadratic con-
troller (ALQC) design. In both cases, PD controller is used for reference angle generation
and PID controller is used for the altitude model to complete the motion of the multi
quadrotor UAV system.

84



5.2 Quadrotor UAV Dynamics

The full nonlinear dynamic model of quadrotor UAV motion dynamics (2.10) is presented
in Chapter 2. Then, the nonlinear dynamics is parted into the lateral position (reference
angle), the altitude and the attitude dynamics. In this chapter, we have reconsidered the
sub-models to obtain their separate linear models as following:

a) Reference Angle Dynamics: The reference angle ϕd is defined for the quadrotor UAV
to drive on the desired lateral position pld = [pxd, pyd]

T by using the dynamics as

ṗl = vl, (5.1)

v̇l =
4Tz
m
f1l, (5.2)

f1l
M
=

[
cosφ sinϑ cosψ + sinφ sinψ

cosφ sinϑ sinψ − sinφ cosψ

]
≈

[
ϑ

−φ

]
≈

[
ϑd

φd

]
,

where the approximation is valid for small angles ϑ, φ, ψ.

b) Altitude Dynamics: The altitude dynamics is

ṗz = vz, (5.3)

v̇z =
4

m
(cosφ cosϑ)Tz − g, (5.4)

Ṫz = −bTz +Kbuz. (5.5)

Since the rotational angles are close to zero by the small angle approximation, the linearized
altitude model is obtained as

p̈z =
(

4Kb
m(s+b)

uz − g
)
. (5.6)

c) Attitude Dynamics: Consider the attitude dynamics from (2.10), and for further
design, let us redefine the attitude dynamics properly for controllable canonical form as

ϕ̇ = wϕ, (5.7)

ẇϕ = ςϕ, (5.8)

ς̇ϕ = −bςϕ +Kb
σϕ
Jϕ
uϕ, ϕ ∈ {φ, ϑ, ψ}. (5.9)
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Figure 5.1: Directed underlying graph of a leader-follower persistent 3D formation FS with
N vehicles.

where ςϕ is the fictitious state. For the disturbance rejection, we also augment an integrator
to the attitude dynamics. Then, we write the state-space form of the attitude dynamics
as follows:

ẋ = Ax+Buϕ + d, (5.10)

where x = [
∫

(ϕ− ϕd), (ϕ− ϕd), ϕ̇, ςϕ]T ,

A =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −b

 , B =


0

0

0
σϕKb
Jϕ

 , and d =


0

−ϕ̇d
0

0


with assuming that ϕ̇d : R −→ R is bounded since there exists a desired angular velocity

limit ε such that |ϕ̇d(t)| ≤ ε.

5.3 Rigid Graph Modeling of the Multi-UAV System

In this chapter, a 3D asymmetric, hierarchical (leader-follower) formation architecture
[20, 163] is considered as illustrated in Figure 5.1 for a multi quadrotor UAV system S that
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consists of N vehicles indexed as V1, ..., VN , where the position of each vehicle Vi is denoted
as pi(t) = [xi(t) yi(t) zi(t)]

T ∈ R3. The sensing and distance constraint network within the
system S is represented by a directed underlying graph GS = (VS, ES) [20, 53, 163], where

each quadrotor UAV Vi is represented by a vertex i ∈ VS and each directed edge
−−→
(i, j) ∈ ES

represents a sensing and distance constraint link from Vi to Vj, indicating that Vi senses
its distance dij = ‖pi − pj‖ from Vj and is required to keep this distance at a pre-defined
desired value of d∗ij. The 3D formation is represented by FS = (S,GS, DS) as a combination
of the multi quadrotor UAV system S, the underlying directed graph GS = (VS, ES) and

the desired distance set DS = {d∗ij|
−−→
(i, j) ∈ ES}.

In the high-level (formation) control design of this chapter, the notion of persistence
[20, 163] is used to accommodate cohesive motion. A 3D formation is called rigid if the
distance dij between corresponding quadrotor UAV pair (Vi, Vj) remains constant during
any formation scenario. If each quadrotor UAV satisfies the distance constraint in the
formation, it is called constraint consistent. If a formation satisfies both rigidity and
constraint consistence, it is called persistent. For the formation FS = (S,GS, DS) to be
persistent in 3D, the underlying graph GS = (VS, ES) needs to have at least |ES| = 3|VS|−6
edges, in which case FS is called minimally persistent. Formal definitions of rigidity,
constraint consistence and persistence are presented with more details in [163].

5.4 Problem Statement

Given a system S of N ≥ 4 quadrotor UAVs in a predefined persistent formation FS and
a desired trajectory to follow, the high-level (formation) control objective is to maintain
the predefined formation during trajectory maneuvering, and, for each quadrotor UAV Vi,
the low level (individual) control objective is to guarantee accurate trajectory tracking,
robustly to inertial uncertainties and disturbances, under the following assumptions:

Assumption 5.4.1. Reference way-points are known for the leader V1 as a sequence of
M way-points:

pkr ∈ {p1
r, . . . , p

M
r }. (5.11)

Assumption 5.4.2. Each quadrotor UAV Vi can measure the position pi of itself in Og

and the relative position R(j,i) = (pj − pi) of each neighbor agent Vj, for which
−−→
(i, j) ∈ ES

and sensing dij.
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Assumption 5.4.3. Desired relative positions of first V2, second V3 and ordinary Vi
followers are known as R∗(1,2), R

∗
(1,3), R

∗
(2,3) and R∗(j,i), j ∈ {i−1, i−2, i−3} for establishing

d∗ij and formation geometry.

Next, the corresponding formal control problem is stated.

Problem 5.4.1. Consider a system S of N ≥ 4 quadrotor UAVs moving in R3, with agent
motion dynamics (5.2), (5.6), (5.10) and let FS = (S,GS, DS) be a 3D minimally persistent
formation in leader-follower structure. Design a distributed formation control scheme in
the two-level as following:

1. At the formation level, design an on-line distributed supervisor Ps, under Assump-
tions 5.4.1-5.4.3, to generate the desired positions pdi(t). Then, design a PD con-
troller to generate desired angles ϕdi = (φdi, ϑdi, ψdi).

2. At the individual level, for attitude and altitude dynamics, design control laws to
generate the control signals û∗ϕi(t) and uzi(t) such that the position pi(t) tracks the
desired trajectory pdi(t) generated at the formation level while maintaining desired
distances d∗ij and keeping the predefined formation shape without deforming during
trajectory maneuvering.

5.5 Distributed Control Design

High (formation) and low (individual) levels of the control scheme to address Problem 5.4.1
are designed as described in the following two subsections.

5.5.1 High-level Control Design

The high-level module Hi of each agent Vi’s controller within the proposed distributed
control scheme consists of two submodules as shown in Figure 5.2:

On-line Distributed Formation Supervisor

Desired trajectory pdi(t) of Vi is generated on-line by this submodule, depending on whether
Vi is the leader (i = 1), first or second follower (i = 2 or i = 3), or ordinary follower
(i ≥ 4), as follows:
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Figure 5.2: The Overall Control Structure for ith quadrotor UAV.
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Leader: V1 is responsible for tracking the predefined way-points defined in (19). To
address this task, Algorithm 1 is used to generate pd1(t) at each time instant t.

