105 research outputs found

    Handling Real-World Context Awareness, Uncertainty and Vagueness in Real-Time Human Activity Tracking and Recognition with a Fuzzy Ontology-Based Hybrid Method

    Get PDF
    Human activity recognition is a key task in ambient intelligence applications to achieve proper ambient assisted living. There has been remarkable progress in this domain, but some challenges still remain to obtain robust methods. Our goal in this work is to provide a system that allows the modeling and recognition of a set of complex activities in real life scenarios involving interaction with the environment. The proposed framework is a hybrid model that comprises two main modules: a low level sub-activity recognizer, based on data-driven methods, and a high-level activity recognizer, implemented with a fuzzy ontology to include the semantic interpretation of actions performed by users. The fuzzy ontology is fed by the sub-activities recognized by the low level data-driven component and provides fuzzy ontological reasoning to recognize both the activities and their influence in the environment with semantics. An additional benefit of the approach is the ability to handle vagueness and uncertainty in the knowledge-based module, which substantially outperforms the treatment of incomplete and/or imprecise data with respect to classic crisp ontologies. We validate these advantages with the public CAD-120 dataset (Cornell Activity Dataset), achieving an accuracy of 90.1% and 91.07% for low-level and high-level activities, respectively. This entails an improvement over fully data-driven or ontology-based approaches.This work was funded by TUCS (Turku Centre for Computer Science), Finnish Cultural Foundation, Nokia Foundation, Google Anita Borg Scholarship, CEI BioTIC Project CEI2013-P-3, Contrato-Programa of Faculty of Education, Economy and Technology of Ceuta and Project TIN2012-30939 from National I+D Research Program (Spain). We also thank Fernando Bobillo for his support with FuzzyOWL and FuzzyDL tools

    Protective Behavior Detection in Chronic Pain Rehabilitation: From Data Preprocessing to Learning Model

    Get PDF
    Chronic pain (CP) rehabilitation extends beyond physiotherapist-directed clinical sessions and primarily functions in people's everyday lives. Unfortunately, self-directed rehabilitation is difficult because patients need to deal with both their pain and the mental barriers that pain imposes on routine functional activities. Physiotherapists adjust patients' exercise plans and advice in clinical sessions based on the amount of protective behavior (i.e., a sign of anxiety about movement) displayed by the patient. The goal of such modifications is to assist patients in overcoming their fears and maintaining physical functioning. Unfortunately, physiotherapists' support is absent during self-directed rehabilitation or also called self-management that people conduct in their daily life. To be effective, technology for chronic-pain self-management should be able to detect protective behavior to facilitate personalized support. Thereon, this thesis addresses the key challenges of ubiquitous automatic protective behavior detection (PBD). Our investigation takes advantage of an available dataset (EmoPain) containing movement and muscle activity data of healthy people and people with CP engaged in typical everyday activities. To begin, we examine the data augmentation methods and segmentation parameters using various vanilla neural networks in order to enable activity-independent PBD within pre-segmented activity instances. Second, by incorporating temporal and bodily attention mechanisms, we improve PBD performance and support theoretical/clinical understanding of protective behavior that the attention of a person with CP shifts between body parts perceived as risky during feared movements. Third, we use human activity recognition (HAR) to improve continuous PBD in data of various activity types. The approaches proposed above are validated against the ground truth established by majority voting from expert annotators. Unfortunately, using such majority-voted ground truth causes information loss, whereas direct learning from all annotators is vulnerable to noise from disagreements. As the final study, we improve the learning from multiple annotators by leveraging the agreement information for regularization

    Attention-based machine perception for intelligent cyber-physical systems

    Get PDF
    Cyber-physical systems (CPS) fundamentally change the way of how information systems interact with the physical world. They integrate the sensing, computing, and communication capabilities on heterogeneous platforms and infrastructures. Efficient and effective perception of the environment lays the foundation of proper operations in other CPS components (e.g., planning and control). Recent advances in artificial intelligence (AI) have unprecedentedly changed the way of how cyber systems extract knowledge from the collected sensing data, and understand the physical surroundings. This novel data-to-knowledge transformation capability pushes a wide spectrum of recognition tasks (e.g., visual object detection, speech recognition, and sensor-based human activity recognition) to a higher level, and opens an new era of intelligent cyber-physical systems. However, the state-of-the-art neural perception models are typically computation-intensive and sensitive to data noises, which induce significant challenges when they are deployed on resources-limited embedded platforms. This dissertation works on optimizing both the efficiency and efficacy of deep-neural- network (DNN)-based machine perception in intelligent cyber-physical systems. We extensively exploit and apply the design philosophy of attention, originated from cognitive psychology field, from multiple perspectives of machine perception. It generally means al- locating different degrees of concentration to different perceived stimuli. Specifically, we address the following five research questions: First, can we run the computation-intensive neural perception models in real-time by only looking at (i.e., scheduling) the important parts of the perceived scenes, with the cueing from an external sensor? Second, can we eliminate the dependency on the external cueing and make the scheduling framework a self- cueing system? Third, how to distribute the workloads among cameras in a distributed (visual) perception system, where multiple cameras can observe the same parts of the environment? Fourth, how to optimize the achieved perception quality when sensing data from heterogeneous locations and sensor types are collected and utilized? Fifth, how to handle sensor failures in a distributed sensing system, when the deployed neural perception models are sensitive to missing data? We formulate the above problems, and introduce corresponding attention-based solutions for each, to construct the fundamental building blocks for envisioning an attention-based machine perception system in intelligent CPS with both efficiency and efficacy guarantees

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Patterns in Motion - From the Detection of Primitives to Steering Animations

