
© 2021 Shengzhong Liu

ATTENTION-BASED MACHINE PERCEPTION FOR
INTELLIGENT CYBER-PHYSICAL SYSTEMS

BY

SHENGZHONG LIU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2021

Urbana, Illinois

Doctoral Committee:

Professor Tarek F. Abdelzaher, Chair
Professor Lui Sha
Professor Indranil Gupta
Dr. Franck Le, IBM Research

ABSTRACT

Cyber-physical systems (CPS) fundamentally change the way of how information systems

interact with the physical world. They integrate the sensing, computing, and communication

capabilities on heterogeneous platforms and infrastructures. Efficient and effective percep-

tion of the environment lays the foundation of proper operations in other CPS components

(e.g., planning and control). Recent advances in artificial intelligence (AI) have unprecedent-

edly changed the way of how cyber systems extract knowledge from the collected sensing

data, and understand the physical surroundings. This novel data-to-knowledge transforma-

tion capability pushes a wide spectrum of recognition tasks (e.g., visual object detection,

speech recognition, and sensor-based human activity recognition) to a higher level, and opens

an new era of intelligent cyber-physical systems. However, the state-of-the-art neural percep-

tion models are typically computation-intensive and sensitive to data noises, which induce

significant challenges when they are deployed on resources-limited embedded platforms.

This dissertation works on optimizing both the efficiency and efficacy of deep-neural-

network (DNN)-based machine perception in intelligent cyber-physical systems. We ex-

tensively exploit and apply the design philosophy of attention, originated from cognitive

psychology field, from multiple perspectives of machine perception. It generally means al-

locating different degrees of concentration to different perceived stimuli. Specifically, we

address the following five research questions: First, can we run the computation-intensive

neural perception models in real-time by only looking at (i.e., scheduling) the important

parts of the perceived scenes, with the cueing from an external sensor? Second, can we

eliminate the dependency on the external cueing and make the scheduling framework a self-

cueing system? Third, how to distribute the workloads among cameras in a distributed

(visual) perception system, where multiple cameras can observe the same parts of the envi-

ronment? Fourth, how to optimize the achieved perception quality when sensing data from

heterogeneous locations and sensor types are collected and utilized? Fifth, how to handle

sensor failures in a distributed sensing system, when the deployed neural perception models

are sensitive to missing data?

We formulate the above problems, and introduce corresponding attention-based solutions

for each, to construct the fundamental building blocks for envisioning an attention-based

machine perception system in intelligent CPS with both efficiency and efficacy guarantees.

ii

To Yifei, my parents, and the family, for their dedicated love and support.

iii

ACKNOWLEDGMENTS

At start, I would like to express my deepest gratitude to my advisor, Professor Tarek

F. Abdelzaher, for his invaluable guidance, continuous support, and patience through the

course of my Ph.D. study. I am always inspired by his passion, vision, and critical thinking

for research. His immense knowledge and experience have encouraged me to explore the

directions that I am truly interested in. Without his generous support, it would be impossible

for me to finish this thesis.

It is also a genuine pleasure to express my deep appreciation to Professor Lui Sha, Professor

Indranil Gupta, Doctor Franck Le, for sharing constructive criticism and insightful advices

on my Ph.D. research. It is my greatest honor to have them on my Ph.D. thesis committee,

collaborate with them on research projects, coauthor research papers, throughout the years.

Their insightful feedbacks pushed me to sharpen my thinking and brought my research work

to a higher level.

Besides, I would like to take this opportunity to acknowledge my great collaborators over

the past years. Special thanks to Dr. Franck Le and Dr. Supriyo Chakraborty for hosting

my internship at IBM Research. I also would like to extend my sincere gratitude to Dr.

Shuochao Yao, Dr. Huajie Shao, Xinzhe Fu, Dr. Yiran Zhao, Prof. Jiawei Han, Prof.

Klara Nahrstedt, Prof. Heechul Yun, Dr. Maggie Wigness, Dr. Philip David, Prof. Mani

Srivastava, Prof. Benjamin Marlin, Prof. Archan Misra, Dr. Shaohan Hu, Dr. Shen Li,

Yifan Hao, Tai-Sheng Cheng, Prof. Fan Wu, Prof. Zhenzhe Zheng, Jiyang Chen, Ankur

Sarker, for their invaluable discussions and helpful advice on my research.

I am always proud and fortunate to be part of the Cyber-Physical Computing Group

at University of Illinois at Urbana-Champaign (UIUC). I had great pleasure working with

Dongxin Liu, Tianshi Wang, Jinyang Li, Ruijie Wang, Dachun Sun, Yigong Hu, Jinning Li,

MD Iftekharul Islam Sakib, Christina Youn, Chaoqi Yang, Zhe Yang, Bo Chen, Hongpeng

Guo. Thanks for the pleasure time and hardworking days. Many thanks also to Haotian

Wang, Shilei Tian, Dr. Tong Meng, Rui Yang, Jiyong Yu, Zirui Zhao, Xiang Cui, for sharing

the happiness and sadness together.

In addition, I would like to thank the U.S. Army Research Labs, Defense Advanced Re-

search Projects Agency, and National Science Foundation for their financial support.

Lastly, I am deeply indebted to my fiancée Yifei Huang, my parents Baoxiang Xu and

Weiyao Liu, my sister Meng Liu, as well as Rui Chang, Bin Huang, for their selfless love,

comprehension, and support. Therefore, this dissertation is dedicated to them.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Attention-Based Perception Scheduling with External-Cueing 3
1.2 Attention-Based Perception Scheduling with Self-Cueing 4
1.3 Attention-Based Multi-Camera Scheduling 5
1.4 Attention-Based Multi-Sensor Fusion . 5
1.5 Attention-Based Missing Sensor Recovery . 6
1.6 Dissertation Organization . 6

CHAPTER 2 ATTENTION-BASED SCHEDULING WITH EXTERNAL-CUEING 8
2.1 Overview . 8
2.2 System Architecture . 10
2.3 The Scheduling Problem . 15
2.4 Implementation . 24
2.5 Evaluation . 26
2.6 Investigating the Impact of Criticality Design 33
2.7 Investigating the Impact of Image Resizing 39
2.8 Related Work . 42
2.9 Limitations and Discussion . 43

CHAPTER 3 ATTENTION-BASED SCHEDULING WITH SELF-CUEING 44
3.1 Overview . 44
3.2 System Architecture . 45
3.3 Frame Slicing and Region Tracking . 47
3.4 Partial Frame Scheduling . 51
3.5 Empirical Optimization . 61
3.6 Evaluation . 63
3.7 Related Work . 71
3.8 Limitations and Discussion . 73

CHAPTER 4 ATTENTION-BASED MULTI-CAMERA SCHEDULING 74
4.1 Overview . 74
4.2 System Architecture . 76
4.3 Multi-View Scheduling . 79
4.4 Evaluation . 84
4.5 Related Work . 90
4.6 Limitations and Discussion . 90

v

CHAPTER 5 ATTENTION-BASED MULTI-SENSOR FUSION 92
5.1 Overview . 92
5.2 Motivation and Challenge . 94
5.3 GlobalFusion Framework . 96
5.4 Evaluation . 103
5.5 Related Work . 118

CHAPTER 6 ATTENTION-BASED MISSING SENSOR RECOVERY 122
6.1 Overview . 122
6.2 Motivation . 125
6.3 Preliminaries . 126
6.4 Graph-Based Missing Sensor Reconstruction 129
6.5 Applications . 138
6.6 Evaluation . 140
6.7 Related Work . 155

CHAPTER 7 CONCLUSION & FUTURE WORK 158

REFERENCES . 162

vi

CHAPTER 1: INTRODUCTION

Cyber-physical systems (CPS) emerges as a new paradigm defining how information sys-

tems (i.e., cyber-side) interact with the physical environment (i.e., physical-side). They

integrate the sensing, computing, and communication capabilities on heterogeneous devices

and infrastructures, enabling a revolution of “smart era”, ranging from smart devices, smart

vehicles, to smart homes and smart cities. Benefiting from the transition to autonomy led

by CPS, humans are gradually freed from laborious and dangerous works, while the safety

and sustainability of the operations are significantly improved at the same time. Representa-

tive CPS application fields include autonomous driving, urban surveillance, medical service,

agriculture, and disaster rescue.

In these scenarios, obtaining high-quality perception of the physical environment in real-

time is the foundation of successful operation of the cyber-physical systems. For instance,

in autonomous driving, localizing and categorizing all appeared objects (e.g., lanes, vehicles,

pedestrians, traffic lights and signs) surrounding the ego-vehicle in real-time, with camera

or LiDAR input, is the basis for subsequent mapping, planning, and control functions to

produce timely response. Otherwise, without proper perception, it seems like walking in

the dark. In the past decade, a large amount of research efforts have been focused on

integrating more sensors into mobile and embedded devices, so that all kinds of sensing

applications can be built on top. Nowadays, smart platforms are already equipped with an

abundant types of sensors, including cameras, inertial sensors, microphones, light sensors,

et al.. They significantly improve the sensing ability of these platforms, from the hardware

perspective, to perceive the physical environment. Large volume of sensing data is collected

by the sensors at every second of operation.

At meanwhile, recent advances in artificial intelligence (AI), especially the application

of deep neural networks (DNN), have revolutionized the way of modeling, processing, and

learning from various types of sensing data (e.g., video, acoustic signals, inertial sensors,

RF sensors) to acquire relevant information and further convert it into knowledge, about

physical surroundings. They push a wide spectrum of recognition tasks (e.g., visual object

detection, speech recognition, IMU-based human activity recognition) to a higher level, and

substantially enhance the perception ability of machines from the learning perspective. This

powerful data-to-knowledge transformation capability, successfully bridges the gap between

the massive sensing data and the limited modeling capacity of conventional analytics, triggers

new generations of complex recognition tasks, and brings us into the new epoch of intelligent

cyber-physical systems, where deep neural network models are extensively utilized to learn

1

from the sensing data.

However, it is still a non-trivial task to deploy the deep neural models in practical cyber-

physical systems, for two main reasons. First, the state-of-the-art DNNs are computation-

ally intensive and mostly deployed on the powerful cloud in the past, thus induce significant

challenges to the limited computing resources on the embedded platforms. Efficiency is

critical in machine perception, because the systems rely on the perceived information to

carry out proper actions in response to the environment dynamics. Second, the efficacy

(i.e., accuracy) of DNNs is challenged by the noisy and unreliable sensing data in CPS. Al-

though DNNs are equipped with powerful modeling capacity on data distributions, they are

known to be sensitive to data noises due to their extremely complicated decision boundaries.

Noisy data is prevalent in CPS, which can be resulted from multiple perspectives, including

heterogeneous sensor manufacture and calibrations, human interventions, unstable network

connections, and environment diversity. DNNs need to be specially adapted or augmented

to handle these practical data imperfections during the deployment.

My dissertation works on optimizing both efficiency and efficacy of DNN-based percep-

tion systems in intelligent CPS, under limited computing resources and unreliable sensing

data. The central design philosophy is inspired by the concept of attention [1] in cognitive

psychology, which originally refers to the cognitive behavior that human brains can only

selectively concentrate on one discrete stimulus among multiple perceivable stimuli1. For

example, when reading a book, our visual attention can only be focused on a specific area of

the page, i.e., the few lines that we are currently reading, although we perceived many lines

as visual stimuli. Attention essentially represents an active resource allocation mechanism

that processes different parts of the input with different degrees of importance, with limited

cognitive processing resources. We interpret attention from two different perspectives when

applying the idea to machine perception, in terms of efficiency and efficacy, respectively.

From the efficiency perspective, consider the bottleneck computation resource (i.e., GPU)

as an analogy of our brain that can only process limited amount of data at every second. In

order to achieve real-time (visual) machine perception on such resource-limited platforms,

we only want the expensive neural networks to focus on (i.e., process) “the most impor-

tant region(s)” of the input and ignore the remaining regions. This forms a novel real-time

scheduling problem for machine perception pipeline. From the efficacy perspective, when

making predictions based on sensing data collected from heterogeneous sensing modalities

and diverse locations, we want the DNN models to enhance the impact of important parts

of the sensing data and filter out the irrelevant noises. This dynamic weighting mechanism

1https://courses.lumenlearning.com/boundless-psychology/chapter/attention/

2

is called neural attention [2] in machine learning field. It becomes a novel sensor fusion

problem within DNN based perception models.

With that central design philosophy explained, we establish the following statement for

this dissertation: By applying the attention-based design philosophy, we build an efficient and

effective machine perception pipeline for intelligent cyber-physical systems, that can produce

high-quality predictions in real-time on resource-limited computing platforms, using possibly

unreliable and noisy sensing data.

Specifically, we tackle the following research problems towards building attention-based

perception pipelines. First, can we partition the input data (e.g., image) into fine-grained

and semantically-meaningful partial regions, such that we can correspondingly schedule their

processing? If yes, do we need external cueing from another sensor input to assist the

data partitioning/slicing, and how to schedule their processing tasks to achieve real-time

machine perception without degradation on perception quality? Second, can we eliminate the

dependency on the external cueing sensor, and make the system work in a self-cueing manner,

by exploiting the temporal correlations in the data stream? Third, how to extend the slicing-

and-scheduling pipeline to the distributed sensing systems so that the perception efficiency

can be further improved by exploiting the spatial data correlations among the sensors?

Fourth, how to optimize the achieved inference accuracy of the DNN perception models, by

designing and integrating appropriate neural attention mechanisms for heterogeneous sensor

data fusion? Finally, can we extend the dynamic sensor fusion mechanisms to missing

sensor scenarios, such that the same DNN model can work properly under different sensor

availability (i.e., when only a subset of sensors involved in the training are available)?

In the following sections, we give an overview of the solutions we proposed for each of the

above research problems.

1.1 ATTENTION-BASED PERCEPTION SCHEDULING WITH EXTERNAL-CUEING

This work first discusses algorithmic priority inversion in mission-critical machine infer-

ence pipelines used in modern neural-network-based cyber-physical systems, and develops

a scheduling solution to mitigate its effect. In general, priority inversion occurs in real-

time systems when computations that are of lower priority are performed together with or

ahead of those that are of higher priority. Technically, there are two competing requirements

that inform task prioritization, namely, criticality and urgency . Inversion occurs if priorities

derived from these requirements are not obeyed. In current machine intelligence software,

significant priority inversion occurs on the path from perception to decision-making, where

the execution of underlying neural network algorithms does not differentiate between crit-

3

ical and less critical data. We design a scheduling framework to resolve this problem, and

demonstrate that it improves the system’s ability to react to critical inputs, while reducing

the platform cost at meanwhile. The framework is prototyped in visual perception sys-

tems of autonomous vehicles, where the input from a ranging sensor, i.e., LiDAR, is used

as the external cue to guide the slicing of camera images, then the sliced images are fed

into the scheduling algorithm as input. As an extension, we evaluate two specific criticality

designs, namely distance-based criticality and relative velocity-based criticality, about their

impact on the achieved prioritization mechanism. In these cases, the allocation of attention

is directly associated with the designated physical measures, i.e., distance or relative veloc-

ity, which is similar to how humans process the perceived visual information while driving.

As another extension, we explore the further improvement brought by an image resizing

mechanism. The details of this work are described in Chapter 2.

1.2 ATTENTION-BASED PERCEPTION SCHEDULING WITH SELF-CUEING

This work extends the previous work by eliminating the dependency on external cue-

ing sensors, and presenting a self-cueing real-time framework for attention scheduling in

AI-enabled visual perception systems that minimizes a notion of system uncertainty. By

attention scheduling we refer to the challenge of having the visual perception subsystem

(neural network) inspect parts of the scene before others in some criticality-aware fashion.

By self-cueing , we refer to an architecture where attention prioritization does not require

the use of external cueing sensors, thereby simplifying design and avoiding the need for

sensor synchronization. The objective is to enable real-time tracking of objects detected

using vision-based neural network models on resource-limited embedded platforms. Instead

of performing object detection on every full-scale camera frame, we take advantage of the

temporal correlations in video streams and only run the full-frame detections intermittently.

Between them, a set of object-oriented, criticality-based, and uncertainty-aware partial-frame

detections are scheduled to track regions of interest. The system relies on two components:

First, an optical flow-based object tracking and data slicing module that uses previously

detected object locations, and pixel motions estimated between pairs of neighboring frames,

to predict future object trajectories. Second, a novel scheduling policy that decides when to

execute the partial-frame detection tasks for each tracked object, in order to minimize the

maximum uncertainty on their locations over time. In addition, a task batching mechanism

is integrated into the scheduling algorithm to optimize the task processing capacity on mod-

ern GPUs. We evaluate the proposed scheduling architecture through extensive evaluations

with real-word driving datasets on NVIDIA Jetson Xavier. The details of this work are

4

described in Chapter 3.

1.3 ATTENTION-BASED MULTI-CAMERA SCHEDULING

This paper further extends the previous two works from single-camera perception to multi-

camera perception scenarios. It presents a real-time multi-view scheduling framework for

AI-enabled live video analytics at the edge. We regard object detection and tracking as the

scheduling workload. We consider scenarios where multiple cameras are deployed around a

local area (e.g., a traffic intersection) such that one object may be observable from multiple

views. Each camera has access to limited onboard computing capacity. In order to perform

efficient real-time detection and tracking, we exploit the spatial-temporal correlations among

multi-camera video streams. First, to exploit the temporal correlations in video streams, we

only run object detection on full camera frames with limited intermittency, and a set of

object-based partial frame detections are scheduled in-between. Second, to further benefit

from the spatial view overlaps across cameras, we only schedule one camera to track an

object if the object is observable by multiple cameras. Specifically, we use a data-driven

object correlation model to identify common objects across cameras, and then propose a

batch-aware load-balanced (BALB) scheduling algorithm to calculate the object-to-camera

assignment, which specifies the subset of objects to be tracked at each camera. We evaluate

the proposed system on a testbed consisting of multiple NVIDIA Jetson platforms with

heterogeneous hardware configurations. The details of this work are described in Chapter 4.

1.4 ATTENTION-BASED MULTI-SENSOR FUSION

This paper enhances deep-neural-network-based inference in sensing applications by intro-

ducing a lightweight attention mechanism called the global attention module for multi-sensor

information fusion. This mechanism is capable of utilizing information collected from higher

layers of the neural network to selectively amplify the influence of informative features and

filter unrelated noise at the fusion layer. We successfully integrate this mechanism into a

new end-to-end learning framework, called GlobalFusion, where two global attention mod-

ules are deployed for spatial fusion and sensing modality fusion, respectively. We evaluate

the effectiveness of GlobalFusion at improving information fusion on multi-sensor human

activity recognition (HAR) tasks. In addition, we observe the learned attention weights

agree well with human intuition, from the interpretability perspective. Only a negligible

overhead is induced by the global attention modules, in terms of both inference time and

5

energy consumption, when the models are deployed on commodity IoT devices. The details

of this work are described in Chapter 5.

1.5 ATTENTION-BASED MISSING SENSOR RECOVERY

This paper enhances the robustness of neural perception models to the missing sensor

problem, when only a subset of sensors used for training are available during the inference,

by introducing a novel feature reconstruction module, namely the graph recovery module,

that handles missing sensors directly inside the neural network, when there is sufficient re-

dundancy in the sensor coverage. Specifically, we consider topology-aware multi-nodes sens-

ing systems, where sensors are placed on a physically interconnected network. We design a

novel neural message passing mechanism that logically mimics physical network topology,

based on recent advances in graph neural networks (GNN). We rely on a spatial locality

assumption, where the data correlations between physically connected sensors are explicitly

explored. When encountering missing sensors, information is passed from available sen-

sors to missing sensors to be used to reconstruct their features. Moreover, at each message

passing step, we utilize a gating mechanism inspired by Gated Recurrent Units (GRU) to au-

tomatically control the information flow between available sensors and missing sensors. We

extensively evaluate the reconstruction performance of the graph recovery module with two

representative IoT applications, human activity recognition (HAR) and electroencephalo-

gram (EEG)-based motor-imagery classification. The details of this work are described in

Chapter 6.

1.6 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows: Part 1 (i.e., Chapter 2-4) introduces

the works on attention-based efficiency optimization for machine perception. In Chapter 2,

we introduce the cross-cueing scheduling framework for criticality-aware vision perception

tasks, that depends on an external sensor to slice the input image input into semantically

meaningful partial regions. As extensions, we not only instantiate two different criticality

designs, but also explore the further improvement brought by image resizing mechanisms. In

Chapter 3, we improve the generalizability of visual perception scheduling, by eliminating the

dependency on external cueing sensors. Instead, a self-cueing framework that purely bases

on the temporal correlations in video streams to slice the images, is introduced. A novel

uncertainty-driven, batch-aware scheduling algorithm is proposed to minimize the notion of

6

maximum uncertainty on object locations. In Chapter 4, we further extend the scheduling

framework to distributed multi-camera perception systems, where both spatial and tempo-

ral correlations within distributed video streams are leveraged. Part 2 (i.e., Chapter 5-6)

applies attention-based designs to optimize the efficacy of machine perception models. In

Chapter 5, we propose a novel global attention module that uses high-level neural network

features, that reside close to the output layer, to selectively enhance the impact of relevant

sensors/locations, and ignore irrelevant noises, during low-level sensor fusion. In Chapter 6,

we address how to handle missing sensor issues within neural perception models by relying

on information on available sensors to reconstruct the features for missing sensors. Finally,

we conclude the dissertation and discuss some future works in Chapter 7.

7

CHAPTER 2: ATTENTION-BASED SCHEDULING WITH
EXTERNAL-CUEING

2.1 OVERVIEW

This chapter introduces the notion of algorithmic priority inversion that plagues mod-

ern mission-critical machine inference pipelines. We describe an initial solution towards

removing such priority inversion from neural-network-based systems to support real-time

intelligent cyber-physical applications. As a running application, we consider autonomous

driving, although we expect the design principles described in this work to remain applicable

in other contexts.

Importantly, to set the scope, we distinguish between safety-critical and mission-critical

design requirements of cyber-physical systems. A safety-critical requirement might be to

guarantee collision-avoidance. A mission-critical requirement might be to do valid path

planning, taking into account anticipated future mobility of other agents. On the surface

there may appear to be overlap; the computed path must still avoid running into other ob-

jects. The distinguishing property is that the mission-critical subsystem has lower reliability

requirements . Hence, it may speculatively use less certain data (e.g., an anticipated future

trajectory of neighboring objects), and is allowed to occasionally err. The safety-critical

subsystem should be able to override and restore safety when needed. For example, if the

mission-critical subsystem mispredicts another object’s future path, leading to a possible

collision, the safety-critical subsystem should eventually detect the imminent threat and

perform emergency collision-avoidance.

The application of artificial intelligence to cyber-physical systems poses different challenges

in the different subsystems. One challenge is to continue to meet safety-critical design

requirements by the safety-critical subsystem. General machine learning solutions that offer

such strong safety assurances are notoriously difficult in practice and are out of scope for this

work. In fact, for the purposes of this work, we can imagine the safety-critical subsystem

to be AI-free (e.g., reliable ranging sensors that detect dangerous proximity of other objects

and invoke emergency intervention).

This work, instead, focuses on the mission-critical subsystem. The challenge addressed is

to optimize the schedulability of mission-critical real-time perception tasks in this subsystem

to remove priority inversion. Perception is one of the key components that enable system

autonomy. It is also a major efficiency bottleneck that accounts for a considerable fraction of

resource consumption [3, 4]. In general, priority inversion occurs in real-time systems when

computations that are less critical (or that have longer deadlines) are performed together

8

with or ahead of those that are more critical (or that have shorter deadlines). Current

neural-network-based machine intelligence software suffers from a significant form of priority

inversion on the path from perception to decision-making, because current algorithms process

input data sequentially, as opposed to processing important parts of a scene first. This

limitation may result in inferior system responsiveness to critical events, or (equivalently)

increased cost of hardware to meet mission needs. By resolving this problem, we significantly

improve system ability to react to critical inputs at a lower platform cost. The work applies

to intelligent cyber-physical systems that perceive their environment in real time (using

neural networks), such as self-driving vehicles [5], autonomous delivery drones [6], military

defense systems [7], and socially-assistive robotics [8].

To understand the present gap, observe that current perception-related neural networks

perform many layers of manipulation of large multidimensional matrices (called tensors).

Yet, the current state of the art in designing the underlying neural network libraries (e.g.,

TensorFlow) is reminiscent of what used to be called the cyclic executive [9] in early operating

system literature. Cyclic executives, in contrast to priority-based real-time scheduling [10],

processed all pieces of incoming computation at the same priority and quality (e.g., as nested

loops). Similarly, given incoming data frames (e.g., multi-color images or 3D LiDAR point

clouds), modern neural network algorithms process all data rows and columns at the same

priority and quality, with no regard to cues from the physical environment that impact

time-constraints and criticality of different parts of the data scene.

This flat processing is in sharp contrast to the way humans process information. Humans

have an innate ability to not only perceive their environment, but also make critical and

timely attention allocation decisions that help us expend limited cognitive resources where

they are most needed in a critical dynamic situation. For example, given a complex scene,

such as a freeway where one of the nearby vehicles appears to have temporarily lost control

of steering, human drivers are good at understanding what to focus on to plan a valid path

forward amidst the resulting confusion.1 This capability is substantially different from, say,

attention mechanisms used in machine inference [11, 12], where attention is related to logical

computational weights assigned to different inputs as opposed to prioritized allocation of

actual processing resources. Different from the neural attention mechanisms [2, 13, 14, 15, 16]

that automatically computes the logical weights to optimize the model performance (i.e.,

efficacy optimization), our proposed attention mechanism injects extra human supervision

1Note that, by planning a path that continues to make forward progress, we are talking about a mission-
critical function (assuming the mission involves making progress towards a destination). In contrast, a
safety-critical override might simply stop the vehicle to avoid a collision. Clearly stopping the vehicle will
stop progress towards mission objectives, but may ensure safety.

9

Figure 2.1: Real-time Machine Inference Pipeline Architecture.

(i.e., the criticality design) into the resource allocation to prioritize the “critical parts” under

our definition with physical correspondence (i.e., efficiency optimization).

The lack of prioritized allocation of processing resources to different parts of an input data

stream (e.g., from a camera) creates what we henceforth call algorithmic priority inversion.

In the above example, all pixels of the entire freeway scene are processed by the same

algorithm at the same priority, as opposed to giving the runaway vehicle more attention

while possibly temporarily ignoring other less important elements of the scene (e.g., far-

away objects).

We develop an architecture for separating input data (to be processed by the neural-

network) into regions of different criticality, and assigning different deadline-driven priorities

to the processing of these regions. We then introduce a utility-optimizing scheduling algo-

rithm for the resulting real-time workload to meet deadlines while maximizing a notion of

global utility (to the mission). We implement the architecture on an NVIDIA Jetson AGX

Xavier platform, and do a performance evaluation on the platform using real video traces

collected from autonomous vehicles. The results show that the new algorithms significantly

improve the average quality of machine inference, while nearly eliminating deadline misses,

compared a set of state-of-the-art baselines executed on the same hardware under the same

frame rate.

2.2 SYSTEM ARCHITECTURE

Consider an intelligent cyber-physical system equipped with a camera that observes its

physical environment, a neural network that processes the observations, and a control unit

that must react in real time. As mentioned earlier, we focus on scheduling of perception

tasks in the mission-critical subsystem. For example, the neural network might identify the

10

types of objects present in the field of view so that subsequent path planning can be done

accordingly. Figure 2.1 contrasts the traditional design of machine inference pipelines in such

systems to the proposed architecture. In the traditional design, input data frames captured

by sensors are processed sequentially by the neural network. Network execution is typically

non-preemptive. It considers one frame at a time, producing an output on each frame before

the next frame is handled.

Unfortunately, the multi-dimensional data frames captured by modern sensors (e.g., col-

ored camera images and 3D LiDAR point clouds) carry information of different degrees of

criticality in every frame.2 Data of different degrees of criticality may require a different pro-

cessing latency. For example, processing parts of the image that represent far away objects

does not need to happen every frame, whereas processing nearby objects, such as a vehicle

in front, needs to be done immediately because the nature of nearby objects (e.g., car versus

pedestrian) has impact on immediate path planning. To accommodate these differences in

input data criticality, we propose a novel mission-critical subsystem architecture that breaks

the path from perception to decision-making into four components:

• The data slicing and priority allocation module: This module breaks up newly arriving

frames into smaller regions of different degrees of criticalty based on simple heuristics

(e.g., closer objects need to be attended to first).

• The deduplication module: This module drops redundant regions (i.e., ones that refer

to the same physical objects) across successive arriving frames.

• The “anytime” neural network: This neural network implements an imprecise compu-

tation model that allows execution to be preempted, while yielding partial utility from

the partially completed computation. The approach allows newly arriving critical data

to preempt the processing of less critical data from older frames.

• The batching and utility maximization module: This module sits between the data

slicing and deduplication modules on one end and the neural network on the other.

With data regions broken by priority, it decides which regions to pass to the neural

network for processing. Since multiple regions may be queued for processing, it also

decides how best to benefit from batching (that improves processing efficiency). A

utility maximizing algorithm controls the produced schedule to maximize a quality

metric.

2By different degrees of criticality , we are referring to different levels of importance within the mission-
critical subsystem. For example, far-away objects are less relevant to path planning than nearby objects.
We are not refering to a distinction between safety-critical and mission-critical data.

11

Since our purpose is to mitigate priority inversion on the path from perception to decision-

making, we shall refer to the subsystem shown in Figure 2.1 as the observer . The goal is to

allow the observer to respond to more urgent stimuli ahead of less urgent ones. The main

contribution of this paper lies in the design of the batching and utility maximization module

that maximizes the quality of inference while meeting response deadlines. For completeness,

below we first describe all of the above components of the observer, respectively. We then

detail the batching and utility maximization algorithm used.

2.2.1 Data Slicing and Priority Allocation

This module breaks up input data frames into regions that require different degrees of at-

tention. Objects with a smaller time-to-collision [17] should receive attention more urgently.

We further assume that the observer is equipped with a ranging sensor. For example, in

autonomous driving systems, a LiDAR sensor measures distances between the vehicle and

other objects. LiDAR point cloud based object localization techniques have been proposed

in recent literature [18]. They provide a fast (i.e., over 200 Hz) and accurate ranging and

object localization capability. The computed object locations can then be projected onto

the image obtained from the camera, allowing the extraction of regions (subareas of the

image) that represent these localized objects, sorted by distance from the observer. In this

chapter, we assume that errors in LiDAR-based slicing are negligible3. The extraction of

such subareas is the main function of the data slicing module. In this paper, for simplicity,

we restrict those subareas to rectangular regions. We call them bounding boxes . The other

function of the module is prioritization (of bounding boxes) by time-to-collision, given the

trajectory of the observer and the location of the object. Computing the time-to-collision is

a well-studied topic and is not our contribution [17]. We list it as one of our future directions

to integrate more complex and practical object priority designs into our framework.

2.2.2 Deduplication

The function of the deduplication module is very simple. It elimiates redundant bounding

boxes. Since the same objects will generally persist across many LiDAR and camera frames,

the same bounding boxes will be identified in multiple frames. The set of bounding boxes

pertaining to the same object in different frames is called a tubelet . In real-time systems,

in general, the best information is the most recent. Thus, only the most recent bounding

box in a tubelet needs to be acted on. Boxes with significant location overlap from frame

3Perfect sensor-based cueing is hard, human attentions could be misplaced from time to time

12

InputIm
age

Conv
Layer

1
x
1
Conv,c

3
x
3
Conv,c

1
x
1
Conv,4c

+4c 4c

Conv Block

Conv Block

Conv Block

Conv Block

Block number: 3

Stage 1

Classifier 1 Classifier 2 Classifier 3 Classifier 4

relu

relu

relu

Conv Block

...

Conv Block

Block number: 4

Stage 2

Conv Block

...

Conv Block

Block number: 6

Stage 3

Conv Block

Conv Block

Conv Block

Block number: 3

Stage 4

Figure 2.2: ResNet [19] architecture with 4 stages and 50 layers. In the left part, we show
the design of bottleneck block, which is the basic building block of ResNet. c represents the
feature dimension. The classifier is simply the concatenation of a max pooling layer and a
fully connected layer.

to frame are considered redundant. The deduplication module identifies boxes with large

overlap and stores the most recent box only. For efficiency reasons described later, we

quantize the used bounding box sizes. The deduplication module uses the same box size

for the same object throughout the entire tubelet. If the underlying object changes location

enough for the bounding box to jump to another size category, the overlap between the two

boxes (of different size) will be small enough that the module will fail to recognize them

as the same object. This creates a minor loss of deduplication efficiency but simplifies the

forecasting of execution time (used by the scheduler) associated with processing what the

module recognizes as the same object (since the size of its bounding box does not change).

Note that, in a traditional neural network processing pipeline, each frame is processed in

its entirety before the next one arrives. Thus, no deduplication module is used. The option

to add this time-saving module in our architecture arises because our pipeline can postpone

processing of some objects until a later time. By that time, updated images of the same

object may arrive. This enables savings by looking at the latest image only, when the neural

network eventually gets around to processing the object.

2.2.3 The Anytime Neural Network

A perfect anytime algorithm is one that can be terminated at any point, yielding utility

that monotonically increases with the amount of processing performed. Our neural network

approximates that model. Specifically, it implements an imprecise computation model [20,

21, 22] that provides usable and approximate partial results. In an imprecise computation

model, processing consists of two parts: a mandatory part and an optional part. The optional

part, or a portion thereof, can be skipped to conserve resources. When the optional part is

skipped, the task is called to produce an imprecise (i.e., approximate) result. In imprecise

computation models, the processing fidelity improves as we execute more stages.

13

Stage-1 Stage-2 Stage-3 Stage-4
Network Stage

0

20

40

60

80

100

To
p-

1
Ac

cu
ra

cy
 (%

)

(a) Top-1 Accuracy

Stage-1 Stage-2 Stage-3 Stage-4
Network Stage

0

20

40

60

80

100

To
p-

5
Ac

cu
ra

cy
 (%

)

(b) Top-5 Accuracy

Figure 2.3: ResNet stage accuracy change on ImageNet [24] dataset.

Deep neural networks (e.g., image recognition models [19]) are a concatenation of a large

number of layers that can be divided into several stages, as we show in Figure 2.2. Ordinarily,

an output layer is used at the end to convert features computed by earlier layers into the

output value (e.g., an object classification). Prior work has shown, however, that other

output layers can be forked off of intermediate stages producing meaningful albeit imprecise

outputs based on features computed up to that point [23]. Figure 2.3 shows the accuracy

of ResNet-based classification applied to the ImageNet [24] dataset at intermediate stages

of neural network processing. It shows that neural network inference can be divided into

a mandatory part and optional parts. The quality of outputs increases when the network

executes more optional parts. Thus, network execution can be aborted (e.g., in favor of a

new more important task) short of executing all its optional parts, yielding partial utility as

described in recent work [23].

An essential component in this model is the choice of task utility, which lays the foundation

for time assignment to the processing of different objects/tasks. In this paper, we set utility

(from the task’s output) proportionally to confidence in result ; a low confidence output is less

useful than a high confidence output. The proportionality factor itself can be set depending

on task criticality, such that uncertainty in output of more critical tasks is penalized more.

We adopt the algorithm proposed by Yao et al. in RDeepSense [25] to estimate expected

confidence in outputs of future neural network stages. This allows us to compute the expected

utility of each stage before it is executed.

There are two existing limitations associated with the imprecise computation model for

neural networks. First, it currently is only applicable to classification networks, but not

object detection networks. Thus, our approach here relies completely on LiDAR slicing to

localize the object locations. Second, there is a tradeoff between the model accuracy on

different stages where only a suboptimal result is achieved at each stage. These two aspects

inspire us to explore an alternative approach using image resizing to define the degrees of

allocated resources in a following extension that can overcome both limitations by design.

14

2.2.4 Batching and Utility Maximization

This module decides the schedule of processing of all regions identified by the data slic-

ing and prioritization module and that pass de-duplication. As discussed above, utilizing

LiDAR point clouds to efficiently localize objects in each frame [18, 26], the data slicing

module computes bounding boxes for objects detected. These boxes constitute regions that

require attention, each assigned a degree of criticality. The deduplication module groups

boxes related to the same object into a tubelet. Only the latest box in the tubelet is kept.

The remaining boxes need not be processed. Each physical object gives rise to a separate

neural network task to be scheduled. The input of that task is the bounding box for the

corresponding object (cropped from the full scene). Below, we describe how the batching

and utility maximization module schedules the tasks that process the different bounding

boxes.

2.3 THE SCHEDULING PROBLEM

In this section, we describe our task execution model and formulate the scheduling problem

studied in this work. We then derive a near-optimal solution.

2.3.1 The Execution Model

As alluded to earlier, the scheduled tasks in our system constitute the execution of multi-

layer deep neural networks (e.g., ResNet [19], as shown in Figure 2.2), each processing a

different input data region (a bounding box). As shown in Figure 2.2, tasks are broken

into stages. Each stage includes multiple neural network layers. The unit of scheduling is

a single stage. Neural network execution of a single stage is non-preemptive, but tasks can

be preempted on stage boundaries. A task arrives when a new object is detected by the

ranging sensor (e.g., LiDAR) giving rise to a corresponding new bounding box in the camera

scene. Let the arrival time of task τi be denoted by ai. A deadline di > ai, is assigned

by the data slicing and priority assignment module denoting the time by which the task

must be processed (e.g., the corresponding object classified). The data slicing and priority

assignment module is invoked at frame arrival time. Therefore, both ai and di are a multiple

of frame inter-arrival time, H. Since new objects can appear in the field of view at any

time, we do not pose periodicity assumptions on object arrival times and deadlines. No

task can be executed after its deadline. Future object sizes, arrival times, and deadlines are

unknown, which makes the scheduling problem an online decision problem. A combination

15

Table 2.1: Table of Notations.

Symbol Meaning

H Camera sampling period.
h Time index within a period.
δ Minimum time unit. All times are multiples of δ.
i Object index.
j Neural network stage index.
P Batch of tasks.
S Available image size set, |S| = K.
k Image size index, which refers to the k-th image size in S.
b Batch size.
t Index for scheduling period, counted in multiples of H.
τi The task related to the i-th object.
si Image size for the i-th object.
li Number of execution stages for the i-th object.

ai, di Arrival time and deadline for the i-th object.

e
(k)
j,b Exec. time of stage j when batching b images of size k.

L(k) Neural network stage number for image size k.
Li Available neural network stage number of tasks τi.
L Max stage number among all image sizes.
E Ratio between the max stage time and the min stage time.
B(k) Batching constraint of image size k.
B Max batch size among all image sizes.
Ri,j Aggregated utility for executing the i-th task for j stages.
T (t) Available task set at t-th scheduling period.

of two aspects make this real-time scheduling problem interesting:

Batching: Stages of the neural networks are executed on a GPU. We are particularly

interested in lower-priced GPUs. While such GPUs feature parallel execution, one way of

exploiting their computation capabilities is to execute the same kernel on all GPU cores.

This means that we can run different tasks concurrently on the GPU as long as we run the

same kernel on all GPU cores. We call the assembly of such concurrently executable task

sets, batching . Running the same kernel on all GPU cores means that we can only batch

tasks if both of the following applies: (i) they are executing the same neural network stage

and (ii) they run on the same size inputs . The latter condition is because the processing

of different bounding box sizes requires instantiating different GPU kernels. Batching that

satisfies the above two conditions ensures that the same kernel is executed on all cores.

Batching is advantageous because it allows us to better utilitize the GPU, so we want to

take advantage of it in scheduling. To increase batching opportunities, we limit the size of

possible bounding boxes used by the data slicing module to a finite set of of options. For a

given bounding box size k, at most B(k) tasks (processing inputs) can be batched together

before overloading GPU capacity. We call it the batching limit for the corresponding input

size.

16

Imprecise Computations: Let the number of stages in the neural network for task

τi be denoted by Li (normally, this is the same number of all tasks, but it may depend

on the size on the input object). We call the first stage mandatory and call the remaining

stages optional . Following a recently developed neural network implementation as imprecise

computations [27], tasks are written such that they can return an object classification result

once the mandatory stage is executed. This result then improves with the execution of each

optional stage. Earlier work presented an approach to estimate the expected confidence in

correctness of results of future stages, ahead of executing these stages [25]. This estimation

offers a basis for assessing utility of future task stage execution. We denote the utility of task

τi after executing j ≤ Li stages by Ri,j, where Ri,j is set proportionately to the predicted

confidence in correctness at the conclusion of stage j, computed as proposed by Yao et

al. [25]. Note that, the expected utility can be different among tasks (depending in part on

input size), but it is computable, non-decreasing, and concave with respect to the network

stage [25].

We denote by T (t) the set of current tasks at scheduling period t. A task, τi, is called

current at period t, if ai ≤ t < di, and the task has not yet completed its last stage, Li. For

task τi of input size, k, the execution time of the j-th stage is denoted by e
(k)
j,b , where b is the

number of tasks that are batched together during the execution of that stage. Since batched

tasks execute concurrently, in principle, e
(k)
j,b should not depend on b. In reality, however,

there is a data copying cost in and out of the GPU that depends on the total number

of batched tasks, leading to a slight increase in concurrent execution time with batching.

Later in the evaluation section, we profile this effect. With the above description of our

execution model, we are now ready to formulate the new scheduling problem, which we call

the Batched Online Object-recognition Scheduling with Imprecise Computation (BOOSIC)

problem, below.

2.3.2 Problem Formulation

The problem addressed in this work is simply to decide on the number of stages li ≤ Li

to execute for each task τi and to schedule the batched execution of those task stages on

the GPU such that the total utility,
∑

iRi,li , of executed tasks is maximized, and batching

constraints are met (i.e., all used GPU cores execute the same kernel at any given time,

and that the batching limit is not exceeded). While the deadlines do not appear as explicit

constraints in this formulation, the deadline miss ratio can be made arbitrarily small by

associating deadline misses with an arbitrary large negative utility. Equivalently, one can

raise the utility of timely stage execution by the same offset (and set the utility from missing

17

a deadline to zero). In summary:

The BOOSIC problem: With online task arrivals, the objective of the BOOSIC problem

is to derive a schedule x to maximize the aggregate system utility. The schedule decides three

outputs: task stage execution order on the GPU, task execution depth (i.e., number of stages

to execute of each task), and task batching (which tasks to execute together). Specifically, for

each scheduling period t, we use xt(i, j) ∈ {0, 1} as an indicator variable to denote whether

the j-th stage of task τi is executed. Besides, we use P to denote a batch of tasks, where |P |
denotes the number of tasks being batched. The mathematical formulation of the optimization

problem is:

BOOSIC : max
x

∑
t

∑
i

xt(i, j) (Ri,j −Ri,j−1) (2.1)

s.t. xt(i, j) ∈ {0, 1},
T∑
t=1

xt(i, j) ≤ 1, ∀i, j (2.2)

xt(i, j) = 0, ∀t /∈ [ai, di), ∀i, j (2.3)

t−1∑
t′=1

xt′(i, j − 1)− xt(i, j) ≥ 0,

∀i, j > 1, t > 1 (2.4)

si = si′ = k, li = li′ , |P | ≤ bk,

∀i ∈ P, i′ ∈ P, ∃k ∈ S (2.5)

The following set of constraints have to be satisfied: (2.2) Each network stage for each

task can only be executed once; (2.3) No task can be executed after its deadline; (2.4) The

execution of different stages of the same task must satisfy their precedence constraints; (2.5)

Only tasks with the same (image size, network stage) can be batched, and the number of

batched tasks can not exceed the batching constraint of their image size.

Only one batch (kernel) can be executed on the GPU at any time. However, multiple

batches can be executed sequentially in one scheduling period, as long as the sum of their

execution times does not exceed the period length, H. Next, we present an online schedul-

ing framework for reasoning about our BOOSIC problem, and propose a set of scheduling

algorithms that offer different trade-offs between optimality and execution overhead.

2.3.3 An Online Scheduling Framework

We derive an optimal dynamic-programming-based solution for the BOOSIC scheduling

problem and express its competitive ratio relative to a clairvoyant scheduler (that has full

18

knowledge of all future task arrivals). We then derive a more efficient greedy algorithm that

approximates the dynamic programming schedule. We define the clairvoyant scheduling

problem as follows:

Definition 2.1 (The Clairvoyant Scheduling Problem). Given information of all future tasks

that will arrive, the clairvoyant scheduling problem seeks to maximize the aggregate utility

obtained from (stages of) tasks that are completed before their deadlines. The maximum

aggregate utility is defined as OPT .

With no knowledge of the future, an online scheduling algorithm that achieves a com-

petitive ratio of c (i.e., a utility greater than or equal to 1
c
· OPT) is called c-competitive.

A lower bound on the competitive ratio for online scheduling algorithms was shown to be

1.618 [28].

Our scheduler is invoked upon frame arrivals, which is once every H units of time. We thus

call H the scheduling period . We assume that all task stage execution times are multiples of

some basic time unit, thereby allowing us to express H by an integer value (i.e., an integer

multiple of the basic time unit δ). We further call the problem of scheduling current tasks

within the period between successive frame arrivals, the local scheduling problem:

Definition 2.2 (The Local BOOSIC Scheduling Problem). Given the set of current tasks,

T (t), within scheduling period, t, the local BOOSIC scheduling problem seeks to maximize

the total utility gained within this scheduling period only.

We proceed to show that an online scheduling algorithm that optimally solves the local

scheduling problem within each period will have a good competitive ratio. Let L be the

maximum number of stages in any task, and let B be the maximum batching size:

Theorem 2.1. If during each scheduling period, the local BOOSIC scheduling problem for

that period is solved optimally, then the resulting online scheduling algorithm is min{2 +

L, 2B + 1}-competitive (with respect to a clairvoyant algorithm).

Proof. We prove the theorem using charging arguments. Throughout the proof, we will

refer to stages of tasks also as “tasks”. We define {T ∗(t)}t=1,...,T as the set of tasks executed

under an optimal Clairvoyant scheduling algorithm during each scheduling period t. Define

{Talg(t)}t=1,...,T as the set of tasks executed under an arbitrary online scheduling algorithm

that satisfies the condition of Theorem 2.1 during each scheduling period. We will charge

the utility of {T ∗(t)}t=1,...,T to that of {Talg(t)}t=1,...,T using two schemes. We will show that

each task in {Talg(t)}t=1,...,T is charged no more than 2 + L times in the first scheme and no

more than 2B + 1 times in the second scheme.