Algorithm 1 Leader Way-point Based Trajectory Generation

Set pd1(0) = p1
r; k = 1

At each time instant t > 0:
pd1(t) = pkr ;
if k < M and ‖p1(t)− pkr‖ ≤ δ,
k = k + 1;
end

First Follower: V2 only follows the leader. Its desired trajectory pd2(t) is generated
as

pd2(t) =
[
p1(t) +R∗(1,2)

]
. (5.12)

Second Follower: V3 follows the leader and first follower. Its desired trajectory
pd3(t) is generated as

pd3(t) =
1

2

[
p1(t) +R∗(1,3) + p2(t) +R∗(2,3)

]
. (5.13)

Ordinary Followers: Vi, i = 4, .., N follows previous three neighbors. The desired
trajectory pdi(t) of Vi is obtained as

pdi(t) =
1

3

∑
j

[
pj(t) +R∗(j,i)

]
. (5.14)

Note that the sensed and the desired distance sets among quadrotor UAVs are obtained
by the relative and the pre-defined relative position knowledge under Assumption 5.4.2-
5.4.3. To achieve cohesive motion for the leader-follower formation as discussed in Section
5.3, first, second and ordinary followers need to sense leader, leader and first follower,
and previous three neighbors, respectively. Thus, these required interactions are provided
via first (5.12), second (5.13) and ordinary (5.14) follower formation rules. Moreover,
the above formation rules are derived to increase the robustness of the leader − follower
formation when the number of ordinary followers enlarges.
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Figure 5.3: Low-pass filter for reference angle generator

Reference Angle Generation

Using desired position information, desired angles ϕdi = [ϑdi, φdi, ψdi]
T is generated by a

PD controller before the low-level scheme as

f1li = KPli(pldi − pli) +KDli(ṗldi − ṗli). (5.15)

It is considered that yaw motion does not affect directly the lateral motion of quadro-
tor UAVs. Thus, assumed that the desired yaw angle is ψdi = 0 for ∀t. Then, ϕdi =
[f1li, ψdi]

T = [ϑdi, φdi, ψdi]
T . Since the derivative term of (5.15) has high frequency, this

action can generate large control input variations in high-frequency error signals. To limit
high-frequency gain, a low pass filter (F (s) = 1/Ts+1) is used as seen in Figure 5.3 where
T is the filter time constant.

5.5.2 Low-level Control Design

The low-level control scheme (Li) is considered in two subparts which are the altitude (CPi)
and the attitude (CAi) as seen in Figure 5.2. The low-level control design is responsible
for tracking and stabilizing of ith quadrotor UAV in the altitude by PID and the attitude
by ALQC / AMC. These sub-control modules generate the effective control inputs of uzi
and û∗ϕi, and then by mixing the control inputs via (2.5), the motor control input vri is
produced. Both operating frameworks are stated as follows.
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Altitude Control Design (PID)

Altitude controller CPi is designed to succeed longitudinal tracking of ith quadrotor UAV.
By the altitude model (5.6), a PID control law is used for Vi as

uzi = KPziezi +KIzi

∫ t

0

ezidt+KDziėzi. (5.16)

where ezi = (pzdi − pzi).

Attitude Control Design

Adaptive attitude control schemes are designed based on the indirect approach. First,
an LS based PI algorithm is separately developed to estimate the unknown inertias as
shown in 5.4. Then, a mixing-based adaptive controller is designed to improve individual
tracking and robustness as well as the formation performance of ith quadrotor UAV. An
ALQC scheme is also designed to compare the formation performances. These designs are
analyzed with more details in the sections 5.6 and 5.7.

5.6 On-line Parameter Identification

To overcome the inertial uncertainties in the attitude (5.10), an on-line LS based PI algo-
rithm is utilized with ALQC and AMC schemes as shown in Figure 5.4. Following [74],
we first form a linear parametric model, then design the LS algorithm. Consider (5.10) for
ith quadrotor UAV in the form of transfer function as

s2ϕi =
σϕKb

Jϕi(s+ b)
uϕi. (5.17)

Parametric Model: The parametric model is defined for (5.17) avoiding need for
signal differentiation and the associated noise sensitivity issue by use of the stable filter

1
(s+λ)2

, λ > 0, as

zϕi = θ∗iΦϕi, (5.18)

zϕi =
s2

(s+ λ)2
ϕi, θ

∗
i =

1

Jϕi
,Φϕi =

σϕKb

(s+ λ)2(s+ b)
uϕi,
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Figure 5.4: Adaptive control schemes: (a) AMC and (b) ALQC.

where Euler angles ϕi and control signals uϕi are measurable, and K, b, and σϕ are constant
parameters, respectively.

Recursive LS: To generate the estimate θ̂i of the uncertain inertia parameter θ∗i , we
apply the recursive LS algorithm [74] with forgetting factor to (5.18) as

˙̂
θi(t) = Pr(PεΦϕi) =

{
P(t)ε(t)Φϕi(t), if θi < θ̂i < θi

0, otherwise
,

Ṗ(t) =

 βP(t)− Φ2
ϕi(t)

m2
n(t)

P2(t), if θi < θ̂i < θi

0, otherwise
, (5.19)

ε(t) =
zϕi(t)− ẑϕi(t)

m2
n(t)

, m2
n(t) = 1 + Φ2

ϕi(t),

where P(t) ∈ R is the positive covariance term with P(0) > 0, mn(t) is the normalizing
signal, β is the forgetting factor and ε(t) is the estimation error. Assumed that the upper
and lower bounds of θ∗i are known, i.e. θi ≥ θ∗i (t) ≥ θi > 0. Pr(.) is the projection operator
which maintains θ̂i(t) ∈ [θi, θi], for all t ≥ 0.

Lemma 5.6.1 (Stability and Convergence). Consider the LS based PI algorithm, applied
to the attitude dynamics (5.17). It is guaranteed that all the signals in (5.19), including P

and P−1, are bounded and θ̂i(t) ∈ [θi, θi]. Further, if Φϕni =
Φϕi
m

persistently exciting, i.e.

if 1
T

∫ t+T
t

Φ2
ϕnidτ ≥ α0 for all t ≥ 0 and some T, α0 > 0, then (5.19) ensures that θi(t)→ θ∗i

as t→∞. The convergence of θi(t)→ θ∗i is exponential for β > 0.
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Proof. The result is a direct corollary of the more general Theorem 3.7.4 and 3.10.1 in
[74].