    Get PDF
    In recent decades, the world of technology has developed rapidly. Illustrative of this trend is the growing number of affrdable methods for recording new and bigger data sets. The resulting masses of multivariate and high-dimensional data represent a new challenge for research and industry. This thesis is dedicated to the development of novel methods for processing multivariate time series data, thus meeting this Data Science related challenge. This is done by introducing a range of different methods designed to deal with time series data. The variety of methods re ects the different requirements and the typical stage of data processing ranging from pre-processing to post- processing and data recycling. Many of the techniques introduced work in a general setting. However, various types of motion recordings of human and animal subjects were chosen as representatives of multi-variate time series. The different data modalities include Motion Capture data, accelerations, gyroscopes, electromyography, depth data (Kinect) and animated 3D-meshes. It is the goal of this thesis to provide a deeper understanding of working with multi-variate time series by taking the example of multi-variate motion data. However, in order to maintain an overview of the matter, the thesis follows a basic general pipeline. This pipeline was developed as a guideline for time series processing and is the first contribution of this work. Each part of the thesis represents one important stage of this pipeline which can be summarized under the topics segmentation, analysis and synthesis. Specific examples of different data modalities, processing requirements and methods to meet those are discussed in the chapters of the respective parts. One important contribution of this thesis is a novel method for temporal segmentation of motion data. It is based on the idea of self-similarities within motion data and is capable of unsupervised segmentation of range of motion data into distinct activities and motion primitives. The examples concerned with the analysis of multi-variate time series re ect the role of data analysis in different inter-disciplinary contexts and also the variety of requirements that comes with collaboration with other sciences. These requirements are directly connected to current challenges in data science. Finally, the problem of synthesis of multi-variate time series is discussed using a graph-based example and examples related to rigging or steering of meshes. Synthesis is an important stage in data processing because it creates new data from existing ones in a controlled way. This makes exploiting existing data sets and and access of more condensed data possible, thus providing feasible alternatives to otherwise time-consuming manual processing.Muster in Bewegung - Von der Erkennung von Primitiven zur Steuerung von Animationen In den letzten Jahrzehnten hat sich die Welt der Technologie rapide entwickelt. Beispielhaft für diese Entwicklung ist die wachsende Zahl erschwinglicher Methoden zum Aufzeichnen neuer und immer größerer Datenmengen. Die sich daraus ergebenden Massen multivariater und hochdimensionaler Daten stellen Forschung wie Industrie vor neuartige Probleme. Diese Arbeit ist der Entwicklung neuer Verfahren zur Verarbeitung multivariater Zeitreihen gewidmet und stellt sich damit einer großen Herausforderung, welche unmittelbar mit dem neuen Feld der sogenannten Data Science verbunden ist. In ihr werden ein Reihe von verschiedenen Verfahren zur Verarbeitung multivariater Zeitserien eingeführt. Die verschiedenen Verfahren gehen jeweils auf unterschiedliche Anforderungen und typische Stadien der Datenverarbeitung ein und reichen von Vorverarbeitung bis zur Nachverarbeitung und darüber hinaus zur Wiederverwertung. Viele der vorgestellten Techniken eignen sich zur Verarbeitung allgemeiner multivariater Zeitreihen. Allerdings wurden hier eine Anzahl verschiedenartiger Aufnahmen von menschlichen und tierischen Subjekte ausgewählt, welche als Vertreter für allgemeine multivariate Zeitreihen gelten können. Zu den unterschiedlichen Modalitäten der Aufnahmen gehören Motion Capture Daten, Beschleunigungen, Gyroskopdaten, Elektromyographie, Tiefenbilder ( Kinect ) und animierte 3D -Meshes. Es ist das Ziel dieser Arbeit, am Beispiel der multivariaten Bewegungsdaten ein tieferes Verstndnis für den Umgang mit multivariaten Zeitreihen zu vermitteln. Um jedoch einen Überblick ber die Materie zu wahren, folgt sie jedoch einer grundlegenden und allgemeinen Pipeline. Diese Pipeline wurde als Leitfaden für die Verarbeitung von Zeitreihen entwickelt und ist der erste Beitrag dieser Arbeit. Jeder weitere Teil der Arbeit behandelt eine von drei größeren Stationen in der Pipeline, welche sich unter unter die Themen Segmentierung, Analyse und Synthese eingliedern lassen. Beispiele verschiedener Datenmodalitäten und Anforderungen an ihre Verarbeitung erläutern die jeweiligen Verfahren. Ein wichtiger Beitrag dieser Arbeit ist ein neuartiges Verfahren zur zeitlichen Segmentierung von Bewegungsdaten. Dieses basiert auf der Idee der Selbstähnlichkeit von Bewegungsdaten und ist in der Lage, verschiedenste Bewegungsdaten voll-automatisch in unterschiedliche Aktivitäten und Bewegungs-Primitive zu zerlegen. Die Beispiele fr die Analyse multivariater Zeitreihen spiegeln die Rolle der Datenanalyse in verschiedenen interdisziplinären Zusammenhänge besonders wider und illustrieren auch die Vielfalt der Anforderungen, die sich in interdisziplinären Kontexten auftun. Schließlich wird das Problem der Synthese multivariater Zeitreihen unter Verwendung eines graph-basierten und eines Steering Beispiels diskutiert. Synthese ist insofern ein wichtiger Schritt in der Datenverarbeitung, da sie es erlaubt, auf kontrollierte Art neue Daten aus vorhandenen zu erzeugen. Dies macht die Nutzung bestehender Datensätze und den Zugang zu dichteren Datenmodellen möglich, wodurch Alternativen zur ansonsten zeitaufwendigen manuellen Verarbeitung aufgezeigt werden
    • …
    corecore