19

Consider a generic period t. In the first scheme, for each task in T ∗(t), if its first stage

is executed by the online scheduling algorithm, then we charge the utility of the task to

its first stage in {Talg(t)}t=1,...,T . Each task is charged for at most L times in this process.

Let T̂ ∗(t) ⊆ T ∗(t) be the tasks that are executed under the optimal Clairvoyant scheduling

algorithm whose first stage are never executed under the online scheduling algorithm. Let

T̂ ∗1 (t) be the set of tasks in T̂ ∗(t) that completely lie in period t under the schedule of the

optimal Clairvoyant algorithm and let T̂ ∗2 (t) be the set of tasks in T̂ ∗(t) that span period t

and t + 1. By definition T̂ ∗1 (t) ∪ T̂ ∗2 (t) = T̂ ∗(t). Since the first stages of tasks in T̂ ∗1 (t) and

T̂ ∗2 (t) are all available at the beginning of period t, by the concavity of the utilities of tasks,

we have that the total utility of tasks in T̂ ∗1 (t) and the total utility of those in T̂ ∗2 (t) are both

smaller than or equal to the local optimal utility. Since the considered online scheduling

algorithm achieves local optimal, we can charge the utility of T̂ ∗1 (t) to that of Talg(t) with

each task in the latter set being charged no more than 1 time. The same can be done for

tasks in T̂ ∗2 (t). Following this charging scheme for all t, we charge the utilities of all the

tasks executed under the offline optimal to that of the online algorithm, with each task of

the latter being charged no more than 2 + L times.

In the second charging scheme, we use the same set of definitions. For each task in T ∗(t),
if it (the current stage) is executed by the online scheduling algorithm, then we charge the

utility of the task to itself (the corresponding stage) in {Talg(t)}t=1,...,T . For each set of

batched tasks in T̂ ∗1 (t), we select the one in the batch with the maximum utility and form a

subset. Observe that, the total utility of the subset is at most OPT . Hence, the total utility

of jobs in T̂ ∗1 (t) is at most B · OPT . The same can be applied to T̂ ∗2 (t). Following this

scheme for all t, we charge the utilities of all the tasks executed under the offline optimal,

with each task executed by the online scheduling algorithm being charged no more than

2B + 1 times. QED.

Corollary 2.1. If each task is only one stage long, and if the online scheduling algorithm

solved the local BOOSIC scheduling problem in each scheduling period optimally, then the

online scheduling algorithm is 3-competitive (with respect to a clairvoyant algorithm).

Proof. This result trivially follows by substituting with L = 1 in the result of Theorem 2.1.

QED.

2.3.4 Local Scheduling Algorithms

It remains to demonstrate how to solve the local BOOSIC scheduling problem optimally.

In this section, we propose two algorithms to solve this scheduling problem. The first is

20

a dynamic programming-based algorithm that optimally solves it but may have a higher

computational overhead. The second is a greedy algorithm that is computationally efficient

but may not optimally solve the problem.

Local Dynamic Programming Scheduling Algorithm. The resource being scheduled

is the GPU. Since we only consider batching together on the GPU tasks that execute the

same kernel (i.e., same stage on the same size input), we need to partition the scheduling

interval, H, into sub-intervals where the above constraint is met. The challenge is to find

an optimal partitioning. This question is broken into three steps:

• Step 1: Given an amount of time, Tj,k ≤ H, what is the maximum utility attainable by

scheduling the same stage, j, of tasks that process an input of size k? The answer here

simply depends on the maximum number of tasks that we can batch during Tj,k without

violating the batching limit. If the time allows for more than one batch, dynamic

programming is used to optimally size the batches. Let the maximum attainable

utility thus found be denoted by U∗j,k.

• Step 2: Given an amount of time, Tk ≤ H, what is the maximum utility attainable by

scheduling (any number of stages of) tasks that process an input of size k? Let us call

this maximum utility U∗k . Dynamic programming is used to find the best way to break

interval Tk into non-overlapping intervals Tj,k, for which the total sum of utilities, U∗j,k,

is maximum.

• Step 3: Given the scheduling interval, H, what is the maximum utility attainable by

scheduling tasks of different input sizes? Let us call this maximum utility U∗. Dynamic

programming is used to find the best way to break interval H into non-overlapping

intervals Tk, for which the total sum of utilities, U∗k , is maximum.

The resulting utility, U∗, as well as the corresponding breakdown of the scheduling interval

constitute the optimal solution. In essence, the solution breaks down the overall utility

maximization problem into a utility maximization problem over time sub-intervals, where

tasks process only a given input size. These sub-intervals are in turn broken into sub-intervals

that process the same stage (and input size). The intuition why this division works is because

the sub-intervals in question do not overlap. We pose an order preserving assumption on

task marginal utilities with the same image size.

Assumption 2.1 (Order Preserving Assumption on Marginal Utility). For two tasks τi1

and τi2 with the same size, if for one neural network stage j, we have Ri1,j − Ri1,j−1 ≥
Ri2,j −Ri2,j−1, then it also holds Ri1,j+1 −Ri1,j ≥ Ri2,j+1 −Ri2,j.

21

Algorithm 2.1: Batching
Input: Image size index k, stage j, execution time eb when batching b images together,

batching constraint B, period H.
Output: Maximum achievable tasks M(h), and optimal batch sequence P (h), ∀h ≤ H.

1 M(h) = 0, P (h) = ∅, ∀0 ≤ h ≤ H ;
2 for b = 1, . . . , B do
3 if b > M(eb) then
4 M(eb) := b, P (eb) := {(k, j, b)};
5 end

6 end
7 for h = 2, . . . ,H do
8 h′ = arg max0≤h′≤hM(h′) +M(h− h′) ;
9 M(h) := M(h′) +M(h− h′) ;

10 P (h) := P (h′) ∪ P (h− h′) ;

11 end
12 return M,P .

Thus, the choice of best subset of tasks to execute remains the same regardless of which

stage is considered. Below, we describe the algorithm in more detail with step-by-step

explanation.

Step 1: For each object size k and stage j, we can use a dynamic programming algorithm

to decide the maximum number of tasks M that can execute stage j in time Tj,k ≤ H. Time

Tj,k is changed between 0 and H. Observe that this computation can be done offline. The

details are shown in Algorithm 2.1. (To simplify the notations, we ignore the object size

and stage information here.) With the optimal number, M , computed for each, Tj,k, the

corresponding utility, U∗j,k, is simply the sum of utilities of the M highest-utility tasks that

are ready to execute stage j on an input of size k.

Step 2: We solve this problem by a two-dimensional dynamic programming, where the

two dimensions are the considered network stages and the time respectively. Given a time

budget Tk, (for 0 ≤ Tk ≤ H), Step 1 (above) already computed the optimal utility from

assigning that time to only one stage. The recursive (induction) step takes as input the

optimal utility from assigning some fraction of Tk to the first j− 1 stages and the remainder

to stage j, and computes the best possible sum of the two, for each Tk. Once all stages are

considered, the result is the optimal utility, U∗k, from running tasks of input size k for a

period Tk. The details are explained in Algorithm 2.2.

Step 3: Similarly to Step 2, we perform a standard dynamic programming procedure

to decide the optimal time partitioning among tasks processing different input sizes. The

details of this procedure, along with the integrated local dynamic programming scheduling

algorithm is presented in Algorithm 2.3. With this result computed, the optimal schedule is

22

Algorithm 2.2: Stage Assignment.
Input: Maximum tasks M , optimal batch sequence P , available task set Tj for each stage

j, stage count L, period H.
Output: Maximum achievable utilities UOPT , and optimal batch sequence POPT , ∀h ≤ H.

1 UOPT (j, h) = 0, POPT (j, h) = ∅, ∀j, h ;
2 Transitted object buffer T (j, h) = ∅,∀j, h ;
3 for j = 1, . . . , L do
4 for h = 1, . . . ,H do
5 if j = 1 then
6 n := min(M(j, h), |Tj |);
7 T (j, h) := n tasks with max utility in Tj ;
8 UOPT (j, h) := total utility of T (j, h);
9 POPT (j, h) := P (j, h);

10 end
11 else

12 h′ := arg maxh′≤h UOPT (j − 1, h′) + Ũ(j, h− h′), where Ũ(j, h− h′) := max
utility achievable with Tj ∪ T (j − 1, h′) in time h− h′;

13 T (j, h) := executed tasks in Ũ(j, h− h′) ;

14 UOPT (j, h) := UOPT (j − 1, h′) + Ũ(j, h− h′);
15 POPT (j, h) := POPT (j − 1, h′) ∪ P (j, h);

16 end

17 end

18 end
19 return UOPT (L, h), POPT (L, h), ∀h.

complete.

The optimality of Algorithm 2.3 follows from the optimality of dynamic programming.

Hence, the competitive ratio of the dynamic programming scheduling algorithm is 3 for

single-stage task scheduling and min{L + 2, 2B + 1} for multi-stage task scheduling, ac-

cording to Corollary 1 and Theorem 1, respectively. However, this algorithm may has a

high computational overhead since Algorithms 2.2 and 2.3 that need to be executed each

scheduling period, are O(KLH3). Next, we present a simpler local greedy algorithm, which

has a better time efficiency.

Local Greedy Scheduling Algorithm. The greedy online scheduling algorithm solves

the local BOOSIC scheduling problem following a simple greedy selection rule: execute the

(eligible) batch with the maximum utility next. The pseudo-code of the greedy scheduling

algorithm is shown in Algorithm 2.4. The greedy scheduling algorithm is simple to imple-

ment and has a very low computational overhead. We show that it achieves a comparable

performance to the optimal algorithm in practice, although the two algorithms have different

theoretical guarantees.

23

Algorithm 2.3: Local DP Scheduling Algorithm

Input: Available task set T (k)(t) for each size, maximum tasks M , optimal batch
sequence P , period H.

Output: Local task schedule xt
1 for k = 1, . . . ,K do

2 U
(k)
OPT , P

(k)
(OPT) :=Algorithm 2.2(M,P, T (k)(t), H).

3 end

4 UOPT (k, h) := U
(1)
OPT (h), ∀k, h;

5 POPT (k, h) := P(OPT)(h)(1), ∀k, h;

6 for k = 2, . . . ,K do
7 for h = 1, . . . ,H do

8 h′ := arg max0≤h′≤h UOPT (k − 1, h′) + U
(k)
OPT (h− h′);

9 UOPT (k, h) := UOPT (k − 1, h′) + U
(k)
OPT (h− h′);

10 POPT (k, h) := POPT (k − 1, h′) ∪ P (k)
OPT (h− h′);

11 end

12 end
13 return The schedule xt according to POPT (K,T).

Algorithm 2.4: Local Greedy Scheduling Algorithm

Input: Available task set T (t), the limitation of non-overloading batch size B(k) for each
image index k.

Output: Local task schedule xt
1 while until the end of the period do
2 for k = 1, . . . ,K do
3 Tk(t) := set of available tasks of size k.

4 if |Tk(t)| ≤ B(k) then
5 Uk(t) := total utility of tasks in Tk(t).
6 T̃k(t) := Tk(t)
7 end
8 else

9 T̃k(t):=B(k) tasks with the maximum utility in Tk(t), Uk(t) := total utility of

tasks in T̂k(t).
10 end

11 end

12 Execute the tasks in T̃k(t) with the maximum value of Uk(t).

13 end
14 return xt

2.4 IMPLEMENTATION

In this section, we briefly introduce the implementation details of the proposed scheduling

framework. An overview of the proposed scheduling framework implementation is demon-

24

Scheduler

DeduplicationOriginal Frame Data Slicing
Padded

Partial Frames

Size-1 Task Buffers

Stage-1 Queue Stage-2 Queue Stage-3 Queue

Size-2 Task Buffers

Stage-1 Queue Stage-2 Queue Stage-3 Queue

Size-K Task Buffers

Stage-1 Queue Stage-2 Queue Stage-3 Queue

...Ta
sk

Bu
ffe

r

Image Size

Network Stage

Batching

Object Recognition Network on GPU (TensorFlow)

GPU
Request

Enqueue

Requeue

Finished

Confidence
Predictor

Figure 2.4: System architecture for the proposed scheduling framework. All components are
implemented in the user space, and the scheduled batch of images is submitted as a single
GPU request.

strated in Figure 2.4.

The scheduled task is defined as the recognition of individual objects by a state-of-the-art

convolutional neural network (CNN), namely the residual neural network (ResNet), which

is implemented in TensorFlow [29]. To store the arrived but not finished tasks, we define a

feature buffer for each (image size, network stage) pair. For a given image size, the buffer

for each stage is intrinsically a priority queue to store the tasks waiting to execute this stage.

The priority of each task is defined as its predicted marginal utility for the stage to execute.

When two tasks have the same marginal utility, the one with an earlier deadline will be

prioritized. When a new frame arrives, it first goes through a data slicing step, assisted by

the LIDAR input, to extract the partial frames. The useless background area is removed.

After filtered by the deduplication module, partial frames are padded to their closest target

sizes with black borders. Finally, we push tasks into the stage queues for their corresponding

buffers. Similarly, when the tasks finish one stage of execution, they will be pushed into the

next stage queue unless they are finished or overdue. Besides, we periodically clean up

outdated tasks from each buffer to save the memory space.

Scheduling within NVIDIA GPU drivers are quite restrictive, so we follow the idea by

Yao et al. in [27] to implement the scheduler as a middleware service in user space. It first

collects the status from task buffer for each (image size, network stage) pair, which is then

25

32 64 128 256 512 512+
Object Sizes

0

10

20

30

40

Pr
op

or
tio

n
(%

)

Figure 2.5: Waymo object bounding box size distribution.

used as the input to our scheduling algorithm. The scheduling output tells us which image

size and network stage to execute next, as well as the number of tasks to batch. Then it

collects feature maps from the corresponding task buffer, and submit the batch as a single

GPU request (kernel). This operation would lead to an extra memory swap between CPU

and GPU on desktop machines. However, the integrated GPU of NVIDIA Jetson Xavier

SoC shares the same memory with the CPU, so that the extra time delay is acceptable here.

2.5 EVALUATION

In this section, we verify the effectiveness and efficiency of our proposed scheduling frame-

work by comparing it with several state-of-the-art baselines on a large-scale self-driving

dataset, Waymo Open Dataset.

2.5.1 Experimental Setup

Hardware Platform: All experiments are conducted on an NVIDIA Jetson AGX Xavier

SoC, which is specifically designed for automotive platforms. It’s equippet!d with an 8-core

Carmel Arm v8.2 64-bit CPU, a 512-core Volta GPU, and 32 GB memory. Xavier delivers

over 30 TOPS for deep learning applications while consuming less than 30 Watts [30]. Its

mode is set as MAXN with maximum CPU/GPU/memory frequency budget, and all CPU

cores are online.

Dataset: Our experiment is performed on the Waymo Open Dataset [31], which is a large-

scale autonomous driving dataset collected by Waymo self-driving cars in diverse geographies

and conditions. It includes driving video segments of 20s each, collected by LiDARs and

cameras at 10 Hz. All LiDAR and camera data are synchronized. The object classes are

limited to 4 classes: vehicle, pedestrian, cyclist, and sign. Only the front camera data is used

in our experiment. We show the distribution of object (bounding box) sizes in Figure 2.5.

26

The figure depicts the length of the longer side, rounded up to the preset bins: 32, 64, 128,

256, and 512. This also reflects the practical object size distribution from the driver’s vision.

Since we do not need the added resolution for identification, in our experiment, objects with

size larger than 256 are down-scaled to 256 while preserving its aspect ratio. All remaining

images are padded to the target size bins.

Neural Network Training: We use ResNet proposed by He et al. [19] for object classi-

fication. The network is trained on a general-purpose object detection dataset, COCO [32].

It contains 80 object classes that include those of the Waymo dataset.

Scheduling Load and Evaluation Metrics: We extract the distance between objects

and the autonomous vehicle (AV) from the projected LiDAR point cloud. The deadlines of

object classification tasks are set as the time to collision (TTC) with the AV. To simulate

different loads for the scheduling algorithms, we manually change the sampling period (i.e.,

frame rate) from 40ms to 160ms. Since actual frame capture was done at 100ms intervals,

the above corresponds to replaying the world in “slow motion” to “fast-forward” mode to

understand the impact of speed on the ability of the perception subsystem to keep up. We

consider a task to miss its deadline if the scheduler fails to run the mandatory part of the task

by the deadline. Otherwise, we consider the task to return a timely but possibly imprecise

result. In the following evaluation, we present both the normalized accuracy and deadline

miss rate for different algorithms. The normalized accuracy is defined as the ratio between

achieved accuracy and the maximum accuracy when all neural network stages are finished

for every object.

2.5.2 Compared Scheduling Algorithms

The following scheduling algorithms are compared.

• OnlineDP: the online scheduling algorithm we proposed in Section 4.3. The local

scheduling in each period is conducted by the hierarchical dynamic programming al-

gorithm.

• Greedy: the online scheduling algorithm we proposed, with the local scheduling con-

ducted by greedy batching algorithm.

• Greedy-NoBatch: It always execute the object with maximal marginal utility. No

batching is performed for this algorithm.

• EDF: It always chooses the task stage with the earliest deadline (without considering

task utility).

27

20 21 22 23 24 25 26 27

Batch Size
0
5

10
15
20
25
30

Pe
r-I

m
ag

e
La

te
nc

y
(m

s) Image Size 32
Image Size 64
Image Size 128
Image Size 256

Figure 2.6: Per-image latency of ResNet on NVIDIA Jetson Xavier SoC, with respect to
different image sizes and batch sizes.

• Non-Preemptive EDF (NP-EDF): Unlike regular EDF, this algorithm does not

allow preemption. Once a task starts executing, it continues until it is finished or its

deadline is reached. It is included to understand the impact of allowing preemption

on stage boundaries compared to not allowing it.

• FIFO: It runs the task with the earliest arrival time first. All stages are performed as

long as the deadline is not violated.

• RR: Round-robin scheduling algorithm. Runs one stage of each task in a round-robin

fashion.

2.5.3 Neural Network Time Profiling

We first profile the inference time of ResNet on the NVIDIA Jetson Xavier SoC, for varying

image sizes and batch sizes. The result is shown in Figure 2.6. We can observe that when

the image size is small (e.g., 32×32 or 64×64), increasing the batch size is always beneficial

and leads to a lower per-image latency. When the image size becomes larger (128 × 128

or 256 × 256), the benefit of parallelism gradually decreases. This is because the GPU

is fully utilized at maximum parallelism, so increasing batch size increases execution time

proportionally. Accordingly, we set the batching limit for each image size to be the batch

size beyond which the per-image inference time stops decreasing. This size is 128, 128, 32, 8

for the four image sizes 32, 64, 128, and 256, respectively. The execution time for each valid

batch is below 100ms.

2.5.4 Slicing and Batching

Next, we compare the inference time for full frames and batched partial frames with/out

deduplication. In full frame processing, we directly run the neural network on image-captured

28

0 50 100 150 200 250 300 350
Per-frame Latency (ms)

0

20

40

60

80

100

CD
F

(%
)

Partial Frames + Batch + Deduplication
Partial Frames + Batch
Full Frames

Figure 2.7: Cumulative distribution of end-to-end latency on full frames with three methods.
The execution time for frame slicing, deduplication (if applicable), batching, and neural
network inference are all counted.

full images, whose size is 1920 × 1280. In batched partial frames, we do the slicing into

bounding boxes within one frame first, then perform the deduplication (if applicable), and

finally batch execution of objects with same size. Each frame is evaluated independently. No

imprecise computation is considered. The end-to-end latency for each full frame, including

both preprocessing and network inference time, is reported here. Our results show that the

average latency for full frames is 350 ms, while the average latency for (the sum of) batched

partial frames is 105 ms without deduplication, and 83 ms with deduplication. Besides, the

cumulative distributions of frame latencies for the three methods are shown in Figure 2.7.

We can see that by batched partial frames (no deduplication), most cases have a latency

below 200 ms, while deduplication further decreases the latency for most cases below 150 ms.

Data slicing, batching, and deduplication steps, although induce extra processing delays, can

effectively reduce the end-to-end latency. However, neither approach is fast enough compared

to 100 ms sampling period, so that the imprecise computation model and prioritization are

needed.

2.5.5 Scheduling Policy Comparisons

Next, we evaluate the scheduling algorithms in terms of achieved classification accuracy

and deadline miss rate. We change the replayed camera frame rate to vary the load. To

isolate the effect of real-time prioritization from that of object deduplication, we turn off the

latter in this part. The scheduling results are presented in Figure 2.8. The two proposed

algorithms, OnlineDP and Greedy, clearly outperform all the baselines with a large margin in

all metrics. The improvement comes for two reasons: First, the integration of the imprecise

computation model into neural networks makes the scheduler more flexible. It makes the

neural network partially preemptive at the stage level, and gives the scheduler an extra

29

degree of freedom (namely, deciding how much of each task to execute). Among stage-level

scheduling algorithms, Greedy-NoBatch shows a similar deadline miss rate to EDF, but has

a better accuracy. Since Greedy-NoBatch is unable to predict confidence in (i.e., utility of)

future stages until it has executed one, it has no inherent way of deciding which task to start

first. Thus, we select the task with the earliest deadline to execute first without violating

the maximum utility rule. Second, the involvement of batching mechanism simultaneously

improves the model performance and alleviate deadline misses. The batching mechanism

enables the GPU to be utilized at its highest parallel capability. The deadline miss rates of

both OnlineDP and Greedy are pretty close to 0 under any task load. We can also see that

Greedy shows similar performance as OnlineDP, though they possess different theoretical

results. One practical reason is that the utility prediction function can not perfectly predict

the utility for all future stages, where the OnlineDP scheduling can be negatively impacted.

Instead, Greedy only relies on the utility prediction for the next stage to make the scheduling

decision.

NP-EDF and FIFO have similar performance in this experiment, which might seem like

a “bug”. Upon closer inspection, we realize that this is because the objects in the vehicle’s

field of view have similar deadlines most of the time, making FIFO similar to EDF. This is

expected because most of the time, when driving, no abnormal events occur that require an

abrupt preemption of attention to a more critical object. While less common, such instances,

however, are very important. Response to such instances is precisely what distinguishes good

driving from bad driving.

To evaluate scheduling performance in driving scenarios involving the aforementioned

important subcases, we compare the metrics of different algorithms for the subset of “critical

objects”. Critical objects are defined as objects whose time-to-collision (and hence processing

deadline) fall within 1s from when they first appear in the scene. Results are shown in

Figure 2.9. We notice that the accuracy and deadline miss rate of FIFO and RR are much

worse in this case (because severe priority inversion occurs in these two algorithms). The

deadline-driven algorithms (NP-EDF and EDF) can effectively resolve this issue because

objects with earlier deadlines are always executed first. However, their general performance

is limited for lack of utility optimization. The utility-based scheduling algorithms (Greedy,

Greedy-NoBatch, and OnlineDP) are also effective in removing priority inversion, while at

the same time achieving better confidence in results. These algorithms multiply a weight

factor α > 1 to increase the utility of handling critical objects, so that they are preferred by

the algorithm over non-critical ones. We empirically found that α = 10 gives good results.

A more detailed exploration of this hyper-parameter will be presented in an extended report

(but removed here for space limitations).

30

40 60 80 100 120 140 160
Sampling Period (ms)

0

20

40

60

80

100

No
rm

al
ize

d
Ac

cu
ra

cy
 (%

)

OnlineDP
Greedy
Greedy-NoBatch
NP-EDF

EDF
FIFO
RR

(a) Normalized accuracy.

40 60 80 100 120 140 160
Sampling Period (ms)

0

20

40

60

80

100

De
ad

lin
e

M
iss

 R
at

e
(%

)

OnlineDP
Greedy
Greedy-NoBatch
NP-EDF

EDF
FIFO
RR

(b) Deadline miss rate.

Figure 2.8: Accuracy and deadline miss rate comparisons on all objects.

40 60 80 100 120 140 160
Sampling Period (ms)

0

20

40

60

80

100

No
rm

al
ize

d
Ac

cu
ra

cy
 (%

)

OnlineDP
Greedy
Greedy-NoBatch
NP-EDF

EDF
FIFO
RR

(a) Normalized accuracy of critical objects.

40 60 80 100 120 140 160
Sampling Period (ms)

0

20

40

60

80

100

De
ad

lin
e

M
iss

 R
at

e
(%

)

OnlineDP
Greedy
Greedy-NoBatch
NP-EDF

EDF
FIFO
RR

(b) Deadline miss rate of critical objects.

Figure 2.9: Accuracy and deadline miss rate comparisons on critical objects. Critical objects
are defined as objects that have a deadline less than 1s.

2.5.6 Impact of Deduplication

In this part, we report results of the deduplication module. The overlap between bounding

boxes from consecutive frames is evaluated by computing their area intersection over union

(IoU) score, which is defined as the ratio between their intersection area and union area.

We seek to explore the best threshold for deduplication (i.e., for considering two bounding

boxes to be referring to the same object). To do so, we change the IoU threshold from

0.1 to 0.9 and compute deduplication precision, define as the percentage of time the box

considered to be a duplicate was indeed an image of the same object. The results are shown

in Figure 2.10. We can precisely identify 99.5% bounding boxes belonging to the same object

using a threshold of 0.7; while 99.95% of removed bounding boxes refer to the same object

when the threshold is 0.9. We also report the ratio of saved workload (i.e., removed objects)

in Figure 2.10(b). When the threshold is 0.9, we can reduce the total workload by 34.6%,

while using a threshold of 0.7 can lead to 66.7% bounding boxes being removed.

31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

30
40
50
60
70
80
90

100

De
du

pl
ica

tio
n

Pr
ec

isi
on

 (%
)

(a) Deduplication precision.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
IoU Threshold

30
40
50
60
70
80
90

100

Re
m

ov
ed

 O
bj

ec
ts

 R
at

io
 (%

)

(b) Removed bounding box ratio.

Figure 2.10: Scheduling results of Greedy algorithm after applying deduplication.

40 60 80 100 120 140 160
Sampling Period (ms)

0

2

4

6

8

10

Sc
he

du
le

r E
xe

c.
 T

im
e

(%
)

Greedy
Greedy-NoBatch
EDF

Figure 2.11: Scheduling algorithm execution time comparisons.

2.5.7 Scheduling Algorithm Execution Time

In this part we evaluate the execution time of our proposed scheduling algorithm. Note

that while the scheduled tasks run on the GPU, the scheduler runs on a single CPU core. As

we mentioned in a previous statement, the OnlineDP scheduling algorithm is too slow to be

applied in real time scenarios, and no computation is needed for FIFO and RR in addition

to a queue. Thus, we only compare the Greedy, Greedy-NoBatch, and EDF. Specifically, we

record the execution time of the scheduler on the CPU core as a percentage of the execution

time of the neural networks on the GPU. Figure 2.11 shows the results. We can see that

when the sampling period is large (i.e., inverse of frame rate), all three algorithms show

similar latency (around 2%), likely attributed to other CPU overheads. When the task load

becomes larger, Greedy shows a better time efficiency than Greedy-NoBatch and EDF. The

reason is that the batching mechanism effectively consumes more objects in the given time,

so that the size of object buffer in Greedy is much smaller than Greedy-NoBatch and EDF.

The execution time of our Greedy algorithm is within 5% in all evaluated workloads. Since

the scheduling algorithm is executed on single CPU core, we can find that CPUs are idle

most of the time. The bottleneck is indeed the GPU.

32

2.6 INVESTIGATING THE IMPACT OF CRITICALITY DESIGN

The scheduling objective defined in the vanilla BOOSIC problem aims to optimize the

overall confidence in model predictions. It allocates computational resources to tasks whose

execution attains the largest increase in confidence. Tasks are split into two groups (critical

or non-critical) by thresholding on object distance. Critical tasks are assigned a relatively

high but fixed weight.

In this section, we generalize it by considering a fine-grained task-specific criticality weight

wi for each task that is multiplied by confidence. If we set the weight factor wi = 1 for each

task, then the algorithm always prioritizes tasks with high confidence increase. On the

contrary, if we set the predictive confidence xi = 1 for each task, then the task execution

order strictly complies with task criticality. By considering both factors, we achieve more

effective utilization on limited computation resources: We allocate resources preferentially

to more critical tasks that also observe a substantial increase in prediction confidence.

We instantiate two different mechanisms for computing weight, wi, in this paper: distance-

based criticality, and relative velocity-based criticality. They are discussed below.

2.6.1 Distance-based Criticality

As a straightforward instantiation, we first propose and use distance-based criticality. It

is tempting to assume that (in a purely distance-based criticality assignment algorithm)

closer objects should monotonically receive a higher priority because they induce a higher

risk of future collisions. As suggested by one of our anonymous reviewers, however, this

reasoning is flawed. Objects closer than a certain minimum threshold, lmin, might already

be too close to comfortably avoid. It is thus imperative to account for them while they are

are still sufficiently far way. In other words, the value function for determining criticality

is shifted . Namely, assume the distance of the i-th object is li and the maximum LiDAR

detection range is lmax, the distance-based criticality weight is defined as:

wi =

0, if li ≤ lmin;

1(
li−lmin

lmax−lmin

)k
+ε
, k ≥ 1, if li > lmin,

(2.6)

where ε is a small positive term for stabilization. The threshold lmin is the minimal safe

object distance, defined as:

lmin = v ·Hδ +
v2

2 · a
, (2.7)

33

where v is the current velocity of the AV, and a is the largest acceleration of the AV when it

makes a hard brake. Equation (2.7) computes the minimum safe distance lmin, in a velocity-

dependent fashion, for the vehicle to avoid an obstacle. Below that distance, a safety-critical

override (e.g., a collision avoidance system) should immediately intervene and stop the car or

reduce speed (to increase lmin). Note that, if the car is stopped, lmin is zero. We henceforth

call lmin a (distance) shift point , since the weight assignment, wi is effectively shifted by lmin

to focus on more distant objects.

One limitation of the above design is that it does not account for the velocity of the other

objects. In general, an object that is decelerating might be more of a concern than one

that is accelerating (away from the AV), even if both are presently the same distance away.

Below, we describe a modification of the above algorithm that accounts for relative velocity.

2.6.2 Relative Velocity-based Criticality

We can estimate relative velocity information by computing distance change between con-

secutive frames. We need an efficient object tracking module to calculate relative velocity

of surrounding objects. Its intuition is same as the time-to-collision metric based on the

relative velocity in navigation services. We follow the SORT algorithm proposed by Bew-

ley et al. [33] for object tracking. It adopts a tracking-by-detection strategy to track multiple

objects in parallel. At each frame, we try to map each bounding box to an existing object

track through a data association algorithm (the Hungarian algorithm [34] in our implemen-

tation), based on the intersection-over-union (IoU) matrix between new bounding boxes and

predicted locations for object tracks. The assumption is that, if a new bounding box is

highly overlapped with the projected location of a previous object according to the motion

model extracted from its past trajectory, then we believe they belong to the same object.

No semantic information (i.e., category of the object) is needed during the mapping. The

relative velocity is:

ṽi =
l′i − li
Hδ

, (2.8)

where li and l′i denote the distance of object i in current period and the previous period

respectively. A positive value means the object is approaching while a negative value means

the object is moving away. We further remove object mappings that lead to an abnormally

high relative velocity. We correspondingly define the object deadline as:

di =

dmax if ṽi ≤ 0 or li
ṽi
> dmax;

li
ṽi

if 0 < li
ṽi
≤ dmax,

(2.9)

34

where dmax = lmax

vo
is defined as the maximum deadline. It is calculated using the maximum

LiDAR range lmax and the observer velocity vo. The object weight is:

wi =

0 if di ≤ dmin;

1(
di−dmin

dmax−dmin

)k
+ε
, k ≥ 1, if di > dmin.

(2.10)

As in the previous section, we assume when an object deadline falls below the threshold

dmin, the safety-critical system should immediately interfere and take corresponding action.

We call dmin a (deadline) shift point.

One limitation of this mechanism is that we need at least two appearances of the same

object to calculate its relative velocity. In the data association step, if the new bounding box

can not be mapped to any existing tracks, then it is considered as a potential new object.

In this case, we assume the object to be static.

2.6.3 Evaluation on Criticality Design

In this subsection, we evaluate the impact of the proposed criticality designs on the

achieved prioritization effect. The following scheduling algorithms are evaluated:

• Greedy-Uni: This is a simplification of the online scheduling algorithm, wherein the

local scheduling conducted by an unweighted but batched greedy algorithm. The task

weight is uniformly set as wi = 1 for all tasks. Its scheduling objective is also equivalent

to (approximately) maximizing the achieved model accuracy on all objects, without

differentiating the object criticality.

• Greedy-WeiD/WeiV: This is the proposed online scheduling algorithm above, with

the local scheduling conducted by the weighted and batched greedy algorithm. Its

scheduling objective is a tradeoff between prioritizing execution for critical objects,

and the overall model accuracy on all objects. In the following experiments, we use

-WeiD to denote the distance based-criticality assignment and use -WeiV to denote

the relative velocity-based criticality assignment. The default implementation neglects

the shift point (i.e., sets lmin and dmin to zero). We use -SFT to denote algorithm

variations with a non-zero shift point (i.e., lmin 6= 0 or dmin 6= 0).

• Greedy-NB: It always executes the single (task, stage) with maximal marginal util-

ity. No batching is performed. Utility is set proportional to the achieved predictive

confidence. In other words, task weight is uniformly set to wi = 1, for all tasks.

35

0 15 30 45 60 75
Object Distance (m)

0

20

40

60

80

100
De

ad
lin

e
M

iss
 R

at
e

(%
) Greedy-NB-WeiD

Greedy-NB-WeiD-SFT
Greedy-NB-Uni
Greedy-NB-WeiV

(a) Unbatched ddl. miss.

0 15 30 45 60 75
Object Distance (m)

0

300

600

900

1200

Re
sp

on
se

 T
im

e
(m

s) Greedy-NB-WeiD
Greedy-NB-WeiD-SFT
Greedy-NB-Uni
Greedy-NB-WeiV

(b) Unbatched res. time.

0 15 30 45 60 75
Object Distance (m)

0

20

40

60

80

100

Ex
ec

ut
ed

 S
ta

ge
 R

at
io

 (%
)

Greedy-NB-WeiD
Greedy-NB-WeiD-SFT
Greedy-NB-Uni
Greedy-NB-WeiV

(c) Unbatched exe. stage.

0 15 30 45 60 75
Object Distance (m)

0

20

40

60

80

100

Pr
ed

ict
iv

e
Co

nf
. (

%
) Greedy-NB-WeiD

Greedy-NB-WeiD-SFT
Greedy-NB-Uni
Greedy-NB-WeiV

(d) Unbatched pre. conf.

0 15 30 45 60 75
Object Distance (m)

0

2

4

6

8

10

De
ad

lin
e

M
iss

 R
at

e
(%

) Greedy-WeiD
Greedy-WeiD-SFT
Greedy-Uni
Greedy-WeiV

(e) Batched ddl. miss.

0 15 30 45 60 75
Object Distance (m)

0

20

40

60

80

100

Re
sp

on
se

 T
im

e
(m

s) Greedy-WeiD
Greedy-WeiD-SFT
Greedy-Uni
Greedy-WeiV

(f) Batched res. time.

0 15 30 45 60 75
Object Distance (m)

50

60

70

80

90

100

Ex
ec

ut
ed

 S
ta

ge
 R

at
io

 (%
)

Greedy-WeiD
Greedy-WeiD-SFT
Greedy-Uni
Greedy-WeiV

(g) Batched exe. stage.

0 15 30 45 60 75
Object Distance (m)

60

70

80

90

100

Pr
ed

ict
iv

e
Co

nf
. (

%
)

Greedy-WeiD
Greedy-WeiD-SFT
Greedy-Uni
Greedy-WeiV

(h) Batched pre. conf.

Figure 2.12: Scheduling results of greedy algorithms on objects with different distances,
when applying distance-based weight (WeiD), relative velocity-based weight (WeiV) and
uniform (Uni) weight. We separately report the results with and without task batching.
The range highlighted with green shows the advantage of Greedy(-NB)-WeiD, and the
range highlighted with orange shows the advantage of Greedy(-NB)-WeiD-SFT.

• Greedy-NB-WeiD/WeiV: Same as Greedy-NB, except that the weight, wi is cal-

culated according to distance-based criticality (-WeiD) or velocity-based criticality

(-WeiV).

We implement and evaluate the distance-based criticality assignment and relative velocity-

based criticality assignment, and separately compare their different versions, including a

weight shift corresponding to the minimum distance lmin and the minimum relative deadline
dmin

dmax
respectively. In following experiments, we simulate the critical driving scenarios by

setting the frame replay period to 60ms. Four metrics are compared: 1) Deadline miss rate;

2) Mean response time (i.e., the execution time of the first network stage); 3) Mean executed

stage (i.e., the average ratio of executed network stage over its maximum network stage); 4)

Mean predictive confidence (i.e., the mean ratio of achieved predictive confidence over the

maximum confidence when all stages are executed). In the last two metrics, we compute the

relative ratio to resolve the impact of specific task instances.

Case 1: Distance-based Criticality. We compare the scheduling results on objects at

every distance range when different weight mechanisms are applied in Figure 2.12. We first

look at the greedy algorithms without batching. When using uniform utility, objects are not

differentiated according to their distances besides the predictive confidence, so we see close

objects show much higher deadline miss rate and lower predictive confidence. Insufficient

36

computation resources are assigned to close objects within their short deadline, who are

actually more critical to the system safety. The issue is resolved in weighted greedy by

partially trading the performance of distant objects. Close objects are strictly prioritized

over distant objects since no task batching is applied. For close objects, significantly more

computation resources are allocated, leading to the significant decrease in deadline miss, and

increase in prediction quality (reflected in both executed stage and predictive confidence).

The shifted version also properly adjusts the focus (i.e., prioritization) of the algorithm as

expected. The prioritized distance range moves from 0-10m (highlighted in green) to 15-25m

(highlighted in orange) after applying the shift. We can conclude that the weighted greedy

algorithm without batching perfectly solve the problem of priority inversion, but its general

performance is inferior.

Then we also compare the batched algorithms. Since batching significantly increases the

task processing capacity of GPU, the deadline misses and response times of all objects are

significantly reduced in the batched greedy algorithm with uniform-weight. However, there

are still deadline misses on very close objects (5m) in Greedy-Uni. Our objective is to

resolve deadline misses at close objects, and increase their prediction quality, considering

their importance to the system safety. Misclassification at such objects can lead to serious

safety issues. After applying the weight mechanism, the deadline misses on close objects

are resolved, and their response times are also further reduced. More executed stages and

higher predictive confidence on close objects indicate that more computation resources are

allocated to them by Greedy-Wei compared to Greedy-Uni. The improvement comes at the

cost of increased deadline miss and degraded prediction quality at distant objects (i.e., 45-

60m). In addition, the shifted algorithm successfully ignore the closest objects (i.e., ≤ 15m)

and prioritizes objects between 15-30m. Note that we set lmin=15m for better visualization

effect.

Finally, we briefly analyze the performance of Greedy-WeiV w.r.t objects at different

distance ranges. Greedy-WeiV, though being better than Greedy-Uni in prioritizing close

objects because objects with short relative deadlines are mostly close, is not optimal as

Greedy-WeiD because it can prioritize far objects as well if they have a fast relative velocity.

In conclusion, Greedy-WeiD is the best option if we simply want to prioritize the closest

objects.

Case 2: Relative Velocity-based Criticality. Next we compare the scheduling

performance when relative velocity-based criticality is applied. The associated results are

presented in Figure 2.13. In this experiment, we use the relative deadline di
dmax

as the x-axis,

which is decided by both the object distance and its relative velocity. In the shifted weighted

greedy algorithm, we set the shift dmin

dmax
= 20%. Without applying the weight mechanism,

37

0 20 40 60 80 100
Relative Deadline (%)

0

20

40

60

80

100
De

ad
lin

e
M

iss
 R

at
e

(%
) Greedy-NB-WeiV

Greedy-NB-WeiV-SFT
Greedy-NB-Uni
Greedy-NB-WeiD

(a) Unbatched ddl. miss.

0 20 40 60 80 100
Relative Deadline (%)

0

300

600

900

1200

Re
sp

on
se

 T
im

e
(m

s) Greedy-NB-WeiV
Greedy-NB-WeiV-SFT
Greedy-NB-Uni
Greedy-NB-WeiD

(b) Unbatched res. time.

0 20 40 60 80 100
Relative Deadline (%)

0

20

40

60

80

100

Ex
ec

ut
ed

 S
ta

ge
 R

at
io

 (%
)

Greedy-NB-WeiV
Greedy-NB-WeiV-SFT
Greedy-NB-Uni
Greedy-NB-WeiD

(c) Unbatched exe. stage.

0 20 40 60 80 100
Relative Deadline (%)

0

20

40

60

80

100

Pr
ed

ict
iv

e
Co

nf
. (

%
) Greedy-NB-WeiV

Greedy-NB-WeiV-SFT
Greedy-NB-Uni
Greedy-NB-WeiD

(d) Unbatched pre. conf.

0 20 40 60 80 100
Relative Deadline (%)

0

2

4

6

8

10

De
ad

lin
e

M
iss

 R
at

e
(%

) Greedy-WeiV
Greedy-WeiV-SFT
Greedy-Uni
Greedy-WeiD

(e) Batched ddl. miss.

0 20 40 60 80 100
Relative Deadline (%)

0

20

40

60

80

Re
sp

on
se

 T
im

e
(m

s) Greedy-WeiV
Greedy-WeiV-SFT
Greedy-Uni
Greedy-WeiD

(f) Batched res. time.

0 20 40 60 80 100
Relative Deadline (%)

50

60

70

80

90

100

Ex
ec

ut
ed

 S
ta

ge
 R

at
io

 (%
)

Greedy-WeiV
Greedy-WeiV-SFT
Greedy-Uni
Greedy-WeiD

(g) Batched exe. stage.

0 20 40 60 80 100
Relative Deadline (%)

60

70

80

90

100

Pr
ed

ict
iv

e
Co

nf
. (

%
)

Greedy-WeiV
Greedy-WeiV-SFT
Greedy-Uni
Greedy-WeiD

(h) Batched pre. conf.

Figure 2.13: Scheduling results of greedy algorithms on objects with different relative
deadlines, when applying relative velocity-based weight (WeiV), distance-based weight
(WeiD), and uniform (Uni) weight. We separately report the results with and without task
batching. The range highlighted with green shows the advantage of Greedy-WeiV, and
the range highlighted with orange shows the advantage of Greedy-WeiV-SFT.

Greedy-Uni still has some deadline misses on critical objects (i.e., relative deadline ≤ 20%,

as highlighted in green), even though the values are already much lower than Greedy-NB-

Uni. The application of relative velocity-based criticality effectively reduces the deadline

miss rate of critical objects to zero. Both response efficiency and prediction quality (i.e.,

executed stages and prediction confidence) on critical objects with short relative deadline are

improved after applying the relative velocity-based weight mechanism. In addition, Greedy-

WeiV-SFT successfully skips the objects with deadlines below dmin, and only prioritizes

those with their deadlines larger than but close to dmin, as highlighted in orange. Regarding

the cost, Greedy-WeiV induces slightly higher deadline miss rate and longer response times

on objects with long deadlines, compared to the Greedy-Uni. The prediction qualities are

quite similar between Greedy-WeiV and Greedy-Uni on objects with long relative deadlines.

We further investigate the performance of Greedy-WeiD in this experiment. It presents

small deadline miss rates between 5% to 40%, where Greedy-WeiV shows no deadline miss.

The average response time and prediction quality of Greedy-WeiD is also inferior to Greedy-

WeiV in this range. Therefore, we can conclude that although Greedy-WeiD shows similar

performance as Greedy-WeiV in some cases (e.g., both give no deadline miss on objects

with the shortest relative deadlines), it can not replace Greedy-WeiV to provide timely and

high-quality responses to all fast-approaching objects.

38

2.7 INVESTIGATING THE IMPACT OF IMAGE RESIZING

In this section, we extends the previous scheduling framework by adopting an image

resizing mechanism as a substitution for previously used imprecise computation model. This

extension is motivated by the observation by Torralba [35] that there is a threshold on the

resolution of images deciding whether they are recognizable or not by human eyes. We

believe a similar phenomenon also exists for machine perception models, where the extra

resolution far above the threshold might not be beneficial. Instead, we can safely downsize

these images such that the processing efficiency can be substantially improved, without any

degradation on the model accuracy.

2.7.1 Imprecise Computation vs. Model Switching

In order to understand the inherent problem with the imprecise computation model for

neural classification, we observe (as discussed in [36]) that each layer of a deep neural network

extracts an abstraction of the input features from the previous layer. Generally, the deeper

the network goes, the higher the level of abstraction will be. When multiple outputs can be

extracted from different depths of one neural network, it is impossible to train the neural

network in a manner that is simultaneously optimal for every choice of depth. Instead, the

training loss is usually defined as a weighted sum of loss over all allowed choices of network

depth. Thus, in essence, each layer is optimized for a compromise among multiple settings

of possible model depth. As a result, the training will not be optimal for any specific choice

of depth, and the prediction accuracy will be accordingly affected. A neural network trained

specifically for a given depth will perform better for that depth. Thus, for example, a smaller

neural network trained specifically for a given depth will achieve a higher accuracy than a

partially executed larger neural network, given the same number of executed stages.

In short, we argue for switching among different neural network models , each individually

trained for a different point in the latency/quality design trade-off, as opposed to training

a single model that can be adapted at runtime. The input resizing approach adopted in

this paper is consistent with the aforementioned guiding principle. It allows the scheduler

to select an input size (and thus a corresponding neural network size) in a criticality-aware

manner that attains the desired trade-off. We validate this reasoning in the evaluation.

The disadvantage, of course, is that (when using model switching) one needs to commit to

the network used for each input at the time that the processing of that input starts. One

cannot switch models once some stages have already been executed, as it will lead to loss of

partial results computed by the switched-out model thus far. In contrast, in the imprecise

39

computation model, the ultimate number of layers executed can be adapted for a given

input even after the processing of that input starts. We show that this latter flexibility is

overshadowed by the overall quality reduction that arises from inability to optimize neural

network parameters for a given network depth.