5.7 Adaptive Attitude Control Laws

Two particular adaptive control laws, which are ALQC and AMC schemes, are studied
based on the designed PI algorithm (5.19) and the infinite-time LQR [10] for the attitude
model (5.10). Both control laws base on the LQR design as a nominal controller. Hence,
the nominal LQR procedure is firstly presented as follows:

Let consider the quadrotor UAV dynamics from (5.10) as

ẋ = Ax+Buϕ, (5.20)

where A ∈ R4x4 is a matrix, and B ∈ R4 is a matrix. Then, design a nominal LQR for
minimizing performance measurement of (5.20) with the cost function

J =

∫
(xTQx+Ru2

ϕ)dt, (5.21)

where Q ∈ R4x4 is a positive definite matrix and R ∈ R is a positive scalar. We calculate
the optimal gain Kc ∈ R1x4 as

Kc = R−1BTP, (5.22)

where P = P T > 0 ∈ R4x4 is an auxiliary matrix calculated by solving the Riccati equation
as

ATP + PA− PBR−1BTP +Q = 0. (5.23)

After obtaining Kc, the state-feedback control law is

uϕ = −Kcx. (5.24)

So that the closed-loop nominal LQR control law becomes

ẋ = (A−BKc)x. (5.25)

Lemma 5.7.1 (Nominal LQR Stability). Consider the nominal LQR design procedure
(5.21)-(5.24) for the dynamics (5.20). Then, the closed-loop system (5.25) is asymptotically
stable.
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Proof. Under Assumption 3.2.1 from (pp.44-45) of [10], Lemma from (pp.46) of [10] guar-
antees that P is positive definite since (A,D), where D is any matrix such that DD′ = Q,
is completely observable and (A,B) is stabilizable for the parameters: b,K, σϕ, Jϕ > 0. So
that the closed-loop nominal LQR control law (5.25) is asymptotically stable.

5.7.1 Adaptive Linear Quadratic Control (ALQC)

In this section, adaptive linear quadratic control (ALQC) is designed for ith quadrotor
UAV as seen in Figure 5.4 based on the nominal LQR design with the PI algorithm. Since
the input matrix Bi includes inertial uncertainties, the LS based PI algorithm (5.19) is
derived to estimate θ̂i of θ∗i for all t ≥ 0. By combining the estimate θ̂i with the LQR
design (5.21)-(5.24), the time-varying state-feedback control law is obtained as

û∗ϕi = −K̂cixi. (5.26)

where K̂ci is the on-line optimal control gain matrix.

Lemma 5.7.2 (ALQC Stability). Consider the attitude dynamics (5.20) for ith quadro-
tor UAV and design ALQC by following the nominal LQR steps (5.21)-(5.24) with the
estimation θ̂i(t) (5.19) of θ∗i (t). The adaptive optimal control law (5.26) is asymptotically
stable.

Proof. The control law (5.26) is asymptotically stable by Lemma 5.6.1 and Lemma 5.7.1
with guaranteed θi ≥ θ̂i(t) ≥ θi > 0, for all t ≥ 0.

5.7.2 Proposed Adaptive Mixing Control (AMC)

This section presents an adaptive mixing control (AMC) approach applied the attitude of
ith quadrotor UAV. The proposed AMC scheme uses a blending strategy between candidate
controllers calculated based on the nominal LQR while it deals with overcoming inertial
uncertainties as well as disturbance and sensor noises. The detail of the AMC approach is
discussed in earlier studies [16, 33, 92]. In this section, the AMC procedure [92] is firstly
introduced for a linear SISO plant which contains unknown parameters, disturbance and
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sensor noise as,

y = G(s, θ∗)u+ d, (5.27)

G(s, θ∗) = GN(s, θ∗)(1 +4m(s)), (5.28)

GN(s, θ∗) =
N(s, θ∗)

D(s, θ∗)
, (5.29)

ym = y + ν, (5.30)

where ym is measured system output of y, θ∗ is unknown plant parameter, GN(s, θ∗) is
the transfer function of the nominal plant with unknown parameters, 4m(s) is the multi-
plicative model uncertainty, d is the disturbance and ν is sensor noise on the system. The
control objective is to regulate the output y to zero. In the AMC design, to accomplish
the objective, there are four conditions that have to be satisfied [16, 92] as follows:

1. Interval of the unknown parameter θ∗ is known,

2. GN(s, θ∗) is strictly proper,

3. 4m(s) is proper and analytic in Re(s) ≥ −δ0
2

,

4. D(s, θ∗) is a monic polynomial with known degree.

Then, we consider the state-space realization of (5.28) for further state-space based control
design

ẋm = Amxm +Bmum, (5.31)

ym = Cmxm + d+ ν, (5.32)

where (Am, Bm) is stabilizable and (Cm, Am) is detectable to satisfy the control objective.
Thus, under conditions 1-4, the proposed AMC scheme is developed considering (5.20)
in the form of (5.31) for ith quadrotor UAV model. The AMC scheme consists of three
main steps as illustrated in Figure 5.4: Adaptive law (LS scheme), Candidate controllers
(developed off-line sets and used in multi-controller), and Mixing scheme as follows.

Adaptive law: Considering the adaptive mixing control literature, the gradient algo-
rithm has been used in [16, 92] with parameter projection. Another method, the LS based
adaptive law has been studied in [33]. Since the LS algorithm is less affected by the noise
and inaccuracies in the observed data [74], the LS algorithm with parameter projection
is used in the proposed AMC design. The LS based PI scheme has already designed in
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section 5.6. Therefore, it performs separately and serves the estimation θ̂i to candidate
controllers and mixing strategy.

Candidate controllers: Composing candidates and transition regions between each
other, we define n subsets based on a priori knowledge on bounds of the uncertain parameter
θ∗i

Ωi = (θi, θi] = {θ∗i ∈ Ωi| θi < θ∗i ≤ θi}, (5.33)

where assumed that θi and θi are known. Then, Ωi is separated into common n subsets
and let us define the subset range Ωh

i for candidate controllers as

Ωh
i = [θhi , θ

h

i ] ∈ {Ω1
i ,Ω

2
i , ...,Ω

n
i }, h = 1, 2, ..., n (5.34)

where Ωh
i , θ

h
i and θ

h

i are the pre-defined range, the lower and upper bounds for each
subset, respectively. Ωh

i is chosen that the intersection of each transition subset pair is

non-empty Ωh
i ∩ Ωh+1

i 6= ∅. Hence, transition subsets satisfy the condition θ
(h+1)
i < θ

(h)

i

where h = [1, 2, . . . , n− 1].

For each subset Ωh
i , a candidate controller is designed off-line as

uhi = Ch
i , h = 1, 2, ..., n (5.35)

where Ch
i is the candidate controller which meets the control objectives for Ωh

i . Therefore,
the state-feedback controller law is obtained based on the nominal LQR steps (5.20)-(5.24)
as

Ch
i : uhi = −Kh

cixi, (5.36)

where Kh
ci is the state feedback gain vector.