From the model switching perspective, we formally formulate the scheduling problem as

an optimal resizing problem, and correspondingly propose an approximated batched greedy

solution to schedule the task processing. The details of the problem formulation and the

algorithm are skipped here, but can be found in [37].

2.7.2 Evaluations between Image Resizing and Imprecise Computation

We compare the performance of different scheduling algorithms under the same settings,

with different frame intervals. The compared algorithms include:

• Proposed: The proposed greedy scheduling algorithm with resizing. It uses the greedy

heuristic to choose a near-optimal subset of tasks and their corresponding new input

sizes, and batches the tasks with the same new size together for execution.

• RTSS2020: The greedy scheduling algorithm with staged neural networks proposed

by Liu et al. [38]. It uses an imprecise computation model with a mandatory part and

several optional parts.

• Greedy: The proposed scheduling algorithm with resizing turned off. It chooses the

near-optimal subset of tasks at their original input sizes and batches the tasks with

the same size together for execution.

• Greedy-NB: It chooses the tasks with the highest utility/weight value first, and

always processes inputs at their original sizes. Inputs of the same size are not batched

together.

• FIFO: It executes the tasks that arrive earlier first, and always process tasks with

their original sizes. The tasks of the same size are not batched together.

• CTF: It always chooses the most critical task first, and always processes tasks with

their original sizes. The tasks of the same size are not batched together.

We evaluate the scheduling algorithms in terms of achieved classification accuracy, average

latency, and deadline miss rate. A deadline is considered missed if a task does not execute

(i.e., s = NULL), and the object has not been seen before. This is as opposed to a situation

40

(a) Average inference latency. (b) Average normed accuracy. (c) Average deadline miss rate.

Figure 2.14: Evaluation results comparison on image resizing vs. imprecise computation.

where a task is not executed because tracking decides to inherit object classification from

the previous frame. This way, we do not penalize the algorithm for skipping a task due to

temporal redundancy. The results are presented in Figure 2.14. The Proposed algorithm

outperforms the other algorithms by a clear margin in terms of both deadline misses and

normalized accuracy, especially when the frame interval is shorter. It achieves no deadline

misses for all tested frame intervals, and maintains high accuracy and low latency. The

improvement comes for several reasons: First, the ability to choose from different image sizes

enables the scheduler to trade off inference quality and execution time; Second, the ability

to batch a larger number of tasks together improves the utilization of the GPU; Third, the

smaller models have a higher efficiency than partial executions of the larger models.

Note that the difference between Proposed and Greedy is attributed solely to image re-

sizing. As can be seen, resizing improves accuracy and reduces deadline misses at the same

time. Similarly, the difference between Proposed and RTSS2020 is attributed to the relative

advantage of image resizing compared to imprecise computations. In contrast, the difference

between Greedy and Greedy-NB is attributed to batching. As one might imagine, removing

batching substantially drops performance. Finally, the difference between Greedy-NB and

CTF/FIFO is attributed to considering latency in the optimization.

The average batch size for Proposed and RTSS2020 is shown in Figure 2.15. The lowest

tested frame interval is set to 10ms. The average batch size for Proposed is always larger

than RTSS2020, and can reach up to more than 18 when the frame interval is 10 ms. While

the average batch size for RTSS2020 also increases as the frame interval shortens, it is not

because the algorithm actively does so, as RTSS2020 can only batch the tasks with the

same original sizes together. Like all the other algorithms, the obtained optimal execution

sequence for RTSS2020 does not change with the frame interval. The optional neural network

stages are not executed because of hitting the time limit. The increase in batch size has the

same reason as the increase in deadline miss rate: the batches with smaller utility, usually

41

Figure 2.15: Average batch size comparison.

those with a smaller batch size, are not prioritized and cannot be executed within the frame

interval. The Proposed algorithm on the other hand, makes different scheduling decisions

for different frame intervals. For the most extreme case, it can resize all the tasks to the

most efficient 32×32 size and process them in one batch.

2.8 RELATED WORK

The work is motivated by the large expansion of modern cyber-physical systems (CPS)

research into areas of machine intelligence [39, 40, 41] and autonomy to enable progressively

broader categories of tomorrow’s mission-critical applications [42]. Current machine learning

software has been very successful at producing run-time inference algorithms that approach

or exceed capabilities of human perception [43]. Of particular promise have been recent ad-

vances in neural networks [44, 45]. However, mainstream deep neural network inference al-

gorithms are not designed explicitly with timing and criticality constraints of cyber-physical

systems in mind, generating a need to refactor modern neural network software.

In the broader neural network research literature, much work was done on model com-

pression and acceleration [46, 47, 48]. Examples include parameter quantization [49], edge

pruning [50], node pruning [51], and dimensionality reduction (e.g., factorization [52], spar-

sification [53], low-rank projection [54], or domain transform [55]), as well as combinations

thereof [50]. We complement that work by introducing the notion of prioritization into the

AI workflow. We exploit physical aspects of the platform and the application to enable

additional reductions in cost while improving predictability, and timeliness. We expect that

this improvement will significantly alter the price-capability trade-off of intelligent real-time

embedded systems, making a new range of applications possible with increased autonomy

42

at a lower cost.

Recent efforts on AI-empowered real-time systems addressed CPU/GPU scheduling for

pipelined machine inference [56, 57, 58, 59, 60, 61, 62], machine-learning library optimiza-

tion [30], resource and energy management [63, 64, 65], and communication and collabora-

tion protocol design [66, 67, 68, 69, 70, 71, 72]. Several novel cyber-physical applications

with deep learning were introduced [73, 74, 75, 76, 77, 78]. Autonomous driving emerged

as a flagship application motivating AI-empowered real-time system design [79]. Extensive

hardware and software evaluations have been performed to understand its real time perfor-

mance [3, 80, 81, 82]. Recent papers refactored deep neural networks to satisfy dynamic

execution-time constraints during inference [30, 83, 84, 85, 86]. For example, Bateni et

al. [83] applied a combination of different layer-wise network approximation techniques to

meet target deadlines. Lee et al. [85] introduced dynamic subnetwork construction for DNNs

(where the subnetwork with best performance that meets time constraints is selected at run-

time). Heo et al. [86] proposed multi-path neural networks for real-time object detection

systems. Similarly, they dynamically change the DNN’s execution path to meet deadlines.

However, all these efforts are limited to configuring neural network execution for frame by

frame processing. In contrast, we break-up individual frames into regions of different degree

of criticality and process such regions in priority order, as opposed to the strict frame arrival

(FIFO) order to mitigate algorithmic priority inversion.

2.9 LIMITATIONS AND DISCUSSION

However, there are also limitations in our external-cueing based attention scheduling

framework. First, since the imprecise computation models for neural networks only work

with classification networks, we assume a perfect localization by the LiDAR clustering,

which does not hold in practice. Therefore, how to define a similar imprecise computation

paradigm for general neural networks is an important problem we need to investigate in

the future, such that the deployed visual DNNs can not only localize the appeared objects

but also classify their categories with different levels of confidence when different number of

stages are executed. Second, our method on calculating the relative-velocity can be noisy

because of the noise amplification caused by the distance differentiation operations. Al-

ternative approaches include using integration-based velocity measurement or Radar-based

velocity measurement with Doppler effect. Third, the assumption on the criticality design is

still simple and can not handle complicated realworld scenarios. We still need to take more

practical considerations (e.g., driving scenarios and traffic regulations) into the attention

design.

43

CHAPTER 3: ATTENTION-BASED SCHEDULING WITH SELF-CUEING

3.1 OVERVIEW

This work introduces a self-cueing real-time attention scheduling framework for machine

perception in cyber-physical systems that minimizes a notion of system uncertainty. Modern

machine perception pipelines rely on neural networks, such as YOLO [87], to perform object

detection, localization and classification tasks (thereafter collectively called detection tasks

for short, where no ambiguity arises), and feed downstream components such as navigation

control. Attention scheduling refers to reducing the area inspected by the detection neural

network in some criticality-dependent fashion to improve perception pipeline efficiency. It

mimics the allocation of human cognitive capacity to focus on elements that matter most in

a complex scene, as opposed to giving all elements of the scene the same level of attention.

Unlike previous work that relied on an external ranging sensor to cue attention [38], in

this work, we do it by exploiting temporal correlations in video streams. Specifically, we

preferentially inspect those parts of the scene that are more important and change less

predictably from frame to frame. We formulate this problem as one of minimizing maximum

weighted (location) uncertainty, and develop a near-optimal real-time scheduling algorithm

to schedule the selected regions for processing (by the perception neural network) on the

GPU. Autonomous driving is used as an example application, although the design generalizes

to other cyber-physical applications as well.

The work is motivated by the increasing popularity of visual machine perception (i.e., the

process of extracting relevant knowledge of immediate surroundings from camera images)

as a foundation for a wide spectrum of intelligent cyber-physical applications [88, 89, 90].

Advances in deep neural networks have significantly improved perception quality of many

vision tasks, such as image recognition [19], object detection [91, 92], and semantic segmenta-

tion [93]. However, delivering real-time results by running computationally intensive neural

network models on resource-limited embedded platforms has remained a key challenge. Ad-

ditionally, as mentioned by Huang et al. [94], objects in driving scenarios are about three

times smaller than objects in general detection scenarios. Thus, high image resolutions are

needed during inference to achieve sufficient detection quality to ensure self-driving safety.

Many existing efforts on enabling real-time neural network inference on embedded plat-

forms focus on neural network compression [48, 49] and cloud offloading [95, 96]. There are a

couple of challenges with these approaches. On one hand, in compression, detection quality

of all parts of the scene is affected with no regard to criticality. On the other hand, offloading

44

(part of) the computation to the cloud requires a stable and fast network connection, which

is not guaranteed in many driving scenarios. As an alternative approach, Liu et al. [38]

proposed to slice input images into regions of different criticality, so that inspection of crit-

ical regions can be prioritized. The work relies on an external ranging sensor (e.g., LiDAR)

to determine which parts of the scene are more critical to inspect first (e.g., closer objects

or more quickly approaching objects). Unfortunately, LiDAR is not available on all plat-

forms (e.g., Tesla has famously opposed using it). Furthermore, reliance on multiple sensors

increases cost and requires precise calibration and synchronization, where the degradation

of either could cause downstream detection issues. By introducing a self-cueing attention

scheduling framework that works with the camera alone without relying on external sensor

inputs, we side-step the above fusion challenges.

Our scheduler runs full-frame detections at larger time intervals (e.g., every 1 or 2 seconds).

Between full-frame detections, we exploit optical flow-based object tracking [97] to predict

object locations over time. Intuitively, if we can estimate the location of an object in a new

frame with high confidence from its past trajectory, there is no need to look at it again. In the

absence of new observations, however, uncertainty in object locations1 increases over time.

Selected parts of new frames are therefore re-inspected by the perception system to localize

selected objects and keep overall uncertainty bounded between full-frame detections. We

call such selective inspection partial-frame detections . We define the time interval between

two full-frame detections as a scheduling horizon, and propose a scheduling algorithm to

decide the schedule of partial-frame detections within each horizon to minimize a notion of

maximum weighted uncertainty.

We implement the proposed scheduling framework on an NVIDIA Jetson Xavier board,

and empirically evaluate its performance using real world driving datasets. The results show

that the proposed policy achieves high detection, localization, and classification quality for

both regular objects and critical objects under different workloads (compared to full-frame

detection without resource constraints). It also provides better responses to physically close

objects in our evaluation.

3.2 SYSTEM ARCHITECTURE

Consider an autonomous system with a camera that continuously observes the surrounding

environment at a fixed frame rate, and an object detector (e.g., YOLO) that is able to

automatically localize and categorize all appeared objects in the captured images. The

1We interchangebly use uncertainty to denote location uncertainty later.

45

Object Tracker

Previous Frame

Current Frame
Optical Flow Map

Tracked Object
Buffer

Updated
Object Locations

Predicted
Object Locations

Object DetectorPartial Frame Scheduling

Quantized
Candidate Regions

BatchingSelected
Regions

Postprocessing

Output

Local Det.à Global Det.

Input

Full Frame Detection Full Frame Detection

All Fram
es

Criticality and Uncertainty Calculation

Optical Flow
Estimation

Frame Slicing and Region Tracking

Expanded Candidate Regions

Figure 3.1: Overview of the proposed framework. Since we make no assumption or mod-
ification on the deployed object detection network, the proposed framework is generally
applicable to any object detector.

detector can accept input images of sizes chosen from a discrete set of selectable options.

The deployed detector is typically computationally intensive such that detection on a full

image can not finish in real time (i.e., before the next frame arrives). Instead, we process

full frames at a longer interval T (say, 1-2 seconds). We refer to such processing as full-frame

detections . Between them, we identify regions of interest in intermediate frames, and pass

them to the detector, which are called partial-frame detections . The problem addressed in

this work is: What regions of each intermediate frame should be passed to the detector under

limited computation resources and time budget? Two core components are thus included

in the proposed architecture: (i) the frame slicing and region tracking module, and (ii) the

partial-frame scheduling module. The former extracts the parts of each frame as candidates,

then the latter selectively schedules some parts to be inspected by the detector. An overview

of our architecture is shown in Figure 6.1.

Frame Slicing and Region Tracking: This module slices image frames between full-

frame detections into regions where objects may present. After a full-frame detection local-

izes all appeared objects, an optical-flow based tracking algorithm tracks the object locations

in the following frames (until the next full-frame detection) based on the estimated pixel

motions. At each frame, the module slices the partial regions around the tracked objects,

considering the uncertainty in their predicted locations. Backgrounds, like the sky, are

filtered out and will not be processed by the detector. The sliced partial regions, are selec-

tively inspected by the detector, after which we are able to obtain the exact locations of the

corresponding objects again, so their location uncertainty is reset.

Partial Frame Scheduling: This module decides the subset of sliced regions to pass

46

Serialized Execution Batched Execution

Detector
on GPU

GPU Req. 1GPU Req. 2 Image Det.

Detector
on GPU

GPU Req. 1 Batch Det.

Figure 3.2: Comparison between serialized execution and batched execution.

to the detector at each frame, in order to maintain a low uncertainty on the location of

each tracked object. Every object is associated with a criticality indicating its application-

level importance, and a location uncertainty curve in the tracking algorithm. Uncertainty

increases monotonically (at possibly different rates) with time until the next detection. The

partial-frame detections of objects with low criticality or slow uncertainty growth are skipped

at some frames. In addition, when making decisions, the scheduling algorithm also considers

task batching on modern GPUs, which means multiple regions can be batched together

and submitted as a single GPU request (as shown in Figure 3.2), as long as they have the

same size (because low-end GPUs can only batch identical computational kernels). Batched

processing can achieve much lower latency than serialized processing.

3.3 FRAME SLICING AND REGION TRACKING

In this section, we first provide background on optical flow, then introduce our flow-based

object tracking algorithm, finally explain how location uncertainties are calculated.

3.3.1 Optical Flow Background

Optical flow algorithms take two consecutive frames as input and estimate the pixel-level

motion vectors between them, as caused by the relative movement between objects and the

observer. The (dense) optical flow algorithms return a map of single pixel motions, which

is called optical flow map. The RGB image is first converted to gray scale, where each pixel

value represents the amount of light, i.e., intensity, at that location. We use I(x, y, t) to

denote the image intensity (i.e., value) at pixel (x, y) of frame t. The optical flow map is a

matrix of coordinate displacements (dx, dy), such that:

I(x, y, t) = I(x+ dx, y + dy, t+ 1). (3.1)

Optical flow assumes that the pixel intensities of an object are constant across two con-

secutive frames. Compared to the block matching algorithms [98] used in video encoders

for motion estimation that restrict the search area to a limited range, optical flow is more

47

accurate in long range motion estimation. In this work, we use the DIS method [97], which

is a widely used and efficient dense flow estimation algorithm. Neural optical flow models,

like FlowNet [99], though more accurate, are too resource consuming and not considered.

3.3.2 Optical Flow-based Object Tracking

Our optical flow-based tracking algorithm tracks locations of objects between two full-

frame detections. It uses optical flow as a non-parametric motion model, which outperforms

the parametric motion models in conventional tracking algorithms, e.g., Kalman Filter in

SORT [33], with more accurate motion estimation, when the object is only previously seen

once and where the intermediate detections are skipped. This is because optical flow accepts

any previous frame to calculate an up-to-date motion. Instead, parametric models often

require a sequence of past locations before convergence.

Algorithm 3.1 details our tracking algorithm. We start from the set of objects received

from the last full-frame detection, and track their locations until the next full-frame detec-

tion. Each time a new frame arrives, we first compute its optical flow map compared to the

last frame, and correspondingly calculate the following three regions for each object:

1 Predicted Object Location: It tightly bounds the most likely (predicted) object

location from the optical flow map. We assume the object size does not change between two

detections. If a partial-frame detection task is not scheduled, we use this location as a best

guess of current object location. Otherwise, we update to the actual detected location (and

size).

2 Expanded Candidate Region: It expands the predicted location on account of

uncertainty. This is the area that should be inspected by the detector if we want to localize

the object again. It is a box whose area keeps expanding as long as no partial-frame detection

task is scheduled.

3 Quantized Candidate Region: We pad the expanded candidate region to the

nearest quantized size from a preset set to facilitate task batching, because only regions

with the same size can be batched.

Figure 3.3 illustrates the difference between the three regions. Next, we explain how they

are calculated step by step.

Computing Predicted Object Locations: To compute the predicted location for an

object, we need to derive a representative motion vector for it based on the pixel-wise optical

flow map. We choose the median motion vector among all pixels that lie within the previous

object bounding box to represent the holistic object motion. The median motion is chosen

over the mean motion to eliminate the impact of static background pixels (e.g., road or sky).

48

Algorithm 3.1: Optical Flow-based Object Tracking

Input: Set of object {1, . . . , N}, a sequence of K − 1 frames between two full detections,
object detector.

1 Maintain a set of object tracks for target objects;
2 for frame k = 2, . . . ,K do
3 Calculate the flow map between frame k and k − 1;
4 for object i = 1, . . . , N do

5 Calculate object representative flow (dx
(k)
i , dy

k)
i) by taking the median flow of

previous object location;

6 Update tracked object center location c̃x := cx
(k−1)
i + dx

(k)
i , c̃y := cy

(k−1)
i + dy

(k)
i ;

7 end
8 Generate set of partial detections by the object detector;
9 Data association using Hungarian algorithm between object tracks and new detections

using IoU metric;
10 for object i = 1, . . . , N do
11 if mapped with a new detection then
12 new object location := mapped detection location
13 end
14 else
15 new object location := predicted object location
16 end

17 end

18 end

Computing Expanded Candidate Regions: This region accounts for uncertainty in

object locations, and gives where we can find the object at every frame. It starts from the

detected object location, and then keeps expanding, until a new detection arrives. Specifi-

cally, at a new frame k, we use [x
(k)
min, y

(k)
min, x

(k)
max, y

(k)
max] to denote the new object location, and

use D = [Dx̂,Dŷ] to denote the partial flow matrix corresponding to its previous expanded

candidate region, say [x̂
(k−1)
min , ŷ

(k−1)
min , x̂

(k−1)
max , ŷ

(k−1)
max]. If the previous expanded candidate region

completely covers the previous object location, then the new object location satisfies:

x̂
(k−1)
min + min

dx̂∈Dx̂

dx̂ ≤ x
(k)
min ≤ x(k)max ≤ x̂(k−1)max + max

dx̂∈Dx̂

dx̂, (3.2)

ŷ
(k−1)
min + min

dŷ∈Dŷ

dŷ ≤ y
(k)
min ≤ y(k)max ≤ ŷ(k−1)max + max

dŷ∈Dŷ

dŷ. (3.3)

Thus, we define the new expanded candidate region as:

[x̂
(k−1)
min + min

dx̂∈Dx̂

dx̂, ŷ
(k−1)
min + min

dŷ∈Dŷ

dŷ, x̂
(k−1)
max + max

dx̂∈Dx̂

dx̂, ŷ
(k−1)
max + max

dŷ∈Dŷ

dŷ]. (3.4)

The expanded candidate region will also completely cover the object location in the new

49

Frame at t Frame at t + 1 Frame at t + 2

Predicted
Object

LocationDetection at t

Predicted
Object Location

Expanded
Candidate Region

Quantized
Candidate Region

Expanded
Candidate Region

Quantized
Candidate Region

Figure 3.3: Comparison between different region concepts. Predicted Object Location:
The predicted object location according to estimated flow map. Expanded Candidate
Region: The expanded region including uncertainty in object location. Quantized Can-
didate Region: We pad the expanded candidate region to the nearest quantized size to
facilitate task batching.

Previous Frame at t-1 Current Frame at t

(1) Detection

(2) Data
Association

(3) Projection

Expanded Candidate Region

(4) New
Detection

(5) New Data
Association

Object Track Buffer at t-1 Object Track Buffer at t

Predict Location
by Optical Flow

Time Time

Figure 3.4: Relationship between detection, tracking, and projection.

frame. Since the expanded candidate region starts from the exact object location, it holds

by induction that the expanded candidate region covers the (groundtruth) object location

at every future frame, even when detections are skipped at some intermediate frames.

Computing Quantized Candidate Regions: Recall that task batching on (low-end)

GPUs requires the batched images to have the same size and leads to much higher time

efficiency. To facilitate task batching, we pad the expanded candidate region to the nearest

quantized target size si chosen from a finite set, si ∈ {s1, . . . , sM}. The padded region is then

called the quantized candidate region. We assign a fixed target size si to each object within

a scheduling horizons. We provide two justifications for this choice: First, the quantized size

is larger than the initial object size, so it leaves space for object size increase in upcoming

frames. Second, if the expanded candidate region expands beyond si, we reduce its resolution

to make it fit into si. As we will show later, downsizing large objects does not degrade the

detection quality.

Data Association: After we receive the set of detected object locations from the detec-

tor, we perform data associations between the existing object tracks (represented by their

50

predicted object locations) and the new detected bounding boxes. We do so by using the

Hungarian algorithm based on their location overlaps with an Intersection-over-Union (IoU)

metric. We then update the mapped object locations to the newly detected locations. Those

objects not inspected by the detector in a given frame will retain their predicted object lo-

cations. A graphical illustration of the tracking process is provided in Figure 3.4.

3.3.3 Object Location Uncertainty

The object location uncertainty reflects our confidence on the predicted object location,

compared to the current actual object location. Intuitively, if the size of the expanded

candidate region (i.e., area where the object may appear) is close to the predicted object

location, we have a low uncertainty (i.e., high confidence) on the predicted object location;

otherwise, if the object can appear at much larger area than the predicted object location,

we have a high uncertainty (i.e., low confidence) on the predicted object location.

We assign an object weight wi = vi·ui to each tracked objectOi, which is the product of two

factors: 1) The object criticality vi representing the application-specific importance, which is

static within a scheduling horizon. Our algorithm is agnostic to the of object criticality, so

we leave it for future explorations. 2) The uncertainty growth rate ui, defined as the average

amount of its candidate region expansion speed. The uncertainty for object Oi is reset to

wtd after detection, where td is the detection time which can be either full-frame or partial-

frame latency. The reset value of uncertainty is caused by the time between when the image

frame is sampled, and when we produce its detections. When the first frame after the full-

frame detection arrives, we calculate the uncertainty growth rate as ui =
√
SECRi /SDi − 1/tf ,

where SECR is the area of the expanded candidate region, SDi is the area of the last detected

location, and tf is the full-frame detection latency. The uncertainty grows linearly with time

if no new detection is performed, because the expanded candidate region keeps expanding

while the predicted object size is constant. By separating the uncertainty into the weight

factor and the elapsed time, we can simply denote the weighted uncertainty of object Oi as

Ui(t) = wi(t− ti), where t− ti is the elapsed time since the start of its last detection ti. The

object weight wi, as explained later, will decide the detection frequency of object Oi in the

proposed partial-frame scheduling algorithm.

3.4 PARTIAL FRAME SCHEDULING

In this section, we first explain the detector execution model and formulate the partial-

frame scheduling problem, then propose an algorithm that produces near-optimal schedules.

51

0 5 10 15 20 25
#Batched Images with Size: 128x128

0

20

40

60

80

M
od

el
 L

at
en

cy
 (m

s)

Batch size: 14
Batch Latency: 39.12ms

Figure 3.5: YOLO execution latencies of 128 × 128 images with different batch sizes on
Jetson Xavier. The inflection point is highlighted in red, where the batch size is 14. The
batch execution latency is set as the maximum latency before the inflection point, which is
39.12ms in this curve.

0

2

4

6

8

0 1 2 3 4 5 6

Lo
ca

tio
n

U
nc

er
ta

in
ty

Time

Object 1
Object 2

System Uncertainty
𝑈 = 6

Object 2
Detection

Object 1
Detection

Object 2
Detection

𝑈! = 6

Object 1 & 2
Detection

𝑈" = 6𝑤! = 3

𝑤" = 2

𝑈"(5) = 4

Figure 3.6: Graphical illustration on uncertainty definitions and why to set the object de-
tection frequency proportional to their object weights. For simplicity of illustration, we
ignore the uncertainty caused by detection latency, since it is typically much smaller than
the intervals between detection tasks.

3.4.1 Object Detection Model

We divide the time into fixed-length segments, where each segment is called a scheduling

horizon T . The autonomous platform is equipped with a single GPU that runs the detector.

We run a full-frame detection at the first frame of each scheduling horizon, which identifies

N objects {O1,O2, . . . ,ON}. K frames are captured between two full-frame detections. We

subtract the latency of the preprocessing steps (such as tracking, slicing and batching) and

the full-frame detection from T to get the time budget T ′ of partial-frame detections. Each

object Oi is associated with a target size si ∈ {s1, . . . , sM}, within horizon T , which restricts

the size of its quantized candidate regions and facilitates batching. For each target size s,

there exists a maximum number of regions that can be batched and processed in parallel on

the GPU. We call it the batching limit κs for size s. Although the detector execution time

can increase with the number of batched regions, by appropriately setting the batching limit,

we operate in a region where execution time changes only slightly with batching (before an

inflection point is reached where the slope increases, as shown in Figure 3.5). We denote

the worst-case batch execution time by τs. In other words, the GPU can simultaneously run

partial-frame detections for κ (1 ≤ κ ≤ κs) objects of target size s within time τs.

52

3.4.2 Scheduling Problem Formulation

A good tracking system should selectively run partial-frame detections to maintain low

location uncertainty on each object throughout the scheduling horizon. Recall that the

(weighted) location uncertainty of object Oi at time t is Ui(t) = wi(t − ti), where ti is the

last detection time. Without loss of generality, we assume w1 ≤ . . . ≤ wN . The maximum

uncertainty for object Oi over the scheduling horizon is denoted by Ui = maxt∈[0,T ′] Ui(t),

where we define t = 0 as the time when the full-frame detection finishes. Our goal is

to minimize the maximum weighted uncertainty over all objects, which we refer to as the

system uncertainty U . It is defined as U = maxi∈{1,...,N} Ui. These concepts are visually

illustrated in Figure 3.6. The problem we study, is to design a schedule of partial-frame

detections such that the system uncertainty is minimized. A schedule specifies the ordering

and batching of partial-frame detections. It is formally defined as follows.

Definition 3.1 (Schedule). A schedule is a sequence of tuples (N 1, s1, t1, k1), (N 2, s2, t2, k2),

. . . , (N I , sI , tI , kI). Both t1, . . . , tI and k1, . . . , kI are in non-decreasing order. For a generic

j-th tuple, it represents the j-th batch, where:

• N j is the subset of objects that get detected in the batch. No object can appear more

than once in the subset.

• sj denotes the target size of the batch.

• tj ∈ [0, T ′] is the start execution time of the batch.

• kj ∈ {1, . . . , K} represents the frame on which the partial-frame detection is run.

A schedule is feasible if it satisfies for each batch j: (1) The number of batched regions

is within the batching limit, i.e., |Nj| ≤ κsj . (2) We define the valid period of the frame k

as the interval between its arrival and before the next frame arrives, and the batch can only

run on the currently valid frame. (3) The start time of the batch is no earlier than the finish

time of the previous batch, i.e., tj ≥ tj−1 + τsj−1 . (4) The finish time of the last batch is no

later than T ′, i.e., tI + τsI ≤ T ′.

Note that each feasible schedule can be executed on the physical machine, and each ex-

ecution on the physical machine can be translated to a feasible schedule. With the above

preliminaries, we formulate our problem as follows.

Definition 3.2 (Partial-Frame Detection Scheduling Problem). The Partial-Frame Detec-

tion Scheduling (PFDS) problem asks for a feasible schedule that minimizes the system

uncertainty within the time budget T ′ of a scheduling horizon.

53

The PFDS problem requires us to intelligently select subsets of objects to run and batch

on each frame. Although the PFDS problem can be optimally solved by the dynamic-

programming paradigm. However, the resulted computational complexity would be high.

Instead, we will propose a low-complexity policy, called the Batched Proportional Balancing

(BPB) policy, that computes approximately optimal schedules with provable uncertainty

guarantee.

3.4.3 Scheduling Policy

The general idea of the proposed Batched Proportional Balancing (BPB) policy

is to set the number of partial-frame detection tasks2 for each object proportional to its

object weight, such that the objects with high criticality or high uncertainty growth would

receive more attention (i.e., computation resource). For each object Oi, we use the detection

frequency xi to denote its number of scheduled partial-frame detection tasks within the

scheduling horizon. The detection frequency set, is thus defined as:

Definition 3.3 (Detection Frequency Set). The detection frequency set {x1, . . . , xN} is a

set of detection frequencies corresponding to the number of partial-frame detection tasks of

all objects in the scheduling horizon where, for each object Oi, xi partial-frame detection

tasks are scheduled.

We aim at computing a detection frequency test where the detection frequency xi for object

Oi is approximately proportional to its weight wi (i.e., Proportional), and make sure the

intervals between consecutive partial-frame detections of each object are evenly distributed

in the schedule (i.e. Balancing), as shown in Figure 3.6. The design so far seems similar

to the well-studied pinwheel scheduling problem [100]. However, we go a step further by

considering task batching (i.e., Batched), where we need to simultaneously decide when to

detect each object and how to batch the detections of objects such that the system uncertainty

is minimized. Improper batching may result in low utilization on the GPU and much higher

system uncertainty. The pseudocode of the BPB policy is presented in Algorithm 3.2. It

searches for a detection frequency set with the minimum system uncertainty, and invokes

the Batch-Aware Scheduling (BAS) algorithm (Algorithm 3.3) as a sub-procedure to

derive an optimal schedule for a given detection frequency set.

To reduce the search effort, the BPB policy first proportionally derives the normalized

detection frequencies of objects such that the object with the smallest weight is detected

only once. They are computed by dividing the object weights by the minimum weight, and

2We also use a task to denote a partial frame detection task for an object.

54

Algorithm 3.2: The BPB Policy

Input: Object set {O1, . . . ,ON}, weights {w1, . . . , wN}, number of frames K for
partial-frame detections.

Output: A feasible schedule with minimized uncertainty.
1 Sort and reindex the objects such that w1 ≥ . . . ≥ wN ;
2 for i = 1, . . . , N do

3 xi := 2blog2(wi/wN)c;
4 end

5 C = { 1
x1
, 1
x2
, . . . , 1, 2, 3, . . . , bKx1 c,

K
x1
} ;

6 Binary search for the maximum c ∈ C such that the schedule computed by Algorithm 3.3
for task set {bcx1c, . . . , bcxNc} is feasible (i.e., the finishing time is no larger than T ′);

7 Return the schedule for the task set of the maximum c.

rounding down to the nearest power of 2 if they are not3. Let the normalized detection

frequency set be {x1, . . . , xN}. BPB then searches a maximum scaling factor c such that the

schedule returned by the BAS algorithm for the detection frequency set {bcx1c, . . . , bcxNc}
is feasible. Note that the scaling factor c can be smaller than one, and thus in the resulting

detection frequency set, bcxnc can be zero for some objects. Such objects will not be sched-

uled. As we will show in the sequel, if the schedule calculated by the BAS algorithm for c is

feasible, so is the schedule calculated by the BAS for any c′ ≤ c. Thus, the maximum c can

be identified via binary search due to this monotonicity property.

The Batch-Aware Scheduling (BAS) algorithm (Algorithm 3.3) computes an optimal

schedule that minimizes the system uncertainty for a given detection frequency set {x1, . . . , xN}.
BAS works as a two-step procedure. First, BAS maps the partial-frame detection tasks for

objects to L = xN temporally distributed virtual bins {B1, . . . , BL}. The virtual bins do not

correspond to camera frames. No object can have more than K partial-frame detections in a

scheduling horizon, so we assume L ≤ K. BAS sequentially assigns the tasks of each object

Oi in decreasing order of xi. Since each xi is an integer power of 2 multiple of the minimum

non-zero element in C, when mapping tasks for object Oi, BAS only designates the mapping

of its first task to the first L/xi bins4 and replicates the mapping for the remaining tasks

to the corresponding bins in remaining subsets. By doing so, when assigning tasks of an

object, the matched bins in different subsets always have perfectly symmetric load. The first

task of each object is assigned in a batch-aware load-balanced fashion. At object Oi, BAS

first checks whether there is a bin that has incomplete batch with size si , i.e., the number

of tasks with size si in the bin is not a multiple of κsi . If such a bin exists, it assigns the

3This operation is used to align the detection times among objects to trigger more batching opportunities.
4L/xi is an integer since both L and xn are powers of 2 multiples of the minimum non-zero element in C

and xn ≤ L.

55

𝑂!!
𝑂"!

𝐵!

𝑂!"

𝐵"

𝑂!#
𝑂""

𝐵#

𝑂!$

𝐵$
𝑂!!
𝑂"!

𝐵!

𝑂!"

𝐵"

𝑂!#
𝑂""

𝐵#

𝑂!$

𝐵$

frame 2 frame 3 ... frame K-1 frame KTime

𝑂#! 𝑂#"

𝑂!!
𝑂"!

𝐵!

𝑂!"

𝑂$!

𝐵"

𝑂!#
𝑂""

𝐵#

𝑂!$

𝐵$

𝑂#! 𝑂#"

Assign 𝑂!
Det. Freq. 2
Targe Size 𝑠"

Assign 𝑂#
Det. Freq. 2

Target Size 𝑠!

Assign 𝑂$
Det. Freq. 1

Target Size 𝑠#

Ba
tc

h
Ta

rg
et

 S
ize

 𝑠 "
Ba

tc
h

Li
m

it
4

Batch Size 𝑠!
Batch Limit 2

Batch Size 𝑠#
Batch Limit 1

Assigned

Empty

Newly
Assigned

Choose 𝐵"
from first 2 bins

Choose 𝐵!
from first 2 bins

Choose 𝐵"
from first 4 bins

As
sig

n
ob

je
ct

 ta
sk

s b
y

de
cr

ea
sin

g
fr

eq
ue

nc
y

2nd task
for 𝑂"

Bin
Replicate to 𝐵#
for bins [𝐵#, 𝐵$]

Replicate to 𝐵$
for bins [𝐵#, 𝐵$]

Figure 3.7: Graphical illustration on how BAS generates the task-bin mapping. We have
four objects denoted by (object, detection frequency, target size): (O1, 4, s1), (O2, 2, s1),
(O3, 2, s2), (O4, 1, s3). We have 4 (virtual) bins, which are not aligned with the frame
boundaries. For object O2, its first task is assigned to bin B1 because there is an incomplete
batch with size s1, and the decision is replicated to bin B3. For object O3, its first task
is assigned to bin B2, and the decision is replicated to bin B4. The task for object O4 is
assigned to bin B1 with the min load.

task to that bin; otherwise, it assigns the task to the bin with the minimum load. The bin

load is defined as the total execution time for batches in the bin. The assignment process

is visually illustrated in Figure 3.7. Second, it converts the generated task-bin mapping to

a schedule by sequentially executing the bins, and greedily batching tasks with the same

target size in each bin. When compositing a batch, we select the valid frame at that time

to run the partial-frame detections.

3.4.4 Theoretical Analysis

In this part, we analyze the approximation ratio on achieved system uncertainty of our

BPB policy. Let U∗ be the minimum system uncertainty under any feasible schedule. In

Theorem 3.1, we establish that the BPB policy computes schedules with system uncertainty

that is at most 3× the optimal if the object weights are powers of 2, or at most 5× the

optimal under general object weights.

Theorem 3.1. Let UBPB be the system uncertainty under the BPB policy. If the object

weights w1, . . . , wN are all integer powers of 2, then UBPB ≤ 3U∗, otherwise in general case,

UBPB ≤ 5U∗.

Next we formally prove this theorem. We first reindex the objects in the decreasing order

of their weight factors, i.e., w1 ≥ · · · ≥ wN . As shown in Figure 3.8, the overall object

56

Algorithm 3.3: Batching-Aware Scheduling

Input: Detection frequency set {x1, . . . , xN}
Output: A schedule for the detection frequency set
// (1) Calculate the task-bin mapping.

1 L := x1 ;
2 for i ∈ {1, 2, . . . , N} (decreasing order of xi) do
3 Let Li be the first L/xi bins {B1, . . . , BL/xi};
4 si := the target size of Oi;
5 if ∃Bl ∈ Li with incomplete batch of size si then
6 Add the first task of Oi to Bl;
7 end
8 else
9 Add the first task of Oi to the bin in Li with the minimum load;

10 end
11 Replicate the mapping of the remaining tasks of n to the remaining subset of bins;

12 end
// (2) Convert the task-bin mapping to a schedule.

13 j = 1, tj = 0, schedule S = ∅;
14 for l ∈ {1, . . . , L} do
15 tj := max{tj , start of valid period of the l-th frame}.
16 for s ∈ {s1, . . . , sM} do
17 κ := the number of objects of size s in Bl;
18 while κ > 0 do
19 N j := min{κ, κs} objects of size s in Bl;
20 k := the most recent camera frame at tj
21 Add (N j , s, tj , k) to S;
22 tj+1 := tj + τs, j := j + 1;
23 Remove the selected objects from Bl;

24 end

25 end

26 end
27 Return the schedule S

uncertainty comes from two parts: interval between detection tasks and detection latency5.

We consider the uncertainty caused by detection latency because after we finish detection

task on a frame, the obtained object locations do not perfectly correspond to the current

time, but the time when the input frame is sampled. This part of uncertainty is amplified on

full-frame detections. We first utilize the symmetric structure of the scheduled computed by

BAS (i.e., the mapping of each subsequent task of an object is a duplicate of the first task

to the corresponding subset of bins), to bound the uncertainty caused by intervals between

5Here we ignore the delay between when the image frame is captured and when it is used for detection.
Since we always use the newest frame for detection, this delay is bounded by the camera sampling period.

57

0

2

4

6

8

0 1 2 3 4 5 6

Lo
ca

tio
n

U
nc

er
ta

in
ty

Time
Full-frame

Detection Latency

𝑂𝑏𝑗𝑒𝑐𝑡 𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑈[𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠] + 𝑈[𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑎𝑡𝑒𝑛𝑐𝑦]

Uncertainty by
Detection Latency

Partial-frame
Detection Latency

Start Full-frame
Detection

Start
Partial-Frame

Detection

Initial

Uncertainty

Interval Between Detections

Uncertainty by
Detection Latency

Capture Frame
at 𝑡 = 3

Obtain Object Location
at 𝑡 = 3

Figure 3.8: The object uncertainty comes from both the detection latency and interval
between detections. After each detection task, the uncertainty is reset to the value caused
by only detection latency.

detection tasks. Then, we include the uncertainty caused by detection latency, and derive

the bound for overall uncertainty. The proof procedure consists of the following steps:

• Step 1: We prove that the load difference λ̄l(i)−λl(i), between the maximum bin load

λ̄l(i) := maxl λl(i) and the minimum bin load λl(i) := minl λl(i), is always bounded,

where λl(i) is the load for bin Bl after assigning the first i objects.

• Step 2: We prove that, given a detection frequency set, BAS is optimal in minimizing

the system load, i.e., , the sum of load on all bins
∑

l λl.

• Step 3: We prove the bound on the system uncertainty caused by intervals between

detections, by bounding the maximum bin load with the optimal system uncertainty.

• Step 4: We include the uncertainty caused by detection latency, and prove the bound

on the overall system uncertainty.

Next, we prove the first three steps as lemmas one by one, before proving the overall

system uncertainty bound in the last step.

Step 1: We first prove that the bin load difference is bounded at every step of BAS.

Lemma 3.1. For each i, λ̄(i)− λ(i) ≤ max{λ̄(i− 1)− λ(i− 1), τsi}, where si is the target

size for the object Oi and τsi is its corresponding batch execution time.

Proof. For each i, let Li := L
xi

, where xi is the detection frequency for object Oi. Li is an

integer power of 2 by construction. When assigning object Oi, we have λl(i) = λl′(i) for

l ≡ l′(mod Li) (as exemplified in Figure 3.7).

• If there exists an incomplete batch for target size si in first Li bins, then λ̄(i) = λ̄(i−1)

and λ(i) = λ(i− 1), and the claim follows.

58

• If there is no incomplete batch, then based on induction, there are a subset of bins,

that for all l such that λl(n−1) = λ(i−1), and they are equivalent modulo Li−1. Since

Li−1 ≤ Li and Li mod Li−1 ≡ 0, there exists at least one bin l ∈ Li with load λ(i−1).

After assigning Oi to l, its load will increase to λ(i−1)+τsi . If λ(i−1)+τsi ≥ λ̄(i−1),

we have λ̄(i)− λ(i) ≤ τsi ; otherwise, we have λ̄(i)− λ(i) ≤ λ̄(i− 1)− λ(i− 1).

QED.

Step 2: Next, we prove the optimality of the BAS algorithm in minimizing the system

load of a given detection frequency set.

Lemma 3.2. Given a detection frequency set {x1, x2, . . . , xN}, we use λBAS to denote the

total load of the schedule computed by the BAS algorithm (Algorithm 3.3). It minimizes

the total load over all feasible schedules for the given detection frequency set, i.e., λBAS ≤ λ,

with λ being the total load of any other feasible schedule.

Proof. As the tasks of different sizes cannot be batched together, the total load of a schedule

is exactly determined by the batching composition of each size. For a given size, the total

load of tasks of that size is minimized when its number of batches is minimized. It can be

proven by induction that, following the decreasing order of xi for all objects of the same size,

BAS minimizes the number of batches for the first i objects. The base step is trivial, since

no tasks of the same object can be batched. For the induction step, assume the claim holds

for i. When deciding on the mapping of tasks on object Oi+1, if there exists an incomplete

batch, then the schedule by BAS has the same number of batches as that for the first i

objects, from which the claim follows. If no incomplete batch exists, consider any partial

schedule for the first i objects. If for that partial schedule, an incomplete batch exists, then

it contains at least one more batch than the partial schedule by BAS for the first i objects.

It is contradictory with the assumption that BAS minimizes the batch count for the first i

objects. In both cases, for the first i + 1 objects, the partial schedule by BAS contains no

more batches than any other partial schedule, which completes the induction argument and

the claim follows. QED.

Step 3: Then, we consider an optimal schedule that achieves the minimum system uncer-

tainty Ũ∗, without considering the uncertainty caused by detection latency, and prove the

bound on system uncertainty achieved by BPB algorithm.

Lemma 3.3. Assume the object uncertainty is reset to 0 after each detection, if the object

weights are all integer powers of 2, then UBPB ≤ 2Ũ∗; otherwise in general case, UBPB ≤ 4Ũ∗.

59

Proof. Let {x̃∗1, . . . , x̃∗N} be the set of detection frequencies executed under the optimal sched-

ule. We construct its feasible proper adaptation following the procedure below.

• Under the optimal schedule, we have U∗ ≥ maxi
wiT

′

x̃∗i
. Let î = arg maxi

wiT
x̃∗i

. For each

i, wi

x̃∗i
≤ wî

x̃∗
î

. Since each x̃∗i is an integer, it follows that x̃∗i ≥
wix̃
∗
î

wî
≥ bwix̃

∗
î

wî
c. We set

ĉ = bwN x̃
∗
î

wî
c ≥ 1.6

• Let xi = 2blog2(wi/wN)c, that is, {x1, . . . , xN} is the output of step 3 of Algorithm 3.2,

i.e., the ratios of the detection frequency set of BPB. By definition, xN = 1. According

to the construction, for each i, we have xi = xi
xN

= 2blog2(wi/wN)c ≤ b wi

wN
c.

• We define {ĉx1, . . . , ĉxN} as the proportional adaptation of the optimal detection fre-

quency set. Since both ĉ and xi are both integers, we have bĉxic = ĉxi.

We next prove that the constructed proportional adaptation of the optimal detection

frequency set is a feasible set that can finish within time budget T ′. For each object Oi, we

have:

ĉxi ≤ ĉb wi
wN
c = b

wN x̃
∗
î

wî
cb wi
wN
c ≤ b

wix̃
∗
î

wî
c ≤

wix̃
∗
î

wî
≤ x̃∗i (3.5)

Since the optimal schedule is feasible, there also exists a feasible schedule for the detection

frequency set {ĉx1, . . . , ĉxN}. Since we have proved in Lemma 3.2 that the BAS algorithm

minimizes the system load, thus the factor c by BAS is greater than or equal to ĉ, i.e.,

c ≥ ĉ. In our BPB algorithm, for an object Oi, its uncertainty is at most wi(maxl λl)
L
xi

=

wi(maxl λl)
x1
xi

. We define λl as the load (i.e., total execution time of its batches) of bin Bl.

We bound the system uncertainty by bounding the maximum bin load of the BPB schedule.

We consider the following two cases.

(Case 1): If λ̄(N) ≤ 2λ(N), we have

max
l
λl = λ̄(N) ≤ 2λ(N) = 2 min

l
λl ≤

2λBPB
L

≤ 2T ′

cx1
≤ 2T ′

ĉx1
(3.6)

From the construction of {x1, . . . , xN}, we have for any object Oi, xi
xN
≤ wi

wN
≤ 2xi

xN
, it follows

that the weighted overall uncertainty of each object is upper bounded by

wix1
xi
·max

l
λl ≤

wix1
xi
· 2T ′

ĉx1
≤ 4wNT

′

ĉxN
=

4wNT
′

wN x̃∗î /wî
≤ 4Ũ∗ (3.7)

6Without loss of generality, we assume that bwN x̃∗
î

wî
c ≥ 1 and

x̃∗
î

wî
is an integer; otherwise, we can just take

the largest i with non-zero value of this equation and leave out the remaining objects.