Hence, the set of candidate controllers are considered as

Λ , {Ch
i }h∈{1,2,...,n}. (5.37)

Lemma 5.7.3 (Candidate Stability). Consider the set Ωi of the known bounds of θ∗i which
consists of the union of n subsets as

Ωi =
n⋃
h=1

Ωh
i ⊂ (θi, θi]. (5.38)

Choose a fixed control parameter as θhoi =

(
θhi +θ

h
i

2

)
for each candidate subset where h ∈

{1, 2, ..., n} as

θhoi ∈ Ωh
i = {θhoi ∈ R| θhi < θhoi < θ

h

i }. (5.39)
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Design each closed-loop control law (5.36), which is asymptotically stable for the fixed
control parameter θhoi , in (5.37).

Proof. The stability of each control law (5.36) in (5.37) is directly satisfied based on the
Lemma 5.7.1 and the fixed θhoi > 0.

Mixing scheme: We now select and employ bump functions to provide a smooth
switching between the candidate controllers. Bump functions are represented as ηhi ∈
{η1

i , η
2
i , η

3
i , ..., η

n
i }. A mixing function is selected for each candidate range as

%hi (θ̂i) =

(
θ̂i − ahi
bhi

)
, (5.40)

where ahi and bhi are bump function parameters, and (5.40) defines a bump function as

ηhi (θ̂i) =

 e
−1

1−(%h
i
)2 , if

∣∣%hi ∣∣ < 1

0 , otherwise.
(5.41)

Then, mixing performance gains are calculated as

κhi (θ̂i) =
ηhi (θ̂i)∑n
h=1 η

h
i (θ̂i)

, (5.42)

where κhi (θ̂i) = 0 if θ̂i /∈ Ωh
i .

Therefore, by the set of candidate controllers (5.37) and the mixing performance gains
(5.42), the adaptive mixing control scheme is obtained as the following formula

û∗ϕi =
n∑
h=1

κhi (θ̂i)u
h
i . (5.43)

Lemma 5.7.4 (AMC Stability). Consider the AMC design (5.40)-(5.43) working with the
PI (5.19). Select bump function parameters ahi and bhi for each properly selected candidate
subset Ωh

i . So that the mixing performance gains are only activated for intersection of two
neighbor candidate subsets as

θ̂i ∈ Ωh
i ∩ Ωh+1

i = [θhi , θ
h
i ] ∩ [θh+1

i , θ
h+1
i ] = [θh+1

i , θ
h
i ]. (5.44)

98



Then, the mixing control scheme becomes

ûϕi(θ̂i) = −
[
κhi (θ̂i)K

h
ci + κh+1

i (θ̂i)K
h+1
ci

]
xi (5.45)

where it is designed that κhi +κh+1
i = 1. Thus, guarantee that the scheme (5.45) is Hurwitz

stable when θ̂i ∈ Ωh
i ∩ Ωh+1

i .

Proof. Consider the model (5.20) in form of the general controller canonical form where A
and B matrices can be written as

A =



0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . .

. . . 0

0 0 . . . 0 1

−am −am−1 . . . −a2 −a1


, B =



0
...
...

0

b0


. (5.46)

Then, characteristic equation of the closed-loop controller of (5.46) for ith quadrotor UAV
with the estimation θ̂i can be found as

ci(s) = (sI − Ai + B̂iKci) (5.47)

ci(s) = (sm + ai1s
m−1 + · · ·+ aim) + b̂i0(Km

ci s
m−1 + · · ·+K1

ci) (5.48)

By (5.45) and (5.48), we have the mixing characteristic equation C(s) when θ̂i ∈ Ωh
i ∩

Ωh+1
i as

C(chi , c
h+1
i ) =

(
κhi c

h
i (s) + κh+1

i ch+1
i (s)

)
(5.49)

By Lemma 5.6.1 guaranteeing b̂0 > 0 ∀t and following Theorem 2.3 of [28], C(chi , c
h+1
i ) is

Hurwitz stable since chi (s) and ch+1
i (s) are Hurwitz stable and if and only if

eig(W ) = eig(H−1(chi )H(ch+1
i )) ∈ (0,∞], (5.50)

where Hurwitz matrix H(.) associated with the polynomial h(s) ∈ C(chi , c
h+1
i ). The detail

proofs are given in [28].
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Figure 5.5: Qball-X4’s pitch rate measurement for 20 [sec].

5.8 Real-time Testbed and Simulations

5.8.1 Real-time Testbed System

In the simulations, we consider that the multi quadrotor UAV testbed system is composed
of Qball-X4 quadrotors developed by Quanser Inc. [172]. The Qball-X4 quadrotor system
has been introduced in section 3.8.1

5.8.2 Adding the noise effect into the simulation

For more realistic simulation, we add Gaussian noises characterized by measuring Qball-X4
testbed’s sensors. The Qball-X4 is off-line switched on idle running for 20 [sec] to measure
pitch rate from IMU as shown in Figure 5.5. By the measured data, the variance and mean
value are calculated as

ρ =
1

r

r∑
i=1

(wφ), and V ar(wφ) =
1

r

r∑
i=1

(wφ − ρ)2 (5.51)

where V ar(wφ) is the variance value, and ρ is the average of the noisy data. Then, the
characterized noises are added to the attitude dynamics.
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Table 5.1: The off-line calculated candidate controller gains

Sets Gains (Kh
ci)

Ωh
i k1 k2 k3 k4

Ω1
i 0.018257418 0.066549024 0.029999841 0.641136268

Ω2
i 0.018257418 0.063712188 0.019879852 0.805576366

Ω3
i 0.018257418 0.062640956 0.016173044 0.923532064

Ω4
i 0.018257418 0.062034229 0.014101452 1.019855195

Ω5
i 0.018257418 0.061629867 0.012732009 1.102934544

Ω6
i 0.018257418 0.061335083 0.011739312 1.176831973

Ω7
i 0.018257418 0.061107543 0.010976320 1.243882949

Ω8
i 0.018257418 0.060924803 0.010365603 1.305577123

Ω9
i 0.018257418 0.060773698 0.009861993 1.362933702

Ω10
i 0.018257418 0.060645928 0.009437131 1.416686371

Ω11
i 0.018257418 0.060535963 0.009072189 1.467384069

5.8.3 Control Design Parameters

All control parameters are set for real-time based simulations and the Qball-X4’s pa-
rameters are taken as presented in Section 3.8.1. Sensor noises are characterized as
V ar(wφ) = 0.0003 and ρ = 0.000721 by (5.51). Reference angle PD control parame-
ters are KPli = 0.7 and KDli = 0.4 and altitude PID control parameters are KPzi = 0.006,
KIzi = 0.008 and KDzi = 0.002. In the LS, forgetting factor, initial covariance and
initial unknown parameter value are chosen β = 0.1, P(0) = 105 and θi(0) = 5, re-
spectively. In the nominal LQR, the ideal cost is determined by weightings as Q =
diag(150 0 20000 25) and R = 30000. In the AMC, the number of candidates is selected as
n = 11. The minimum and maximum bounds of θ∗i are considered θi = 5 < θ∗i < θi = 77.
Then, the interval of subsets is taken Ωi = [5, 77]. n subset candidates are assigned as
Ω1
i = [5, 10]; Ω2

i = [7, 17]; Ω3
i = [14, 24]; Ω4

i = [21, 31]; Ω5
i = [28, 38]; Ω6

i = [35, 45]; Ω7
i =

[42, 52]; Ω8
i = [49, 59]; Ω9

i = [56, 66]; Ω10
i = [63, 73]; Ω11

i = [70, 77]. Bump functions parame-
ters selected for each subset as ahi ∈ {5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75} and bhi = 5. The
off-line calculated candidate gains are given in table 5.1.
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5.8.4 Simulation Results