60

(Case 2): If λ̄(N) > 2λ(N), consider the last i where λ̄(i) increases (i.e., λ̄(i) > λ̄(i−1),

we have λ̄(N)− λ(N) ≤ λ̄(i)− λ(i) ≤ τsi . We have τsi ≥ maxl
λl
2

. In this case, even under

the optimal schedule, the maximum uncertainty of object O1 is at least w1τsi ≤ Ũ∗, so we

have maxl λl ≤ 2Ũ∗

w1
. Hence,

wix1
xi
·max

l
λl ≤

wix1
xi
· 2Ũ∗

w1

≤ 2wN
xN
· xN
wN
· 2U∗ = 4Ũ∗. (3.8)

Specially, if all wn’s are integer power of 2, we have xi
xN

= wi

wN
, then the system uncertainty

bound is reduced to 2Ũ∗ in both cases. QED.

Step 4: Finally, we prove the bound on the overall system uncertainty, including the

uncertainty caused by intervals between detections and the detection latencies.

Proof. We use tf to denote the full-frame detection latency. We still use Ũ∗ to denote the

minimum system uncertainty caused by intervals between detections, and use U∗ to denote

the overall minimum system uncertainty on all feasible schedules. We define U as the overall

system uncertainty by BPB schedule, and Ũ as its corresponding uncertainty caused by

intervals between detection tasks. We have,

U = max{U1, . . . , UN} ≤ max{Ũ1 + w1tf , . . . , ŨN + wN tf} ≤ max{Ũ1, . . . , ŨN}+ w1tf (3.9)

≤ 4Ũ∗ + w1tf ≤ 4U∗ + U∗ = 5U∗. (3.10)

On one hand, Ũ∗ is apparently smaller than or equal to system uncertainty caused by

intervals between detections in U∗, thus Ũ∗ ≤ U∗; on the other hand, since every schedule

includes the full-frame detection, which induces uncertainty w1tf on object O1, we have

w1tf ≤ U∗. The proof follows. Similarly, when all wn’s are integer power of 2, we have

U ≤ 3U∗. This completes the proof of Theorem 3.1. QED.

3.5 EMPIRICAL OPTIMIZATION

In this section, we list some practical considerations and empirical optimizations we per-

formed in our implementation.

New Object Arrival: We previously did not consider new object arrivals within each

horizon. We show in Figure 3.9 that there is no object arrival or departure in most (∼ 80%)

frames. Most new objects have very small sizes so only cause minor extra workload. If the

detector cannot find one object after W scheduled partial-frame detections, we believe the

object has left the view and will stop tracking it. The slots for these objects, together with

61

81.06%

14.22%

3.58% 0.79% 0.35%0
1
2
3
4
5 79.27%

15.73%

3.69% 0.93% 0.37%

New Object Count Distribution Departured Object Count Distribution

60.25

18.4

11.65

6.44

3.26

0 25 50 75

64

128

256

384

512

Percentage (%)

Ta
rg

et
 S

ize

New Object Size Distribution

Figure 3.9: Distributions on number of newly arrived objects and departured objects,
as well as the (quantized) new object size distribution, at each frame. Results obtained
on Waymo Open dataset [31].

Previous Frame Current Frame New Pixels Highlighted in Red

Figure 3.10: An example of new pixels in the current frame highlighted in red.

the idle slots in incomplete batches, can be used to schedule the new object regions. To

(roughly) localize new objects, we apply a lightweight mechanism based on optical flow. We

define the pixels in the new frame that are not mapped to any pixel in the previous frame as

the newly appeared pixel, and then use connected component analysis [101] to extract new

object regions (i.e., clusters of new pixels). An example is shown in Figure 3.10. Some new

objects were also detected by previously scheduled partial-frame detection tasks. Finally,

we can set a short scheduling horizon to further reduce the impact of new objects.

Downsizing Large Objects: For the tracked large objects, we can safely downsize their

resolutions without affecting the detection quality, because large objects are known to be

easy to detect [102, 103]. We set an upper bound (e.g., 384) on the target sizes, where the

candidate regions larger than this size will be downsized and fit into the size.

Partial Region Merge: If two quantized candidate regions are highly overlapped, it

will be beneficial to merge them into one region, so that we can avoid repetitively scanning

the same area. In our implementation, if there is an unscheduled region that the overlap

ratio between it and a scheduled region is above a threshold I, we use the merged region to

replace the original candidate region. This also helps reduce redundant detections, where

different parts of an object are detected as separate objects after slicing.

Bounding Box Filtering: After image slicing, some objects inevitably span across the

boundary of several candidate regions. Multiple detections can be produced by the detector

on different parts of the same object. We perform a bounding box filtering procedure, as a

62

Current Full Frame

Quantized Candidate Region

Unfiltered Partial Detections Filtered Partial Detections

1) Detect 2) Filter

Figure 3.11: An example of bounding box filtering. Note we preserve the yellow box although
its bottom edge lies on the bottom border of the partial image, because the partial image
bottom coincides with the full image bottom.

postprocessing step, to remove fragmented detections. Specifically, we will remove detected

bounding boxes that lie on the partial image boundaries, unless the partial image boundaries

coincide with the full image boundaries. We provide an illustrative example in Figure 3.11.

Intact redundant detections can be easily removed by the non-maximum suppression (NMS)

step of the detector.

3.6 EVALUATION

In this section, we evaluate the effectiveness and efficiency of the proposed architecture

on an NVIDIA Jetson Xavier board with a real-world self-driving dataset.

3.6.1 Experimental Setup

Hardware Platform: All experiments are conducted on an NVIDIA Jetson Xavier SoC,

which is designed for automotive platforms. It is equipped with an 8-core Carmel Arm v8.2

64-bit CPU, a 512-core Volta GPU, and 32 GB memory. The mode is set as MAXN with

the maximum CPU/GPU/memory frequency budget.

Dataset: Our experiment is performed on the Waymo Open Dataset [31], a large-scale

autonomous driving dataset collected by Waymo self-driving cars in diverse geographies and

conditions. It consists of driving video segments of 20s each, collected by onboard cameras

at 10Hz with resolution 1920×1280. Only front camera data is used.

Neural Network for Detection: We use the YOLOv57 model in PyTorch as the object

detection network, which was pretrained on the general-purpose COCO [32] dataset. It

provides a set of model configurations with different depth and width. We specifically use

the default large config in the evaluation, with depth and width multipliers both set to 1.

The model precision is set at FP16 (i.e., half precision). We profile the YOLO inference

7https://github.com/ultralytics/yolov5

63

latency with different target sizes on the Jetson Xavier in advance, and feed them into our

scheduling algorithm as input.

Workload Manipulation: Unless otherwise indicated, we choose our scheduling horizon

to be 10 frames, and manually change the time interval P between two consecutive frame

arrivals to induce different workload. Intuitively, a shorter frame interval leads to a higher

scheduling load. Our experiments use three interval lengths (150ms, 100ms, and 70ms) to

denote the easy, moderate, and hard scheduling situations (corresponding to frame rates of

roughly 6.67Hz, 10Hz, and 14Hz).

Object Criticality: We first assign a static criticality to each object class, and then

multiply the class criticality with an approximated distance-based criticality. For class crit-

icality, we manually set the value for each class to simulate how humans prioritize different

types of object. For example, class “human” has a much higher criticality than class “ve-

hicle”. Within each class, we approximately train a (linear) distance prediction model in

offline stage. During the training, we extract the object distance (either from LiDAR, or

image based distance estimation tools), and regress a linear prediction model between ob-

ject distance and the bounding box size. A separate distance prediction model is trained

for each class. In online inference stage, we use the trained distance prediction model to ap-

proximately estimate the object distance based on the detected bounding box size. The two

factors together, decide the object criticality. During the evaluation, we separately evaluate

the detection performance for overall objects, and critical (i.e., close) objects within each

object class.

Evaluation Metrics: Our metrics distinguish between performance of detection, local-

ization, and classification. Here detection is interpreted to mean the discovery of whether

an object exists (at a location) or not, regardless of type. For example, one might want

to detect that an obstacle is in the way, which is a separate challenge from identifying the

type of obstacle. Localization means identifying the position of the object. Finally, clas-

sification is the process of identifying object type. Given a list of detections and a list of

groundtruth object locations, we match the detections with the groundtruth objects based

on their bounding box overlaps. A detection is said to be matched with a groundtruth object

if their IoU ratio is larger than a predefined threshold (i.e., IoU > IoUthre, set as 0.5 in this

paper), in which case we say that the object is successfully detected . The following set of

metrics are then defined:

• Detection Recall (DR): The ratio between the number of successful detections

(matched with groundtruth objects) and the count of all groundtruth objects.

• Detection Precision (DP): The ratio between the number of successful detections

64

Table 3.1: YOLOv5 Performance on Waymo Dataset. All values in this table are in percent,
except the latency.

Model Ove. Det. Rec. Ove. Det. Pre. Ove. Cls. Acc. Ove. Loc. Err.

YOLOv5l

76.11 87.54 99.37 4.67
Cri. Det. Rec. Cri. Det. Pre. Cri. Cls. Acc. Cri. Loc. Err

97.36 80.77 99.86 2.67
Ove. mAP Cri. mAP Xavier Latency

65.19 94.70 239ms

(matched with groundtruth objects) and the count of all detections.

• Classification Accuracy (CA): For each successful detection, we test whether the

predicted object class is correct and report ratio of correct classifications.

• Localization Error (LE): For each successful detection, its location error is the

distance between the estimated and ground truth object center points, as fraction of

the object size (i.e., diagonal length).

• Mean average Precision (mAP): It is used as an end-to-end metric, which simulta-

neously captures the error in both detection and classification. An open sourced mAP

evaluation engine8 is used.

We separately evaluate and report the performance on overall objects and critical objects in

following evaluation. The overall YOLO performance on Waymo dataset, obtained without

time constraint, is listed in Table 3.1, which naturally serves the ceiling condition for the

proposed framework.

3.6.2 Impact of Image Downsizing

One natural question is, why not just downsize the images such that full-frame detections

can run in real time. In this section, we investigate the impact of image downsizing on

achieved detection quality and inference latency. We downsize the images to different reso-

lutions, and evaluate the mean average precision (mAP) on objects of different sizes, as well

as the corresponding latency. The results are shown in Figure 3.12. We have the follow-

ing observations: First, reducing image resolutions generally results in degraded detection

quality, especially on small objects. However, small objects can be prevalent and critical in

driving scenarios. Second, large objects are more robust to image downsizing, so after image

slicing, we can safely reduce the resolution of candidate regions containing large objects to

achieve better efficiency.

8https://github.com/Cartucho/mAP

65

0 50 100 150 200 250

256
384
512
640
768
896
1024
1152
1280
Orig

Inference Latency (ms)

Im
ag

e
Re

so
lu

tio
n

256 384 512 640 768 896 1024 1152 1280 2rig.
IPage 5esROutiRn (deIined in width SixeOs)

0

20

40

60

80

100

P
A3

 (%
)

AOO Rbjects
2bject 6ize > 40
2bject 6ize > 80
2bject 6ize > 160

Figure 3.12: Impact of image resolution on detection quality and inference latency.

0 20 40 60 80 100
Intersection Ratio (%)

20

40

60

80

100

De
t.

Re
ca

ll
(%

)

Full-frame Detection Recall

Slice-wFilter
Slice-noFilter

(a) Detection recall.

0 20 40 60 80 100
Intersection Ratio (%)

20

40

60

80

100

De
t.

Pr
ec

isi
on

 (%
)

Full-frame Detection Precision

Slice-wFilter
Slice-noFilter

(b) Detection precision.

Figure 3.13: Impact of slicing and bounding box filtering.

3.6.3 Impact of Slicing

Next, we evaluate the impact of the tracking-based slicing module on the achieved de-

tection quality. A good slicing module should be lossless and lead to no degradation in

detection quality. To isolate the impact of slicing from scheduling algorithms, we run detec-

tions on all sliced candidate regions. Besides, two practical optimizations affect the detection

quality: (i) bounding box filtering, and (ii) candidate region merges. We evaluate the detec-

tion recall and precision with/out bounding box filtering, under different candidate region

merge criteria (i.e., the intersection ratios) in Figure 3.13. First, we found that image slicing

mainly affects the detection precision, because more false positive detections (corresponding

to fragmented object parts) are generated after slicing. The region merge does help partially

improve detection precision, especially when more merges (i.e., smaller intersection ratio)

are applied. However, bounding box filtering is the key factor that makes the slicing lossless.

The red curve of Figure 3.13(b) indicates the slicing module shows almost no degradation

on detection precision under different merging criteria after applying bounding box filtering.

The fragmented detections are effectively removed. Its detection precision is even slightly

higher than full-frame detections when more merges are applied, because slicing helps re-

duce false positive detections caused by YOLO that span across partial frame boundaries.

Second, the detection recall is not affected, because the partial frames completely cover the

groundtruth objects.

66

Table 3.2: Detection and classification quality with different tracking algorithms. h
denotes the height of the object. All values in this table are reported in percentage.

Frame Interval Scheduler
Regular Objects Critical Objects

NDR NDP CA LE NmAP NDR NDP CA LE NmAP

P = 150ms

Optical Flow 98.07 99.79 99.49 4.89 96.07 96.38 103.89 100.00 2.55 94.95
Kalman Filter 94.92 99.81 99.47 5.01 94.01 89.13 102.54 99.95 2.79 90.38

OF - KF 3.15 -0.02 0.02 -0.12 2.06 7.25 1.35 0.05 -0.24 4.57

P = 100ms

Optical Flow 94.90 97.25 99.46 5.28 89.33 94.58 102.36 99.95 2.94 90.65
Kalman Filter 91.22 96.98 99.46 5.51 88.13 88.16 100.49 99.95 3.09 87.13

OF - KF 3.68 0.27 0 -0.23 1.20 6.42 1.87 0 -0.15 3.52

P = 70ms

Optical Flow 90.93 96.14 99.48 5.61 82.91 90.60 101.71 100.00 2.92 89.80
Kalman Filter 84.70 93.21 99.35 6.06 79.60 85.46 98.49 99.89 3.36 84.75

OF - KF 6.13 2.93 0.13 -0.45 3.31 5.14 3.22 0.11 -0.44 5.05

3.6.4 Tracking Algorithm

We next validate the choice of tracking algorithm. We compare the optical flow tracker

with a state-of-the-art tracking algorithm, SORT [33], which essentially uses a Kalman filter

to estimate object motions between frames. It extrapolates future object motions from

the past trajectories, thus is not sensitive to unexpected object motions. The results are

presented in Table 3.2. Normalized results are reported for detection recall/precision and

mAP. We separately show the results on overall objects and critical objects, under three

different workloads. We found that optical flow works better than Kalman filter in all

metrics under each workload. The gap between their detection recall on overall objects

increases as we reduce the frame interval, because we need to rely more on the tracking

algorithm to predict object locations when there is no available GPU resource to run their

partial frame detection tasks. The localization error also correspondingly increases. We

further inspect the detection quality on critical (large) objects. Larger objects are typically

easier to detect but harder to track, because the relative movement between the objects and

the observer can lead to significant changes on their visual appearance, which further poses

more challenge to the tracking algorithm. Thus, the choice of tracking algorithm makes a

bigger difference on detection recall of critical objects. We conclude that optical flow is the

better candidate for the tracking-based frame slicer.

3.6.5 Scheduling Algorithm Comparison

Baselines: We compare the following scheduling algorithms in this experiment.

• Frame Drop (FD): It always runs full detection on the most recent frame, and skips

the remaining frames.

67

Table 3.3: Detection and classification quality with different scheduling algorithms. h
denotes the height of the object. All values in this table are reported in percentage.

Frame Interval Scheduler
Regular Objects Critical Objects

NDR NDP CA LE NmAP NDR NDP CA LE NmAP

P = 150ms

FD 61.2 103.52 99.43 4.68 61.38 61.10 104.91 99.92 2.68 61.13
GR-NB 89.00 97.79 99.44 5.43 87.69 93.44 102.06 100.00 2.42 91.03
GR-B 97.32 100.00 99.43 5.00 96.06 95.28 103.57 100.00 2.36 94.36
PB 98.07 99.79 99.49 4.89 96.07 96.38 103.89 100.00 2.55 94.95

P = 100ms

FD 40.99 103.94 99.42 4.67 41.22 40.59 105.19 99.89 2.80 40.72
GR-NB 82.09 94.91 99.44 5.94 78.99 87.76 99.68 100.00 2.91 87.65
GR-B 88.86 97.24 99.43 5.56 85.77 90.88 100.89 100.00 2.60 90.57
PB 94.90 97.25 99.46 5.28 89.33 94.59 102.36 99.95 2.94 90.65

P = 70ms

FD 28.63 103.68 99.43 4.68 28.79 28.57 80.77 99.68 2.73 28.68
GR-NB 74.58 91.10 99.46 6.65 64.32 72.62 90.86 99.87 4.36 71.52
GR-B 76.02 91.34 99.41 6.57 67.10 73.40 91.49 99.88 4.32 73.92
PB 90.93 96.20 99.48 5.61 82.48 91.01 96.19 100.00 2.92 89.81

• Greedy without batching (GR-NB): At each frame, it always schedules the partial

frame detection task with the highest weighted uncertainty. No batching is performed.

Note the same candidate region merge strategy is used in GR-NB, GR-B and PB

algorithms.

• Greedy with batching (GR-B) [38]: It always schedules the partial frame detec-

tion task with the highest weighted uncertainty, and batches as many partial frame

detection tasks as possible with the same size.

• Proportional balancing policy (PB): The proposed scheduling algorithm that

controls the detection frequency of each object according to their criticality and un-

certainty growth, with exploiting task batching.

Results: The corresponding results are summarized in Table 3.3. Similarly, normalized

results are reported for detection recall/precision and mAP. We test the scheduling algo-

rithms at different workloads (i.e., frame intervals). We have the following observations:

First, slicing-and-detection paradigm is always better thanks skipping frames indicated by

the fact that it achieves much higher detection recall, no matter which scheduling algo-

rithm is used. On the contrary, FD missed a large amount of objects. FD shows high and

roughly constant detection precision under different workload because it does not output any

predicted object locations from the tracker. Second, among the compared scheduling algo-

rithms, our PB policy shows better detection quality than the two greedy baselines on both

overall objects and critical objects, especially when the task load is high, i.e., P = 70ms.

PB effectively maintains a high detection recall when we reduce the frame interval, while

68

the greedy baselines can not. This is especially important because it shows our PB policy

misses much less objects than the baselines, when the situation is critical. The improvement

comes from the fact that PB calculates the task schedule for the entire horizon in advance,

thus achieving better resource and time utilization. On the contrary, GR-B and GR-NB ex-

ecute in an ad-hoc manner at each frame without intellectual planning performed on partial

frame detection tasks. Third, task batching does not play a significant role in improving

the detection quality, which is different from the result in [38]. GR-B does not show a huge

advantage over GR-NB in most cases. This is because we consider the freshness of infor-

mation contained in image frames, and do not buffer partial frame detection tasks from the

stale frames. Instead, once the new frame arrives, we directly search the objects at the new

frame, using the up-to-date expanded candidate regions. Fourth, once the detector finds a

presented object, the classification problem is relatively easy. As we can see in Table 3.3,

almost no misclassification happens.

3.6.6 Correspondence to System Safety Considerations

In previous experiments, we assumed that large objects are closer and more critical to

system safety. In this experiment, we directly test whether the PB policy can provide better

response to physically close objects. We use the object distance information extracted from

the groundtruth LiDAR range images for the evaluation purpose. Intuitively, to ensure better

safety, we do not want to miss detections of any close objects so high recalls on close objects

are preferred. We compute the following two recall metrics: one for the closest object at each

frame, and the other for all objects within 20m at each frame. The corresponding results

are presented in Figure 3.14. We show the normalized detection recall, which is the ratio

between the achieved detection recall and the detection recall of full frame detections. The

results indicate that the PB policy is most effective in responding to close objects under high

workload because it achieves significantly higher recall than the baselines when P = 70ms.

Under low workload (i.e., P = 150ms), GR-B and PB show similarly near-optimal detection

recalls on close objects.

3.6.7 Breakdown of Overhead Quantification

We next breakdown the latency overhead induced by each step in our processing pipeline.

The results are given in Table 3.4. The PB policy runs pretty fast and only executes once per

scheduling horizon. Since optical flow estimation does not depend on any other processing

steps, it runs in a separate process on the CPU and poses no overhead to the detection

69

P=70 P=100 P=150
Scheduling Algorithm

0

20

40

60

80

100

No
rm

al
ize

d
Re

ca
ll

(%
)

FD
GR-NB

GR-B
PB

(a) The closest object.

P=70 P=100 P=150
Scheduling Algorithm

0

20

40

60

80

100

No
rm

al
ize

d
Re

ca
ll

(%
)

FD
GR-NB

GR-B
PB

(b) Close objects within <20m.

Figure 3.14: Responsiveness to physically close objects.

Table 3.4: Breakdown Latency Overhead

PB Policy Flow Est. Tracker Prediction Runtime Optimization Postprocessing

6.47ms 12.21ms 9.22ms 8.28ms 8.08ms

pipeline on GPU. The tracker prediction step uses the estimated flow map to predict the

new object locations, and the expanded candidate regions. The runtime optimization step

performs the empirical optimizations on top of the initial schedule generated by the PB policy

(e.g., region merge, region replacement, and batch formulation). Finally, the postprocessing

step filters the generated detections and maps the remaining detections to the full frame

locations.

3.6.8 Choice of Scheduling Horizon Length

Finally, we investigate the impact of the scheduling horizon length on achieved detection

quality. We vary the number of frames in a scheduling horizon from 3 to 20, and see how the

detection recall and detection precision correspondingly change. We set the frame arrival

interval P = 100ms. The results are given in Figure 4.9. The proposed PB policy is generally

resilient to the length of scheduling horizons and does not show a large variation on detection

recall under different settings. We also notice that moderate lengths show relatively better

detection recall on both overall objects and critical objects. When the scheduling horizon is

too short, the full frame detection frequently steps in and does not leave enough time to run

necessary partial frame detections. Critical objects may escape from the tracking window.

When the scheduling horizon is too long, we do not have timely updates on the object

presence and criticality, and may waste time tracking objects that are not critical anymore.

In the detection precision figure, we found the detection precision decreases monotonically

70

0 5 10 15 20
#Frames in Scheduling Horizon

90

95

100

105

110

No
rm

ed
. D

et
. R

ec
al

l (
%

)

Overall Objects
Critical Objects

(a) Detection Recall.

0 5 10 15 20
#Frames in Scheduling Horizon

90

95

100

105

110

No
rm

ed
. D

et
. P

re
cis

io
n

(%
)

Overall Objects
Critical Objects

(b) Detection Precision.

Figure 3.15: The impact of the choice of #frames in a scheduling horizon.

as the horizon length increases. This also reflects the staleness of scheduling decisions when

the scheduling horizon is too long. Therefore, shorter horizons ensures better timeliness on

scheduling decisions, while longer horizons provide more flexibility and space for scheduling.

We believe choosing a moderate (10 frames or 1 second) is most beneficial to achieving a

good tradeoff between scheduling flexibility and decision timeliness.

3.7 RELATED WORK

In this section, we briefly review recent literature on real-time machine inference and

exploitation of temporal correlations in video object detection.

3.7.1 Real-time Machine Inference

Most previous research to support real-time machine inference focused on compressing

neural network models to reduce the inference latency [48, 49, 51, 54, 104]. DeepIoT [51]

compressed neural network structures into smaller dense matrices by only keeping non-

redundant hidden elements. A follow-up work, FastDeepIoT [48], further exploited run-time

non-linearities in the neural network configuration space to accelerate network inference.

Zhou et al. [49] investigated the relationship between model performance and parameter

quantization. In the approaches exemplified above, the compression policy is typically fixed

and cannot provide the flexibility to dynamically adjust computation at run-time to meet

deadlines. At meanwhile, with the advance of cloud computing, cloud offloading [96] has

been proposed as a new paradigm for speeding up deep neural network inference. Since we

target at the autonomous driving applications, a fast and reliable networking connection

71

is unavailable in many driving scenarios. Recently, real-time scheduling has emerged as a

key challenge in AI-empowered perception systems. Real-time AI scheduling is generally di-

vided into three categories: (i) system-level scheduling; (ii) neural network-level scheduling;

and (iii) data-level scheduling. System-level scheduling algorithms try to optimize CPU-

GPU interactions by appropriately allocating and pipelining the computational stages to

reduce the end-to-end processing latency [56, 57, 58, 105]. In contrast, neural network-level

scheduling algorithms dynamically adjust the utilized neural structures to meet inference

deadlines [83]. To implement the “any time” neural networks, Bateni et al. [83] chose among

a set of approximation techniques at each network layer to achieve the minimal accuracy

degradation within the deadline. Several recent works focused on dynamically refactoring

the wiring connections between network layers so that one can skip some intermediate layers

or early exit the inference with possibly imprecise results [85, 86, 106]. Finally, the data-level

scheduling algorithms first slice the data into partial regions, then schedule the processing

of such partial regions according to their criticality. Recent approaches [38, 107] rely on an

external ranging-sensor (e.g., LiDAR) to determine regions of interest and assess criticality.

One drawback of existing approaches [38, 107] lies in their reliance on the external ranging

sensor, which may be not be an option in some autonomous systems (e.g., Tesla has famously

opposed using LiDAR9), and also requires high quality calibration and synchronization be-

tween the sensors to ensure reliable output. Instead, in this paper, we describe a self-cueing

system that only relies on past detections and a tracking module to determine regions of

interest that need to be processed in the upcoming image frame.

3.7.2 Temporal Correlations in Video Object Detection

Video temporal correlations have been extensively studied to improve the efficiency of

continuous object detection. Some papers, including [108, 109, 110, 111], rely on motion

vectors between consecutive frames to reduce the network depth to extract features on new

frames. They utilized motion vectors to map (part of) past features into the new frame.

Buckler et al. [112] proposed an optical flow-based hardware solution to propagate latent

features from previous frames to the new frame. However, the uncertainty in the estimated

motions were not counted. Some works also leverage pairwise image differences to guide

an object detector to focus on changing areas in the new frame [113, 114]. However, they

are only applicable to statically mounted cameras, which no longer holds in autonomous

driving systems. Song et al. [115] applied different quantization levels to process regions with

different sensitivity on the same frame, which was only limited to image classification models.

9For example, see https://provscons.com/why-doesnt-tesla-use-lidar/

72

Both Kumar et al. [116] and Mao et al. [117] proposed to use object tracker projections

to extract regions of interest in the new frame. However, neither paid attention to the

scheduling of processing tasks on extracted regions. To the best of our knowledge, we

are the first to integrate tracking-based image slicing and corresponding task scheduling to

optimize the efficiency of visual perception.

3.8 LIMITATIONS AND DISCUSSION

There are also associated limitations in the self-cueing scheduling framework. First, when

based on solely the image information, the correspondence of the prioritization mechanism

to the physical world is not as strong as the external-cueing mechanisms. The main objec-

tive is set to optimizing the DNN model accuracy, which does not has a direct association

with autonomous driving safety. To improve it, either LiDAR-based distance or vision-based

distance estimation approaches should be integrated. Second, the scheduled full-frame de-

tection becomes the efficiency bottleneck, which can affect the following frame processing

in some cases. However, it is still irreplaceable in achieve comprehensive environment per-

ception with high fidelity. Therefore, the key question becomes how to better reduce the

negative effect caused by the long execution time of the full-frame detection.

73

CHAPTER 4: ATTENTION-BASED MULTI-CAMERA SCHEDULING

4.1 OVERVIEW

This work introduces a real-time multi-view camera scheduling framework for AI-enabled

live video analytics that optimizes frame processing speed at the edge. Processing live videos

at the edge provides better latency, scalability, and privacy. In an edge processing framework,

most of the videos collected can be immediately discarded without consuming further re-

sources, except when events are detected that require further analysis. Applications include

security surveillance, accident detection, traffic-violation recording, and elderly monitoring.

While advances in modern deep learning techniques greatly improve the quality of video an-

alytics, they also impose a high computational cost. We consider applications that require

a real-time response such as catching a traffic violation in action. In these applications,

applying deep learning techniques to live video analytics poses efficiency challenges that our

system aims to resolve.

Specifically, we consider scenarios where a set of smart cameras are deployed around a local

area, such as a mall or a traffic intersection. The cameras perceive the environment with

complementary but partially overlapped views so one object may be observed by multiple

cameras simultaneously. Each camera has access to limited onboard computing capacity,

most notably including a lower-end GPU. We consider neural network-based object detection

and tracking as the workload to be scheduled on such GPUs. We follow a standard tracking-

by-detection paradigm where tracking relies on repetitive calls to object detection modules,

such as YOLO [87], to update the exact locations of tracked objects.

Significant efforts were spent on optimizing the efficiency of video analytics. Most of them

focus on centralized video processing [118, 119, 120, 121], where camera video streams are

uploaded to a powerful cloud server. Network bandwidth is considered as the major efficiency

bottleneck. Even with fast and stable network connections, such systems still suffer from

longer response latency than those where the need for video offloading is removed. Some

recent work [122, 123] directly optimizes the processing efficiency on cameras by exploring

cross-camera correlations. However, they improve the efficiency by turning off cameras that

are unrelated to a specific query, which does not speed up the execution on cameras that

remain on.

In this work, we aim at achieving neural-network-based real-time live video processing

directly at edge cameras with limited computational capacity and network bandwidth, by

exploiting the spatial-temporal correlations in multi-view video streams. Based on the ob-

74

Figure 4.1: An example showing the camera view overlaps. We use yellow boxes to mark an
object observable to every camera.

servation that the location of the same object does not change significantly over consecutive

video frames, we run object detection on full camera frames at a significantly lower frequency

than the frame rate (e.g., only once per second), and inspect a set of object-based partial

frames between full frame detections. Partial frames are sliced around estimated object lo-

cations to help locate the objects of interest, while avoiding repeated scanning of more static

regions (e.g., the sky and background). Since multiple partial frames can be extracted from

a full frame, we apply the task batching in [38], where multiple input images with the same

size can be submitted as a single batch to the GPU, such that the batch latency is much lower

than processing the images sequentially. When an object is visible from multiple views, we

only need one camera to keep track of its location, raising the problem of allocating object

tracking tasks to cameras to optimize the neural network processing speed. This problem

becomes more challenging when the tasks with the same size can be batched. We formulate

it as a multi-view scheduling (MVS) problem. We prove it to be strongly NP-hard, and

propose a batch-aware load-balanced scheduling (BALB) algorithm to approximately solve

it.

Our multi-view scheduling algorithm operates on two stages. First, all cameras communi-

cate with a central scheduler.1 Specifically, after a full frame detection, each camera uploads

its list of detected objects to the central scheduler. The central scheduler first associates

objects across cameras, and then runs a central stage of the BALB algorithm to derive an

initial assignment between objects and cameras. Both the heterogeneous neural network

processing speed at cameras and task batching opportunities are considered in the optimiza-

tion. Second, in order to deal with newly appeared and disappeared objects, in between

1We do not pose assumption on the computing capacity of the central scheduler since no actual detection
happens there. We can choose a camera to work as the central scheduler.

75

Camera 𝑐! Central Scheduler
Full Frame Image

Optical Flow
Estimation

Assigned Objects Prediction

New Regions

Detection
Model

Central BALB
Scheduler

Camera 𝑐!
Objects

Camera 𝑐"
Objects

Camera 𝑐#
Objects

𝑜! 𝑜" ... 𝑜#
𝑐! 𝑏𝑜𝑥!! 𝑏𝑜𝑥!" ... 𝑁𝑜𝑛𝑒
𝑐" 𝑏𝑜𝑥"! 𝑁𝑜𝑛𝑒 ... 𝑏𝑜𝑥"#
...

𝑐$ 𝑁𝑜𝑛𝑒 𝑏𝑜𝑥$" ... 𝑏𝑜𝑥$#

Cross-Camera Object Association

Distributed BALB
Task

Batching

Camera 𝑐"
Full Frame Image

Optical Flow
Estimation

Assigned Objects Prediction

New Regions

Detection
Model

Distributed BALB
Task

Batching

Camera 𝑐#
Full Frame Image

Optical Flow
Estimation

Assigned Objects Prediction

New Regions

Detection
Model

Distributed BALB
Task

Batching
Object-Camera

Assignment
Camera Mask

...

Key frame data flow Regular frame data flow Scheduling Decisions

Objs
Cams

Detected
Objects

Detected
Objects

Detected
Objects

...

Figure 4.2: Overview of the proposed framework. For the block colors: The tracking-based
slicing module is highlighted in orange, the cross-camera object association module is shown
in purple, and the BALB scheduler related operations are highlighted in green.

full-frame detections, each camera independently runs a distributed stage of the BALB al-

gorithm to decide whether to track a new object or not. Although the distributed decisions

may cause load imbalance among cameras, it reduces the overhead of centralized scheduling

and the imbalance is quickly corrected by the next central stage in a few frames.

We implement the proposed scheduling framework on a testbed consisting of multiple

NVIDIA Jetson boards, including Jetson Nano, Jetson TX2 and Jetson Xavier. We compre-

hensively evaluate the system performance with AI City Challenge 2021 (AIC21) dataset [124,

125]. The results show that our system consistently improves the frame processing speed by

by 2.35× to 4.97×, at the cost of minor degradation on detection quality. When compared

to a video offloading system, it achieves a similar processing throughput but with a much

lower response latency and network bandwidth cost.

4.2 SYSTEM ARCHITECTURE

In this section, we first give an overview of the proposed scheduling framework, then briefly

introduce each component constituting the system.

4.2.1 System Overview

Assume we have a set of static cameras deployed around a local area, such as a shopping

mall or a traffic intersection. The cameras share complementary views to obtain compre-

76

hensive perception of the target environment. Further, their views are partially overlapped

so one object may be simultaneously captured by multiple cameras. One such example is

shown in Figure 4.1. The cameras run object detection and tracking locally. Each object

needs to be localized, classified, and tracked at every frame. Since deep neural detection

models, like YOLO [87], are resource consuming, we regard them as the main workload to

optimize. Each camera has limited computing capacity, such as a low-end GPU. Computing

resources may be heterogeneous, so the neural network processing speed may vary among

cameras. The detection model accepts input images with various sizes, where smaller images

achieve shorter execution times.

We assume that, on one hand, the onboard GPUs are not powerful enough to process every

full camera frame in real-time, because running the detection model takes longer than the

inter-frame interval. On the other hand, the cameras do not have enough network bandwidth

to stream high-resolution videos to the cloud in real-time for centralized processing.

We optimize the neural network processing speed at cameras by taking advantage of the

spatial-temporal correlations in multi-view video streams, and by applying effective task

batchings on GPUs. Instead of running full frame detection on every sampled image, we

only run it on some frames (which we call the key frames) at a fixed low frequency (e.g.,

once per second). At the remaining frames, which we call the regular frames, we insert a

set of object-oriented partial frame detections to search the objects around their predicted

locations. When an object appears in multiple cameras, we only schedule one camera to

track it. The object-camera assignment considers both the load balancing among cameras

and GPU task batching opportunities for the input images with the same size. An overview

of the proposed system is given in Figure 6.1. It is comprised of the following three main

modules:

• Tracking-based slicing: We slice frames into partial regions around predicted object

locations, computed by the tracking algorithm, thus reducing neural network input.

• Cross-camera object association: We associate individually detected objects across

cameras to reduce redundant tracking of the same object.

• Multi-view scheduling: We decide the subset of objects to track by each camera

and their corresponding batching, to minimize the neural network processing time.

4.2.2 Optical Flow-based Tracking and Image Slicing

We follow the general tracking-by-detection paradigm [126], where object tracking is

achieved by first detecting all objects in the new frame and then associating them with

77

previously tracked object trajectories, where applicable. Concrete tracking algorithms in

this category differ in how they associate the new detections with the tracked trajecto-

ries. We follow the association design of SORT [33] in this work, which purely relies on

the overlaps between the new detections and the predicted object locations to perform the

association. However, the original Kalman filter-based motion model no longer works in

our scenario, because they rely on long observation history to be reliable. In our case, we

immediately rely on the predicted object locations to slice the partial frames even when they

have been only detected once in the latest full frame detection. Improper slicing may make

the object detection model fail to find the complete bounding box of the object, which will

result in further cascaded error in the detection and slicing iterations until we miss the object

completely. Thus, we replace Kalman filter with an optical flow model [97], which automat-

ically estimates the pixel motions between two input images. It is a memoryless model that

does not rely on any history information except the object location in the previous frame.

Motion vector at each single pixel is generated, and the object motion is estimated as the

median value among pixel motions contained in its previous bounding box. This is based

on the assumption that the object pixels dominate the bounding box compared to the static

background pixels. Since we can only batch input images with the same size, we expand

the predicted object locations to the nearest size in a quantized set to increase the batching

opportunities. The quantized size is fixed for each object within a scheduling horizon, and

downsizing is performed if the object size grows beyond it.

In addition, the estimated pixel motions can be used to roughly detect newly appeared

objects at regular frames. Since cameras are static, the relative movement between the object

and the cameras is completely decided by the object movements. We define the clusters of

moving pixels that do not belong to any existing objects as a new region, where a new

object may appear. We also feed these regions into the object detection model to localize

new objects. By doing so, we can detect new objects at their first appearance, instead of

waiting until the next full frame detection.

4.2.3 Cross-Camera Object Association

We next explain how we perform cross-camera object associations. Specifically, the al-

gorithm maps a detected object by one camera to the detected objects by the remaining

cameras. We are aware that the cross-camera data association and tracking is an active

research area [127]. This topic is outside the scope of this thesis. In this Chapter, we assume

that the association problem has been solved by others, and we will focus on the multi-view

real-time scheduling part.

78

4.2.4 Multi-View Scheduling

After we obtain the associated object list, the remaining problem becomes how to assign

objects to cameras for tracking, such that the maximum execution time among cameras is

minimized. We formulate it as a multi-view scheduling (MVS) problem, and correspondingly

propose a two-stage batch-aware load-balanced (BALB) scheduling algorithm to solve it.

It considers both the load balancing among cameras and the task batching opportunities

on GPU. The cameras track and batch the assigned objects according to the scheduling

decisions. The details will be explained in the next section.

4.3 MULTI-VIEW SCHEDULING

In this section, we first describe the task execution model, and then formulate the multi-

view scheduling (MVS) problem. Finally, we introduce the batch-aware load-balanced (BALB)

algorithm, to solve the scheduling problem.

4.3.1 Object Detection Task Model

Assume we have a set of M cameras C = {c1, c2, . . . , ci, . . . cM} equipped with hetero-

geneous computing capacities. They monitor a local area with overlapped views, and run

object detection models (e.g., YOLO [87]) (along with a lightweight tracking algorithm) to

track the appeared objects. We define the time period between two full frame detections as

a scheduling horizon, during which a fixed number of T − 1 frames are captured. At start

of the scheduling horizon, a set of N objects O = {o1, o2, . . . , oj, . . . , oN} are identified from

the latest full frame detection, and their locations on each camera are obtained. This is

achieved by connecting all cameras to a central scheduler, and first running the cross-camera

object association algorithm to produce the object mappings among cameras. However, the

object set O may evolve during a scheduling horizon since new objects may arrive and ex-

isting objects may leave. We want to track the locations of all appeared objects within the

scheduling horizon, through scheduling partial frame detection tasks on the cameras. We

define the coverage set Cj ⊆ C of object oj as the subset of cameras that can see it. It can

be tracked from any c ∈ Cj.
Each object oj is associated with a target size sij at each camera ci ∈ Cj, which defines

the size of the partial regions where we will search the object. The target size for the same

object can be different among cameras, but is fixed in a scheduling horizon (with possible

downsizing). Since task batching on GPUs only accepts input images with the same size.

79

We quantize the target sizes (by expanding the region) to a limited set S = {s1, ..., sK}
to increase batching opportunities. Given a target size s, at most Bs

i partial regions can

be batched and processed in parallel on camera ci, which is called the batch limit of target

size s on ci. The incurred latency is tsi when b ≤ Bs
i tasks are batched2. Benefit from the

parallel computing capability on GPUs, batching significantly increases the neural network

processing throughput.

4.3.2 Scheduling Problem Formulation

We assume partial regions of different frames within a scheduling horizon are processed

sequentially without considering cross-frame batching. Here we focus on formulating the

scheduling problem for a single frame. Before that, we first define the camera load below.

Definition 4.1 (Camera Load). Given a camera ci, its load Li is defined as the sum of

execution latencies of all its batches belonging to one frame. No preemption is allowed

during batch executions.

We further define the system load L as the maximum load among all cameras in set C, i.e.,

L = maxi Li. The scheduling problem we study is to derive a feasible assignment X between

cameras and objects such that the system load is minimized. The feasible assignment is

formally defined below.

Definition 4.2 (Feasible Assignment). An assignment between a set of cameras C and a

set of objects O is a matrix X ∈ M × N , where xij ∈ {0, 1} indicates whether camera ci

tracks object oj. A feasible assignment satisfies the following conditions: (1) Each object is

tracked by at least one camera that can see it, i.e.,
∑

ci∈Cj xij ≥ 1, ∀j. (2) No object can

be tracked by a camera that can not see it, i.e.,
∑

ci∈C\Cj xij = 0,∀j.

Given a feasible assignment, it would be trivial to convert it to optimal batch sequences

at cameras that achieve the minimum load. The camera load only depends on the number

of batches for each target size. We derive the optimal batch sequence on each camera by

batching objects with the same target size in a greedy manner, which apparently minimizes

the number of used batches. Each target size is independently batched. Thus, a feasible

assignment uniquely decides the corresponding optimal system load. We then formally define

the scheduling problem below.

2Although batching too many images would lead to a non-ignorable increase in execution latency, we
operate in a region where the execution time changes only slightly with batching (before an inflection point
is reached where the slope increases). We correspondingly set the execution time at the batch limit as the
batch execution latency tsi .

80

Definition 4.3 (Multi-View Scheduling Problem). The Multi-View Scheduling (MVS) prob-

lem asks for a feasible assignment between camera set C and object setO such that the system

load L is minimized.

We establish the computational complexity of the MVS problem in Claim 4.1.

Claim 4.1. The MVS problem is strongly NP-hard.

Proof. We prove by reducing the bin packing problem to the MVS problem. We first con-

straint the MVS problem to an identical machine scheduling (IMS) problem by adding the

following constraints: 1) The batch limit is always one (i.e., no batching is allowed); 2)

Every object can be seen from all cameras, thus can be assigned to any camera; 3) All cam-

eras have the identical processing speed; 4) Each object has the same target size across all

cameras, so its execution latency is the same on different cameras. Minimizing the system

load in the IMS problem can be converted to an equivalent decision problem: Given a time

budget T , can we finish processing assigned objects on all M cameras? If we consider M

identical cameras as M bins with capacity T and regard the N objects as N items with their

execution latency defined as the item size, then the decision version of assigning objects to

cameras becomes a standard bin packing problem, which has been proved to be strongly

NP-hard [128]. The claim follows. QED.

We next propose an efficient algorithm that approximately solves the multi-view scheduling

problem.

4.3.3 Batch-Aware Load-Balanced Scheduling Algorithm

The fact that the object set O evolves within a scheduling horizon makes the scheduling

even more challenging. A camera is unaware of object changes at other cameras unless the

object is also observable to itself. From the optimization perspective, the updated object

list at cameras should be uploaded to the central scheduler at every frame, to produce the

updated assignment based on the aggregated information. However, the overhead caused by

camera-scheduler communication may exceed the benefit of the produced assignment. From

the scheduling efficiency perspective, we should design a fully distributed mechanism which

runs independently at each camera. However, it completely ignores the load and GPU task

batching at each camera, so will produce inferior assignment.

We observe that objects appear and disappear at a low frequency compared to the cam-

era sampling frequency. We thus propose the Batch-Aware Load-Balanced (BALB)

81

Algorithm 4.1: Central Stage BALB Algorithm
Input: Object coverage sets C1, . . . , CN , camera execution latencies tsi , and batch limits

Bs
i , ∀s ∈ S,∀ci ∈ C.

Output: Feasible assignment X, camera load L
1 Initialize: xij := 0, ∀i, j, Li := tfulli , ∀i ;
2 Reindex the objects oj ∈ O by non-decreasing order of |Cj | (ties broken in favor of larger

target size);
3 for oj ∈ O (after object reindexing) do
4 C′j := {ci|ci ∈ Cj and ∃ incomplete sij batch};
5 if |C′j | > 0 then

6 ci∗ := The camera in C′j with the largest relative capacity in the incomplete si∗j
batch;

7 xi∗j := 1;

8 end
9 else

10 ci∗ := arg minci∈Cj Li + t
sij
i ;

11 xi∗j := 1, Li∗ := Li∗ + t
si∗j
i∗ ;

12 end

13 end
14 Return the assignment X and the camera load L;

scheduling algorithm that works in two stages. It runs a central stage on the central sched-

uler, and a distributed stage on cameras. The central stage is only called once at the start

of the scheduling horizon, to produce an initial assignment based on the associated object

list. Then, at each regular frame, the cameras independently call the distributed stage to

update the assignment if there are changes on the detected objects. The potential imbalance

produced by the distributed stage will be corrected by next central stage in a few frames.

Central Stage. After a full frame detection, the cameras upload the list of detected

objects to the central scheduler. The central stage algorithm takes the associated object list

as input to produce the initial assignment. It works in a batch-aware load-balanced manner

to fully exploit the camera view overlaps and task batching mechanisms on GPUs.

We initialize the camera load as their corresponding full frame detection time tfulli , and

then try to minimize the maximum camera load through maintaining a good load balanc-

ing property among cameras during the process. The idea is motivated by the following

observation: For an object oj, the more cameras can see it, the more flexibility we have in

scheduling its tracking. Therefore, we start with assigning objects that are observable from

only one camera, which have a deterministic assignment. After that, we gradually assign

objects with more flexibility (i.e., larger coverage sets). When assigning an object oj, we

try to maximally batch tasks. We will not start a new batch for oj as long as there exists a

82

camera ci ∈ Cj that has an incomplete batch for target size sij. If there are multiple cam-

eras with incomplete batches, we choose the one with the maximum batch capacity, which is

defined below.

Definition 4.4 (Batch Capacity). Given an incomplete batch with b batched objects, the

batch capacity is defined as BC = B − b > 0, where B is the corresponding batch limit.

Otherwise, we have to start a new batch for oj. In this case, we select the camera that

has the minimum updated load after including the new batch. It is different from assigning

oj to the camera with the minimum current load because the neural network processing

time for the same object may be different among cameras due to different target sizes and

neural network processing speed at cameras. The details of the proposed central stage

BALB algorithm are summarized in Algorithm 4.1. It has a low computation complexity

as max(O(N logN), O(MN)).

Distributed Stage. The initial assignment produced by the central stage does not

consider the evolution of object set O during the scheduling horizon. The distributed stage

independently runs at each camera to update the assignment for newly appeared objects and

objects disappeared on their originally assigned cameras. The assignment of the remaining

objects are unchanged. The objective of the stage is to first guarantee that each appeared

object is tracked by at least one camera, and then optimize the efficiency as much as we can.

Algorithm 4.1 can not be directly used because the cameras do not know the exact load

and task batching situations on other cameras. In order to make sure the cameras make

consistent decisions, we have to rely on fixed policies that work in a self-organized way

without direct communications. Specifically, we sort the cameras in increasing order of their

assigned load by Algorithm 4.1, and use that order as the fixed camera priority to assign

objects. This order is fixed during the scheduling horizon, and will be updated by the next

central stage. Each camera only tracks objects at regions that are unobservable from all

higher priority cameras. We apply the policy to the following two cases.

First, we define new objects as objects that arrived after the last key frame. New objects

enter the view of different cameras asynchronously. Therefore, we dynamically update their

assignment at each frame. At each frame, we first use the cross-camera object association

algorithm to decide its coverage set, and then choose the camera with the highest priority

to track it.

Second, existing objects exit the view of different cameras asynchronously. For each object

that appeared in the previous key frame but was not assigned to this camera, we test whether

the object has disappeared on its assigned camera but is still observable from this camera.

If yes, we calculate its new coverage set, and select the camera with the highest priority to

83

𝒄𝟏

𝒄𝟏

𝒄𝟑

𝒄𝟑

𝒄𝟑

𝒄𝟏

𝒄𝟑

𝒄𝟑

𝒄𝟑

𝒄𝟏

𝒄𝟑

𝒄𝟑

𝒄𝟑

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏

𝒄𝟏 𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟏

𝒄𝟐

𝒄𝟐

𝒄𝟑

𝒄𝟑

Camera 𝑐! Mask Camera 𝑐" Mask

Figure 4.3: Illustration of camera masks. We assume the load-based priority order is: c3 >
c1 > c2. Each camera only tracks new objects and objects disappeared in assigned cameras
at region cells that are unobservable from higher priority cameras. If we regard the blue
vehicle as a new object, camera c1 will track it, and camera c2 is also aware of the decision.

take over its tracking.

In both cases, the camera will automatically start tracking the object if itself is selected.

No communication is performed between cameras. In the implementation, we compute a

mask for each camera after the central stage, as shown in Figure 4.3, which indicates regions

where the camera should track the aforementioned objects. We first divide the camera frame

into a grid of cells, and compute the coverage set for each cell. We then choose the camera

with the highest priority to cover the cell. In the distributed stage, the new objects, or

objects that exit their assigned cameras, are automatically assigned according to the camera

masks.

4.4 EVALUATION

In this section, we evaluate the proposed scheduling framework on a testbed consisting of

various Jetson models with the AI City Challenge 2021 (AIC21) dataset.

4.4.1 Implementation and Experimental Setup

Testbed. We implement the system on a heterogeneous edge testbed consisted of 5

NVIDIA Jetson devices: 2× Jetson Xavier, 2× Jetson TX2, and 1× Jetson Nano. Figure 4.4

shows the hardware platform we used. Each device corresponds to a smart camera. They are

deployed in an off-campus building, and connected to the central scheduler through wired

network (100Mbps Downlink, 20Mbps Uplink). We deploy the central scheduler to a desktop

with Intel i9960x CPU located in a campus building. We utilize TCP socket programming

for reliable data communication between the edge devices and the central scheduler.

84

Jetson
Xavier

Jetson
Xavier

Jetson TX2 Jetson TX2

Jetson Nano

Gateway

Figure 4.4: Heterogeneous edge testbed.

Table 4.1: Hardware Configuration for Each Scenario

Scenario Edge Device Configuration
S01 2× Jetson Xaiver, 2× Jetson TX2, 1× Jetson Nano
S02 1× Jetson Xaiver, 1× Jetson Nano
S03 1× Jetson Xaiver, 1× Jetson TX2, 1× Jetson Nano

Dataset. We evaluate the system with AI City Challenge 2021 dataset published by

NVIDIA [124, 125]. It consists of traffic camera data collected around traffic intersections

and streets. We choose three deployment scenarios to run the experiment, which involve 5,

2, and 3 cameras respectively. The dataset provides synchronized videos from each camera

with a frame rate of 10 fps. The full image resolution we use is 1280 × 704 for regular

cameras, and 1280 × 960 for fisheye cameras. For each camera, we use half length of the

video to train the cross-camera object association model with the provided bounding box

labels, and use the remaining half for testing. The specific edge device configuration for each

evaluation scenario is listed in Table 4.1.

Object Detection Model. We use the YOLOv53 model implemented in PyTorch as the

object detection network, with pretrained weight on COCO [32] dataset. It is the newest

version of YOLO model family and comes with officially released implementation. We choose

four sizes for partial frame detection: 64, 128, 256 and 512. Regions larger than 512 are

downsampled to 512 as very large objects are easy to be detected. In the offline stage, we

profile the YOLO inference time with 200 runs on each Jetson board and store the profiles

as input to the BALB scheduling algorithm.

4.4.2 Impact on Detection Quality

In this section, we evaluate the impact of the proposed framework on the resulted detection

quality. Ideally, we want to optimize the neural network processing speed without missing

3https://github.com/ultralytics/yolov5

85

S1 S2 S3
Evaluation Scenarios

50

60

70

80

90

100

Ob
j.

Re
ca

ll
(%

)

Full
BALB-Ind
BALB

BALB-Cen
BALB-Dis

Figure 4.5: Comparisons on object recalls for different algorithms.

any object appeared in the view.

Metric: We use object recall as the quality metric here. It is calculated as: At every

timestamp, for each groundtruth object, as long as there is at least one camera detects it,

then it is counted as a true positive. Otherwise, it is counted as a false negative. The object

recall is defined as the ratio between true positives and all groundtruth objects. It is not

affected by the missing labels for partially occluded objects.

Baselines: The following baselines are compared:

• Full : We perform full frame detection one every frame collected by every camera.

• BALB-Ind : Each camera independently runs the BALB framework without consider-

ing the spatial correlations among cameras.

• BALB-Cen: A variant of BALB that only runs the central stage algorithm.

• BALB-Dis : Another variant of BALB that runs the distributed stage to assign objects

at every frame.

Analysis: The results are summarized in Figure 4.5. We have the following observations:

First, tracking-based slicing almost does not degrade detection recalls, as BALB-Ind achieves

similar object recall as full frame detections in all scenarios. Second, through comparing

BALB and BALB-Cen, we find that the central stage alone achieves high recall when only

a few objects appear at a time (i.e., S1 and S2). However, when many objects appear

simultaneously (i.e., S3), there is a degradation on BALB-Cen. This is where we need the

distributed stage of BALB. Third, the imperfect correlation model in scenario S3 has a larger

impact on BALB-Dis than BALB-Cen. This is because we performed a matching step to

associate detected objects and predicted object locations in the central stage, which reduces

the false positives in the identified associations. It still remains a challenging problem to

implement a fully distributed and self-organized multi-camera analytic system based on their

86

S1 S2 S3
Evaluation Scenarios

0

200

400

600

800

In
fe

re
nc

e
Ti

m
e

(m
s) Full BALB-Ind BALB

Figure 4.6: Comparisons on YOLO inference time for different algorithms.

spatial correlations. In conclusion, the complete BALB algorithm provides better quality

assurance than using each stage individually.

4.4.3 Neural Network Processing Speed Optimization

We next evaluate the achieved speedup on the inference efficiency. We compare the average

per-frame YOLO inference time on the slowest camera for each scheduling horizon. For

BALB algorithms, we average the full frame inference time with regular frame times in a

scheduling horizon. We compare BALB with full frame detections (Full) and BALB-Ind to

see how the spatial and temporal correlations help save the inference time. The corresponding

results are presented in Figure 4.6. We can see that BALB-Ind saves more than 50% time

compared to full frame detections in the first two scenarios, and saves 47% time in scenario

S3 by slicing and batching. Beyond that, BALB further saves 52%, 55%, 30% inference time

compared to BALB-Ind in the three scenarios. The saving on scenario S3 is relatively small

because more objects appear simultaneously in S3, so after slicing we generate a lot of partial

frames. Besides, the cross-camera view overlaps are also smaller compared to the other two

scenarios. Putting them together, we attain multiplicative speedups of 4.78×, 4.97× and

2.35× on BALB compared to full frame detections in the three evaluation scenarios. It is

worth mentioning that the speedup is larger in applications where we only want to track a

few objects by the multi-camera system.

4.4.4 Onboard Processing vs. Cloud Offloading

In this part, we compare the processing time, response delay and network overhead be-

tween BALB and MPEG offloading. MPEG offloading is adopted by many centralized video

analytics systems [118, 129]. In this approach, we first use H.264 [130] to compress the images

of a scheduling horizon into a video, and then upload the video to the server for centralized

object detection. We use an RTX 2080 Ti GPU at the server side. Resolutions are same as

87

S1 S2 S3
Evaluation Scenarios

0

1

2

3

4

Pr
oc

es
sin

g
Ti

m
e

(s
) BALB

Offloading

(a) Processing time.

S1 S2 S3
Evaluation Scenarios

0

1

2

3

4

Re
sp

on
se

 D
el

ay
 (s

) BALB
Offloading

(b) Response delay.

S1 S2 S3
Evaluation Scenarios

100

101

102

103

Ne
tw

or
k

Ov
er

he
ad

 (K
B)

BALB
Offloading

(c) Network overhead.

Figure 4.7: Comparisons between BALB and MPEG offloading on processing time, response
delay and network overhead for a scheduling horizon.

Time

Time0

Time

𝑡0 2𝑡 ... 𝑇𝑡

Video: [𝑓!, 𝑓", 𝑓#, … , 𝑓$]

𝑓! 𝑓"𝑓# 𝑓$ …

Processing Time

MPEG Offloading

BALB

Camera Samples

Transmission & Server Processing

Onboard Processing

Response Delay
of Offloading

Local Response Delay

Figure 4.8: Difference between the response latency of BALB and MPEG offloading under
the same processing time. f1, f2, .., fT represent frames in a scheduling horizon. BALB
sequentially generates detections on sampled frames, while the MPEG offloading only gets
the detection results after receiving the response from the server.

what we use in BALB. The results are given in Figure 4.7. Processing time is the end-to-end

time we need to process one scheduling horizon. BALB shows better speed than MPEG

offloading in first two scenarios but is slower in scenario S3. However, their response latency

is different by design. Response latency is defined as the time between when the frame is

captured and when its detections are generated. Video-based offloading naturally produces

longer response delay, as illustrated in Figure 4.8. Therefore, BALB is better at providing

real-time responses under similar processing speed. In addition, the network overhead (i.e.,

sum of packet sizes) of BALB is 1-2 orders lower than MPEG offloading.

4.4.5 Impact of Scheduling Horizon Length

In this section, we investigate the impact of the scheduling horizon length on the attained

object recall and frame neural network inference time. In Figure 4.9, we plot the change of

object recall and inference time w.r.t the number of frames in a scheduling horizon. The

observation is that longer scheduling horizons leads to higher inference speed, because the

penalty of full frame detections are distributed among more frames, but they also suffer

88

0 10 20
#Frames

90

92

94

96

98

100

Ob
je

ct
 R

ec
al

l (
%

)

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

(a) S01

0 10 20
#Frames

90

92

94

96

98

100

Ob
je

ct
 R

ec
al

l (
%

)

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

(b) S02

0 10 20
#Frames

90

92

94

96

98

100

Ob
je

ct
 R

ec
al

l (
%

)

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

(c) S03

Figure 4.9: The impact of scheduling horizon length on object recall and YOLO inference
time.

Table 4.2: Breakdown Per-frame Latency Overhead

Scenario Central Stage Tracking Distributed BALB Batching Total

S01 2.59 ms 18.90 ms 0.08 ms 7.53 ms 29.10 ms

S02 1.11 ms 21.43 ms 0.09 ms 13.21 ms 35.84 ms

S03 2.27 ms 11.55 ms 0.22 ms 19.86 ms 33.90 ms

from lower recalls, which is caused by the inaccuracy of camera correlation models and the

tracking algorithm. On the contrary, short scheduling horizons attain higher object recalls

at the cost of higher inference time. Choosing the scheduling horizon T = 10 achieves a

good tradeoff between the detection quality and inference efficiency.

4.4.6 System Overhead

Last, we report the system overhead produced by the components in our framework. The

results are summarized in Table 4.2. For each component, we first compute the maximum

overhead among cameras at each frame, and then compute the mean overhead across frames.

Since the central stage is only called once per scheduling horizon, we distribute its overhead

to every frame. The central stage overhead includes both cross-camera object association

and central BALB scheduler. The optical flow estimation is not blocked by any other steps,

so we put it in a separate thread to run in parallel, such that its computation (11.79 ms

on Jetson Xavier, 19.50 ms on Jetson TX2, and 24.80 ms on Jetson Nano) does affect the

main thread efficiency. The resulted overhead per frame is between 29.10 ms and 35.84 ms.

We can see the overhead mainly comes from the tracking and task batching, which may be

further optimized by putting more engineering effort. We leave it as a future investigation.

89

4.5 RELATED WORK

In this section, we briefly review the recent literature on video processing systems. Most

early work [121, 131, 132, 133] on this topic focused on optimizing query-based video analyt-

ics. A query is provided and the system needs to automatically find all related information in

a large-scale video database. They either optimize the indexing policy and storage structure

for video data [131], or reduce the searching and querying effort by filtering out unrelated

information [132].

Recent attention [119, 129, 134, 135] was paid to live video analytics systems, where

the system needs to coordinate deployed cameras to perform query-based tasks, or general

detection tasks, on the live video streams. These systems work in a traditional client-

server architecture, where the cameras send the sampled image frames to the cloud for

centralized processing. The key idea in this thread is to minimize the amount [119, 134, 136],

resolutions [129], or the regions [135] of frames to be transmitted, because the network

bandwidth is the main bottleneck in this pipeline.

With increasing compute power on smart cameras, one can provide a better real-time

response if neural network processing was done locally. Existing work that utilizes camera

compute power [137, 138, 139] focused on partitioning the workload between camera and

edge/cloud servers. This work, to the best of our knowledge, is the first effort to optimize

the neural network processing speed of a live video processing system purely at the edge

devices, by exploiting the spatial-temporal correlations in the multi-view video streams and

task batching mechanism on modern GPUs. It achieves similar end-to-end processing time

as cloud offloading approach, but outperforms with lower latency in responses and consumes

much less network bandwidth. It is thus a better fit for latency-sensitive video analytics

applications or deployment scenarios with restricted network connections.

4.6 LIMITATIONS AND DISCUSSION

In this section, we briefly discuss the existing limitations and issues in our multi-camera

scheduling work. First, we currently only consider the multi-camera perception scenario

with overlapped views, which only occupies a small portion of the real-world deployment

situations. More frequently, the deployed cameras may not have direct overlaps in their

views at the same time, but such overlaps happen more frequently at the time dimension.

For example, the object appears in one camera may appear in another camera in a short time

interval. Imagine we are working with the event-based cameras that are normally turned

off, we can actually take advantage of their temporal correlations in object appearance to

90

activate the cameras in advance, to resolve the impact of the initial period in event-based

camera activation. Second, we allocate all computations to the camera side, which may

increase the hardware cost of the camera platforms in the future. How to appropriately

combine the limited compute power at the camera platforms and the strong compute power

at the edge/cloud servers, without consuming too much network bandwidth, is the ultimate

question we want to answer in the future. Using such an approach, we could achieve a

better tradeoff between the onboard processing cost and the network transmission cost in a

distributed inference paradigm.

91

CHAPTER 5: ATTENTION-BASED MULTI-SENSOR FUSION

5.1 OVERVIEW

In several multi-sensor application contexts [140, 141, 142, 143, 144, 145], deep learn-

ing algorithms have shown non-trivial accuracy improvements over conventional feature-

engineering-based machine learning methods [39, 146], motivating a closer look at the use

of deep neural networks for multisensor data fusion [147]. Recent work developed novel

neural network architectures for sensor data processing [45, 148, 149, 150], and neural

network model reduction techniques for resource-constrained Internet-of-Things (IoT) de-

vices [51, 151, 152, 153]. A key advantage of deep-learning-based solutions over the plethora

of model-based approaches lies in reducing the human design burden. In a world increas-

ingly dominated by data and computing power, trade-offs that replace human effort with

machine-centered albeit data-intensive approaches are becoming increasingly attractive.

Personal devices, such as smart phones, smart watches, and fitness trackers, are typically

equipped with multiple sensors that can be collaboratively utilized to capture user context,

perform environmental measurements, and recognize body movements. Several devices may

coexist in a typical body network. However, not all devices and modalities are equally useful

for detecting a given class of outputs at all times. For example, when detecting walking, a

wrist watch or a fitbit would usually be very helpful. However, when wrists are confined,

say, by pushing a cart in a grocery store, a cell-phone in a back pocket might work better.

How can one automatically decide, based on current measurement features, where to pay

attention in a given situation to detect a given class of activity? This automatic attention

guidance mechanism is the topic of the work.

The work extends traditional ensemble methods by understanding global context in which

given local sensor outputs may be “misleading”. For example, the smart watch and the fitbit

on the wrists of a person pushing the shopping cart might generate high confidence outputs

saying the person is sitting in a slowly moving vehicle. If the only other device on the person

correctly detects walking, it might be out-voted. An attention mechanism, in contrast, can

attenuate the false claims (despite their associated high local confidence) because the global

context suggests that these sensors are presently not in a position to yield accurate local

results.

Attention mechanisms are an emerging technique for dynamically adjusting neural net-

work’s focus by scaling the features using corresponding weights computed by a separate

attention module. Given an appropriate attention design, the network can automatically

92

amplify the influence of informative features and suppress unrelated noise. In conventional

attention mechanisms for regression problems, the extraction of features weights are often

computed from matching features from the input signal and features from the output signal.

The features used to estimate input features importance are called the query. For example,

in neural machine translation problems, the word embeddings in the output sentence are

used as the query to find alignment with each input sentence word. How to design a query

(that can accurately identify informative features) in classification problems with no output

signal but just an output label is a key challenge in attention mechanism research.

In this work, we follow an idea called self attention proposed by Vaswani et al. [2] where the

query is also extracted from the input features. Our insight is that we try to match the neural

network node outputs (at certain layers) against inputs at earlier layers with the idea that

inputs that are more correlated with outputs deserve more attention. We propose a global

attention module that (i) uses high-level node features (i.e., features of nodes that are closer

to the output layer) to estimate the contribution (and hence, scaling factor) of each input

feature vector in the low-level fusion layer, then (ii) adds these scaled local features to the

output (high-level node) features. The design literally superimposes selected local context

(scaled low-level features) and global context (high-level node features), allowing subsequent

nodes to consider the combination of the two. By adding local context and global context,

more informed decisions can be made based on the combination. For example, the system

might learn that when a hip-mounted device detects features compatible with walking, while

multiple wrist-mounted devices detect features compatible with sitting or standing, the latter

devices should be suppressed, as the ground truth is usually more correlated with the former.

The attention module is an automated mechanism to learn such global feature weighting

policies.

The idea of using information at higher layers to guide attention comes from the commonly

observed fact [154] that, in a deep neural network, lower level features are local to the input

and general to the task, whereas higher-level features are global to the input but specific to

the particular output class. In other words, the high-level features contain more information

related to specific output classes. Our attention module design is successfully integrated

into an end-to-end learning framework, called GlobalFusion, where two global attention

modules, named global position attention and global modality attention, are deployed to fuse

information from heterogeneous sensing modalities and diverse sensor positions, respectively.

Figure 6.1 provides an overview of the proposed GlobalFusion framework. Our backbone

network is based on DeepSense proposed by Yao et al. [148]. Actually, global attention is

a flexible and configurable module that can be used as building block in most state-of-the-

art sensing data processing frameworks when fusing heterogeneous information. The global

93

Lo
ca

l C
on

v-
1

Lo
ca

l C
on

v-
2

Lo
ca

l C
on

v-
3

Lo
ca

l C
on

v-
1

Lo
ca

l C
on

v-
2

Lo
ca

l C
on

v-
3

Sp
at

ia
l C

on
v-

1

Sp
at

ia
l C

on
v-

2

Sp
at

ia
l C

on
v-

3

M
od

al
ity

 C
on

v-
1

M
od

al
ity

 C
on

v-
2

M
od

al
ity

 C
on

v-
3

GR
U

-1

GR
U

-2

Fu
lly

 C
on

ne
ct

ed
 L

ay
er

Global Position Attention Global Modality Attention

...
...

Position-1

Position-L

Figure 5.1: GlobalFusion framework overview. (We use different dash lines to represent
features from different sensor positions, and use different colors to represent features from
different sensing modalities.)

attention module is implemented by a lightweight shallow convolution module, so that its

incurred computational overhead is low.

Our design is targeted at general IoT applications because we do not rely on any application-

specific insight. Rather, we use a pure data-driven approach. However, due to the limitations

of current publicly available sensing datasets, we demonstrate the effectiveness of Global-

Fusion on four public human activity recognition (HAR) datasets: 1) PAMAP2 [155], 2)

Realworld-HAR [156], 3) DSADS [157], and 4) DG [158]. In these datasets, we are given

multiple types of sensor readings collected from several body positions to infer the human

activities. We compare GlobalFusion to both the state-of-the-art non-attentional DeepSense

[148] framework, and attentional frameworks, including SADeepSense [159], BANet [160],

and attnLSTM [161]. GlobalFusion is able to consistently outperform these algorithms with

a clear margin on all datasets. Through a qualitative analysis of attention weight distribu-

tion, we also demonstrate the interpretability of global attention design. Finally, we test

the inference time and energy consumption of GlobalFusion on two commodity IoT devices,

Nexus 5 and Raspberry Pi 3 Model B. The results show that the overhead of our global

attention module is negligible compared to the backbone DeepSense network.

5.2 MOTIVATION AND CHALLENGE

The goal in this work is to design an information fusion mechanism for human activity

recognition (HAR) to successfully utilize information gathered from heterogeneous sensors

and diverse body positions. Both effectiveness and efficiency should be considered and well

addressed in the fusion design. On one hand, effectiveness means that the fusion mecha-

94

nism should be able to extract compatible, correlated and complementary information from

heterogeneous sensors and diverse body positions, so that the aggregated information at de-

cision level is maximized. On the other hand, efficiency requires the fusion mechanism to be

automatic and lightweight in computation. We prefer to avoid complicated human-crafted

feature extraction or iterative searching. In conventional human activity recognition frame-

works, two representative fusion mechanisms have been widely adopted, input level fusion

and decision level fusion. However, as we will show next, neither of the two approaches can

completely meet our two objectives mentioned above.

Input Level Fusion. This thread of approaches is also known as signal level fusion

[162], where data from multiple sources are combined into higher quality data with better

understanding of the environment, before being fed into activity classification models. For

example, the ArmTrack system proposed by Shen et. al. [142] utilize the compass, ac-

celerometer, gyroscope data to recover the static human gesture at each time step. From the

physical aspect, human gesture is defined as the position of 8 major joints of human skeleton,

while human activity is defined as the continuous moving patterns of these joints. In the

second stage, they feed the recovered human gesture sequence into the classification model to

perform human activity recognition. Although this approach is straightforward and matches

well with human intuitions, it has two shortcomings: first, this method requires large amount

of existing physical knowledge and skeleton structure theories from biomedical field in ges-

ture recovery. Second, the gesture recovery stage is time consuming because a lot of effort

is putting into searching the best gesture to match collected sensor readings. Similar issues

exist in most input level fusion mechanisms, because complex computations are needed to

generate human-crafted features for model inference. Instead, a better philosophy is to di-

rectly feed the heterogeneous input (after possible simple preprocessing) into the learning

framework to infer the target human activities. In summary, although being intuitive, the

input level fusion mechanisms are too weak at efficiency.

Decision Level Fusion. This approach typically refers to the ensemble learning in ma-

chine learning field. We train a separate model utilizing the data from each individual sensor.

The training process of each individual model is independent and the training objective is

to maximize the individual performance of each model. During the inference, the prediction

results by each individual model are aggregated by the corresponding ensemble method, i.e.,

the voting method. The obtained voting result is used as the ultimate classification result.

However, the heterogeneity among sensors not only comes from their noise level caused by

different calibration level, sampling rate, or sensing quality; but also comes from their het-

erogeneous physical intrinsics. The ensemble learning is only good removing the noises and

stabilize the model, but unable to extract complementary information from heterogenous

95

sources. The major drawbacks of ensemble learning lies in two aspects: first, the training

process of each individual model is independent to each other, which means there is no in-

teractions or collaborations across sensors involved in the training. Each individual model

is trained to maximize the information it contained related to target activities. However,

the aggregated information after voting is not necessarily maximized, because a lot of over-

lapped information is included. Second, the ensemble learning is not flexible in information

fusion. Although complicated voting rule can be designed and used in ensemble inference, its

flexibility is still quite limited. In human activity recognition, the weights among different

sensors and body positions can be dynamic at different time, because their corresponding

activities are different. For example, sensors at fore arm are more useful in discriminating

between washing hands and opening door, while sensors at legs are more critical in classify-

ing walking and running. Thus, we can not predefine a voting rule in advance. Moreover,

since the sensing data is a time-series representation, the importance of different sensors

can be even different at different time steps within one sequence. Ensemble methods are

apparently incapable of providing such flexibility. In short, the effectiveness of decision level

fusion is far from satisfactory.

Therefore, we try to solve this problem with recent advancement of attention mechanisms

in deep learning. It is an emerging technique for dynamically adjusting neural network

model’s focus by multiplying the features of each sensor with a corresponding weight, where

the weight is computed dynamically during runtime. With appropriate attention design,

the network can automatically amplifies the influence of informative features and suppress

unrelated noises. The information fusion is performed at the intermediate feature space. No

complex data recovery algorithm or voting strategy design is needed. The computation of

the attention weight is based on a separate small neural network module, where the specific

structure can be selected. The attention module is trained together along with the main

network in an end-to-end manner. Therefore, the computation is totally automatic from

multi-sensor data to predicted classes, instead of partitioned into two stages as input level

fusion mechanisms. Consequently, a great tradeoff between effectiveness and efficiency can

be achieved by attentional neural network models. We will introduce the design details of

our framework in next section.

5.3 GLOBALFUSION FRAMEWORK

Our idea is motivated by the commonly observed fact [154] that in a deep neural net-

work, the lower level features are local to the input and general to the task, while higher

level features are global to the input and specific to particular classes. We call the feature

96

IMU Chest
Left Arm

Right Arm
Left Leg

Right Leg

Body Positions

Accelerometer

Gyroscope

Magnetometer

x
y
z

Interval-1 Interval-T

Segment

x
y
z

x
y
z

Interval-1 Interval-T

Interval-1 Interval-T

Fourier Transform

Figure 5.2: An example illustrating our data preprocessing and input format.

vectors at lower layers as local features, while call the feature vectors at higher layers as

global features. Therefore, juxtaposing local features and global information can help im-

prove classification based on the combination. In this section, we first describe the general

architecture of GlobalFusion, which is an end-to-end deep learning framework designed for

multisensor information fusion. Walking through the GlobalFusion architecture, we point

out the positions in network where we need a global attention module and outline require-

ment for its correct functionality. Next, we explain the technical details of global attention

module design for multisensor information fusion, especially how to utilize high level global

features to compute low level attention weights.

Before diving into the details, we first introduce the notations used in the rest of this work.

All vectors are denoted by bold lower-case letters (e.g., x and y), while matrices and tensors

are represented by bold upper-case letters (e.g., X and Y). For a vector x, the jth element

is denoted by x[j]. For a tensor X, the tth matrix along the first axis is denoted by X[t··],

and other slicing denotations are defined similarly. Assume we have L spatial positions and

S distinct sensor types deployed at each position, Xsl means the s-th sensor reading at l-th

position. For each layer k, we use X(k) to represent the input to this layer, and use Y(k) to

denote corresponding output. For any tensor X, |X| denotes the size of X.

5.3.1 GlobalFusion Architecture

Before introducing the technical design of global attention, we first give an end-to-end

overview of the GlobalFusion framework for multisensor information fusion. GlobalFusion is

based on the state-of-the-art DeepSense[148] framework as back-bone network. It exploits

the power of both Convolution Neural Networks (CNN) and Recurrent Neural Networks

(RNN) in time-series sensing data processing. In the vanilla DeepSense model, fusion of

musitisensor inputs is performed by a three-layer convolution module after concatenating

97

inputs from all fusing components. By doing so, the model does not take the heterogene-

ity among input sources into consideration and pays equal attention to each fusing compo-

nent. Thus, the fusion layer cannot maximize the information extracted from all information

sources (i.e., sensing modalities and body positions). To solve this problem, we cut the direct

connection between output of information fusion convolution module and the input of the

next layer, and add one global attention module between them to first enhance fusion output

with complementary local features before feeding it into next layer. The overall architec-

ture of GlobalFusion is presented in Figure 6.1. In this subsection, we temporarily regard

the global attention module as a black-box implementation which is able to automatically

extract complementary information from each input local feature vector compared to the

output global feature vector. The information fusion at sensing modalities and diverse body

positions are both included.

Suppose the sensing data X comes from L spatial locations, where N sensors are deployed

simultaneously at each position. This models the general scenario of intelligent human

activity recognition where multiple integrated sensing units such as Inertial Measurement

Units (IMUs) are deployed at a set of diverse body positions to carry out the sensing task

collaboratively. Each sensing unit consists of multiple sensors. For example, most IMUs

usually contain accelerometer, gyroscope, and magnetometer so that the moving speed and

orientation can be simultaneously tracked. For a given sensing modality n and spatial

location l, its sensor readings are divided into fixed-length but non-overlapped time segments.

One segment aggregated from all spatial positions and sensors constitutes one data sample in

our model. Each sensor also has d dimensions (i.e., x, y, z axises). Number of dimensions can

be different among sensors, but we assume the same dimension just for notation simplicity.

Different sensor readings are upsampled and downsampled into a unified sampling rate. Each

data segment is further divided into T non-overlapped time intervals. In data preprocessing

step, we perform a Fourier transform to each interval to extract their frequency domain

representations, which have been proved to be more informative than pure time domain

representations [163]. By utilizing the time-frequency input, both the time domain order

information and frequency domain pattern information are well preserved. To help illustrate

our data segmentation and pre-processing procedure, we show an example of data input

to our model in Figure 5.2. After preprocessing, the input fed into the model should have

a shape of X ∈ RT×N×L×d×2f , where T represents time intervals, N denotes sensors, L

denotes spatial locations, d is the sensor dimension, and 2f is spectral samples with f

frequency magnitude and phase pairs within each interval. The order of dimensions in X is

determined by the order of information fusion in GlobalFusion.

In general, GlobalFusion is divided into four stacked sub-modules: individual sensor con-

98

volution module, spatial fusion module, modality fusion module, and time recurrent module.

We will introduce these sub-modules one by one from bottom to top.

Individual Convolution Module. The processed sensing data from each (sensor, po-

sition, interval) combination is first separately fed into the individual convolution module.

The input data is Xsl
[t··], where s denotes sensor, l denotes position, t denotes time interval.

No sensor or body position interaction is considered in this module. Convolution layer [164]

has been successful in aggregating information from local area, i.e., adjacent frequencies in

our problem. In GlobalFusion, convolution layers are used to gradually extract frequency

pattern features within the spectrum of each time interval. We call the output of this mod-

ule as (sensor, position, interval) features, which contain the information contained in given

sensor at a specific body position and time interval. They are also the input of spatial fusion

module.

Spatial Fusion Module. In this module, we fuse the obtained local (sensor, position,

interval) features for same sensing modality across different spatial positions, into (sensor,

interval) features. (sensor, interval) features represent the information contained in given

sensor across all body positions at specific interval. Regarding the information fusion order,

we profiled the performance improvement of spatial-fusion-first strategy and modality-fusion-

first strategy. It turns out that spatial-fusion-first models consistently outperform modality-

fusion-first models, so we choose to first perform spatial fusion in GlobalFusion. We will

give more explanation on this design choice from the heterogeneity level in Section 5.4.6. We

preserve the three-layer convolution module in DeepSense [148] to extract preliminary global

information from different body positions. However, all body positions are homogeneously

convolved by now so that some local information is inevitably missed while some noises are

included. After that, we stack a global position attention module to allow the incomplete

global information to absorb more complementary information from input features at each

spatial position. These two sub-modules together constitute our spatial fusion module. The

input to this module is X
sl(4)
[t··] from sensor s across every spatial position l, where upper

subscript (4) means input to the 4-th layer. The output is fed into next-level modality

fusion module for further information aggregation across all sensing modalities.

Modality Fusion Module. In this module, we fuse (sensor, interval) features X
s(7)
[t··]

collected from all sensing modalities s into an interval feature vector, which is a general

feature representation of time interval t. Specifically, we still use a three-layer convolution

module to extract preliminary global information from all sensing modalities, the output of

which contains incomplete interval features. We use another global attention module to help

incomplete interval features absorb more complementary information from input (sensor,

interval) features. Deploying global fusion module here is more beneficial than deploying it

99

Convolution Module
⨂

⨂

softmax
⊕

Global Query

Local Key

Conv Input X

Conv Output Y

Local Value

K(X): 1 x 1

V(X): 1 x 1

Q(Y): 1 x 1

Merged Local Feature

Attention Output
Attention Weight

Atten(X, Y)

#X

#Y

Figure 5.3: Global attention module design. (We use different colors to represent input fea-
tures from each fusing component.

⊗
represents dot product operation, while

⊕
represents

element-wise addition operation.)

at spatial fusion level for two reasons: first, the heterogeneity level is higher among different

sensing modalities compared to different spatial positions of the same sensing modality;

second, modality fusion layer is closer to the output layer, which means the global features

at this level is more class-specific and ”mature” according to the observations in [165]. After

the post-processing by global attention, we feed the flattened vector representation of each

time interval into next level time recurrent module.

Time Recurrent Module. After obtaining each interval feature vector, the activity

recognition problem turns into a typical sequence classification problem. Here we use a

stacked two-layer Gated Recurrent Unit (GRU) to sequentially encode the temporal pattern

information. The input to this module is the interval features X
(10)
[t··] across all time intervals

t. The order information across time intervals is extracted by the recurrent neural network.

We do not use any attention mechanism here for two reasons: first, the step-by-step recurrent

structure has already been excellent enough to learn the global temporal patterns; second,

it is difficult to decide attention weight of input at each time interval since the information

contained in hidden state of each interval is an aggregation of all previous intervals. We

simply take the average of hidden states at all time intervals as the output, and feed it into

the last fully connected layer for ultimate class prediction.

After obtaining a high-level understanding of GlobalFusion architecture and the corre-

sponding deploying position of global attention modules, we are going to discuss more tech-

nical details about the global attention design in next subsection.

5.3.2 Global Attention Module

We explain the specific design details of our global attention module in this subsection.

Suppose there is already a feature extraction module in the backbone network that can take

100

input from multiple input sources and output a feature vector containing information aggre-

gated from all sources (i.e., sensing modalities or body positions). For example, we use the

three-layer convolution module in DeepSense [148] to serve this purpose. However, in these

modules, the heterogeneity among sources is not necessarily addressed and their information

is homogeneously merged. We ultimately want to see the features from informative sensing

modalities/body positions being amplified, while the unrelated noises being suppressed. To

narrow down the gap between our learning objective and limitation of backbone feature

extraction modules, the global attention mechanism is accordingly designed. In global at-

tention module, the complementary information is extracted from input local features and

added to global output features before feeding them into next layer.

It has been widely accepted in machine learning community that for a deep neural net-

work, the features of lower layers are specific to the input but general to the classes, while

the features of higher layers are general to the input but specific to the classes. Let’s use local

features and global features to refer to input and output of the feature extraction module

respectively. The global features possess more class-related information than the local fea-

tures. Therefore, we use the global features as the global query to estimate the importance,

i.e., attention weight, of each sensing modality/body position. By doing so, the class-specific

information in global features become the standard to evaluate the informativeness of local

features. During the back-propagation, the class-related information is propagated from the

output layer to the attention module, further back to the global/local feature extraction part.

Different from the design in [159], where the mean of all input features is used as the query,

our global attention design handles the heterogeneity among input sources better because

we do not assume that the information from all sources is similar. The residual connection

between global query and highlighted local features can help the global features absorb more

complementary local information. A graphical illustration of our proposed global attention

module is given in Figure 5.3.

As mentioned before, in GlobalFusion, the preliminary global feature extraction module

refers to a three-layer convolution network (i.e., the yellow box in Figure 5.3, but it can be

configured as other well-behaved computation units). Suppose the input and output of this

unit are X ∈ RN×W×C1 and Y ∈ R1×W×C2 respectively, whereN is the number of components

to be fused (we denote it as height of features in the figure), W is the width of features, C1

and C2 represent input channels and output channels separately. X and Y can be of any

shape, we use vectorized local features here just to simplify the notation and make it visually

easy understanding. What we need is an attention function Atten : (X,Y)→ w ∈ R1×N that

takes X and Y as input to calculate the attention weight of each input source automatically

101

so that we can fuse the multisensor inputs correspondingly as follows:

X̃ =
N∑
i=1

Atten(Xi,Y) ·Xi, s.t.
N∑
i=1

Atten(Xi,Y) = 1. (5.1)

For the design of attention module, we adopt the standard multiplicative attention mecha-

nism [2], where the dot product between the query and keys are used to estimate the attention

weight for each sensor. Instead of proposing a new attention computation paradigm, the key

innovation lies in the choice of the query. Instead of computing the compatibility score be-

tween each local feature vector Xi and global representation Y directly, we first let them go

through a transformation independently. There are two reasons for this pre-transformation:

first, the local features and global features belong to different latent spaces, so a non-linear

projection can transform them into the same latent space to make them compatible in se-

mantic level; second, the dimensions of local features and global features can be different

in general case so that they are mathematically incompatible, while this transformation can

unify their dimensions by needs. Adopting the concepts in [2], we call the transformation

for global features and local features as query function Q(Y) and key function K(X) respec-

tively. What differs from previous works is that, instead of extracting both keys and query

from local features, we choose to use global output features to extract query, which is closer

to the output layer to provide more global information. Both functions are chosen as 1× 1

convolution with relu activation followed by a flatten operation. After the transformation,

both local keys and global query have been projected into a h dimension latent space, i.e.,

K(X) ∈ Rn×h and Q(Y) ∈ R1×h. h is a hyper-parameter that we can adjust during training.

According to our experience, model performance is not sensitive to the value of h, so this

value is empirically fixed at 64, in all 4 datasets during evaluation. Next, we use projected

keys and query to calculate their compatibility score, i.e., attention weight for each fusing

component:

Atten(Xi,Y) = softmax

(
K(Xi)

TQ(Y)√
h

)
. (5.2)

Here we choose the dot product similarity (i.e., multiplicative attention), instead of a feed-

forward neural network (i.e., additive attention), as the compatibility function to compute

the attention weight, because it is more intuitive and computational efficient. We scale the

product by a factor of 1√
h

to prevent it from becoming too large to get into regions with

extremely small gradients after applying outlier softmax [2]. The outlier softmax is used to

emphasize informative features, and normalize the attention weight distribution. By far, each

input source corresponds to a normalized attention weight. Next, we let the local features go

102

through another transformation, called value function V (X), to match their dimensions with

the global query. The local values are multiplied with their attention weights and sumed

up. The weighted sum is called merged local features. After that, we combine the merged

local features with the global query Q(Y) through a residual connection later. The value

function V (X) ∈ Rn×h consists of a 1× 1 convolution operation with relu activation and a

flatten operation. The merged local features are computed by:

X̃ =
N∑
i=1

Atten(Xi,Y) · V (Xi), (5.3)

where · means that the scalar attention weight is propagated to each element of local feature

vector. This merged local feature vector provides a good complement to global feature (not

replacement), so we combine them up through a residual connection:

Ỹ = Q(Y) + X̃, (5.4)

which becomes the output of our global attention module. To fit it back into original

network dimension, we can let the output go through another 1×1 convolution for dimension

extension or suppression if necessary.

From a different perspective of view, our global attention can be regarded as an innovative

residual connection design [19] for sensing data processing. Instead of directly connecting

the input and output of a processing module, we first utilize the calculated output to search

and highlight local features in input before merging them. The heterogeneity in local fea-

tures is well addressed while at the same time the residual property is preserved. So far, we

have introduced all technical details related to GlobalFusion framework and global attention

module design. Next, we validate the effectiveness of GlobalFusion especially the contri-

bution of global attention modules through experiments on four realworld human activity

recognition (HAR) datasets.

5.4 EVALUATION

In this section, we compare GlobalFusion to other state-or-the-art deep learning frame-

works using four publicly available human activity recognition (HAR) datasets. We first

introduce the experimental setup, datasets used, data preprocessing steps, and baseline al-

gorithms we are comparing with. We then show the evaluation results for each dataset, make

qualitative observations, and discuss insights obtained from attention weight distributions.

103

Table 5.1: Statistical Summary of Selected Datasets.

Dataset Activities Subjects Sensors Positions Segment Intervals Spectral Samples

PAMAP2 18 9 3 3 2 sec 10 20
RealWorld-HAR 8 15 4 5 2 sec 10 10

DSADS 19 8 3 5 5 sec 5 25
DS 2 10 1 3 2 sec 8 16

Finally, we present time and energy efficiency comparisons on commodity IoT devices.

5.4.1 Experimental Setup

All the models evaluated in this work are trained with Tensorflow 1.14 [29] on a workstation

equipped with an Intel i9-9960X processor, 64GB memory, and four NVIDIA RTX 2080 Ti

GPU. For training the model, we adopt a standard cross entropy loss for classification, along

with L2 normalization. The normalization factor is set as 5e-4. The model is optimized by

the ADAM algorithm [166] with a learning rate of 1e-4, while β1 = 0.5 and β2 = 0.9. We add

a batch normalization layer and a dropout layer after each convolutional layer to stabilize

the training process and prevent overfitting. Training batch size is set as 64.

5.4.2 Datasets

We evaluate inference accuracy on human activity recognition tasks that use multiple

sensors as input. All models are evaluated under a leave-one-user-out scenario with k-fold

cross validation. Specifically, one subject is chosen as the test user each time, while the

activity traces of all remaining subjects are used for training. The test user is then rotated

until all users have been excluded. A statistical summary of each dataset is listed in Table

6.1.

PAMAP2 Physical Activity Monitoring Data Set (PAMAP2). [155] This dataset

contains data of 18 different physical activities (e.g., walking, cycling, playing soccer, etc)

performed by 9 subjects using 3 inertial measurement units (IMUs) that are put at the

chest, wrist (of dominant arm), and dominant side’s ankle respectively. Each IMU records

readings from a 3-axis accelerometer, gyroscope and magnetometer. The sampling rates of

all sensors are 100 Hz. We divide data into segment of 2s where each segment is further

divided into T = 10 fixed-length and non-overlapped time intervals. Each interval contains

20 spectral samples. Sensor readings in each interval are sent through a Fourier transform

as pre-processing. ”subject109” is excluded for testing because s/he has too few contributed

104

data samples.

RealWorld Human Activity Recognition (RealWorld-HAR). [156] This dataset

covers 8 activities (climbing stairs down and up, jumping, lying, standing, sitting, run-

ning/jogging, and walking) from 15 subjects on 7 body positions. Sensing modalities include

acceleration, GPS, gyroscope, light, magnetic field, and sound level. We choose 5 body po-

sitions out of 7 (i.e., head, chest, forearm, waist, and shin), and use four sensor types only

(i.e., accelerometer, gyroscope, magnetometer, and light). Upper arm and thigh data are

not used because we want to make chosen body positions more diverse. GPS and sound level

readings are not used here because their sampling rates are too low. GPS is sampled at 0.08

Hz and sound level is sampled at 2 Hz, while all remaining sensors have a ∼50 Hz sampling

rate. The sampling rate of all selected sensors is interpolated to 50 Hz by up-sampling and

down-sampling. We still use segment of 2s consisting of 10 non-overlapped intervals, where

each interval contains 10 spectral samples. Every subject is selected once as test user in

cross validation.

Daily and Sports Activities Data Set (DSADS). [157] In this dataset, each of

19 activities (e.g., sitting, standing, ascending and descending stairs, exercise on stepper,

playing basketball, etc) is performed by 8 subjects (4 female and 4 male). The contained

sensors are still accelerometer, magnetometer, and gyroscope on 5 body positions (torso,

right arm, left arm, right leg, and left leg). The data sampling rate is 25 Hz, so we choose

the segment length as 5s with 5 intervals within each segment. Therefore, we have 25 spectral

samples in each time interval. Every subject is selected once as test user in cross validation.

Daphnet Gait (DG). [158] The daphnet freezing of gait dataset is devised to benchmark

automatic methods to recognize gait freeze from wearable acceleration sensors placed on legs

and hip. It is a binary classification problem (i.e., freeze or not freeze). Only accelerometer

data at three body positions (i.e., ankle, upper leg, trunk) is provided. Here we do a minor

adjustment on our GlobalFusion model, where the modality fusion module is removed. It is

collected from 10 Parkinson’s disease patients. The sampling rate is 64 Hz. We choose a 2s

segment and divide it into 8 time intervals, so that each interval has 16 spectral samples.