Simulation results present the formation performances of the multi quadrotor UAV sys-
tem with N=5 vehicles in leader-follower structure. The initial positions of quadro-
tor UAVs are p1(0) = (9, 1, 0.2)T ; p2(0) = (8,−1, 0.2)T ; p3(0) = (8, 1, 0.2)T ; p4(0) =
(7, 0, 0.2)T ; p5(0) = (7,−1, 0.2)T . Spiral motion way-points are generated by pkr(t) =
(10 cos(0.04t), 10 sin(0.04t), 0.025t)T where t = Tsk and the sampling time Ts = 0.05. Spiral
motion scenarios are performed to maintain desired formation distance d∗ij = 5 [m] and 5

√
3 [m]

based on the desired relative positions: R∗(1,2) = (−5
2
,−5

2

√
3, 0)T , R∗(1,3) = (−5, 0, 0)T ,

R∗(2,3) = (−5
2
, 5

2

√
3, 0)T , R∗(1,4) = (−15

2
,−5

2

√
3, 0)T , R∗(2,4) = (−5, 0, 0)T , R∗(3,4) = (−5

2
,−5

2

√
3, 0)T ,

R∗(2,5) = (−15
2
, 5

2

√
3, 0)T , R∗(3,5) = (−5, 0, 0)T , and R∗(4,5) = (−5

2
, 5

2

√
3, 0)T .

The formation performances of both control schemes are satisfied in terms of formation
requirements as seen in Figures 5.6 and 5.7 as well as satisfying individual tracking perfor-
mances of all quadrotor UAVs. Figure 5.13 presents θ̂φ1 of the leader for both scenarios.
The PI algorithm works well and both θ∗φ1 approach to ideal value after 50 [sec], but they
do not converge to ideal value because of the noise. Although we can able to adjust the
convergence time period for the estimation which is chosen a long time for this case study,
we have designed the PI algorithm by selecting the parameters with small initial values of
θ∗i , forgetting factor β, covariance θ0 to show the effectiveness of the proposed AMC de-
sign during the poor transient convergence period. Therefore, both control strategies work
poorly at the convergence time period than their steady-state performances because of the
poor transient estimation performance and initial positions of the quadrotor UAVs. After
the estimation is converged around the ideal value after 50 [sec], the formation schemes
work satisfactorily with small errors for maintaining the desired rigid distances as seen in
Figure 5.8 and 5.9.

During the poor estimation performances at the beginning of simulations between 0 [sec]
- 50 [sec], the ALQC design has bigger transient formation distance errors with overshoot,
undershoot and chattering as seen clearly in Figures 5.8 and 5.10. This behavior is also
based on the ALQC scheme’s control gains change sharply at each instant time. On the
other hand, the proposed AMC scheme compensates these negative effects as seen in 5.9
and 5.11 and it eliminates chattering effects and large transient errors on the control design
because of providing smooth blending for calculation of control gains at each instant time.
During the AMC test, Figure 5.12 presents how to generate the smooth blending by using
the bump function with the on-line estimation.
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Figure 5.6: Spiral formation motion in 3D for ALQC.
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Figure 5.7: Spiral formation motion in 3D for AMC.
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Figure 5.8: Formation distances among quadrotor UAVs for ALQC.
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Figure 5.9: Formation distances among quadrotor UAVs for AMC.
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Figure 5.10: Mean Square tracking errors for ALQC.
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Figure 5.11: Mean Square tracking errors for AMC.
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Figure 5.13: θ̂φ1 estimation of θ∗φ1 for the leader quadrotor UAV.
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5.9 Summary and Remarks

In this chapter, a two-level, distributed formation scheme has been designed to keep persis-
tently the formation shape of the multi quadrotor UAV system for the realistic quadrotor
UAV dynamics. At the individual control, we have developed the AMC and compared
with ALQC. In order to suppress the negative effects of inertial uncertainties in the atti-
tude model, an online PI model is developed for both control schemes. The proposed AMC
scheme have used to increase formation maintenance and robustness by using the switching
method under uncertainties, disturbances, and noises. The ALQC has also been designed
to compare both controllers and to show the effectiveness of the proposed AMC by the
real-time based simulations. Performances of both adaptive formation control algorithms
have been evaluated on realistic quadrotor UAV model by simulation tests. Both simula-
tions are based the realistic model of the quadrotor UAV (developed from first principle
dynamics as well as using data collected from real-time experiments), and we witness the
high performance of the proposed AMC scheme. Successful formation results show the
efficiency of the proposed AMC scheme.
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Chapter 6

Optimal Tracking and Formation
Control of Fixed-wing UAVs

In Chapters 3 and 5, we have proposed a linear quadratic tracking (LQT) control law for
optimal attitude tracking of quadrotor UAVs and a distributed control law for formation
maintenance of multi-quadrotor UAV systems. In this chapter, we extend these designs to
lateral motion control of (Piccolo-controlled) small fixed-wing UAVs. We design LQT con-
trol schemes for trajectory tracking of the small fixed-wing UAVs and extend these designs
to distributed formation control of a multiple fixed-wing UAV system. The surveillance
tasks are simulated, and the main results are presented for the two cases: tracking and
formation.

6.1 Lateral Motion Model of Small Fixed-wing UAV

The simplified nonlinear motion model (2.26) of fixed-wing UAVs is presented in Chapter
2. In this section, we simplify and partition (2.26) to obtain separate linear lateral model
which is considered in the two sub-models as following:

a) Linear position model:

ẋl(t) = Alxl(t) +Blvcl(t), l ∈ {x, y}, (6.1)

pl(t) = Clxl(t),
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where Al =

[
0 1

0 − 1
αv

]
, Bl =

[
0

1
αv

]
, Cl =

[
1

0

]T
, and xl =

[
pl

vl

]
. xl, vcl, pl, vl and αv

represent states, control input, position, velocity, and inertial related dynamic parameter
for the lateral model, respectively.

b) Linear heading model:

ẋψ(t) = Aψxψ(t) +Bψwc(t), (6.2)

ψ(t) = Cψxψ(t),

where Aψ =

0 1

0 − 1
αψ

, Bψ =

 0

1
αψ

, Cψ =

[
1

0

]T
, and xψ =

[
ψ

w

]
. xψ, wc, ψ, w and

αψ represent states, control input, heading, angular velocity and inertial related dynamic
parameter for the heading model, respectively.

Remark 6.1.1. The dynamic systems have input constraints such that 0 < vmin < vc <
vmax and −wmin < wc < wmax since the real-time fixed-wing UAV works in limited velocity
and angular velocity.

6.2 Problem Statement for Fixed-level Motion

Consider a fixed-wing UAV and a system S of N ≥ 3 fixed-wing UAVs moving in R2 with
the lateral motion model (6.1) and (6.2). For an equilateral formation case of the UAV
system S in 2D as discussed in section 5.3, let FS = (S,GS, DS) be a 2D minimally persis-
tent formation in leader-follower structure. Before the problem definition, the following
assumptions are made.

Assumption 6.2.1. The states of the fixed-wing UAVs are measurable.

Assumption 6.2.2. The fixed-wing UAVs are held at the constant altitude for planar
motion tasks. The desired path is known for tracking task of a single UAV and formation
task of leader UAV V1.

Assumption 6.2.3. Desired relative positions of first V2 and ordinary Vi followers are
known as R∗(1,2) and R∗(j,i), j ∈ {i− 1, i− 2} to establish d∗ij and formation geometry.

Assumption 6.2.4. The fixed-wing UAVs are equipped with the autopilot avionic devices
whose dynamics can be modeled as the simplified forms presented in Section 6.1.
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Design a distributed formation control scheme and LQT control schemes as follows:

1. At the formation level, design an on-line distributed supervisor (PS) and a refer-
ence heading generator (PH) under Assumptions 6.2.1-6.2.3 to generate pdi(t) =
[pxdi(t), pydi(t)]

T and ψdi(t) of Vi.

2. Design the lateral position control unit to generate the command signal vci for feeding
the autopilot under Assumption 6.2.4. Design an infinite-horizon LQT controller to
generate an optimal control signal vci(t) = v∗ci(t) = ‖v∗cli(t)‖ so that pli(t) tracks
its desired trajectory pldi(t), minimizing the cost function for predefined quadratic
performance optimal tracking and energy consumption

Jvi =
1

2

∫ ∞
0

(Qe2
li(t) +Rv2

cli(t))dt, (6.3)

where Q and R are positive constant weighting terms and

eli(t) = pldi(t)− pli(t), (6.4)

is the lateral position tracking error.

3. Design the heading control unit to generate the command signal wci for feeding
the autopilot under Assumption 6.2.4. Design an infinite-horizon LQT controller
to generate the optimal attitude control signal wci(t) = w∗ci(t) so that ψi(t) tracks
its desired trajectory ψdi(t), minimizing the cost function for predefined quadratic
performance optimal tracking and energy consumption

Jwi =
1

2

∫ ∞
0

(Qe2
wi(t) +Rw2

ci(t))dt, (6.5)

where Q and R are positive constant weighting terms and

ewi(t) = ψdi(t)− ψi(t) (6.6)

is the heading tracking error.

Remark 6.2.1. Note that we follow the leader UAV design i = 1 of Problems 1-3 for
trajectory tracking control of a single fixed-wing UAV.
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Figure 6.1: Fixed-wing UAV formation control block diagram.

6.3 High-level Control: Desired Trajectory and Head-

ing Derivation

We now derive a distributed, hierarchical, asymmetric high-level controller structure to
solve the control problems. The high-level module Hi of each agent Vi’s controller within
the proposed distributed control scheme consists of two submodules which generate the
desired position and heading via the formation supervisor (PS) and reference heading
generator (PH) as shown in Figure 6.1.

On-line Distributed Formation Supervisor

Desired trajectory pdi(t) = [pxdi(t), pydi(t)]
T of Vi is generated on-line by this submodule,

depending on whether Vi is the leader (i = 1), first follower (i = 2), or ordinary follower
(i ≥ 3), as follows:

Leader: V1 is responsible to track the pre-defined trajectory pd1(t) at each time instant
t.

111



First Follower: V2 only follows leader. Its desired trajectory pd2(t) is generated as

pd2(t) =
[
p1(t) +R∗(1,2)

]
. (6.7)

Ordinary Followers: Vi, i = 3, .., N follows previous two neighbors. The desired
trajectory pdi(t) of Vi is obtained as

pdi(t) =
1

2

∑
j

[
pj(t) +R∗(j,i)

]
. (6.8)

Note that the above formation rules are designed by following Section 5.5.1.

Reference Heading Generation

For ith fixed-wing UAV, we write the following control rule which always directs the heading
angle to the desired position as

ψdi(t) = tan−1

(
pydi(t)− pyi(t)
pxdi(t)− pxi(t)

)
. (6.9)

6.4 Low-level Control: Optimal Linear Quadratic Track-

ing (LQT) Control Design

In this section, the LQT control scheme for lateral tracking of ith fixed-wing UAV is devel-
oped following generic LQT control design as established in Section 3.6.2. The approach
is to apply the control laws (3.28), (3.30), (3.31) to the system models (6.1) and (6.2).
Implementation of the control law (3.30) requires P̄ from (3.28) and ḡ(t) from (3.31). Note
that a generic control analysis is presented for both the models (6.1) and (6.2) since their
system matrices A,B,C are same. Therefore, the RE, the approximate vector signal ḡ(t)
and the optimal control signal are obtained, respectively as

−P̄A− AT P̄ + P̄BR−1BT P̄ − CTQC = 0, (6.10)

ḡ(t) = [AT − P̄BR−1BT ]−1[−CTQz(t)], (6.11)

u∗(t) = −R−1BT P̄ x(t) +R−1BT ḡ(t), (6.12)
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where A =

[
0 1

0 −α

]
, B =

[
0

α

]
, C =

[
1

0

]T
.

Solving (6.10) for P̄ =

[
P̄1 P̄2

P̄2 P̄3

]
∈ <2×2, we obtain

0 = −(α2P̄ 2
2 /R) +Q, (6.13a)

0 = −P̄1 + αP̄2 + ((α2P̄2P̄3)/R), (6.13b)

0 = 2P̄2 − 2αP̄3 − ((α2P̄ 2
3 )/R), (6.13c)

Solving (6.11) for ḡ(t) = [ḡ1(t) ḡ2(t)]T ∈ <2, we obtain

ḡ1(t) = [(α + (P̄3α
2)/R)][(RQ)/(P̄2α

2)]z(t), (6.14a)

ḡ2(t) = [(RQ)/(P̄2α
2)]z(t). (6.14b)

6.5 Calculation of LQT Control Parameters

For both position and heading control models, the inertial related dynamics parameter,
the error and the control weighting parameters are chosen same as α = αl = αψ = 100,
Q = 200 and R = 1. Hence, the LQT control design as explained in detail in Section 6.4
is followed for a generic calculation of both models as follows.