Similarly, every subject is selected once as test user in cross validation.

The purpose of using the first three datasets is two-fold. First, we want to compare our

model to the baselines on multiple multisensor datasets to reach more broadly substantiated

conclusions. Second, we want to find common observations in attention weight distribu-

tions to check if attention allocation meets intuition. Through the DG dataset, we want to

see whether proper attention mechanisms can overcome the unbalanced class distribution

problem that is heavily represented in that dataset.

105

5.4.3 Baselines

Before presenting the results, we briefly review state-of-the-art deep learning frameworks

for heterogeneous information fusion that are selected as baselines in our experiments. We

pay special attention to attention-mechanism-based designs.

GlobalFusion-Single: To show the effectiveness of our global attention design and give

a straightforward understanding of contribution by each attention module, we choose a

variant of GlobalFusion here. In this model, only global modality attention is used before

time recurrent layer. Comparing performance of this model with DeepSense could help

understand the effectiveness of global modality attention module, while comparison with

GlobalFusion could help show the contribution of global position attention module.

DeepSense [148]: This is the back-bone network for our GlobalFusion framework, which

is one of the commonly used sensing data processing frameworks for IoT applications. It’s

generally based on the combination of convolutional modules (i.e., within a time interval) and

a recurrent module (i.e., across time intervals) for temporal pattern extraction. To emphasize

the effectiveness of our global attention module, we use the same backbone architecture as

GlobalFusion here excluding global attention modules.

SADeepSense [159]: This is a recent self-attention based DeepSense framework. They

use a self-attention (SA) module for heterogeneous sensor information fusion and time-series

information fusion respectively. They use the mean of all input features as the query to

estimate correlation across sensors / time intervals. They also adopt the multi-head design to

learn the correlations from different latent spaces. In our implementation, three SA modules

are deployed at spatial fusion, sensor fusion, and time fusion respectively based on their

design in the paper. This design utilizes the local features as the query. Through comparing

GlobalFusion and SADeepSense, we can see the advantages of using global features as the

query in attention module.

attnLSTM [161]: They use two attentional modules to improve the classification per-

formance of recurrent networks. We make minor enhancement to their framework: at the

bottom of network, instead of using raw sensing input, we use a same three-layer convolu-

tional module as GlobalFusion to extract the local features of each individual sensor within

each time interval. The reason is that we want to compare the impact of different fusion

mechanisms instead of lower-level feature extraction parts. Next lies the sensor attention

part, where a shallow fully-connected module works as attention unit across different sensing

modalities and sensor positions. Finally, after one LSTM layer, they use the output of last

time interval to estimate importance of hidden state at each previous time interval, and

take the weighted average of them for final prediction. In addition, they add a continuous

106

constraint to both attention modules to regulate the attention weight to change smoothly

over modalities and time intervals.

BANet [160]: This model exploits a different order of information fusion, where they

first fuse information at different time intervals for same sensor, and then fuse information

across sensing modalities. We still add an individual convolution module at the bottom of

their architecture to extract low-level features. Temporal attention is computed by a 1× 1

convolution followed by a softmax layer, which belongs to brute-force additive attention and

no compatibility design is considered. Sensor attention is computed in a similar way: they

use one fully-connected layer followed by a softmax layer.

5.4.4 Quantitative Classification Results

In this subsection, we present the evaluation results of GlobalFusion and aforementioned

baseline frameworks on each selected dataset. We will use abbreviations for models in the

tables and figures. GF represents the GlobalFusion with double attention modules, where

both global position attention and global modality attention are deployed. GF-SGL or

GlobalFusion-SGL both represent the GlobalFusion with global modality attention only.

DS is short for DeepSense, while SA-DS is used for SADeepSense. In addition, DS-Acc,

DS-Gyro, DS-Mag, and DS-Lig represent DeepSense-Accelerometer, DeepSense-Gyroscope,

DeepSense-Magnetometer, DeepSense-Light respectively. Only one sensing modality is used

in these individual models.

We mainly use accuracy and macro F1 score as the classification performance metrics,

while micro F1 score is not used. In multi-class classification problems, micro precision =

micro recall = micro F1 score = accuracy. In this case, true positives (TP) are defined as the

samples that were predicted to have the correct label. Every time there is a false positive

(FP), there will always also be a false negative (FN) and vice versa, because always one class

is predicted. Therefore, the micro F1 score is redundant with accuracy. Instead, the macro

F1 score can better reflect the model classification performance across all classes. It prefers

more balanced classification results. This is a good complement to accuracy for capturing

performance balance across classes. In our tables, ”Acc.” is short for accuracy, and ”Mac.

F1” represents macro F1 score.

PAMAP2 Results: We start with the PAMAP2 dataset. In Table 5.2, we give the

accuracy and macro F1 score for all models compared, including both individual testing cases

and the overall average values. Since the evaluation is performed under leave-one-user-out

scenario, the model performance is supposed to be lower than random partition, considering

the heterogeneity and transfer difficulty between training users and testing user. From

107

Table 5.2: PAMAP2 classification result.

User
GF GF-SGL DS SA-DS attnLSTM BANet

Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

Sub. 1 78.99% 75.61% 77.69% 75.76% 73.53% 69.57% 72.20% 67.43% 72.04% 67.21% 72.61% 69.32%
Sub. 2 92.22% 92.45% 91.75% 91.52% 74.77% 71.10% 83.28% 82.13% 74.84% 71.34% 69.77% 71.42%
Sub. 3 95.37% 75.67% 94.91% 68.70% 94.95% 68.52% 93.87% 62.32% 93.15% 67.41% 89.54% 65.00%
Sub. 4 95.26% 86.70% 95.74% 86.92% 94.02% 93.89% 88.24% 79.86% 88.79% 81.05% 91.91% 76.20%
Sub. 5 92.93% 92.36% 93.23% 92.75% 92.93% 92.67% 90.25% 88.94% 88.62% 87.45% 90.92% 89.79%
Sub. 6 92.88% 84.77% 92.27% 88.36% 90.79% 82.67% 89.72% 87.06% 91.78% 83.19% 85.44% 77.89%
Sub. 7 96.09% 94.65% 96.35% 94.72% 95.75% 94.28% 94.70% 86.26% 94.44% 85.30% 93.58% 84.71%
Sub. 8 83.09% 79.78% 80.05% 77.15% 59.69% 54.98% 63.13% 59.14% 68.86% 62.42% 55.23% 49.67%

Overall 90.86% 85.25% 90.25% 84.48% 84.55% 78.46% 84.42% 76.64% 83.69% 75.67% 81.13% 73.00%

Table 5.2, we can see that DeepSense obtains similar accuracy and macro F1 score as other

state-of-the art attentional frameworks, while our global attention module further improves

its performance by a clear margin, especially the global modality attention module (i.e.,

GF-SGL v.s. DS). Compared to modality-attention only GlobalFusion-Single framework,

GlobalFusion further improves the accuracy and macro F1 score by a small margin. We can

regard it as a trade-off between efficacy and efficiency when considering model deployment

on IoT devices. If we want to obtain better model efficiency, GlobalFusion-Single can be

used; otherwise, GlobalFusion is a better choice for higher model efficacy. We also notice

that SADeepSense does not show clear improvement compared to vanilla DeepSense here.

The reason is that mean value of all sensors are used as the query to estimate the attention

weight of each sensing modality in SADeepSense, which leads the model to attend to more

homogeneous input, so that the model behaves similar as non-attentional DeepSense. Among

the users, those with lower accuracies at back-bone DeepSense model (e.g., Subject2 and

Subject8) typically have a higher chance to see a larger improvement by attention learning.

According to the confusion matrix of GlobalFusion in Figure 5.4 (a), we can see an ambiguity

between sitting and standing. This ambiguity among static gestures also exists in RealWorld-

HAR and DSADS results. In later analysis, we will show that this results from the dominant

effect of accelerometer features that share the same pattern under all static gestures.

RealWorld-HAR Results: The evaluation results on RealWorld-HAR dataset is given

in Table 5.3. Compared to other datasets, this dataset covers a wider range of subject

diversity, reflected in their age, height, weight, gender, and dominant arm. Therefore, we

can see a large difference across different models. attnLSTM is the worst model here. It

only achieves an accuracy of 70.83%. The failure of attnLSTM indicates us that incorrect

attention design can lead to a severe performance degradation. DeepSense also does not

work well on this dataset. The reason is that the reliability of different sensing modalities

differs in a large degree in this dataset (i.e., their single-modality performance are quite

diverse as we will show in Figure 5.8 later). Thus, equally weighting and merging different

108

Table 5.3: RealWorld-HAR classification result.

Test User
GlobalFusion GlobalFusion-SGL DeepSense SADeepSense attnLSTM BANet

Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

Subject1 78.22% 79.36% 75.36% 75.81% 65.95% 65.66% 67.05% 66.31% 65.49% 64.58% 74.95% 74.54%
Subject2 94.39% 94.25% 95.29% 95.57% 80.42% 78.47% 79.20% 78.63% 80.91% 79.58% 93.07% 93.18%
Subject3 78.53% 71.37% 75.05% 62.06% 54.51% 51.91% 54.73% 51.89% 48.53% 42.10% 49.73% 50.41%
Subject4 92.61% 93.38% 91.17% 92.64% 86.62% 88.47% 82.23% 84.08% 89.26% 89.44% 84.18% 85.99%
Subject5 81.63% 81.11% 82.63% 82.22% 72.57% 72.29% 79.52% 78.83% 76.93% 74.89% 68.91% 69.30%
Subject6 84.14% 85.14% 84.47% 85.72% 67.52% 66.90% 73.77% 73.05% 69.51% 67.84% 73.39% 73.54%
Subject7 78.34% 70.88% 80.59% 78.05% 69.56% 70.10% 67.56% 62.77% 78.02% 79.30% 77.16% 78.79%
Subject8 63.54% 66.51% 62.79% 63.05% 39.39% 35.17% 50.08% 48.71% 24.30% 18.01% 47.94% 48.41%
Subject9 91.21% 92.07% 90.76% 91.44% 80.58% 74.77% 77.99% 74.24% 80.31% 77.89% 76.29% 75.64%
Subject10 96.18% 95.84% 96.33% 96.13% 95.07% 94.37% 85.35% 85.71% 80.27% 78.00% 82.76% 83.03%
Subject11 89.13% 89.82% 86.87% 87.46% 85.34% 85.92% 78.49% 76.16% 76.19% 74.54% 79.14% 77.95%
Subject12 95.12% 95.36% 95.88% 96.01% 83.85% 82.04% 85.70% 85.29% 86.46% 86.45% 81.72% 79.93%
Subject13 88.45% 89.48% 88.73% 89.68% 71.88% 73.51% 75.60% 75.19% 78.77% 80.13% 73.21% 73.83%
Subject14 90.51% 72.83% 83.62% 84.91% 71.82% 69.77% 75.06% 73.68% 50.45% 48.07% 79.85% 78.77%
Subject15 89.58% 89.61% 90.40% 90.42% 81.30% 79.92% 78.13% 77.34% 77.11% 76.99% 73.07% 73.82%

Overall 86.11% 84.47% 85.33% 84.74% 73.76% 72.62% 74.03% 72.79% 70.83% 69.19% 74.36% 74.48%

Table 5.4: DSADS classification result.

Test User
GlobalFusion GlobalFusion-SGL DeepSense SADeepSense attnLSTM BANet

Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

Subject1 91.67% 90.63% 91.67% 90.58% 89.06% 87.51% 91.82% 90.73% 90.07% 88.55% 83.46% 81.43%
Subject2 96.97% 96.87% 93.94% 93.36% 90.44% 88.23% 83.64% 78.72% 87.13% 83.96% 92.56% 92.10%
Subject3 93.09% 92.30% 91.38% 90.57% 90.81% 88.82% 89.52% 88.02% 88.79% 86.23% 88.33% 86.65%
Subject4 94.60% 93.99% 90.72% 89.26% 77.67% 74.36% 85.94% 83.70% 95.13% 94.75% 90.81% 89.99%
Subject5 96.78% 96.77% 96.97% 97.02% 88.14% 84.88% 88.14% 84.86% 82.81% 81.22% 84.93% 81.93%
Subject6 99.24% 99.23% 96.69% 96.57% 92.37% 91.77% 89.71% 87.38% 93.11% 91.59% 97.89% 97.90%
Subject7 94.51% 94.02% 96.40% 96.25% 88.60% 86.55% 91.45% 89.87% 94.49% 94.16% 86.76% 83.14%
Subject8 87.41% 85.54% 87.22% 85.26% 83.82% 80.74% 84.01% 80.72% 76.75% 72.48% 86.12% 84.84%

Overall 94.28% 93.67% 93.12% 92.36% 87.61% 85.36% 88.03% 85.50% 88.53% 86.62% 88.86% 87.25%

sensing modalities leads to a severe performance degradation. Once again, the overall per-

formance of SADeepSense and DeepSense are very close to each other, mainly due to the

utilized mean query in sensor attention of SADeepSense. Considering the diverse reliability

of sensing modalities, using a mean query for attention weight estimation is obviously not an

optimal solution, which is even worse than the brute-force attention design in BANet. The

best position still belongs to our GlobalFusion framework. The GlobalFusion-Single model

improves the back-bone DeepSense by 11.57% in accuracy, and the GlobalFusion model fur-

ther improves GlobalFusion-Single by 0.78%. From the confusion matrix of GlobalFusion in

Figure 5.4 (b), we can see that most classes are classified accurately, but there is still an

ambiguity between sitting and standing classes. This observation is similar as our finding in

PAMAP2, which also results from the dominant effect of accelerometer features. One more

point we want to mention is that GlobalFusion-SGL has a slightly better macro F1 score

than GlobalFusion, which means it’s more stable across classes in classification.

DSADS Results: According to the classification results on DSADS in Table 5.4, atten-

tional models generally work better than non-attentional DeepSense framework. It means all

109

lyin
g

sitt
ing

sta
nd

ing

walk
ing

run
nin

g
cyc

ling

Nord
ic

 walk
ing

asc
en

din
g

 st
air

s

de
sce

nd
ing

 st
air

s
va

cuu
m

 cle
an

ingiro
nin

g
rop

e

 ju
mpin

g

True Classes

lying

sitting

standing

walking

running

cycling

Nordic
 walking

ascending
 stairs

descending
 stairs

vacuum
 cleaning

ironing

rope
 jumping

Pr
ed

ict
ed

 C
la

ss
es

0.0

0.2

0.4

0.6

0.8

(a) PAMAP2

clim
bin

g

 do
wn

clim
bin

g

 up jum
pin

g
lyin

g

run
nin

g
sitt

ing

sta
nd

ing

walk
ing

True Classes

climbing
 down

climbing
 up

jumping

lying

running

sitting

standing

walking

Pr
ed

ict
ed

 C
la

ss
es

0.0

0.2

0.4

0.6

0.8

(b) RealWorld-HAR

sitt
ing

sta
nd

ing

lyin
g

ba
ck

lyin
g r

igh
t

asc
en

din
g s

tai
rs

de
sce

nd
ing

 st
air

s

sta
nd

 in
 el

ev
ato

r

mov
e i

n e
lev

ato
r

walk
ing

 gr
ou

nd

tre
ad

mill f
lat

tre
ad

mill i
ncl

ine

run
nin

ng

ste
pp

er

cro
ss

tra
ine

r

ho
riz

on
tal

 cy
clin

g

ve
rtic

al
cyc

ling
row

ing

jum
pin

g

pla
yin

g b
ask

etb
all

True Classes

sitting
standing

lying back
lying right

ascending stairs
descending stairs
stand in elevator
move in elevator

walking ground
treadmill flat

treadmill incline
runninng

stepper
cross trainer

horizontal cycling
vertical cycling

rowing
jumping

playing basketball

Pr
ed

ict
ed

 C
la

ss
es

0.0

0.2

0.4

0.6

0.8

1.0

(c) DSADS

Figure 5.4: Normalized confusion matrix of GlobalFusion on PAMAP2, RealWorld-HAR
and DSADS. (Every figure is the average overall all subjects.)

attention designs have a positive influence in model performance, so we are expecting to see

an unbalanced attention weight distribution here (as validated by Figure 5.10), in contrast

to the homogeneous information fusion in DeepSense. SADeepSense outperforms DeepSense

only by 0.42%, due to its defective mean query design, while our GlobalFusion-Single and

GlobalFusion consistently improve the model performance, achieving an accuracy of 93.12%

and 94.28% respectively. The normalized confusion matrix of GlobalFusion is given in Fig-

110

Table 5.5: DG classification result.

Test User
GlobalFusion-SGL DeepSense SADeepSense attnLSTM BANet

Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

Subject1 92.71% 64.20% 89.40% 60.88% 86.16% 57.45% 90.63% 60.00% 92.41% 61.83%
Subject2 90.18% 71.10% 89.84% 65.07% 90.16% 66.74% 88.59% 60.04% 89.22% 56.52%
Subject3 86.15% 65.45% 86.46% 64.95% 86.56% 66.49% 84.48% 62.78% 85.94% 57.56%
Subject4 99.58% 49.90% 98.24% 49.56% 98.05% 49.51% 97.36% 49.33% 99.22% 49.80%
Subject5 83.65% 66.68% 80.42% 52.86% 81.98% 61.14% 81.56% 60.24% 81.56% 59.16%
Subject6 93.65% 56.57% 94.06% 51.75% 94.06% 55.92% 93.44% 48.30% 93.75% 48.39%
Subject7 96.22% 73.58% 95.18% 74.07% 93.36% 70.81% 92.32% 65.54% 94.40% 68.25%
Subject8 79.17% 72.96% 69.69% 66.33% 69.69% 64.23% 63.12% 61.16% 72.81% 61.58%
Subject9 88.15% 67.72% 85.94% 53.47% 86.42% 58.85% 86.78% 61.97% 85.94% 52.19%
Subject10 100% 100% 100% 100% 99.82% 49.95% 99.91% 49.98% 100% 100%

Overall 90.94% 68.82% 88.92% 63.89% 88.62% 60.11% 87.82% 57.93% 89.52% 61.53%

No Yes
True Classes

No

YesPr
ed

ict
ed

 C
la

ss
es

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 5.5: Normalized confusion matrix of GlobalAttention-Single on DG. (The figure is
the average result overall all subjects.)

ure 5.4 (c). In this dataset, we can find the misclassification between sitting and lying right

classes. We observe that most attention weights are still allocated to the accelerometer,

which is not good at distinguishing between static gestures.

DG Results: At last, we analyze the classification results on DG. This is a binary

classification problem where training data is distributed rather unbalanced between two

classes. Most (over 95%) data samples belong to the ‘Not freezing’ class. We do not add

any data augmentation techniques in data preprocessing, such as down-sampling or up-

sampling of unbalanced classes. Since we only have accelerometer data from several data

positions, only global position attention module is available here. As indicated in Table 5.5,

the advantage of GLobalFusion-SGL is not obvious as on other three datasets. Only 1.42%

improvement in accuracy is observed compared to the best baseline model, BANet. The

heterogeneity among different spatial positions is not as large as diversity among different

sensing modalities. Furthermore, none of the models can overcome the unbalanced class

problem, since all of them show very low F1 score. Same conclusion can also be drew

111

Self
Attention

Acc Input Acc Local Conv Acc Spatial Conv

Gyro Input Gyro Local Conv Gyro Spatial Conv

Mag Input Mag Local Conv Mag Spatial Conv

Modality
Attention
Module

Mod
Conv

Global
Attention

Bi-GRU

DeepSense

SADeepSense

GlobalFusion

Bi-GRU

DeepSense-Acc DeepSense-Gyro DeepSense-Mag

Figure 5.6: Information fusion capability evaluation logic example. (We use different dash
lines for each individual sensor model.)

from the normalized confusion matrix of GlobalFusion in Figure 5.5. A large portion of

positive samples are still misclassified as negative, which is especially unacceptable in medical

applications considering the safety of patients. In summary, the usage of global attention

module is not as beneficial as in other datasets, and it is not powerful enough to overcome the

unbalanced class distribution problem. Appropriate data augmentation techniques are still

needed to address this issue, while the positive aspect is that attention design is independent

of data augmentation so they can be applied together.

5.4.5 Information Fusion Capability

In order to further explore the impact of global attention module in general classification

performance, in this part, we look into details about information fusion capabilities between

different attention mechanisms. All models are based on the back-bone design of DeepSense.

To make the comparison fair and straightforward, we use the same lower level structures (i.e.,

below modality convolution module) at each model. An example to illustrate the evaluation

logic of this subsection is shown in Figure 5.6. We first show the prediction performance

of each single-sensor model, and then compare the information fusion capability between

different modality attention modules, including convolution operation (i.e., DeepSense), self-

attention (i.e., SADeepSense), and our global attention (i.e., GlobalFusion-Single). No

position attention module is applied here. Evaluations are performed on three datasets:

PAMAP2, RealWorld-HAR, and DSADS. All figures are results based on the k-fold cross-

validation on all subjects in each dataset.

PAMAP2: The comparison result of PAMAP2 is presented in Figure 5.7. Accuracy and

112

GF DS SA-DS DS-Acc DS-Gyro DS-Mag
Models

60

65

70

75

80

85

90

95
Ac

cu
ra

cy
 (%

)

(a) Accuracy

GF DS SA-DS DS-Acc DS-Gyro DS-Mag
Models

60

65

70

75

80

85

90

95

M
ac

ro
 F

1
(%

)

(b) Macro F1 Score

Figure 5.7: Information fusion comparison on PAMAP2.

macro F1 score of each single-sensor model and composite model are shown. We can see

that when three sensing modalities are used individually, accelerometer and magnetometer

achieve relatively better performance than gyroscope. All of three modality fusion modules

can take use of the information from three sensing modalities, because all of them can beat

the best single sensor model (i.e., DeepSense-Acc). Among the three referred attention

modules, GlobalFusion has the best information fusion capability because it possesses the

highest accuracy and macro F1, while the performance of SADeepSense and DeepSense are

inferior to GlobalFusion but similar to each other. We also find that accelerometer data

shows highest reliability in classification when used individually. Similar observations will

also be given in other two datasets, and we will try to find the connection between single

sensor performance and its corresponding attention weight returned by GlobalFusion in next

subsection.

RealWorld-HAR: The comparison result of RealWorld-HAR is shown in Figure 5.8.

Four sensing modalities achieve quite diverse performance, where the accuracy of DeepSense-

Acc is clearly higher than DeepSense-Gyro and DeepSense-Mag, while the performance of

DeepSense-Light is much worse than all other sensors. SADeepSense achieves similar per-

formance as DeepSense, both of which are slightly better than DeepSense-Acc. It means

that these two models is still able to extract complementary information from other sens-

ing modality features excluding accelerometer feature. Our GlobalFusion beats these two

models by a large margin, improving the performance of DeepSense by about 11%. Mean-

while, DeepSense-Acc shows an obviously better performance than other three single-sensor

models. This observations is same as what we have saw in PAMAP2. We also dig into

reasons behind the failure of light sensor model. After checking the raw data, we found that

113

GF DS SA-DS DS-Acc DS-Gyro DS-Mag DS-Lig
Models

30

40

50

60

70

80

90
Ac

cu
ra

cy
 (%

)

(a) Accuracy

GF DS SA-DS DS-Acc DS-Gyro DS-Mag DS-Lig
Models

30

40

50

60

70

80

90

M
ac

ro
 F

1
(%

)

(b) Macro F1 Score

Figure 5.8: Information fusion comparison on RealWorld-HAR.

GF DS SA-DS DS-Acc DS-Gyro DS-Mag
Models

60

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

(a) Accuracy

GF DS SA-DS DS-Acc DS-Gyro DS-Mag
Models

60

65

70

75

80

85

90

95

100
M

ac
ro

 F
1

(%
)

(b) Macro F1 Score

Figure 5.9: Information fusion comparison on DSADS.

although the light sensor maintains a 50 Hz sampling rate, there is not much vibration in its

readings. In most cases, there is no value change for light sensor within each time interval.

Therefore, the information contained in light data is much lower than other sensor types.

DSADS: At last, we compare the information fusion result on DSADS. The correspond-

ing accuracy and F1 results are given in Figure 5.9. As we have observed in all previous

datasets, regarding the single sensor model performance, DeepSense-Acc > DeepSense-Mag

> DeepSense-Gyro. This result will be integrated into the attention weight analysis in next

part. For the sensor fusion models, conclusion are similar: DeepSense and SADeepSense

share similar accuracy and macro-F1 score, because they both prefer more homogeneous

input from different sensing modalities. Since GlobalFusion does not follow this assumption,

114

acc gyro mag
Sensors

0.0

0.1

0.2

0.3

0.4

0.5

0.6
At

te
nt

io
n

W
ei

gh
t

(a) PAMAP2

acc gyro mag lig
Sensors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
te

nt
io

n
W

ei
gh

t

(b) RealWorld-HAR

acc gyro mag
Sensors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

At
te

nt
io

n
W

ei
gh

t

(c) DSADS

Figure 5.10: Modality attention weight distribution on different datasets.

head chest ankle
Body Positions

0.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
W

ei
gh

t

(a) PAMAP2

head chest arm waist shin
Body Positions

0.0

0.1

0.2

0.3

0.4

0.5
At

te
nt

io
n

W
ei

gh
t

(b) RealWorld-HAR

torso r-Arm l-Arm r-Leg l-Leg
Body Positions

0.0

0.1

0.2

0.3

0.4

0.5

At
te

nt
io

n
W

ei
gh

t

(c) DSADS

Figure 5.11: Position attention weight distribution on different datasets.

its performance is much better than the other two. In summary, we have shown the superior

information fusion capability of GlobalFusion compared to DeepSense and SADeepSense

from the pure data driven aspect. To further validate the reasonability of our design, we

directly look at and analyze the returned attention weight distribution, and try to interpret

it from the physical aspect.

5.4.6 Qualitative Analysis on Attention Weight

In this subsection, we give a qualitative analysis about how our global attention design

deals with the heterogeneity in information fusion, as well as some observations we get

through analyzing the attention weight distribution. We will also answer the question about

how we decide the information fusion order from the perspective of heterogeneity level.

First, we only use modality attention module in GlobalFusion, and analyze the statis-

tical distribution of attention weight among each sensing modality. The results are given

in Figure 5.10. The accelerometer always has the best classification result, and it also re-

ceives most attention by GlobalFusion on all datasets, which is what we have anticipated.

However, on all three datasets, we observe a better performance on DeepSense-Mag than

115

PAMAP2 RealWorld-HAR DSADS
Dataset

0.00

0.01

0.02

0.03

0.04

JS
 D

iv
er

ge
nc

e

0.0011
0.0053

0.0324

0.0001 0.0011

0.0156

Modality Attention
Position Attention

Figure 5.12: Attention weight divergence on each dataset

DeepSense-Gyro, but magnetometer has a higher attention weight than gyroscope in both

PAMAP2 and RealWorld-HAR. We try to understand this observation from the physical

principles: Accelerometer measures the absolute moving speed patterns, while magnetome-

ter measures absolute orientation pattern in NESW plane. Gyroscope measures the changes

in the orientation. If we take the derivative of consecutive magnetometer measures, we get

the angular velocity in NESW plane; similarly, when we take the integral of consecutive gy-

roscope measures, we get the angular changes. Thus, gyroscope and magnetometer readings

unavoidably contain overlapped information. At meantime, magnetometer lacks the vertical

plane orientation information, while gyroscope lacks the absolute facing direction informa-

tion of sensors to transferring the angular velocity from absolute earth coordinates to human

body coordinates [142]. Therefore, the two sensors are also complementary to each other.

The information contained by accelerometer readings is more independent of gyroscope and

magnetometer, and is more critical in deciding human gesture patterns (i.e. activities), so

it is supposed to receive highest attention weight. The information of gyroscope and mag-

netometer are both overlapped and complementary, so the relation between their attention

weights is not fixed and can be affected by noise level of sensors. For the light sensor used

in RealWorld-HAR, as we have mentioned before, although it has a completely different

sensing principle compared to other inertial sensors, the lack of vibrations in its readings (at

least in this dataset) restricts it to contain much information in frequency domain, so that

it only gets a very low attention.

Next, we only include position attention in GlobalFusion, and present the results in Fig-

ure 5.11. Our observations are in two folds. First, the divergence of attention distribution

over different body positions is smaller than different sensing modalities, which means that

the information contained across sensing modalities are more diverse compared to spatial

positions. To further validate this hypothesis, we show the JS divergence between both at-

tention distributions and uniform distribution on each dataset in Figure 5.12. JS divergence

116

is defined based on KL divergence as follows:

JS(P || Q) =
1

2
KL(P || M) +

1

2
KL(Q || M), (5.5)

where: M =
1

2
(P +Q), (5.6)

KL(P || M) =
∑
x

P (x) log

(
P (x)

M(x)

)
. (5.7)

P and Q are two normalized distributions. We can see from Figure 5.12 that the JS diver-

gence in modality attention distribution is apparently larger than position attention distribu-

tion on each dataset. This is exactly the reason why we choose to merge position information

first before sensing modalities. We want to push the fusion of more heterogeneous informa-

tion to higher layers of network so that we do not break the information integrity at lower

level feature extraction. The second observation is, in both RealWorld-HAR and DSADS,

arm sensors both get lower attention weight than other positions. Our interpretation is that

although the moving patterns of arm contains a lot of information because its movement

range is larger than other body positions, this information is not necessarily closely related

to the target classes (i.e., activities). Instead, the information contained in the arm move-

ment can actually make confusion to the model. Therefore, arm features are not assigned

large attention weight by the global attention module. By all the above observations and

analysis, we prove that our global attention design is logically reasonable and agrees well

with existing human knowledge.

5.4.7 Time and Energy Efficiency

In this part, we evaluate the time and energy efficiencies of GlobalFusion when deployed

on IoT devices. The experiments are conducted on two types of IoT devices, LG Nexus

5 and Raspberry Pi Model B. Nexus 5 is powered by a 2.26 GHz quad-core Snapdragon

800 processor with 2 GB of RAM, 32 GB of internal storage, and a 2300 mAh battery.

The installed operating system is Android 7.1.1. Raspberry Pi 3 Model B is powered by a

quad core 1.2 GHz Broadcom BCM2837 64bit CPU with 1 GB RAM and 16 GB storage.

The preinstalled Raspbian Jessie operating system is used for Raspberry Pi. For all the

models, we only use on-chip CPU for inference. Every model is preloaded to IoT device

before experiment, and any unnecessary application and service that may interfere model

computation are closed in advance. During the runtime on Nexus 5, we use the TensorFlow

117

Lite interpreter [167] as the inference engine, which is specially designed for running deep

learning models on mobile, embedded, and IoT devices. Since TensorFlow Lite on Python

is still under development during the paper writing, we use vanilla TensorFlow library for

inference on Raspberry Pi. The energy consumption is measured by an external Monsoon

High Voltage Power Monitor [168]. We independently run each model on each dataset for

20 times and take the average of their inference time and energy consumption.

The time and energy efficiency results of inference on Nexus 5 are shown in Figure 5.13,

while the results on Raspberry Pi 3 Model B are shown in Figure 5.14. The results on both

devices share the following common observations: First, although both GlobalFusion and

SADeepSense are based on the backbone structure of DeepSense, GlobalFusion always leads

to shorter inference time and less energy consumption, because we do not utilize the multi-

head design in our global attention module. The additional time and energy overhead of

GlobalFusion compared to DeepSense is within an acceptable range. Second, the attnLSTM

is most time and energy efficient across all datasets, because it has less layers than all

compared models. In addition, they first fuse information of different sensing modalities at

each specific intervals (i.e., which is same as our design) before merging information across

intervals, so that only one recurrent module is used. Third, SADeepSense and BANet show

the worst time and energy efficiency. SADeepSense has the most layers in its architecture and

utilize multi-head design in both sensor and time attention modules. BANet first aggregates

information across intervals at each individual sensor before fusing information across the

sensing modalities. One individual recurrent unit is required by each sensor. Since the RNN

computations are typically time consuming, we can expect to see a larger time difference

between BANet and all other models when utilizing GPU for computations, because GPU is

optimized for parallel computation of convolutional operations. The inefficiency of BANet is

amplified especially we have more sensor types and body positions to fuse information (i.e.,

BANet is slower than all other models on both RealWorld-HAR and DSADS with a large

margin). Four, in most cases of our overhead evaluations, energy efficiency shares the similar

results with time efficiency because we only use CPU for computations. A more complex

relation between time and energy consumption will appear when GPU and DSP on the chip

are involved in the computation, or cloud offloading is applied during the inference. This

problem is beyond the scope of discussion in this work.

5.5 RELATED WORK

Textbooks have been written on classical multisensor data fusion [169] prior to the recent

resurrection of neural networks research. These traditional techniques fuse carefully-designed

118

GF DS SA-DS attnLSTM BANet
Models

0

50

100

150

200

250

300

350
In

fe
re

nc
e

Ti
m

e
(m

s)

(a) PAMAP2 Time

GF DS SA-DS attnLSTM BANet
Models

0

50

100

150

200

250

300

350

In
fe

re
nc

e
Ti

m
e

(m
s)

(b) R-HAR Time

GF DS SA-DS attnLSTM BANet
Models

0

50

100

150

200

250

300

350

In
fe

re
nc

e
Ti

m
e

(m
s)

(c) DSADS Time

GF DS SA-DS attnLSTM BANet
Models

0

50

100

150

200

250

300

350

In
fe

re
nc

e
Ti

m
e

(m
s)

(d) DG Time

GF DS SA-DS attnLSTM BANet
Models

0

40

80

120

160

200

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

(e) PAMAP2 Energy

GF DS SA-DS attnLSTM BANet
Models

0

40

80

120

160

200
En

er
gy

 C
on

su
m

pt
io

n
(m

J)

(f) R-HAR Energy

GF DS SA-DS attnLSTM BANet
Models

0

40

80

120

160

200

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

(g) DSADS Energy

GF DS SA-DS attnLSTM BANet
Models

0

40

80

120

160

200

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

(h) DG Energy

Figure 5.13: Time and energy efficiency on Nexus 5.

GF DS SA-DS attnLSTM BANet
Models

0

200

400

600

800

1000

1200

In
fe

re
nc

e
Ti

m
e

(m
s)

(a) PAMAP2 Time

GF DS SA-DS attnLSTM BANet
Models

0

200

400

600

800

1000

1200

In
fe

re
nc

e
Ti

m
e

(m
s)

(b) R-HAR Time

GF DS SA-DS attnLSTM BANet
Models

0

200

400

600

800

1000

1200

In
fe

re
nc

e
Ti

m
e

(m
s)

(c) DSADS Time

GF DS SA-DS attnLSTM BANet
Models

0

200

400

600

800

1000

1200

In
fe

re
nc

e
Ti

m
e

(m
s)

(d) DG Time

GF DS SA-DS attnLSTM BANet
Models

0

100

200

300

400

500

600

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

(e) PAMAP2 Energy

GF DS SA-DS attnLSTM BANet
Models

0

100

200

300

400

500

600

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

(f) R-HAR Energy

GF DS SA-DS attnLSTM BANet
Models

0

100

200

300

400

500

600

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

(g) DSADS Energy

GF DS SA-DS attnLSTM BANet
Models

0

100

200

300

400

500

600
En

er
gy

 C
on

su
m

pt
io

n
(m

J)

(h) DG Energy

Figure 5.14: Time and energy efficiency on RaspBerry Pi 3 Model B.

features from each sensor thus calling for a human feature engineering effort. We shall not

consider these approaches further as we seek a fully automated machine learning solution.

Deep learning revolutionized data fusion as it obviates feature engineering, instead in-

gesting raw sensor measurements only. Several deep-learning-based fusion methods have

recently been proposed [147, 148, 170, 171, 172, 173]. For example, Yao et al. [148] con-

catenate different modality representations and use a convolution operation to fuse their

information. Others explicitly model sensor interactions and correlations for better fusion

quality [147, 170, 171, 172, 173]. While these approaches compute global context from local

data, the “wiring” of global context as a function of local data is fixed. In contrast, an at-

119

tention mechanism allows selective retrieval of some local data to add to the global context

for further processing, in essence allowing for different weighting of the same local feature in

different global contexts.

Indeed, a key challenge in information fusion is to dynamically understand which in-

puts or features are more important when. This is akin to attention mechanisms in neural

networks [16, 174, 175, 176]. It is an emerging technique for dynamically adjusting neu-

ral network model’s focus by multiplying the features of each sensor with a corresponding

weight, where the weight is dynamically estimated by an independent module based on the

sensor inputs. Different solutions vary in their choice of weight calculation methods for

fusion inputs [149, 159, 160, 161].

The attention mechanisms used in multisensor fusion are generally divided into two cat-

egories, called additive attention and multiplicative attention, respectively. In additive at-

tention designs [160, 161], a small fully connected neural network is utilized to learn the

weight of sensors/positions directly based on their inputs. In multiplicative attention, the

weight of each sensor or position is decided by the compatibility between its features and a

special feature vector, called query . The compatibility function is typically defined as a dot

product of two vectors. In the sensor fusion problem, multiplicative attention is more intu-

itive because we can define the relevance of sensor features through a corresponding query

design, unlike the black-box implementation of additive attention. The choice of the query

directly decides the attention weight received by each sensor/position. For example, Yao et

al. [159] use the mean of all sensor feature vectors as the query to estimate the attention

weight of local features from each sensor component. They rely on the assumption that

sensing information is highly correlated while the noise is not. However, this solution does

not address different sensing modalities well because the information contained in fusion

inputs are probably dissimilar but complementary to each other.

In contrast, in our design, we propose to use aggregated information from higher layers of

the neural network to estimate the importance of local sensor features. We show that such an

approach outperforms others because it is able to choose weights based on more advanced

features, not available (i.e., not yet computed) at lower layers of the neural network. A

similar idea of using aggregated global information to selectively emphasize informative

local features originated in recent efforts on applying convolutional neural networks (CNN)

to image recognition [165, 177, 178, 179]. In Squeeze-and-Excitation (SE) block [177]. Hu et

al. explore channel relationships (i.e., RGB channels) in an image by stacking an information

gathering stage (i.e., squeeze block) with a following information distribution stage (i.e,

excitation block) to adaptively recalibrate channel features. In [165], Jetley et al. leverage

global image representation fed to the last classification layer as the query, to estimate

120

weights of local area features at intermediate convolution layers, after which the highlighted

local features are output directly for classification. Both of them have observed significant

improvement in image recognition accuracy.

To the best of our knowledge, we are the first to apply global information based attention

design to multisensor fusion for IoT applications. Compared to the channels or local areas

within an image, differences in the nature of information obtained from different sensors or

spatial positions is a key challenge that hinders the direct application of global information

based attention mechanism here. We tackle this challenge as follows. First, compared

to [177], we explore a different method in information gathering stage. Instead of using

a fully connected layer, we leverage the three-layer convolution module in DeepSese [148]

to gather global information from sensors/spatial positions, which is known to be both

effective and efficient in extracting representative features from multi-channel input. The

gathered global information is used as the global query to recalibrate the local features .

Second, compared to [165], we divide the information fusion into a hierarchy of two stages,

named modality fusion and position fusion, respectively. Position fusion is performed before

sensor fusion. The global information gathered from sensors/positions are immediately sent

back to recalibrate the local features. We maximally preserve the flexibility in attention

distributions to tackle information heterogeneity: Different sensors correspond to their own

position attention distributions. Similarly, considering the time-varying sensing quality, the

sensor fusion at different time intervals is independently performed with no information

interference from other intervals.

121

CHAPTER 6: ATTENTION-BASED MISSING SENSOR RECOVERY

6.1 OVERVIEW

Internet of Things (IoT) advances promise great societal value at multiple scales, from

single-device applications (e.g., digital assistants [180, 181] and heart-rate monitoring [182,

183]), to multi-sensor applications (e.g., autonomous driving [184, 185] and smart homes [186,

187]), and large-scale systems (e.g., smart transportation [146, 188, 189, 190] and smart agri-

culture [191, 192]). In most applications, instead of relying on a single sensor, multiple em-

bedded devices are interconnected to collaboratively carry out sensing tasks. Representative

applications include protective behavior detection for people with chronic pain [160], patient

health monitoring [193], traffic pattern analysis [188], and electroencephalogram (EEG)-

based brain activity analysis [194]. This paradigm enables sensors to interact, collaborate,

and learn from each other’s observations. Deep neural networks [23, 39, 45, 48, 195, 196]

have dominated learning and recognition tasks in such sensing-data-based applications, em-

powering an increasing spectrum of smart systems.

Reliable data delivery in IoT systems is crucial for providing high-quality services. We

consider applications, where sensors from diverse locations are utilized together to perform

intelligent spatially-distributed recognition tasks. We illustrate the processing pipeline of

such systems in Figure 6.1. There are many reasons why data delivery from a sensor might

be interrupted. They include battery depletion, power outages, weather conditions, commu-

nication failures, and external attacks. Human factors can also lead to missing sensor data.

For instance, users might forget to wear a specific device that contributes data to the over-

all system. Therefore, the missing sensor problem is inevitable and frequently encountered

when multi-sensor IoT systems are deployed in practice. In this work, we focus on situations

where failures last for extended periods of time (compared to the sensor sampling period),

so that missing sensor signals remain inaccessible before the issue is fixed.

Unfortunately, neural network models are generally sensitive to missing features, and lack

the ability to automatically adjust themselves under these failures. There is very limited

work in machine learning literature to investigate the impact of missing data. Most prior

work is limited to considering randomly missing features out of a large feature set. [197]

In this work, we consider the more challenging scenario, where only a partial sensor set is

present during the inference phase, while the model is trained on the complete sensor set. We

define this problem as a missing sensor problem. The scenario is challenging because features

of missing sensors are lost in many consecutive sampling periods. Intuitively, this condition

122

Battery Human Weather Attack

Sensing Data Collection

Sensing Data

Model Inference

Cloud / Edge

Data Processing

Applications

Data Prediction

Network Connection

Missing Sensor Reasons

Decision / Feedback

Building Control Smart Home

Transportation Agriculture

Patient Care Manufacturing

Figure 6.1: Overview of topology-aware IoT systems. Reasons that may lead to missing
sensors are annotated in shadow area.

has a larger impact on model performance compared to randomly missing features, because

most statistical imputation methods can no longer be used. We conducted an empirical

experiment to examine the performance degradation caused by missing sensors on two IoT

tasks; human activity recognition (HAR) using the DeepSense [148] framework and EEG-

based motor-imagery recognition using a CNN framework proposed by Qiao et al. [198].

More details will be mentioned in Section 6.2. We saw an accuracy drop of 25% in the

HAR task and 14% in the EEG task when input signals of 50% of the sensors are missing.

Therefore, special attention needs to be paid to missing sensors in neural network inference.

A naive approach to dealing with missing sensors is to learn a separate model for every

possible remaining sensor combination. By doing so, we can always maximally utilize the

information contained in available sensors to achieve the best inference performance. How-

ever, this strategy will result in an exponential number of models, compared to the number

of sensor nodes, which is unacceptable, especially when the number of sensors is large. For

example, the EEG system usually contains 64 or 128 electrodes, while a smart transportation

system can have hundreds to thousands of sensors deployed across the city. Therefore, most

existing approaches have focused on training a single model that can work with different avail-

able sensor subsets. Vaizman et al. [199] randomly remove some sensors using dropout [200]

at the input layer to make the neural network automatically learn to adapt to missing sen-

sor data. However, the dropout strategy completely gives up the features at the missing

sensor positions, which may cause more significant degradation. Instead, we try to recover

the features of missing sensors by exploiting their spatial correlations with available sensors,

to enhance behavior of the classification model. Some recent work [201, 202, 203] used a

denoising autoencoder [204] to recover missing features. During training, they manually add

random noise and turn off parts of the features of input data to make the autoencoder learn

123

to remove noise and recover missing features. It generally works well for randomly missing

features, but is not able to handle missing sensors over extended periods.

In this work, we propose a novel feature reconstruction module, named the graph recovery

module, for handling missing sensors in topology-aware IoT applications. We assume that

there is a physical network, where the sensor nodes are deployed and connected. For example,

in human activity recognition (HAR), the human skeleton structure can serve as a physical

network for sensor/joint connections. Our insight is that sensing signals of physically adja-

cent sensor nodes are also physically correlated. During the reconstruction, the information

is transmitted from available sensors to missing sensors to reconstruct their features. We

design a novel neural message passing mechanism based on a graph convolutional network

(GCN) [205]. However, information flow in original GCNs is not controlled, so the available

sensor features can be polluted and missing sensor features are not perfectly reconstructed.

To solve this problem, we further design a gating mechanism based on Gated Recurrent Units

(GRUs) [206] to let the network learn to control the information flow between available sen-

sors and missing sensors. Graph recovery is a flexible module that can be easily integrated

into the state-of-the-art learning frameworks for IoT applications at different layers. In our

implementation, we heuristically put it between individual sensor feature extraction module

and sensor fusion module. The holistic network is trained in an end-to-end manner to make

sure the reconstruction module and backbone network fit well with each other. Finally,

to improve the balance of model performance under different missing sensor situations, we

leverage a hybrid training strategy during model training. Multiple ratios of missing sensors

are simultaneously emulated during training to guarantee the model works well under all

missing sensor situations.

We choose two representative topology-aware IoT applications with corresponding state-

of-the-art neural network frameworks to evaluate the reconstruction performance of the

graph recovery module. They are human activity recognition (HAR) task trained with

DeepSense [148] on two public datasets (REALDISP [207], RealWorld-HAR [156]), and EEG-

based motor-imagery recognition trained with CNN [198] on the EEG-MMID [208] dataset.

We evaluate the model performance as the missed sensor ratio varies from 0% to 90%. On

one hand, the network equipped with our graph recovery module can achieve comparable

performance to the original backbone network (with at most 1% accuracy loss), when all

sensors are available. On the other hand, it can effectively maintain the model performance

when more sensors are missing. There is only a 7% to 18% accuracy loss when 90% of the

sensors are missing. In contrast, the accuracy of compared baseline algorithms drops by as

much as 15% to 47% under the same conditions. Moreover, we successfully demonstrate

the superiority of the graph recovery module in feature reconstruction by evaluating their

124

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Single-sensor Model

DeepSense

(a) Human Activity Recognition with
DeepSense

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
) 6-Electrode Model

CNN

(b) EEG-based motor-imagery Recognition
with CNN

Figure 6.2: Accuracy of backbone networks when encountered with missing sensors. We use
red dotted lines to show the accuracy of baseline models trained on ∼10% sensors.

reconstruction error against original features.