The entry P̄2 of P̄ (t) is calculated by (6.13a) as

P̄2 =
√

(QR)/α = 1.4142. (6.15)

Then, by using (6.15) in (6.13c), the quadratic polynomial 10000P̄3+200P̄3−2.8284 = 0
is obtained as a function of P̄3, and solving the quadratic polynomial, the entry P̄3 is found
as

P̄3 = 0.0096. (6.16)

The remaining entry P̄1 of P̄ is calculated by using (6.15) and (6.16) in (6.13b) as

P̄1 = 276.71. (6.17)
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Table 6.1: Small fixed-wing UAV specifications used in simulations

Parameter Definition Value

wmin for all UAVs Minimum angular velocity -1.2 [rad/sec]

wmax for all UAVs Maximum angular velocity 1.2 [rad/sec]

vmin for all UAVs Minimum velocity 5 [m/sec]

vmax for leader UAV Maximum velocity 7 [m/sec]

vmax for first follower UAV Maximum velocity 7.5 [m/sec]

vmax for ordinary follower UAV Maximum velocity 8 [m/sec]

Therefore, for both models, P̄ and the vector signal ḡ(t) are obtained as follows:

P̄ =

[
276.71 1.4142

1.4142 0.0096

]
and ḡ(t) =

[
276.71 z(t)

1.4142 z(t)

]
, (6.18)

where ḡ(t) represents ḡl(t) for z(t) = pld(t) of the position control and ḡψ(t) for z(t) = ψd(t)
of the heading control.

Remark 6.5.1. After all, using (6.18) in (6.12), optimal position v∗cl(t) and heading w∗c (t)
control inputs for ith fixed-wing UAV are obtained as following:

v∗cli(t) = −R−1BT P̄ xli(t) +R−1BT ḡli(t), (6.19)

w∗ci(t) = −R−1BT P̄ xψi(t) +R−1BT ḡψi(t), (6.20)

6.6 Simulations and Results

The small fixed-wing UAV specifications used in simulations are presented in Table 6.1.
After setting all control parameters from Section 6.5 with the sampling rate 200 [Hz] by
using MATLAB/ Simulink R©, we have simulated the proposed schemes for tracking control
of the single fixed-wing UAV and formation maintenance control of the multiple fixed-
wing UAV system. For both cases, surveillance missions by following the spiral reference
trajectory generated by pd1(t) = (3t cos( t

200
cos(2π)), 3t cos( t

200
cos(2π)))T are simulated as

follows.
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Figure 6.2: Spiral surveillance motion of a fixed-wing UAV.

6.6.1 Simulation results of a single fixed-wing UAV

A numerical simulation is employed for a fixed-wing UAV with the initial position p(0) =
(−0.5, 0.1)T and a spiral trajectory. All corresponding results are presented in Figures 6.2-
6.6. The performances of the proposed control scheme satisfy the tracking requirements as
seen in Figures 6.2-6.4.

6.6.2 Simulation results of a multiple fixed-wing UAV system

A numerical simulation is performed for a multi fixed-wing UAV system with N=3 vehi-
cles in leader-follower structure. The initial positions of UAVs are p1(0) = (−0.5, 0.1)T ;
p2(0) = (−10,−60)T ; p3(0) = (50,−30)T . Spiral motion scenarios are employed to main-
tain desired formation distance d∗ij = 100 [m] based on the desired relative positions:

R∗(1,2) = (−50,−50
√

3)T , R∗(1,3) = (50,−50
√

3)T , R∗(2,3) = (100, 0)T .

All corresponding results are presented in Figures 6.7-6.11. The formation performances
of the proposed distributed control scheme satisfy the formation requirements as seen in
Figures 6.7 and 6.8 as well as the individual tracking performances of all UAVs at the
low-level.
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Figure 6.3: Lateral trajectory tracking performances.
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Figure 6.4: Heading tracking performance.
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Figure 6.5: Commanded and actual velocities.
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Figure 6.6: Commanded and actual angular velocities.
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Figure 6.7: Spiral surveillance motion of a multiple fixed-wing UAV system in formation.
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Figure 6.8: Formation maintenance performances for dij.
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Figure 6.9: Heading tracking performances for Vi.
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Figure 6.10: Commanded and actual velocities for Vi.
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Figure 6.11: Commanded and actual angular velocities for Vi.

6.7 Summary and Remarks

The linear quadratic tracking (LQT) schemes have been developed to control and stabilize
the lateral motion of a small fixed-wing UAV system. Then, the two-level, hierarchical,
distributed formation controller has been designed for a multiple fixed-wing UAV system
with three vehicles. All analytical analyses and designs are verified by surveillance mission
simulations for both tracking and formation maintenance control cases. It is witnessed that
the LQT schemes in the low (individual) level work successfully in terms of the optimal
tracking performances. It is also observed that at the high (formation) level, the distributed
laws are practical and maintain successfully desired formation shape by associating with
the low (individual) level controllers.
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Chapter 7

Concluding Remarks

This thesis has studied robust, optimal and nonlinear control design for trajectory tracking
of single-UAV systems and formation maintenance of multi-UAV systems. These control
problems have been addressed for both quadrotor and small fixed-wing UAVs.

For trajectory tracking of single-UAV systems, Chapter 3 has presented a novel infinite-
horizon ALQT control design for the attitude of the quadrotor UAV in an optimal sense.
ALQT is selected for this purpose because it is real-time implementable and robust to
effect of modeling uncertainties. In the experiments, the attitude measurement noises,
which come from IMU sensors, are compensated using a Kalman filter to obtain a more
reliable attitude estimation and compared with a complementary filter. In Chapter 4, a
backstepping based robust adaptive controller with guaranteed tracking errors has been
studied and tested in case of under-actuated dynamics, nonlinearities and model uncer-
tainties. The proposed design is capable of transferring the constrained tracking error to
an unconstrained form for adjusting transient and steady-state behaviors within prescribed
bounds. It also compensates effects of model nonlinearities and uncertainties. We have
concluded that the tracking objectives in Chapters 3 and 4 are achieved and experimen-
tally validated utilizing the proposed controllers even in the existence of under-actuation,
nonlinearities, uncertainties and sensor noises in the quadrotor UAV motion dynamics.

For formation maintenance of multi-UAV systems, a two-level control structure is intro-
duced for constructing high (formation) and low (individual) level controllers, separately.
This separation helps efficient and systematic control synthesis addressing robustness to
effects of uncertainties and disturbances as well as optimality at both levels, independently.
In Chapter 5, using the proposed two-level control, at the high-level, a distributed hierar-
chical formation control scheme has been designed in leader-follower structure. Formation
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maintenance is ensured by utilizing tools of rigid graph theory for performing cohesive mo-
tion in 3D. At the low-level, the proposed adaptive mixing based controller is designed to
compensate the effect of real dynamics issues for enhancing tracking performance and ro-
bustness by providing smoother control action. We have concluded that the multi quadrotor
UAV system achieves the formation control objectives with the proposed controller even in
the existence of parametric uncertainties in the quadrotor UAV motion dynamics. Espe-
cially, the proposed control scheme compensates the negative effects of the indirect adaptive
approach which come from poor transient estimation time of the parameter identification
algorithm. Furthermore, in Chapter 6, the proposed single-UAV linear quadratic tracking
control and multi-UAV two-level control designs have been extended and studied to fixed-
wing UAV systems. Hence, the proposed two-level control approach is modular and practical
in the sense that it can be employed easily to various types of multiple UAV systems which
have different motion characteristics.