6.2 MOTIVATION

In this section, we investigate the impact of missing sensors on the performance of existing

IoT recognition models. Previous work [197, 209, 210] empirically studied the impact of

randomly missing features on neural network performance. When they feed samples with

randomly missing features into a neural network, trained on complete features, a dramatic

drop in model accuracy is observed. In our scenario, the features corresponding to missing

sensors are missing consecutively over a long period of time. Experiments are performed

on two multi-sensor applications, human activity recognition (HAR) and EEG-based motor-

imagery recognition.

For human activity recognition (HAR), we train a DeepSense [148] model on the REALD-

ISP dataset [207, 211], where 9 IMU sensors are deployed on the body. The model is trained

on data from all sensors. During the evaluation, each sensor is removed independently with

a probability p. We evaluate the model accuracy when p increases from 0 to 0.9. At least

one sensor is present in each testing sample. The results are shown in Figure 6.2(a). In

addition, we train a baseline model on single-sensor input. Its result is shown in red dotted

line. We can see that the accuracy of DeepSense drops significantly when the missed sensor

ratio increases. The baseline model accuracy reflects the amount of information contained in

single-sensor samples, given an appropriately trained model, tailored for that specific sensor.

It upper-bounds the performance of algorithms that do not train a separate model for each

possible sensor combination. The large performance gap between the tailored single-sensor

model and DeepSense (p = 0.9) indicates that DeepSense can not effectively utilize the in-

formation contained in available sensors when enough sensors are missing. It leaves plenty

125

of space for improvement.

Another experiment does electroencephalogram (EEG)-based motor-imagery recognition.

In EEG test, a set of electrodes are placed along the scalp to measure voltage fluctuations

at different points resulting from brain activity. We train a CNN model proposed by Qiao

et al. [198] on the EEG-MMID [208] dataset. We use 64 electrodes, distributed according

to the international 10-10 system [212]. The CNN model is trained based on data from all

64 electrodes, while each electrode is randomly dropped with probability p during inference.

The accuracy curve is given in Figure 6.2(b), when p increases from 0 to 0.9. Besides, a

baseline model trained on data from 6 randomly selected electrodes is shown in the red

dashed line. There is also a clear performance drop observed along with the increasing

sensor miss ratio p. Note that, the expected number of available electrodes is larger than 6

even when p = 0.9. However, the performance of the CNN model is worse than the baseline

model for p ≥ 0.3. We conclude that the CNN model is sensitive to missing sensors in EEG

classification as well.

The neural networks used in the above two IoT applications show sensitivity when encoun-

tering missing sensors. To fill the performance gap and enhance model robustness, rather

than training a separate model for each possible available sensor subset, a more practical

approach is to design a dedicated module to reconstruct the features of missing sensors based

on information contained in available sensors. This motivates developing our graph recovery

module. We will introduce the related background, technical design details, and training

strategy in the following sections.

6.3 PRELIMINARIES

In this section, we give a preliminary overview of Graph Neural Networks (GNNs) [205,

213], denoising AutoEncoders [204], and Gated Recurrent Units (GRUs) [206], which all lay

a theoretical foundation for our design of the graph recovery module. Since we mainly use

Graph Convolutional Networks (GCNs) in this work, we will only introduce GCN-related

theories here.

Notations are defined as follows. All vectors are denoted by bold lower-case letters (e.g.,

x and y), while matrices and tensors are represented by bold upper-case letters (e.g., X and

Y). For a vector x, the jth element is denoted by xj. For a tensor X, the tth matrix along

the first axis is denoted by Xt··, and other slicing denotations are defined similarly. For each

layer k, we use X(k) to denote the input to this layer, and use Y(k) to denote corresponding

output. For any tensor X, |X| denotes the size of X. All sets are denoted by upper-case

calligraphic letters (e.g., V and E). Similarly, |V| denotes the size of V .

126

6.3.1 Graph Convolutional Networks (GCNs)

Graph Convolutional Networks (GCNs) are a generalization of well-established Convo-

lutional Neural Networks (CNNs) to non-Euclidean graph-structured data, such as social

networks, the World Wide Web, traffic networks, and abstract knowledge graphs. It can

leverage graph topology to aggregate node information from the neighborhood in a convo-

lutional fashion. [213]. We focus on the widely-adopted GCN version proposed by Kipf and

Welling in [205], which is a spectral-based graph convolution design with spatial localization

meaning. Assume we have a graph G with N nodes, whose topology is represented by an

adjacency matrix A ∈ RN×N . Its corresponding graph Laplacian is defined as,

L = IN −D−
1
2 AD−

1
2 = UΛU>, (6.1)

where D ∈ RN×N is the diagonal degree matrix with Dii =
∑

j Aij, IN ∈ RN×N is the

identity matrix, U and Λ are eigenvectors and diagonal matrix of eigenvalues corresponding

to L. The spectral convolution on the graph is:

gθ ? x = UgθU
>x, (6.2)

where x ∈ RN is a graph feature vector, and gθ is the convolution kernel. The intuitive

explanation is that we first do a graph Fourier transform on graph features by U>x, multiply

it by the convolution kernel gθ, and finally perform a reverse Fourier transform by multiplying

it with U. Next, we regard the convolution kernel as a polynomial function gθ(Λ) of the

diagonal eigenvalue matrix Λ, so that the convolution becomes,

gθ ? x = Ugθ(Λ)U>x = U

(
K∑
k=0

θkΛ

)
U>x =

K∑
k=0

θkL
kx, (6.3)

where K is the chosen order of polynomial approximation, and θ are trainable parameters.

To further improve the computational efficiency, we approximate gθ(Λ) by its Chebyshev

polynomials and set the order of approximation K = 1. The Chebyshev polynomials are

recursively defined as Tk(x) = 2xTk−1(x)− Tk−2(x), with T0(x) = 1 and T1(x) = x. To meet

the requirement of Chebyshev polynomials, we normalize the eigenvalues as Λ̃ = 2
λmax

Λ−IN

to make them lie within [−1, 1]. λmax denotes the largest eigenvalue of L, which is assumed

to be 2. After a few derivation steps, the graph convolution becomes:

gθ ? x ≈ θ′0x + θ′1(L− IN)x = θ
(
IN + D−

1
2 AD−

1
2

)
x = θD̃−

1
2 ÃD̃−

1
2 x, (6.4)

127

with a single parameter θ = θ′0 = −θ′1, Ã = A + IN and D̃ii =
∑

j Ãij. We finally gener-

alize the definition to signal X ∈ RN×CI with CI input channels and CO output channels:

Y = σ
(
D̃−

1
2 ÃD̃−

1
2 XΘ

)
, where Θ ∈ RCI×CO is the trainable parameter matrix and σ is the

sigmoid activation function. Though derived from the spectral domain, the graph convolu-

tion above is considered to have a clear meaning of spatial localization [213]. It is essentially

equivalent to aggregating node representations from their direct neighborhood each time.

As far as we know, we are the first to utilize GCNs from a message passing perspective to

rebuild features of missing sensors based on the network’s spatial topology structure.

6.3.2 The Denoising Autoencoder (DAE)

An autoencoder [214] is a neural network structure that is used to learn a useful encoding

of data in an unsupervised manner. The output of an autoencoder is set the same as its

input. In other words, it is designed to learn an identity function. It typically consists of an

encoder that can transform the input data into a compressed latent representation, and a

decoder that can recover the original input from the encoding of data. The learning objective

of an autoencoder is to minimize the reconstruction loss between the decoder output and

the original data,

θ, φ = arg min
θ,φ

‖X−Dφ[Eθ(X)]‖2 , (6.5)

where E and D denote the encoder function and decoder function, respectively. A denoising

autoencoder [204] is a variant of autoencoders that is specifically designed for data recon-

struction from partially corrupted input. During the training, they randomly remove parts

of the input and add random noise instead, before feeding it into the encoder. DAEs are

trained to recover the original undistorted input. Its mathematical formulation is,

θ, φ = arg min
θ,φ

∥∥∥X−Dφ[Eθ(X̃)]
∥∥∥2 , (6.6)

where X̃ denotes the distorted input data. Although we don’t use the specific encoder-

decoder structure in our graph recovery module, this training philosophy indeed motivates

us to change the training of GCN to serve the purpose of filling missing sensor features.

6.3.3 Gated Recurrent Units (GRU)

Gated recurrent units (GRU) are a gating mechanism proposed by Cho et al. [206] to

control the information flow in recurrent neural networks (RNN). It was originally introduced

128

to solve the vanishing gradient problem in standard RNN, especially when dealing with long

sequences. GRUs use the so-called update gate and reset gate to decide what information

should be passed to the output. Their advantage is that they can be trained to keep around

older information without washing it through time, as well as removing information which

is irrelevant to the prediction. Its mathematical formulation is as follows,

Gu = σ (Wu [ht−1, xt] + bu) [update gate],

Gr = σ (Wr [ht−1, xt] + br) [reset gate],

h̃t = tanh (Wm [xt, Gr � ht−1] + b) [current memory],

ht = Gu � h̃t + (1−Gu)� ht−1 [final memory], (6.7)

where ht and ht−1 denote the latent representation of the current time step and previous time

step respectively, xt is the input to current time step, σ is the sigmoid function, and� denotes

the Hadamard (element-wise) product. The update gate helps the model to determine how

much of past information needs to be passed along to the future, while the reset gate is

used to decide how much of past information to forget. The final memory equation decides

what to collect from current memory content h̃t, and what from the previous steps ht−1. A

similar idea can be used to control the information flow in the GCN-based message passing

mechanism. At each message passing step, we need to find a tradeoff for each sensor between

the information contained in this sensor, and messages passed from its neighboring sensors.

6.4 GRAPH-BASED MISSING SENSOR RECONSTRUCTION

With the previous foundation, we are ready to introduce our graph recovery module for

reconstructing missing sensor features in IoT learning frameworks, in this section. We divide

the description into three parts. We first give an overview of the general framework equipped

with the graph recovery module. Next, we introduce the technical details of the graph

recovery module. Finally, we discuss the design of loss functions and the training method.

6.4.1 Learning Framework with Feature Reconstruction

We consider applications where a set of sensors collaboratively capture an overall percep-

tion of the environment. Classification is performed at the graph level based on the joint

information, as opposed to being performed individually at each sensor position. This is

different from most application scenarios of graph neural networks (GNNs), but such ap-

plications are prevalent in the IoT field. For example, in the electroencephalogram (EEG)

129

Single Sensor Multi Sensor
Model Type

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(a) RealWorld-HAR [156]

Single Sensor Multi Sensor
Model Type

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(b) REALDISP [207]

Single Sensor Multi Sensor
Model Type

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(c) EEG-MMID [208]

Figure 6.3: Accuracy comparison between single sensor model and multi sensor model on
HAR task (i.e., RealWorld-HAR and REALDISP) and EEG task (i.e., EEG-MMID). In
EEG-MMID, we use 6 electrodes out of 64 as the ”single sensor” model, which is about 10%
of all available sensors.

test [215], a set of electrodes are placed along the human scalp to measure voltage fluctua-

tions resulting from ionic current within neurons. In elderly/patient monitoring systems, a

set of IMU sensors are placed on different body positions to recognize their activity.

Compared to single-sensor models, collaborations among sensors can significantly improve

the accuracy and robustness of recognition. We empirically prove it in Figure 6.3. We

compare the performance of a multi-sensor model and a single-sensor model on both HAR

task and EEG task with three datasets. The multi-sensor model utilizes data from all sensor

positions, while the single-sensor model only uses one or 10% out of available sensors. We can

see in both tasks that, when all sensors are present, the multi-sensor model has a significantly

higher accuracy than the single-sensor model. We seek to improve the robustness of the

multi-sensor neural network models against missing sensors in IoT scenarios.

In a multi-sensor recognition task, we can generally partition the neural network into three

stages: sensor feature extraction, sensor fusion, and classification. We use the HAR task

to help understand the pipeline. In the sensor feature extraction stage, we try to learn the

time/frequency patterns from each local position (e.g., the hand movement patterns or the

waist movement patterns). Then, in the sensor fusion stage, we aggregate all pieces of local

information to recover the global patterns (e.g., the whole body movement patterns). The

extracted global features are then fed into the classification module for final inference. In

HAR, activity recognition is based on the whole body movement patterns, instead of the

local hand movement patterns.

To tackle the challenge caused by missing sensors, it is not enough to simply emulate all

possible situations during the training, because the features of complete samples and partial

samples are not fully compatible with each other. For example, in HAR, the complete

features contain the whole body movement patterns, but the partial features may only

contain upper body movement patterns. We have to explicitly teach the neural network to

130

IoT Sensing System Edge/Cloud: Recognition Model with Feature Reconstruction

Graph Recovery Module
Spatial Sensor Topology

Prediction

Partial
Sensing Input

Step 1.
Feature Extraction
for Available Sensors

Step 2.
Feature Reconstruction
for Missing Sensors

Step 3.
Sensor Fusion

Step 4.
Classification

Multi-Position IoT System

Figure Legends:
Available Sensor

Missing Sensor

Sensing Signals

Missing Signals

Extracted Feature Vector

Missing Feature Vector

Reconstructed Feature Vector

Sensing
Data

Figure 6.4: Overview of IoT deep learning framework equipped with graph recovery module.
It consists of four steps: 1) Extract local features for available sensors; 2) Reconstruct
features for missing sensors with the graph recovery module; 3) Perform information fusion
on all sensors; 4) Feed aggregated features to classification model to get the prediction
output.

use partial body features to recover the whole body patterns before feeding them into the

classification module, so that the classification module is able to always base on the whole

body patterns to perform prediction.

We heuristically put the missing sensor reconstruction between the sensor feature extrac-

tion stage and sensor fusion stage. An overview of our general IoT deep-learning framework,

equipped with the feature reconstruction module, is given in Figure 6.4. In next part, we

motivate use of spatial topology to do missing sensor recovery and explain how we modify

Graph Convolutional Networks (GCNs) to serve this purpose.

6.4.2 Graph Recovery Module Design

In the previous section, we explained why we need a particular missing sensor recon-

struction module and where to deploy this module. Next, we illustrate why and how we

implement this functionality based on graph convolutional networks (GCNs).

The primary innovation in our design is that we try to integrate the physical spatial

topology of sensors into the feature reconstruction module within the neural network. This

idea is partially motivated by conventional data imputation methods widely adopted in

spatial-temporal sensing data [216, 217], where the locality in time and space is exploited to

fill randomly missing sensor readings. However, it has been proved that such methods, like

Non-negative Matrix Factorization (NMF) [218], can’t handle cases where the sensors are

completely missing all the time [216], because they impute each single value independently so

that the assembled sequence can not preserve the semantic meaning contained in the original

131

sensing signals. In the latent feature space, there is no semantic meaning contained in each

numerical value, but information is contained in the high-dimensional vector as a whole. In

our design, we reconstruct the feature vector of missing sensors as a basic unit. Meanwhile,

unlike previous autoencoder based feature reconstruction methods [201, 202, 203] that exploit

sensor correlations in a fully-connected manner, we only explicitly exploit sensor correlations

in the latent space based on their spatial topology. On one hand, we can avoid information

flooding at missing sensors where too much noise might overwhelm useful information; on

the other hand, we can improve computational efficiency to a large extent, because the

number of edges in most real-world networks tends to grow linearly (not quadratically)

with the number of nodes [219]. Next, we elaborate how to interpret GCN as a special

message passing mechanism, and how to control information flow within GCNs by a gating

mechanism.

Understanding GCN as a Neural Message Passing Mechanism: As we mentioned

before, one interesting property of the GCN proposed by Kipf and Welling [205] is that it has

a clear meaning of vertex localization that bridges the gap between spectral-based methods

and spatial-based methods. In this part, we describe how to understand it from a neural

message passing perspective, and how the correlations between sensors are exploited during

the training.

We are given a sensor topology graph G = (V , E) with |V| = N nodes, and an adjacency

matrix A ∈ RN×N . Assume that we only know the connections between nodes, but not the

weights on the edges, which means Aij = 1 if there is an edge between the two sensors (i.e.,

(i, j) ∈ E); otherwise, Aij = 0. We use H = [h1,h2, . . . ,hN] ∈ RN×C to denote the feature

matrix we need to recover, where C is the dimensionality of the feature vector on each sensor.

Let’s divide the sensors into two sets, the available sensor set A and the missing sensor set

M, where A ∪M = V and A ∩M = ∅. Besides, we use H̃ = [h̃1, h̃2, . . . , h̃N] ∈ RN×C to

represent the distorted sensor features, where the features of missing sensors are set to 0,

h̃i =

[0, 0, . . . , 0], if i ∈M;

hi, if i ∈ A.
(6.8)

H̃ is the input to the graph recovery module. The objective of the graph recovery module

is to reconstruct features of all missing sensors i ∈M. We follow the general neural message

passing definition raised by Gilmer et al. [220]. We use hti to denote the sensor i’s hidden

representation after t rounds of message passing, so we should have h0
i = h̃i. A typical

neural message passing mechanism consists of two components: message function Mt, and

vertex update function Ut. The message function is the aggregated information sent from

132

neighbors:

mt+1
i =

∑
j∈Ni

Mt+1(h
t
i,h

t
j), (6.9)

where Ni is the set of i’s neighbor sensors. The passed message can depend on information

available at both ends, as well as the edge information if available. The vertex update

function is used to update the sensor’s latent representation based on node representation

from the previous step and the passed message at the current step,

ht+1
i = Ut+1(h

t
i,m

t+1
i). (6.10)

Specifically in our case, according to the GCN definition: Ht+1 = σ
(
D̃−

1
2 ÃD̃−

1
2 HtΘt

)
, the

node is updated as,

ht+1
i = σ

(
D̃
− 1

2
ii Ãi·D̃

− 1
2 HtΘ

)
= σ

((
Θt+1

)>∑
j∈Ni

(
D̃iiD̃jj

)− 1
2
Ãijh

t
j

)
, (6.11)

where Θ ∈ RCt×Ct+1 is a dimension mapping parameter matrix. To solve the issue that

we only know the sensor connectivity but not their connection weights, we multiply an

extra learnable adjacency weight matrix WA by the adjacency matrix. It is shared across

every message passing step/layer in the graph recovery module. Correspondingly, we have:

Ã′ = WA(A + IN) and D̃′ii =
∑

j Ã′ij. Possible weight sharing methods can be used in WA

if more domain knowledge is available. In other words, we use this adjacency weight matrix

to describe sensor correlations in the latent space. Now, the message passing function and

vertex update function are,

Mt+1(h
t
i,h

t
j) =

(
D̃′iiD̃

′
jj

)− 1
2
Ã′ijh

t
j, (6.12)

Ut+1(h
t
i,m

t+1
i) = σ

((
Θt+1

)>
mt+1

i

)
. (6.13)

However, in this implementation, the difference between available sensors and missing sensors

is not considered. Intuitively, when the available sensors are reconstructing missing sensors,

the missing sensors are also polluting available sensors with their null messages. We will

solve this problem in next part by replacing the vertex update function.

Information Flow Control in GCN-based Message Passing: One problem in the

previously introduced GCN-based message passing mechanism is that there is no control on

the information flow between available sensors and missing sensors. We solve this problem

in three ways: message rescaling, a gated update function, and output substitution. We use

133

Hard Reset Gate Update Gate

Current Memory

Final Memory

Soft Reset Gate

Gated Information Flow Control

Message Rescale

Message Passing 𝒎"

#𝒉"%&

𝐺()"%&

𝐺*)"%&

𝐺+"%&
Output Substitution
(Last layer only)

𝒉" 𝒎"%& 𝒉"%&

Step 𝑡

𝒉"Sensor Update Message Passing 𝒎"%&

Step 𝑡 + 1

𝒉"%&Sensor Update

Gated Information Flow ControlGated Information Flow Control

Figure 6.5: Message passing with controlled information flow diagram of the graph recovery
module. We only show one layer/step of message passing. The graph recovery module is a
stack of T layers of such an implementation. At the upper part, we show design of gated
information flow control; at the lower part, an integrated message passing mechanism is
presented.

𝛼"" 𝛼"# 𝛼"$
𝛼#" 𝛼## 𝛼#$
𝛼$" 𝛼$" 𝛼$#

𝑦"
𝑦#
𝑦$

𝑥"
𝑥#
𝑥$

𝛼""
𝛼"" + 𝛼"# + 𝛼"$

𝑥" +
𝛼"#

𝛼"" + 𝛼"# + 𝛼"$
𝑥# +

𝛼"$
𝛼"" + 𝛼"# + 𝛼"$

𝑥$

𝛼#"
𝛼#" + 𝛼## + 𝛼#$

𝑥" +
𝛼##

𝛼#" + 𝛼## + 𝛼#$
𝑥# +

𝛼#$
𝛼#" + 𝛼## + 𝛼#$

𝑥$

𝛼$"
𝛼$" + 𝛼$# + 𝛼$$

𝑥" +
𝛼$#

𝛼$" + 𝛼$# + 𝛼$$
𝑥# +

𝛼$$
𝛼$" + 𝛼$# + 𝛼$$

𝑥$

𝑥"
𝑥"
𝑥"

𝛼""𝑥" + 𝛼"#𝑥# + 𝛼"$𝑥$

𝛼#"𝑥" + 𝛼##𝑥# + 𝛼#$𝑥$

𝛼$"𝑥" + 𝛼$#𝑥# + 𝛼$$𝑥$

3𝛼""𝑥"
3𝛼#"𝑥"
3𝛼$"𝑥"

𝛼"" 𝛼"# 𝛼"$
𝛼#" 𝛼## 𝛼#$
𝛼$" 𝛼$" 𝛼$#

𝑦"
𝑦#
𝑦$

𝑥"
0
0

Normalization Rescale

=

=

x

x

Figure 6.6: A toy example to explain why we choose message rescale, instead of normaliza-
tion.

a diagram in Figure 6.5 to illustrate information flow control in graph recovery layers.

Message Rescaling. In vanilla GCNs, despite the dimension mapping, sensor updates

purely take a certain weighted average of its neighboring nodes at each step. When consid-

ering the missing sensors, the received message at each node is,

mt+1
i =

∑
j∈Ni,‖ht

j‖>0

(
D̃′iiD̃

′
jj

)− 1
2
Ã′ijh

t
j. (6.14)

When the number of available sensors in Ni are different, the aggregated information scale is

also different. There are two common ways to solve this issue: normalization and rescaling,

134

both of which can preserve the same scale of the expected value. Here we choose rescaling,

because it can preserve the heterogeneity of information sent from one sensor to its different

neighbors. We use a toy example in Figure 6.6 to help explain the difference. As we can see,

when there is only one sensor available, all missing sensors will receive the same message

under the normalization trick; but rescaling can avoid this problem because it preserves the

column structure in messages sent from the same sensor. Thus, the message received by

sensor i at step t+ 1 correspondingly becomes,

mt+1
i =

|Ni|
|{j | j ∈ Ni, ‖ htj ‖> 0}|

∑
j∈Ni,‖ht

j‖>0

(
D̃′iiD̃

′
jj

)− 1
2
Ã′ijh

t
j. (6.15)

Gated Update Function. Here we use a GRU-based gating mechanism to automatically

control information flow at each sensor. During message passing steps, the goals of missing

sensors and available sensors are different. The missing sensors need to collect information

related to recovering their own features, but also relay useful information to neighbors. For

the available sensors, they actually only need to work as ”relay nodes” to forward information

to their missing neighboring sensors, because we will substitute output of available sensors

by their original feature vectors later. In neural message passing, we can regard the passing

steps as a special time dimension, where the newly received message is used as the external

input at current step. Each sensor has an independent GRU implemented. Now the update

function looks like,

Soft reset gate: Gt+1
sr = σ

(
Wr

[
ht,mt+1

]
+ br

)
,

Hard reset gate: Gt+1
hr = 1− sgn

(
‖ ht ‖2

)
,

Update gate: Gt+1
u = Gt+1

hr +
(
1−Gt+1

hr

)
σ
(
Wu

[
ht,mt+1

]
+ bu

)
,

Current memory: h̃t+1 = tanh
(
Wm

[
mt+1, Gt+1

sr � ht
]

+ b
)
,

Final memory: ht+1 = σ
((

Θt+1
)> [

Gt+1
u � h̃t+1 + (1−Gt+1

u)� ht
])
, (6.16)

where sgn(x) = 1 if x > 0, sgn(x) = 0 if x = 0, and sng(x) = −1 if x < 0. ‖ · ‖2 is the

L2 norm. For notational simplicity, we remove the subscript for sensors here, but please

remember each sensor has a separate gating module. The gating mechanism automatically

learns how much information to preserve from the past, and what information to extract

from the new message according to the learning objective. The only change we make to GRU

is that we rename the original reset gate as a soft reset gate, and include a new hard reset

gate. The hard reset gate evaluates whether the sensor representation at the previous step

is null. If so, it will let the new sensor representation fully depend on the received message

135

(i.e., set update gate as 1); otherwise, the update gate is used as its original definition.

Output Substitution. As we mentioned earlier, during message passing steps, the available

sensors have to store information to be forwarded to their neighbors. The stored information

is not related to reconstructing their own feature vectors. Such information pollution is

inevitable at intermediate steps, but we can manually substitute the output of available

sensors by their original feature vectors at the output layer. After all T rounds of message

passing, the output at each sensor is,

hTi = sgn

(∥∥∥h̃i∥∥∥2) · h̃i +

(
1− sgn

(∥∥∥h̃i∥∥∥2)) · hTi , (6.17)

where ‖ · ‖2 denotes the L2 norm of the feature vector. We should be careful when using

the output substitution because the reconstructed features of missing sensors may not be

fully compatible with the original features of available sensors. This is why we train the

neural network in an end-to-end manner so the remaining network components can adjust

themselves accordingly. So far, we have introduced all components and design choices in the

graph recovery module. Next, we describe how we design the loss function for the neural

network equipped with the graph recovery module, and the corresponding training method.

6.4.3 Loss Function and Training Method

In this part, we describe the design of loss functions and training method for recognition

models, equipped with the graph recovery module. The general philosophy is that we try to

simulate different missing sensor situations during training to let the model automatically

learn to adapt to and handle these situations.

Hybrid Training: In order to increase model robustness and improve its capability

for handling missing sensors, we need to randomly drop features of some sensors during

training. Vaizman et al. [199] preset a sensor missing probability p, where each sensor

is independently dropped with probability p during training. However, according to our

empirical observations, it is hard to find a value p that can effectively maintain model

performance under different ratios of missing sensors during inference. If p is close to 0,

it can effectively maintain model performance when most sensors are present, but it incurs

severe performance degradation when most sensors are missing. In contrast, a large p value

maintains model accuracy with few sensors, but can not maximally utilize all information

when most sensors are present. Therefore, we propose a hybrid training method to tackle

this problem. Instead of setting a single value of p, we heuristically choose a set of four

probabilities P = {0, 0.3, 0.6, 0.9} in our training. The distorted samples under different

136

probabilities are concatenated into a new batch. Although we sacrifice some computational

resources during such training, this one-time effort does effectively improve the balance of

model performance across different test cases. Note that, model efficiency during inference

is not affected.

Loss Function: The loss function of neural networks equipped with the graph recov-

ery module consists of three parts: feature reconstruction loss, classification loss, and L2

regularization.

Feature Reconstruction Loss LR: Given the complete sensor feature matrix H, the recon-

struction loss is defined as the mean squared error (MSE) between the reconstructed sensor

features and the original features for all missing sensors M.

LR =
1

|M|
∑
i∈M

∥∥hi − hTi
∥∥2 . (6.18)

Since we performed output substitution for available sensors at the output layer of the graph

recovery module, there is no need to count the reconstruction loss for available sensors.

Classificatoin Loss LC : For the classification loss, we choose the commonly used cross-

entropy loss,

LC = −
∑
y∈Y

p(y) log q(y), (6.19)

where Y is the labels, p(y) and q(y) denote the predicted class distribution and groundtruth

label distribution.

L2 Regularization Loss LN : In addition to the previous two learning losses, we add an L2

regularization to prevent overfitting during training,

LN =
∑
w∈W

‖w‖2 , (6.20)

where W represents the set of all trainable parameters. Moreover, to cope with the hybrid

training method introduced above, we add up the training loss under different missing sensor

probabilities. Thus, the final loss function is,

L =
∑
p∈P

αp (βRL
p
R + βCL

p
C) + βNLN , (6.21)

where α is a hyperparameter list related to each missing sensor probability, β is a hyperpa-

rameter list related to each loss component, and the superscript Lp specifies the loss corre-

sponding to different missing sensor probabilities. Finally, we have to ensure that the whole

137

(a) Human Skeleton Network

F
PZF

P1
F

P2

AF
7

AF
3

AF
Z

AF
4

AF
8

F
7

F
5 F

3
F

1 F
Z

F
2

F
4

F
6

F
8

FT
7 FC

5 FC
3 FC

1 FC
Z

FC
2

FC
4

FC
6

FT
8

T
9

T
7

C
5

C
1

C
3

C
Z

C
2

C
4

C
6

T
8

T
10

TP
7

CP
5

CP
3

CP
1

CP
Z CP

2 CP
4 CP

6 TP
8

P
7

P
5

P
3

P
1

P
Z P

2
P

4 P
6

P
8

PO
7

PO
3 PO

Z
PO

4

PO
8

O
1

O
Z

O
2

I
Z

23
22 24

61 63

62

64

25

26 27 28

29

30 38

31 37
32 33

34
3535 36

39 40
1

2 3 4

7
65

43 4441 428 9 10 11 12 13 14

45 46
15 2116 20

17 19
18

4747 55

48 54
49 50 52 5351

56

57 59

60
58

(b) EEG Electrode Network

Figure 6.7: Spatial topology networks we use in human activity recognition (HAR) and
EEG-based motor-imagery recognition.

model is trained together in an end-to-end manner, because the output substitution step

we use in graph recovery may lead to possible feature incompatibility problems if training

the reconstruction module and classification model separately. We will empirically com-

pare model performance between end-to-end training and separate training in Section 6.6 to

validate this choice.

6.5 APPLICATIONS

In this section, we introduce two topology-aware multi-sensor IoT applications, where we

can apply the graph recovery module to handle missing sensors. The corresponding backbone

neural network and spatial topology we use in each application are also included.

6.5.1 Human Activity Recognition (HAR)

Human activity recognition (HAR) has been one of the most popular sensing tasks in the

past decade. It is used in elderly/youth care [221], patient monitoring [160], and industry

manufacturing assistance [222], among other applications. Here, we only consider activity

recognition based on on-body inertial sensors. For professional monitoring and recognition

systems, there are typically multiple Inertial Management Unit (IMU) sensors deployed at

different body positions to capture full body movement; even in daily applications, we can

combine the data from smart glasses, smart watches, smart phones, and smart chips in

the shoes to infer user activity. Missing sensors do occur frequently in this scenario. For

example, users may forget to wear the smart watch, or the phone is out of power. We want

138

to maximize the recognition accuracy no matter what devices are available, but at the same

time we prefer that only one model be loaded into the system. In our implementation, we

construct the sensor topology according to their corresponding joint connection relationships

according to the human skeleton structure, as shown in Figure 6.7(a). The intuition behind it

is that human skeleton limits the degrees of freedom of whole body motion, because directly

connected joints satisfy certain physical constraints on their movement patterns. In the graph

recovery module, such correlations are reflected in the learned adjacency weight matrix. For

the backbone network, we choose a variant of the DeepSense framework proposed by Yao et

al. [148]. For the input, we first divide the sensing signal of each sensor into T time intervals,

and then get the frequency spectrum of each interval. The design choices corresponding to

the general learning framework in Figure 6.4 are as follows: In sensor feature extraction,

we use a three-layer convolutional module to extract individual features of each sensing

modality, followed by another three-layer convolutional module to fuse information from

different sensors at the same body position. Sensor fusion across all body positions is a

mean pooling layer, instead of complex attention mechanisms [40, 159]. Finally, we use a

network consisting of two Gated Recurrent Unit (GRU) layers and one fully connected (i.e.,

dense) layer to work as the classification model.

6.5.2 Electroencephalogram (EEG)-based Motor-imagery Recognition

The Electroencephalogram (EEG) test [215] is a test used to evaluate the electrical activ-

ity in the brain. During the test, a set of electrodes are placed along the scalp to measure

voltage fluctuations resulting from brain activity. Specifically, we utilize the EEG records

for user motor-imagery recognition. EEG data is inherently noisy because EEG electrodes

also pick up unwanted electrical physiological signals, such as the electromyogram (EMG)

from eye blinks and muscles on the neck [223]. There is usually a manual channel/electrode

selection process in data preprocessing, where the selected electrodes can be different case by

case. This can also be regarded as a special ”missing sensor” scenario. We need the graph

recovery module for feature reconstruction to guarantee different selected electrodes can still

use the same recognition model. Meanwhile, there is an internationally recognized method

to describe and apply the local of scalp electrodes in the context of an EEG exam [212]. In

Figure 6.7(b), we show the topology structure of electrodes as per the international 10-10

system that is also used in our evaluation. We manually connect the neighboring nodes in

this network to form the electrode topology to feed into the graph recovery module. The

input data format is similar to what we use in the HAR task, except that we only have

one sensing modality here. Our backbone network is based on the design of Qiao et al.

139

in [198]. The sensor fusion in both spatial and temporal dimensions is performed together

by a convolutional module. At the bottom feature extraction, we use a three-layer convo-

lutional module to extract features for each electrode within every time interval. On top of

the extracted local features, the sensor fusion module regards the aggregated features as a

special spatial-temporal “image”, where the electrode positions and time intervals are cho-

sen as two image dimensions. We use another three-layer convolutional module to aggregate

information across different sensor positions and time intervals. Finally, a fully connected

layer is stacked on top of the sensor fusion module before we output the final prediction

results.

6.6 EVALUATION

In this section, we empirically evaluate the reconstruction performance of the proposed

graph recovery module on two publicly available human activity recognition (HAR) datasets,

and an EEG-based motor-imagery recognition dataset. We first introduce the experimental

setup, the datasets we use along with their corresponding preprocessing procedures, and the

baseline algorithms we are comparing with. We then show a direct comparison of model

classification performance with baseline models. We also compare them with expert models

trained specially under two end-cases; namely, sensor drop probability p = 0 and p = 0.9.

Next, we compare the effect of different training regimes on GraphRecovery. After that, we

perform a quantified evaluation of the reconstructed features by different algorithms against

the original features, to demonstrate the contribution of the graph recovery module to the

reconstruction. Finally, we report the time and energy efficiencies on a commodity IoT

device; a Raspberry Pi 3 Model B.

6.6.1 Experimental Setup

All models evaluated in this work are trained with Tensorflow 1.14 [29] on a workstation

equipped with an Intel i9-9960X processor, 64GB memory, and four NVIDIA RTX 2080 Ti

GPUs. The model is optimized by the ADAM algorithm [166] with a learning rate that varies

from 1e−3 to 1e−5 across different datasets, while β1 = 0.5 and β2 = 0.9. We add a batch

normalization layer and a dropout layer after each convolutional layer to stabilize the training

process and prevent overfitting. Training batch size is set as 64. For the hybrid training, we

take the unweighted sum of missing sensor probabilities (i.e., αp = 0.25,∀p ∈ P). For other

hyperparameters in the loss function, βC = 1, βN = 5e−4, while βR is tuned differently on

each dataset.

140

Table 6.1: Statistical Summary of Selected Datasets.

Dataset Classes Subjects Sensors Positions Sample Length Sample Frequency #Samples #folds

REALDISP 33 17 3 9 3 sec 50 Hz 5225 4
RealWorld-HAR 8 15 3 7 3 sec 50 Hz 21257 5

EEG-MMID 3 109 1 64 4.1 sec 160 Hz 37951 4

During the evaluation, we assume that each sensor is offline independently with a prob-

ability p, where p varies from 0 to 0.9. We try to emulate different missing sensor cases to

test model robustness in each case. Sensing readings of missing sensors are set as 0 all the

time. Moreover, all models are evaluated under a leave-one-user-out scenario with k-fold

cross validation. Specifically, we divide the involved subjects in each dataset into k groups,

and choose all samples of one user group as testing data every time, whereas others are used

for training. There is no overlap among the user groups. When evaluating algorithm perfor-

mance for the same user population, we use 90% of the subjects from all groups as training

data, and use the remaining 10% subjects as the validation data. All user groups are tested

in a cross-validation manner, then their average results are presented and analyzed in the

following subsections. The choice of k in each dataset is shown in Table 6.1.

6.6.2 Datasets and Data Preprocessing

We first briefly introduce our data preprocessing steps before introducing the selected

datasets and their corresponding statistics. We summarize the related data statistics of each

dataset in Table 6.1.

Suppose the sensing signals X are collected from |V| = N positions for a fixed time period

(e.g., 3 seconds), where S sensor types are deployed at each position. Each sensor can

have d dimensions. For example, an IMU sensor typically has three sensing modalities (i.e.,

accelerometer, gyroscope, and magnetometer), each of which has three dimensions, x, y, and

z. Instead, the electrode only has one sensing modality with one dimension. Different sensing

modalities are upsampled and downsampled into a unified sampling rate. The signals of each

dimension are divided into T fixed-length and non-overlapped time intervals. We further

perform a Fourier transform to each interval to extract their frequency domain spectra, which

have been proved to be more informative than pure time domain representations [163]. After

preprocessing, the input fed into the model should have a shape of X ∈ RT×N×S×d×2f , where

T represents time intervals, N denotes sensor positions, S denotes sensing modalities, d is the

sensor dimensionality, and 2f is the number of spectral samples with f frequency magnitude

and phase pairs within each interval. Such time-frequency representation preserves both

time domain order information and frequency domain pattern information simultaneously.

141

REAListic sensor DISPlacement Activity Recognition Dataset (REALDISP)

[207]: This dataset has been originally collected to investigate the effects of sensor displace-

ment in the activity recognition process in real-world settings. They cover 9 different body

positions and 33 activity classes. An IMU sensor is deployed on each body position. Dif-

ferent sensor placement situations are considered, including ideal-placement, self-placement

(i.e., decided by user), and induced placement (i.e., with intentional sensor rotations and

translations). In our evaluation, we use data collected under all sensor placement situations.

A total of 17 users involved in data collections are divided into 4 folds in cross-validation.

The data are sampled at 50 Hz. We divide the 3 seconds samples into 10 time intervals,

where each interval contains 15 readings.

RealWorld Human Activity Recognition Dataset (RealWorld-HAR) [156]: This

dataset covers 8 activities from 15 subjects on 7 body positions, with an IMU sensor deployed

on each position. The subjects are divided into 5 folds for cross-validation. The data are

sampled at 50 Hz. Similarly, we divide the 3 second samples into 10 time intervals, where

each interval contains 15 readings.

EEG Motor Movement/Imagery Dataset (EEG-MMID) [208]: In this dataset,

109 subjects performed different motor/imagery tasks while a 64-channel EEG was recorded

using the BCI2000 system. 109 subjects are divided into 4 folds for cross-validation. Three

annotated classes are rest, onset of motion (real or imagined) of left/both fist(s), and onset

of motion (real or imagined) of right fist or both feet. The electrodes are placed according

to the 10-10 system shown in Figure 6.7(b). The voltage is sampled at 160 Hz. We divide

the 4.1 second samples (one action time in this dataset) into 16 time intervals, where each

interval contains 41 readings.

6.6.3 Baseline Algorithms

In this part, we briefly introduce the baseline models we compare in our experiments.

They include three types of networks: backbone networks, baseline algorithms for handling

missing sensors, and variants of graph recovery.

• Backbone Networks (BackboneNet, BN): In order to show how different feature

reconstruction algorithms can improve model robustness when encountering missing

sensor situations, we compare their performance with the backbone network under each

missing sensor probability. As we mentioned in Section 6.5, we use DeepSense [148]

as the backbone network for all HAR datasets, and use a CNN network [198] for the

EEG dataset.

142

• Dropout Training Network (DropoutNet-Single, DN-Sin) [199]: Instead of

setting up an extra module to reconstruct features for missing sensors, we keep using

the backbone network in this algorithm. The only difference is that we randomly

drop some sensors during the training to make the neural network learn to adapt to

different situations. We follow Vaizman et al. in their paper [199] to set the missing

sensor probability p = 0.5, which attains a relatively good balance between the two

ends (i.e., p = 0 and p = 0.9). This model follows the design in their original paper.

• Dropout Training Network with Hybrid Training (DropoutNet-Hybrid, DN-

Hyb): This is a variant of DropoutNet with hybrid training. Instead of choosing

a single sensor drop probability, we use the same hybrid sensor drop probabilities

as GraphRecovery during the training. By comparing the DropoutNet-Single with

DropoutNet-Hybrid, we can see how hybrid training can affect the model with no fea-

ture reconstruction module. By comparing DropoutNet-Hybrid with GraphRecovery,

we can have a more straightforward understanding on the contribution of the proposed

graph recovery module in improving model robustness against missing sensors.

• Graph Autoencoder (GAE) [201, 203]: In this algorithm, we use an autoencoder

to reconstruct missing sensor features. Both the encoder and decoder are implemented

by stacked graph convolutional layers, and a bottleneck fully connected layer is put

between the encoder and decoder. During the training, we first train a backbone

network based on all sensor readings, and then train the reconstruction module on

top of the fixed classification model. Mean squared error (MSE) loss between the

reconstructed features and the original features is used as the optimization objective

when training the reconstruction module. The main advantage of this algorithm is that

it doesn’t need to retrain the whole neural network. We only need to train a separate

feature reconstruction module based on the Encoder-Decoder architecture, on top of

the existing backbone network.

• Graph Recovery with Separated Training (GR-Sep): In this variant, the net-

work architecture is the same as what we use in GraphRecovery. The only difference is

that we train the classification network and feature reconstruction network separately

here. This variant is used to verify the possible compatibility problems between the

feature reconstruction module and the classification module, so that we can under-

stand the importance of end-to-end training in neural network equipped with graph

recovery.

• Graph Recovery with Single Training (GR-Single): The only difference between

143

this variant and GraphRecovery is that we do not use the proposed hybrid training

method here. Instead, we set the missing sensor probability p = 0.5 uniformly. By

comparing GR-Single and GR, we can see how hybrid training can help the network

attain a better balance under different missing sensor probabilities, especially when

p > 0.5.

6.6.4 Quantitative Evaluation of Classification Performance

In this subsection, we present and analyze the classification results of GraphRecovery and

the aforementioned baseline algorithms. We choose accuracy and F1 score as the evaluation

metrics here. Accuracy is an intuitive global performance measure for the model, while F1

score is better at dealing with imbalanced class distributions. To evaluate the contribution

of the graph recovery module, we pay more attention to the model performance degrada-

tion under different missing sensor situations, compared to the situation where all sensors

are available. In some figures, for notational simplicity, we use abbreviations to represent

models. GR represents GraphRecovery, which is the network equipped with the graph re-

covery module. GAE represents GraphAutoencoder, which is the network equipped with

a GCN-based autoencoder module. We use DN-Sin to represent DropoutNet-Single, where

no hybrid training is applied. The DropoutNet-Hybrid with hybrid training will also be

evaluated and discussed later. Generally, applying hybrid training to DropoutNet makes its

performance worse, so we don’t consider it here. Specific reasons will be analyzed in the next

subsection. We use BN to denote the backbone network. In addition to showing the com-

plete accuracy curve changing with p values, we also separately compare the model accuracy

when p = 0 and p = 0.9, with the models specifically trained for these situations, which we

also call the expert models. When p = 0, the expert model is trained with all sensors; while

when p = 0.9, the expert model is trained with data samples extracted from all possible

combinations of 10% sensors. The performance of expert models are shown in red dashed

lines with corresponding annotations in these figures. They are used as performance “upper

bound” for compared algorithms. Next, results of each dataset are analyzed one by one.

REALDISP: The classification results on the REALDISP dataset are shown in Fig-

ure 6.8. Let’s start from p = 0 in Figure 6.8(b). One basic requirement of the missing sensor

reconstruction module is that it should not degrade performance under when all sensors are

present; we have to maintain the original backbone model performance when all sensors are

available. Both GraphRecovery and DropoutNet-Single can attain similar performance as

the BackboneNet, with respect to both accuracy and F1 score. However, GraphAutoencoder

has a clear performance drop, which means that the reconstructed features by the autoen-

144

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GraphRecovery
DropoutNet-Single
GraphAutoencoder
BackboneNet

(a) Complete Accuracy Curves.

GR DN-Sin GAE BN
Model Type

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

All-sensor Model

(b) Accuracy when p = 0.

GR DN-Sin GAE BN
Model Type

20

40

60

80

100

Ac
cu

ra
cy

 (%
) Single-sensor Model

(c) Accuracy when p = 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

20

40

60

80

100

F1
 S

co
re

 (%
)

GraphRecovery
DropoutNet-Single
GraphAutoencoder
BackboneNet

(d) Complete F1 Score Curves.

GR DN-Sin GAE BN
Model Type

20

40

60

80

100

F1
 S

co
re

 (%
)

All-sensor Model

(e) F1 score when p = 0.

GR DN-Sin GAE BN
Model Type

20

40

60

80

100

F1
 S

co
re

 (%
) Single-sensor Model

(f) F1 score when p = 0.9.

Figure 6.8: Performance comparison under different sensor missing probabilities on REALD-
ISP.

coder can not perfectly fit into the original classification network, even when all sensors are

present. According to the curves in Figure 6.8(a) and Figure 6.8(d), all three feature re-

construction algorithms (i.e., graph recovery, dropout, and graph autoencoder) are effective

in improving model robustness compared to the BackboneNet. GraphRecovery is the best

model among the three models. We also find that the performance gap between GraphRe-

covery and DropoutNet-Single increases along with the increasing p value, which means that

the model with graph recovery module is more robust against missing sensors. Meanwhile,

they are significantly better than the GraphAutoencoder and BackboneNet. When p = 0.9,

the performance of GraphRecovery is close to the expert model, while there is a 6.62% accu-

racy loss on DropoutNet. We can understand dropout from the perspective of an ensemble

mechanism [224]. If we set p = 0.5 during the training, the number of available sensors

in most “dropout” training samples is around 50%. During inference, the model takes the

voting / average result of all partial sensor combinations. When the value of p is small,

the voting results are summarized from diverse partial sensor combinations. Thus, the en-

semble purpose by dropout is effective, leading to near-optimal performance in DropoutNet.