Some of the potential future works and shortcomings that can be studied as a contin-
uation of this thesis are as follows:

(i) In Chapter 3, a potential future direction is to extend optimal linear quadratic at-
titude tracking control design for altitude and yaw dynamics to perform fully au-
tonomous motion tasks. It is also observed that the heading (yaw) estimation is
affected by magnetic disturbances in experiments. Yaw estimation can be improved
by following the solution methods in the literature such as those in [50].

(ii) The proposed position control scheme with guaranteed tracking performance designed
in Chapter 4 can be extended to formation tasks for guaranteeing formation main-
tenance performances. One of the shortcomings of the proposed control design is as
it lacks analysis for external disturbances such as wind gust. This can be addressed
with disturbance rejection approaches, and the robustness of the proposed controller
can be improved against real-world disturbances during flight missions.

(iii) For Chapter 5, it would be a good extension to analyze the formation maintenance
and robustness of the multi quadrotor UAV system for actuator failures, and study of
other cooperative tasks such as cooperative surveillance and joint tasks with ground
vehicles. Another future direction is to implement the proposed formation control
scheme on a real multiple quadrotor UAV system for an experimental validation.
As a future solution for shortcoming of Chapter 5, the nominal LQR control design
can be studied combining with a disturbance rejection method to eliminate internal
disturbance effects of ignored modeling terms and real-world disturbances such as
wind gust.
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modeling of a fixed-wing VTOL UAV,” Journal of Intelligent and Robotic Systems, vol. 44,
no. 1-4, pp. 82-105, December 2016.

[165] D. Zelazo, A. Franchi, H.H. Bulthoff and P.R. Giordano, “Decentralized rigidity mainte-
nance control with range-only measurements for multi-robot systems,” Int. J. of Robotics
Research, vol. 34, no. 1, pp. 105-128, 2015.

[166] W. Zeng, B. Xian, C. Diao, Q. Yin, H. Li and Y. Yang, “Nonlinear adaptive regulation
control of a quadrotor unmanned aerial vehicle,” in Proc. IEEE International Conference on
Control Applications, pp. 133-138, Denver, CO, USA, September 2011.

[167] B. Zhao, B. Xian, Y. Zhang and X. Zhang, “Nonlinear robust adaptive tracking control of
a quadrotor UAV via immersion and invariance methodology,” IEEE Trans. on Industrial
Electronics, vol. 62, no. 5, pp. 2891-2902, 2015.

[168] B. Zhou, H. Satyavada and S. Baldi, “Adaptive path following for unmanned aerial vehi-
cles in time-varying unknown wind environments,” in Proc. American Control Conference,
pp. 1127-1132, Seattle, WA, USA, May 2017.

136



[169] Z.G. Zhou, Y.A. Zhang, X.N. Shi and D. Zhou, “Robust attitude tracking for rigid space-
craft with prescribed transient performance,” International Journal of Control, vol. 90,
no. 11, pp. 2471-2479, 2017.

[170] Z. Zuo and C. Wang, “Adaptive trajectory tracking control of output constrained multi-
rotors systems,” IET Control Theory and Applications, vol. 8, no. 13, pp. 1163-1174, 2014.

[171] Analog Devices, “Tri-axis inertial sensor with magnetometer, ADIS16405,” Nor-
wood, MA, USA, 2009: http://www.analog.com/media/en/technical-documentation/

data-sheets/ADIS16400_16405.pdf, Accessed: July 26, 2018.

[172] Quanser Inc., “Qball-X4:User Manual”, Document number:830, 2013.

137

http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16400_16405.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADIS16400_16405.pdf

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	General Overview and Motivation
	Contributions of the Thesis
	Organization of the Thesis

	Background and Control Architecture
	Modeling of UAV Motion Dynamics
	Quadrotor UAV Motion Dynamics
	Fixed-wing UAV Motion Dynamics

	Literature on Single-UAV Motion Control
	Quadrotor UAV Motion Control: Nonlinearities
	Quadrotor UAV Motion Control: Model Uncertainties
	Quadrotor UAV Motion Control: Optimality
	Fixed-wing UAV Motion Control

	Literature on Multi-UAV Formation Control
	Single UAV Motion Control Architecture
	Quadrotor UAVs
	Fixed-wing UAVs

	Multi-UAV Formation Control Architecture

	Adaptive Linear Quadratic Attitude Tracking Control with Sensor Fusion
	Introduction
	Quadrotor UAV Dynamics
	Attitude Model
	Yaw Model
	Altitude Model

	Problem Statement
	Control Approach
	IMU Sensor Data Fusion
	Attitude Determination from IMU Sensors
	Attitude Estimation Using Kalman Filter
	Attitude Estimation by Complementary Filter

	Adaptive Optimal Attitude Tracking Control Design
	Adaptive Parameter Identification Scheme
	Generic Linear Quadratic Tracking Control Design
	Adaptive Linear Quadratic Tracking (ALQT) Control Design

	Yaw and Altitude Control
	Yaw Control
	Altitude Control

	Experimental Tests and Comparative Simulations
	Test Platform
	Control Design Specifications and On-line Calculation of Control Parameters
	Experimental Results
	Comparative Simulations and Observations

	Summary and Remarks

	Robust Adaptive Control of a Quadrotor UAV with Guaranteed Tracking Performance
	Introduction
	Quadrotor UAV Dynamics
	Control Problem
	Robust Adaptive Tracking Control Design with Guaranteed Error Performance
	Position Control Design with Guaranteed Error
	Adaptive Attitude Control Design

	System Stability Analysis
	Alternative Adaptive Attitude Control Design
	Simulations and Experimental Tests
	Testbed Platform and Benchmark Controllers
	Simulation Tests
	Experimental Tests

	Summary and Remarks

	Adaptive Mixing Formation Control of a Multi-UAV System
	Introduction
	Quadrotor UAV Dynamics
	Rigid Graph Modeling of the Multi-UAV System
	Problem Statement
	Distributed Control Design
	High-level Control Design
	Low-level Control Design

	On-line Parameter Identification
	Adaptive Attitude Control Laws
	Adaptive Linear Quadratic Control (ALQC) 
	Proposed Adaptive Mixing Control (AMC)

	Real-time Testbed and Simulations
	Real-time Testbed System
	Adding the noise effect into the simulation
	Control Design Parameters
	Simulation Results

	Summary and Remarks

	Optimal Tracking and Formation Control of Fixed-wing UAVs
	Lateral Motion Model of Small Fixed-wing UAV
	Problem Statement for Fixed-level Motion
	High-level Control: Desired Trajectory and Heading Derivation
	Low-level Control: Optimal Linear Quadratic Tracking (LQT) Control Design
	Calculation of LQT Control Parameters
	Simulations and Results
	Simulation results of a single fixed-wing UAV 
	Simulation results of a multiple fixed-wing UAV system 

	Summary and Remarks

	Concluding Remarks
	Bibliography