On the contrary, when the p value is close to 1, most sensors are missing, and their fea-

tures are simply set as 0. This leads to two effects: First, each partial sensor combination

contains much less than 50% available sensors, so they can’t attain similar performance as

the training samples. Second, the diversity of sensor combinations becomes much lower, so

145

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

GraphRecovery
DropoutNet-Single
GraphAutoencoder
BackboneNet

(a) Complete Accuracy Curves.

GR DN-Sin GAE BN
Model Type

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

All-sensor Model

(b) Accuracy when p = 0.

GR DN-Sin GAE BN
Model Type

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
) Single-sensor Model

(c) Accuracy when p = 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

40

50

60

70

80

90

F1
 S

co
re

 (%
)

GraphRecovery
DropoutNet-Single
GraphAutoencoder
BackboneNet

(d) Complete F1 score Curves.

GR DN-Sin GAE BN
Model Type

40

50

60

70

80

90

F1
 S

co
re

 (%
)

All-sensor Model

(e) F1 score when p = 0.

GR DN-Sin GAE BN
Model Type

40

50

60

70

80

90

F1
 S

co
re

 (%
) Single-sensor Model

(f) F1 score when p = 0.9.

Figure 6.9: Performance comparison under different sensor missing probabilities on
RealWorld-HAR.

that the ensemble purpose can no longer be achieved. Therefore, a larger performance drop

can be observed in DropoutNet-Single when p approaches 1. Instead, GraphRecovery and

GraphAutoencoder perform classification based on features from all sensors, where the fea-

tures for missing sensors are reconstructed by their feature reconstruction modules. We also

observe that the accuracy loss between GAE and the expert model is large, which indicates

that the reconstructed features can not effectively utilize the classification network trained

on original features.

RealWorld-HAR: The corresponding results are shown in Figure 6.9. Some observations

are similar to the results in REALDISP, so we do not repeat them. There are also a few new

points we need to mention here: First, the accuracy gap between graph recovery and dropout

training when p = 0.9 is even larger, which demonstrates their different capabilities in

increasing model robustness. The feature reconstruction module in GraphRecovery preserves

the logic of sensing inference in a unified way. Second, as shown in Figure 6.9(b), there is

a small performance loss (∼ 1.5%) on GraphRecovery compared to the BackboneNet when

p = 0. After investigation, the reason we find is that the dataset itself is noisy and sensitive.

We can not tune the network to be optimal at both ends (i.e., both p = 0 and p = 0.9).

Thus, hybrid training causes a negative effect on the classification module, when p is large.

As we will show in the next subsection, this performance drop at p = 0 doesn’t exist

in GraphRecovery-Single, where no hybrid-training is applied. Third, the performance of

146

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

GraphRecovery
DropoutNet-Single
GraphAutoencoder
BackboneNet

(a) Complete Accuracy Curves.

GR DN-Sin GAE BN
Model Type

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

All-sensor Model

(b) Accuracy when p = 0.

GR DN-Sin GAE BN
Model Type

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
) 6-Electrode Model

(c) Accuracy when p = 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

30

40

50

60

70

80

F1
 S

co
re

 (%
)

GraphRecovery
DropoutNet-Single
GraphAutoencoder
BackboneNet

(d) Complete F1 score Curves.

GR DN-Sin GAE BN
Model Type

30

40

50

60

70

80

F1
 S

co
re

 (%
) All-sensor Model

(e) F1 score when p = 0.

GR DN-Sin GAE BN
Model Type

30

40

50

60

70

80

F1
 S

co
re

 (%
)

6-Electrode Model

(f) F1 score when p = 0.9.

Figure 6.10: Performance comparison under different sensor missing probabilities on EEG-
MMID.

GraphRecovery is even slightly better than the single-sensor expert model in Figure 6.9(c)

and Figure 6.9(f). This phenomenon is reasonable because at least one sensor is available

in each data sample, so that the expected available sensors in the testing data is slightly

more than 1. Instead, in the single-sensor expert model, we only use the single-sensor data

samples for training and testing.

EEG-MMID: In the EEG-MMID dataset, the number of sensor positions is significantly

larger than the sensor positions in both HAR datasets (i.e., 64 vs. 7 or 9). The results are

summarized in Figure 6.10. We see a slight advantage of BackboneNet over DropoutNet-

Single when p = 0 in Figure 6.10(b) and 6.10(e), which indicates that a large sensor dropout

probability (i.e., p = 0.5) during training can also have a negative effect on model perfor-

mance, because the global feature patterns from most sensor positions are ignored during

training of DropoutNet-Single. In the EEG task, the global information aggregated from all

sensor positions is more distinguishable towards output classes, than the ensemble decision

of partial sensor groups. After combining the results from all 3 datasets, we can safely con-

clude that both GraphRecovery and DropoutNet can effectively maintain model performance

when most sensors are available, with only possible slight deviation from the BackboneNet.

GAE does not always attain comparable performance. For example, in EEG-MMID (Fig-

ure 6.10(b) and 6.10(e)), there is a 5.29% accuracy drop and a 5.13% F1 score drop on GAE

compared to the expert model when p = 0. This validates the importance of end-to-end

147

training of all network components when dealing with missing sensors. Moreover, the ad-

vantage of GraphRecovery over DropoutNet is more significant in EEG-MMID. According

to Figure 6.10(a) and 6.10(d), when p increases, GraphRecovery maintains a clearly bet-

ter performance than DropoutNet. Therefore, we empirically show that the graph recovery

module is better than the baseline models in improving model robustness against missing

sensors.

After analyzing each dataset results individually, we summarize the conclusions that are

found commonly in all datasets.

• Graph recovery is the best among the three compared algorithms at improving general

model robustness against missing sensor situations, which attains a performance close

to the expert models at both ends (i.e., p = 0 and p = 0.9).

• The advantage of the proposed graph recovery over baseline algorithms is more signif-

icant when applied to IoT applications with larger scale spatial sensor networks (i.e.,

EEG vs. HAR tasks).

• In order to handle missing sensors, it is important to train the feature reconstruction

module and backbone classification network together in an end-to-end manner. Oth-

erwise, the reconstructed features may not be able to properly utilize the pre-trained

classification network, even under the situation where all sensors are available (i.e.,

GraphAutoencoder in RealWorld-HAR and EEG-MMID).

6.6.5 Ablation Study on Training Regimes

In this part, we perform an ablation study on the proposed graph recovery module with

respect to different training regimes. We compare GraphRecovery with its two variants,

GraphRecovery-Sep (GR-Sep), and GraphRecovery-Single (GR-Single). In GR-Sep, instead

of training the whole network in an end-to-end manner, we first train a backbone network for

performing classification based on all sensors, and train a separate graph recovery module

to reconstruct the features of missing sensors. By comparing GR with GR-Sep, we can

have a direct understanding on how the compatibility between reconstruction module and

classification network can affect classification performance on reconstructed features. In

GR-Single, we give up the hybrid training, but only use a fixed missing sensor probability

p = 0.5 during the training. By comparing GR with GR-Single, we can see how the hybrid

training method can help the model find a better performance balance under different missing

sensor probabilities. In addition, we also include DropoutNet-Single and DropoutNet-Hybrid

148

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
DropoutNet-Single
DropoutNet-Hybrid

(a) Complete Accuracy Curves.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

All-sensor Model

(b) Accuracy when p = 0.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Single-sensor Model

(c) Accuracy when p = 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

40

50

60

70

80

90

100

F1
 S

co
re

 (%
)

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
DropoutNet-Single
DropoutNet-Hybrid

(d) Complete F1 Score Curves.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

40

50

60

70

80

90

100

F1
 S

co
re

 (%
)

All-sensor Model

(e) F1 score when p = 0.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

40

50

60

70

80

90

100

F1
 S

co
re

 (%
)

Single-sensor Model

(f) F1 score when p = 0.9.

Figure 6.11: Ablation study on REALDISP.

here. By comparing these two models, we can see that hybrid training can also have a

negative impact on model performance, if not utilized appropriately. The improvement of

GraphRecovery over GraphRecovery-Single not only comes from hybrid training, but also

from the feature reconstruction capability of the graph recovery module. All results are

summarized in Figure 6.11, 6.12, and 6.13, where we choose the same way as before to

present the results. We show both the complete accuracy and F1 score change curves, and

specific performance comparisons when p = 0 and p = 0.9. Besides, the expert models for

each condition (i.e., p = 0 and p = 0.9) are still shown in red dashed lines with special

annotations.

To partially resolve the compatibility issue between the feature reconstruction module

and classification module in GR-Sep, we add a knowledge distillation loss [225] in addition

to the Mean Squared Error (MSE) loss when training the graph recovery module. The

intuition is to utilize the pre-trained classification network to give the feature reconstruction

module additional supervision. Intuitively speaking, the learning objective of the feature

reconstruction module is not only to perfectly reconstruct the original features, but also

to achieve similar inference results as original features. During knowledge distillation, the

parameters in the classification network are not updated. We choose the fully connected layer

before the output layer as the target for knowledge distillation. Assume the sub-network

between the feature reconstruction module and the target layer is C. The reconstruction

149

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
DropoutNet-Single
DropoutNet-Hybrid

(a) Complete Accuracy Curves.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

All-sensor Model

(b) Accuracy when p = 0.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Single-sensor Model

(c) Accuracy when p = 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

50

60

70

80

90

F1
 S

co
re

 (%
)

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
DropoutNet-Single
DropoutNet-Hybrid

(d) Complete F1 Score Curves.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

50

60

70

80

90

F1
 S

co
re

 (%
)

All-sensor Model

(e) F1 score when p = 0.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

50

60

70

80

90

F1
 S

co
re

 (%
)

Single-sensor Model

(f) F1 score when p = 0.9.

Figure 6.12: Ablation study on Realworld-HAR.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
DropoutNet-Single
DropoutNet-Hybrid

(a) Complete Accuracy Curves.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

All-sensor Model

(b) Accuracy when p = 0.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

6-Electrode Model

(c) Accuracy when p = 0.9.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

45

50

55

60

65

70

75

F1
 S

co
re

 (%
)

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
DropoutNet-Single
DropoutNet-Hybrid

(d) Complete F1 Score Curves.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

45

50

55

60

65

70

75

F1
 S

co
re

 (%
) All-sensor Model

(e) F1 score when p = 0.

GR GR-Sep GR-Sin DN-Sin DN-Hyb
Model Type

45

50

55

60

65

70

75

F1
 S

co
re

 (%
)

6-Electrode Model

(f) F1 score when p = 0.9.

Figure 6.13: Ablation study on EEG-MMID.

loss becomes,

LR =
1

|M|
∑
i∈M

∥∥hi − hTi
∥∥2 + γ

∥∥C(H)− C(HT)
∥∥2 , (6.22)

where γ is a hyperparamter to tune the weights between reconstruction loss and knowledge

150

distillation loss.

We first compare GraphRecovery with GraphRecovery-Sep. When p = 0, the performance

of GraphRecovery and GraphRecovery-Sep are similar for all three datasets. From the

accuracy curves, we can see that the performance gap between GR and GR-Sep increases with

p increases, especially for HAR tasks (i.e., REALDISP, and RealWorld-HAR). The accuracy

gap can even go up to 24.85% when p = 0.9 in REALDISP (i.e., shown in Figure 6.11(c)).

This is due to the fact that the reconstructed features can not perfectly fit back into the

classification network, trained on original sensor features. Therefore, our conclusion is that,

the separated training can not replace end-to-end training in our problem setting, even if we

add the knowledge distillation loss to guide the training of the reconstruction module.

We next compare GraphRecovery with GraphRecovery-Single. When p = 0, GR and GR-

Single attain similar performance for both REALDISP and EEG-MMID dataset, while GR-

Single is slightly better than GR for RealWorld-HAR. As we mentioned earlier, RealWorld-

HAR dataset is generally noisy and sensitive. Therefore, it is hard to tune GR to obtain

optimal results at both ends (i.e., p = 0 and p = 0.9). The training difficulty of GR

apparently is higher than GR-Single, since it has to deal with feature reconstruction at

different probabilities. After comparing the accuracy and F1 curves of GR and GR-Single,

we find that their performance is similar when p is small; more specifically, when p ≤ 0.5.

When p continues to increase, their performance gap starts to become larger. There is

a clear performance drop in GR-Single when p ≥ 0.7, which means the situations where

most sensors are missing are not well handled by GR-Single. The single missing sensor

ratio in GR-Single leads to an unbalanced feature reconstruction capability under different

p values. This problem is more severe in the EEG-MMID task, where GR-Single has an

even worse performance than GR-Sep at p = 0.9. Therefore, we have empirically shown the

benefits of leveraging the hybrid training method (i.e., apply multiple missing sensor ratios

simultaneously) in GR. It emulates different sensor drop probabilities during training to help

the model find a better balance in its reconstruction capabilities under different cases. The

model performance at the right end (i.e., p = 0.9) is lifted effectively, without significantly

sacrificing the performance at the left end (i.e., p = 0). Though it takes a relatively longer

training time than GR-Single, this one-time effort does not affect the time efficiency during

the inference stage.

However, when we compare DropoutNet-Hybrid and DropoutNet-Single, the benefits

of hybrid training don’t exist anymore. In all three datasets, the performance gain of

DropoutNet-Hybrid to DropoutNet-Single at p = 0.9 is obtained at the cost of sacrificing

the model performance in most cases (i.e., p ≤ 0.7). Following the previous understanding

of dropout from the ensemble learning perspective, the involvement of too high dropout

151

probabilities (i.e., 0.6 and 0.9 in hybrid training) is harmful because they are relying on the

voting result of very local information pieces. For example, if we have 10 sensor positions in

total, setting p = 0.9 during training means that the model inference result is the voting of

10 single-sensor models, where too much global multi-sensor information is lost. The result

is that the model trades its performance at one end (i.e., p < 0.7) for the possibly minor

improvement at the other end (p = 0.9). It has been agreed in machine learning litera-

ture [224] that for DropoutNet, p = 0.5 is an empirically good choice, because it not only

gets the highest variance in neuron (sensor) combinations, but also maintains most of the

crucial information. Therefore, we can safely conclude that the success of hybrid training in

GraphRecovery also comes from the strong feature reconstruction capabilities in the graph

recovery module.

6.6.6 Feature Reconstruction Quantification

In this part, we compare the reconstructed features of different models against the original

features under different missing sensor ratios. We make sure the backbone networks of

different algorithms are completely the same, including their activation functions at each

layer. Mean squared error (MSE) or root mean squared error (RMSE) is a commonly used

metric to estimate the similarity between feature vectors in a latent space [226, 227]. Here,

the feature reconstruction error is evaluated using the bit-based root mean squared error

(BRMSE) between the reconstructed features and the original features, which is defined as,

BRMSE =

√√√√∑x∈XT

∥∥∥ĥx − hx

∥∥∥2
|XT | · |hx|

, (6.23)

where XT represents the test dataset, hx represents the original features of data sample x

before the feature reconstruction layer, and ĥx is the reconstructed feature vector of the

same data sample. Please note that we divide the testing dataset size and the dimension of

feature vector at the denominator, so that BRMSE is not affected by the feature dimension

as root mean squared error (RMSE).

The feature reconstruction results are given in Figure 6.14. Since DropoutNet and Back-

boneNet don’t have a dedicated feature reconstruction module, their reconstruction losses

grow significantly with increasing p. GraphAutoencoder is much better than the above

three baselines. Moreover, all three versions of the GraphRecovery model have a clearly

lower reconstruction loss than GraphAutoencoder. To fairly compare the reconstruction

performance of the graph recovery module and the autoencoder, we can look at the recon-

152

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BR
M

SE
 o

f R
ec

on
st

ru
ct

ed
 F

ea
tu

re
s

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
GraphAutoencoder
DropoutNet-Single
DropoutNet-Hybrid
BackboneNet

(a) REALDISP.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BR
M

SE
 o

f R
ec

on
st

ru
ct

ed
 F

ea
tu

re
s

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
GraphAutoencoder
DropoutNet-Single
DropoutNet-Hybrid
BackboneNet

(b) Realworld-HAR.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensor Missing Probability (p)

0.0

0.4

0.8

1.2

1.6

2.0

BR
M

SE
 o

f R
ec

on
st

ru
ct

ed
 F

ea
tu

re
s

GraphRecovery
GraphRecovery-Sep
GraphRecovery-Single
GraphAutoencoder
DropoutNet-Single
DropoutNet-Hybrid
BackboneNet

(c) EEG-MMID.

Figure 6.14: Feature reconstruction error quantification on REALDISP, RealWorld-HAR,
and EEG-MMID.

struction loss between GraphRecovery-Sep and GraphAutoencoder, because their feature

reconstruction modules are both trained separately on top of the same backbone network.

In all three datasets, GraphRecovery-Sep beats GraphAutoencoder by presenting a lower

reconstruction loss. When applied in large scale networks (i.e., EEG-MMID), the recon-

struction loss of GraphAutoencoder is several times higher than GraphRecovery-Separate.

The conclusion here is that the graph recovery module is a better design in reconstructing

the features of missing sensors.

When comparing the different variants of GraphRecovery, we found that GraphRecovery-

Single generally shows similar reconstruction loss as GraphRecovery at lower sensor drop

153

GR DropoutNet GAE BackboneNet
Model Type

0

100

200

300

400

500

Ti
m

e
(m

s)

(a) REALDISP Time.

GR DropoutNet GAE BackboneNet
Model Type

0

100

200

300

400

500

Ti
m

e
(m

s)

(b) RealWorld-HAR Time.

GR DropoutNet GAE BackboneNet
Model Type

0

100

200

300

400

500

Ti
m

e
(m

s)

(c) EEG-MMID Time.

GR DropoutNet GAE BackboneNet
Model Type

0

200

400

600

800

1000

En
er

gy
 (m

J)

(d) REALDISP Energy.

GR DropoutNet GAE BackboneNet
Model Type

0

200

400

600

800

1000

En
er

gy
 (m

J)

(e) RealWorld-HAR Energy.

GR DropoutNet GAE BackboneNet
Model Type

0

200

400

600

800

1000

En
er

gy
 (m

J)

(f) EEG-MMID Energy.

GR DropoutNet GAE BackboneNet
Model Type

0
50

100
150
200
250
300
350

M
em

or
y

(M
B)

(g) REALDISP Memory.

GR DropoutNet GAE BackboneNet
Model Type

0
50

100
150
200
250
300
350

M
em

or
y

(M
B)

(h) RealWorld-HAR Memory.

GR DropoutNet GAE BackboneNet
Model Type

0
50

100
150
200
250
300
350

M
em

or
y

(M
B)

(i) EEG-MMID Memory.

Figure 6.15: Time, energy and memory consumption of compared algorithms on each dataset.

probabilities, while shows high reconstruction loss at higher sensor drop probabilities. This

result is in accordance with the model classification performance. If we compare GraphRe-

covery and GraphRecovery-Sep, we can see that a lower reconstruction loss doesn’t necessar-

ily indicate a higher model performance. For example, in REALDISP, GraphRecovery-Sep

always has a lower reconstruction loss than GraphRecovery, but its model accuracy and F1

score is significantly lower than GraphRecovery. This is because the classification network in

GraphRecovery is also dynamically adjusted for the reconstructed features during training,

leading to a better overall classification performance.

6.6.7 Time, Energy and Memory Efficiency

In this subsection, we report the time, energy and memory efficiencies of the graph recovery

module on top of the backbone networks when they are deployed on commodity IoT devices.

The experiments are conducted on Raspberry Pi 3B, which is powered by a quad core 1.2

154

Table 6.2: Backbone network sizes.

Dataset REALDISP RealWorld-HAR EEG-MMID

Backbone network DeepSense DeepSense CNN
#Layers 10 10 7

#FLOPs (in million) 432.842 263.309 3920.450

GHz Broadcom BCM2837 64bit CPU with 1 GB RAM. For all the models, we only use on-

chip CPU for inference. Every model is preloaded to the IoT device before the experiment,

and any unnecessary applications and services that may interfere with model computation

are closed in advance. Time and memory are measured by the built-in modules, while the

energy consumption is measured by an external Monsoon High Voltage Power Monitor [168].

We independently run each model on each dataset for 20 times, and take the average time

and energy result. Before the testing, one warm-up run is performed.

The corresponding results are summarized in Figure 6.15. As we can see, since DropoutNet

doesn’t include any additional components compared to BackboneNet, they always exhibit

the same time, energy and memory consumption on every dataset. On the contrary, extra

time and energy cost are caused by GAE and GR models. Between these two algorithms,

GAE is more efficient than GR in most cases. Although the encoder-decoder structure in

GAE typically has more layers than GR, the included gating mechanism in GR becomes an

efficiency bottleneck. The reason why we use GRU to design the gating mechanism, in lieu of

Long Short Term Memory (LSTM) [228], is because its structure is simpler and its efficiency

is higher. The additional time and energy overhead of GR compared to BackboneNet is

between 12% to 89%. It is still within our acceptable range, but suggests that an avenue

of future work might be investigating efficiency issues in the feature reconstruction module.

Regarding the memory usage, the relationship seems to be more unpredictable. We find

the BackboneNet has the highest memory usage in both RealWorld-HAR and EEG-MMID

dataset. Also, larger memory usage is caused by DeepSense compared to CNN, though it

has much fewer FLOPs, as shown in Table 6.2. In general, GraphRecovery does not pose a

significant memory overhead compared to the BackboneNet. We will continue to investigate

the low-level implementations about why the BackboneNet can have a higher memory usage.

6.7 RELATED WORK

Missing sensors is a prevalent problem in multi-sensor IoT systems and wireless sensor

networks. Hossain et al. [229] have empirically investigated the impact of randomly miss-

ing sensing values on extracted features and classification results for conventional machine

155

learning models, which are based on feature engineering. The handling of missing sensor

values has been studied for a long time. The earliest work focused on recovering missing

sensor data directly at the signal level [216, 217, 230, 231, 232, 233]. Most of these ap-

proaches use data imputation methods that rely on time locality and space locality to fill-in

the missing sensor readings. For example, Yi et al. [216] use a hybrid autoregressive method

to fill missing sensor values, considering both temporal correlations and spatial correlations.

Huang et al. [233] rely on non-negative matrix factorization (NMF) to impute the missing

values. Imani et al. [232] utilize a complicated Gaussian process for high-dimensional data

imputation. However, most of these approaches can’t effectively handle the case where data

from the same sensors are completely missing for a long time, because they impute each

sensor reading independently, thus the assembled sequence can not preserve the semantic

information contained in the original sensing sequence. Even if some autoregressive mod-

els [216] can recover the signal sequence as a whole, they can not be extended to handle

randomly missing sensors. On the contrary, they have to train an individual model for each

missing sensor situation, and assume all the remaining sensors are available.

The emergence and prevalence of deep learning has revolutionized data processing in IoT

systems. Feature engineering is replaced by automatic representation learning by neural

networks, so that learning is directly performed on sensing signals. Regarding the dynamic

sensor configuration in sensing models, Rey et al. [234] proposed a similarity-based ap-

proach to integrate new sensors into an existing recognition system in a semi-supervised

manner. Meanwhile, several neural network based general missing sensor handling algo-

rithms (i.e., algorithms where one model handles all missing sensor situations) have been

proposed [143, 199, 201, 202, 203]. Most papers [201, 202, 203] borrow the idea from denois-

ing autoencoders [204]. During training, they randomly drop some sensors before the input

layer of the encoder, and let the autoencoder automatically learn to reconstruct data for

missing sensors. However, there is no control on the information flow in these algorithms.

Thus, useful information from available sensors and null information from missing sensors

are mixed together at the latent embedding layer. The result is that the data of available

sensors is polluted after the encoder-decoder pipeline. The remaining papers [143, 199] try

to automatically adjust the model according to the missing sensors. Vaizman et al. [199]

simulate the sensor missing situations by randomly removing some sensors during the train-

ing. However, incompatible information under different sensor combinations (e.g., upper

body movement vs. whole body movement), especially when a large number of sensors is in-

volved, may cause extra learning difficulties to the model. Liu et al. [143] design an attention

mechanism when conducting sensor fusion, so that the missing sensors can be automatically

ignored by the attention module. Since we already know which sensors are missing in each

156

data sample, it is apparently easier and more effective to utilize a data-dependent mask to

push the neural network to only extract information from available sensors. Besides, infor-

mation incompatibility problems still exist in their design. In our graph recovery design,

we tackle the information incompatibility problem directly by reconstructing features for

missing sensors based on their spatial connections and learned latent sensor correlations.

The information flow is controlled by the corresponding gating mechanism, and output sub-

stitution is performed to prevent feature pollution at available sensors.

157

CHAPTER 7: CONCLUSION & FUTURE WORK

In this dissertation, we have explored how to apply the attention-based design philosophy

to optimize the efficiency and efficacy of machine perception in intelligent cyber-physical

systems, where DNNs are mainly used as the recognition model to extract knowledge from

the sensing data.

• From the efficiency perspective, inspired by the observed priority inversion issue in

current machine perception pipelines, we proposed to process the input data (e.g., im-

ages) using a criticality-aware manner at finer-grained granularities. For instance, in a

vision perception system, we first sliced the input images into semantically meaning-

ful partial regions, either utilizing cross-cueing from an external sensor or self-cueing

based on temporal correlations in video streams, and then a set of criticality-based

batch-aware real-time scheduling algorithms were proposed to schedule the process-

ing of sliced partial regions. Different criticality designs, like physical distance/relative

velocity-based criticality, uncertainty-based criticality, have been investigated and eval-

uated. After extending the work to a distributed multi-camera perception system, we

found additional efficiency saving can be achieved by exploiting the spatial correlations

among cameras.

• From the efficacy perspective, we mainly focused on enhancing the robustness of

DNNs to handle the imperfections of sensing data in practical deployment. On one

hand, we designed a novel global attention mechanism for multi-sensor information

fusion, where the heterogeneous data quality and information relevance to the task at

different sensor types and locations were captured and addressed. On the other hand,

we built a GNN-based feature reconstruction mechanism for handling missing sensors

in a distributed sensing system, where the spatial data correlations among physically

connected sensors were exploited, such that a single recognition model can remain

effective under different sets of available sensors, without requiring any retraining.

We successfully demonstrated the success of attention-based design philosophy in our past

explorations. To summarize, it essentially represents the ideas of: 1) selectively scheduling

the invocation of computation-intensive neural network models to achieve real-time inference

on resource-limited embedded platforms, and 2) dynamically adjusting the weighting mech-

anism among heterogeneous input within neural networks to enhance the model robustness

against data noises and failures. Looking forward to the future, we will continue to study

the following directions in achieving the attention-based machine perception.

158

• Generalizing the criticality design in attention scheduling. While we have dis-

cussed several ways of instantiating the criticality design in attention-based scheduling,

there is a much broader space remaining for future explorations. In the external-cueing

framework, besides the distance-based and velocity-based criticality, we can take more

semantic information into consideration. For example, a further object in the same

lane can be more critical than a close object in different lanes. Besides, the prioriti-

zation in the perception system should appropriately integrate the traffic regulations

because the safety of autonomous driving is not only about collision avoidance, but

also about obeying the traffic laws, e.g., properly reacting to traffic signs and traffic

light information. The (location) uncertainty-based prioritization mechanism can be

extended to a general notion of change. Changes that occur in an unpredicted way

should receive more attention. For example, if an object appears where it was not pre-

dicted, then something unexpected has occurred that requires attention. Information

gain comes from the degree of surprise on the perceived scene. Therefore, it would

be interesting to develop a surprised/entropy-based criticality for attention scheduling

in machine perception. Furthermore, a hybrid scheme, integrating multiple criticality

policies, might be better at dealing with complicated sensing scenarios. How to ef-

fectively combine multiple policies in a context-driven fashion, properly adjust their

composition, and resolve their conflicts is a very promising but challenging research

problem.

• Integrating neural attention with human-designed attention. Our works so

far mainly use human-designed attention to control the resource allocation in neural

network execution. However, neural attention mechanism is also extensively applied to

optimize the neural network accuracy by focusing on the important parts of the input.

How to effectively combine the two approaches in terms of both efficiency and efficacy

optimization in one policy will be an interesting direction to explore. On one hand, the

neural attention mechanism is better at understanding the neural network performance

internally; on the other hand, the human-designed attention definitions are better at

communicating with the physical world information (e.g., distance, velocity, and traffic

laws). We anticipate that the main challenge will be injecting the human input about

the physical world into the automatic execution pipeline of neural networks with extra

supervision or regulation, and resolving the potential conflicts between the two types

of attention.

• Interactive scheduling of machine perception. We did not consider the manip-

ulation or control on the sensor actions in our past works. However, the scheduling

159

process itself can be interactive, where we can not only selectively process parts of

the perceived information, but also proactively control the sensors to look at regions

of more interest. For instance, when using Pan-Tilt-Zoom (PTZ) cameras for ma-

chine perception, we can control the direction and zoom distance of the camera to

dynamically adjust the range of their perception. Alternatively, when using mobile

sensors/cameras for perception, we can control the movement patterns of sensor nodes

to achieve high-quality perception of a large target region with only a few sensor nodes.

However, it is still a challenging problem to formulate and solve, because we have to

consider the sensor operation latency (i.e., zoom, move from one point to another) in

the scheduling framework, to make sure the sensors operate in an attainable, smooth,

and information-maximizing mode.

• Optimizing distributed machine perception under network dynamics. We

made an initial attempt to generalize the attention-based real-time scheduling to dis-

tributed perception systems, but there are much more we can do. For instance, in a

large scale distributed perception system, due to the extremely limited onboard pro-

cessing capacity on sensors, the sensing data is typically offloaded to a cloud/edge

server for processing. In this scenario, sensors are mostly wirelessly connected to the

Internet, such that the network bandwidth becomes the bottleneck of the whole com-

putation pipeline. How to minimize the amount of data to be transmitted, without

degrading the recognition model performance, is an interesting problem where we can

apply the attention-based design philosophy. By doing so, the system scalability could

be significantly improved, under the same network constraint. In addition, how to

dynamically adjust the amount of data to be transmitted at each sensor, in response

to the dynamic network bandwidth, to minimize the end-to-end response latency, is

another interesting problem to investigate.

• Integrating physical domain knowledge into neural perception models. Al-

though DNNs have outperformed conventional physical models or manual-feature-

based machine learning models in many recognition tasks, there is still plenty of room

where the physical domain knowledge could help enhance the DNN models. The poor

explainability, high dependency on the training data quality, and high sensitivity of

the DNN models are the main factors that restrict their deployment in practical indus-

trial environment, since their behaviors can be randomly bad at the outliers of their

training data distributions. Under these cases, physical domain knowledge can be used

as a special form of supervision, regularization, or augmentation, to teach the neural

networks to avoid obvious prediction errors that humans can easily distinguish. The

160

reliability, extendibility, and explainability of DNNs are anticipated to be significantly

enhanced. The challenge mainly lies in how to integrate the knowledge of physical

models and neural models in a rational way, and resolve their possible conflicts, such

that the integrated model can achieve superior performance compared to any single

model.

Attention-based machine perception is generally a promising direction, and we are ex-

cited about its future development and evolvement. We hope the works reported in this

dissertation, can become a starting point that inspires more explorations from the research

community on optimizing the usage of DNN-based machine perception models, in terms of

both efficiency and efficacy, during their practical deployment, towards building the next-

generation intelligent cyber-physical systems.

161

REFERENCES

[1] M. I. Posner, C. R. Snyder, and R. Solso, “Attention and cognitive control,” Cognitive
psychology: Key readings, vol. 205, 2004.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information
processing systems, 2017, pp. 5998–6008.

[3] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla, “Tim-
ing of autonomous driving software: Problem analysis and prospects for future solu-
tions,” in 2020 IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS). IEEE, 2020, pp. 267–280.

[4] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, “The
architectural implications of autonomous driving: Constraints and acceleration,” in
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems, 2018, pp. 751–766.

[5] “Driverless guru,” https://www.driverlessguru.com/
self-driving-cars-facts-and-figures, 2020.

[6] D. Bamburry, “Drones: Designed for product delivery,” Design Management Review,
vol. 26, no. 1, pp. 40–48, 2015.

[7] T. Abdelzaher, N. Ayanian, T. Basar, S. Diggavi, J. Diesner, D. Ganesan, R. Govindan,
S. Jha, T. Lepoint, B. Marlin et al., “Toward an internet of battlefield things: A
resilience perspective,” Computer, vol. 51, no. 11, pp. 24–36, 2018.

[8] D. Feil-Seifer and M. J. Matarić, “Socially assistive robotics,” IEEE Robotics & Au-
tomation Magazine, vol. 18, no. 1, pp. 24–31, 2011.

[9] T. P. Baker and A. Shaw, “The cyclic executive model and ada,” Real-Time Systems,
vol. 1, no. 1, pp. 7–25, 1989.

[10] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: Exact
characterization and average case behavior,” in RTSS, vol. 89, 1989, pp. 166–171.

[11] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based
models for speech recognition,” in Advances in neural information processing systems,
2015, pp. 577–585.

[12] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang,
“Bottom-up and top-down attention for image captioning and visual question answer-
ing,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 6077–6086.

162

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[14] Y. Wang, M. Huang, L. Zhao et al., “Attention-based lstm for aspect-level sentiment
classification,” in Proceedings of the 2016 conference on empirical methods in natural
language processing, 2016, pp. 606–615.

[15] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang, “Resid-
ual attention network for image classification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 3156–3164.

[16] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Ben-
gio, “Show, attend and tell: Neural image caption generation with visual attention,”
in International conference on machine learning, 2015, pp. 2048–2057.

[17] M. M. Minderhoud and P. H. Bovy, “Extended time-to-collision measures for road
traffic safety assessment,” Accident Analysis & Prevention, vol. 33, no. 1, pp. 89–97,
2001.

[18] I. Bogoslavskyi and C. Stachniss, “Fast range image-based segmentation of sparse
3d laser scans for online operation,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 163–169.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016,
pp. 770–778.

[20] J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise computa-
tions,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[21] J. W.-S. Liu, K.-J. Lin, W. K. Shih, A. C.-s. Yu, J.-Y. Chung, and W. Zhao, “Algo-
rithms for scheduling imprecise computations,” in Foundations of Real-Time Comput-
ing: Scheduling and Resource Management. Springer, 1991, pp. 203–249.

[22] J. W. Liu, K.-J. Lin, and S. Natarajan, “Scheduling real-time, periodic jobs using
imprecise results,” 1987.

[23] S. Yao, Y. Hao, Y. Zhao, A. Piao, H. Shao, D. Liu, S. Liu, S. Hu, D. Weerakoon,
K. Jayarajah et al., “Eugene: Towards deep intelligence as a service,” in 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS). IEEE,
2019, pp. 1630–1640.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 248–255.

163

[25] S. Yao, Y. Zhao, H. Shao, A. Zhang, C. Zhang, S. Li, and T. Abdelzaher, “Rdeepsense:
Reliable deep mobile computing models with uncertainty estimations,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4,
pp. 1–26, 2018.

[26] M. Himmelsbach, F. V. Hundelshausen, and H.-J. Wuensche, “Fast segmentation of
3d point clouds for ground vehicles,” in 2010 IEEE Intelligent Vehicles Symposium.
IEEE, 2010, pp. 560–565.

[27] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and T. Abdelzaher,
“Scheduling real-time deep learning services as imprecise computations,” in 2020 IEEE
26th International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2020.

[28] B. Hajek, “On the competitiveness of on-line scheduling of unit-length packets with
hard deadlines in slotted time,” in Proceedings of the 2001 Conference on Information
Sciences and Systems, 2001.

[29] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 16), 2016, pp. 265–283.

[30] R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti, J. Abella, and F. J. Cazorla, “Generat-
ing and exploiting deep learning variants to increase heterogeneous resource utilization
in the nvidia xavier,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), vol. 23, 2019.

[31] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo,
Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception for autonomous driving:
Waymo open dataset,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 2446–2454.

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference
on computer vision. Springer, 2014, pp. 740–755.

[33] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime
tracking,” in 2016 IEEE international conference on image processing (ICIP). IEEE,
2016, pp. 3464–3468.

[34] J. Wang, P. He, and W. Coo, “Study on the hungarian algorithm for the maximum
likelihood data association problem,” Journal of Systems Engineering and Electronics,
vol. 18, no. 1, pp. 27–32, 2007.

[35] A. Torralba, “How many pixels make an image?” Visual neuroscience, vol. 26, no. 1,
pp. 123–131, 2009.

164

[36] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural
network,” in 2017 International Conference on Engineering and Technology (ICET),
2017, pp. 1–6.

[37] Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring image resizing
for optimizing criticality-based machine perception,” in IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2021.

[38] S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, H. Yun, L. Sha, and T. Abdelzaher, “On remov-
ing algorithmic priority inversion from mission-critical machine inference pipelines,”
in In Proc. IEEE Real-time Systems Symposium (RTSS), December 2020.

[39] S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, L. Su, and T. Abdelzaher,
“Deep learning for the internet of things,” Computer, vol. 51, no. 5, pp. 32–41, 2018.

[40] S. Liu, S. Yao, J. Li, D. Liu, T. Wang, H. Shao, and T. Abdelzaher, “Giobalfusion: A
global attentional deep learning framework for multisensor information fusion,” Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 1, pp. 1–27, 2020.

[41] S. Liu, S. Yao, Y. Huang, D. Liu, H. Shao, Y. Zhao, J. Li, T. Wang, R. Wang,
C. Yang et al., “Handling missing sensors in topology-aware iot applications with gated
graph neural network,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 4, no. 3, pp. 1–31, 2020.

[42] T. Abdelzaher, Y. Hao, K. Jayarajah, A. Misra, P. Skarin, S. Yao, D. Weerakoon,
and K.-E. Årzén, “Five challenges in cloud-enabled intelligence and control,” ACM
Transactions on Internet Technology (TOIT), vol. 20, no. 1, pp. 1–19, 2020.

[43] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learning: A sur-
vey and taxonomy,” IEEE transactions on pattern analysis and machine intelligence,
vol. 41, no. 2, pp. 423–443, 2018.

[44] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural
network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26,
2017.

[45] S. Yao, A. Piao, W. Jiang, Y. Zhao, H. Shao, S. Liu, D. Liu, J. Li, T. Wang, S. Hu
et al., “Stfnets: Learning sensing signals from the time-frequency perspective with
short-time fourier neural networks,” pp. 2192–2202, 2019.

[46] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and acceleration for
deep neural networks: The principles, progress, and challenges,” IEEE Signal Process-
ing Magazine, vol. 35, no. 1, pp. 126–136, 2018.

[47] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–
2329, 2017.

165

[48] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher, “Fastdeepiot:
Towards understanding and optimizing neural network execution time on mobile and
embedded devices,” in Proceedings of the 16th ACM Conference on Embedded Net-
worked Sensor Systems, 2018, pp. 278–291.

[49] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard, “Adaptive quan-
tization for deep neural network,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[50] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[51] S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “Deepiot: Compressing deep
neural network structures for sensing systems with a compressor-critic framework,”
in Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems.
ACM, 2017, p. 4.

[52] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear
structure within convolutional networks for efficient evaluation,” in Advances in Neural
Information Processing Systems, 2014, pp. 1269–1277.

[53] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning layers
for constrained resource inference on wearables,” in Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-ROM. ACM, 2016, pp. 176–
189.

[54] B. Minnehan and A. Savakis, “Cascaded projection: End-to-end network compression
and acceleration,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 10 715–10 724.

[55] Y. Wang, C. Xu, S. You, D. Tao, and C. Xu, “Cnnpack: packing convolutional neural
networks in the frequency domain,” in Advances in Neural Information Processing
Systems, 2016, pp. 253–261.

[56] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith, “Gpu schedul-
ing on the nvidia tx2: Hidden details revealed,” in 2017 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2017, pp. 104–115.

[57] N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru, “Deadline-based
scheduling for gpu with preemption support,” in 2018 IEEE Real-Time Systems Sym-
posium (RTSS). IEEE, 2018, pp. 119–130.

[58] Y. Xiang and H. Kim, “Pipelined data-parallel cpu/gpu scheduling for multi-dnn real-
time inference,” in 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2019,
pp. 392–405.

166

[59] H. Zhou, S. Bateni, and C. Liu, “Sˆ 3dnn: Supervised streaming and scheduling for
gpu-accelerated real-time dnn workloads,” in 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2018, pp. 190–201.

[60] M. H. Santriaji and H. Hoffmann, “Merlot: Architectural support for energy-efficient
real-time processing in gpus,” in 2018 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2018, pp. 214–226.

[61] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, and J.-M. Frahm,
“Re-thinking cnn frameworks for time-sensitive autonomous-driving applications: Ad-
dressing an industrial challenge,” in 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2019, pp. 305–317.

[62] R. Cavicchioli, N. Capodieci, M. Solieri, and M. Bertogna, “Novel methodologies for
predictable cpu-to-gpu command offloading,” in 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2019.

[63] S. Bateni, H. Zhou, Y. Zhu, and C. Liu, “Predjoule: A timing-predictable energy
optimization framework for deep neural networks,” in 2018 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2018, pp. 107–118.

[64] S. Bateni and C. Liu, “Predictable data-driven resource management: an implemen-
tation using autoware on autonomous platforms,” in 2019 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2019, pp. 339–352.

[65] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu, “Co-optimizing performance and
memory footprint via integrated cpu/gpu memory management, an implementation
on autonomous driving platform,” in 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2020, pp. 310–323.

[66] M. Khayatian, M. Mehrabian, and A. Shrivastava, “Rim: Robust intersection man-
agement for connected autonomous vehicles,” in 2018 IEEE Real-Time Systems Sym-
posium (RTSS). IEEE, 2018, pp. 35–44.

[67] D. Zhang, N. Vance, Y. Zhang, M. T. Rashid, and D. Wang, “Edgebatch: Towards
ai-empowered optimal task batching in intelligent edge systems,” in 2019 IEEE Real-
Time Systems Symposium (RTSS). IEEE, 2019, pp. 366–379.

[68] J. Shin, Y. Baek, and S. H. Son, “Fundamental topology-based routing protocols for
autonomous vehicles,” in 2016 IEEE 22nd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 2016, pp. 265–265.

[69] L. Li, H. Xiong, Z. Guo, J. Wang, and C.-Z. Xu, “Smartpc: Hierarchical pace control
in real-time federated learning system,” in 2019 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2019, pp. 406–418.

167

[70] S. Aoki and R. R. Rajkumar, “A configurable synchronous intersection protocol for
self-driving vehicles,” in 2017 IEEE 23rd International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 2017, pp. 1–11.

[71] Y. Ikeda, Y. Yanagisawa, Y. Kishino, S. Mizutani, Y. Shirai, T. Suyama, K. Mat-
sumura, and H. Noma, “Reduction of communication cost for edge-heavy sensor using
divided cnn,” in 2018 IEEE 24th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA). IEEE, 2018, pp. 244–245.

[72] S. Aoki and R. Rajkumar, “V2v-based synchronous intersection protocols for mixed
traffic of human-driven and self-driving vehicles,” in 2019 IEEE 25th Interna-
tional Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA). IEEE, 2019, pp. 1–11.

[73] S. K. Kwon, E. Hyun, J.-H. Lee, J. Lee, and S. H. Son, “A low-complexity scheme for
partially occluded pedestrian detection using lidar-radar sensor fusion,” in 2016 IEEE
22nd International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2016, pp. 104–104.

[74] S. Li, D. Liu, C. Xiang, J. Liu, Y. Ling, T. Liao, and L. Liang, “Fitcnn: A cloud-
assisted lightweight convolutional neural network framework for mobile devices,” in
2017 IEEE 23rd International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, 2017, pp. 1–6.

[75] M. G. Bechtel, E. McEllhiney, M. Kim, and H. Yun, “Deeppicar: A low-cost deep
neural network-based autonomous car,” pp. 11–21, 2018.

[76] K. Mikami, Y. Chen, J. Nakazawa, Y. Iida, Y. Kishimoto, and Y. Oya, “Deepcounter:
Using deep learning to count garbage bags,” in 2018 IEEE 24th International Con-
ference on Embedded and Real-Time Computing Systems and Applications (RTCSA).
IEEE, 2018, pp. 1–10.

[77] M.-H. Cheng, Q. Sun, and C.-H. Tu, “An adaptive computation framework of dis-
tributed deep learning models for internet-of-things applications,” in 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA). IEEE, 2018, pp. 85–91.

[78] T. Nukita, Y. Kishimoto, Y. Iida, M. Kawano, T. Yonezawa, and J. Nakazawa, “Dam-
aged lane markings detection method with label propagation,” in 2018 IEEE 24th
International Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA). IEEE, 2018, pp. 203–208.

[79] M. Bojarski et al., “End-to-End Learning for Self-Driving Cars,” 2016. [Online].
Available: http://arxiv.org/abs/1604.07316

[80] N. Otterness, M. Yang, S. Rust, E. Park, J. H. Anderson, F. D. Smith, A. Berg, and
S. Wang, “An evaluation of the nvidia tx1 for supporting real-time computer-vision
workloads,” in 2017 IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS). IEEE, 2017, pp. 353–364.

168

[81] M. Yang, N. Otterness, T. Amert, J. Bakita, J. H. Anderson, and F. D. Smith, “Avoid-
ing pitfalls when using nvidia gpus for real-time tasks in autonomous systems,” in
30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[82] J. Park, J.-H. Lee, and S. H. Son, “A survey of obstacle detection using vision sensor
for autonomous vehicles,” in 2016 IEEE 22nd International Conference on Embedded
and Real-Time Computing Systems and Applications (RTCSA). IEEE, 2016, pp.
264–264.

[83] S. Bateni and C. Liu, “Apnet: Approximation-aware real-time neural network,” in
2018 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018, pp. 67–79.

[84] W. Kang and J. Chung, “Deeprt: predictable deep learning inference for cyber-physical
systems,” Real-Time Systems, vol. 55, no. 1, pp. 106–135, 2019.

[85] S. Lee and S. Nirjon, “Subflow: A dynamic induced-subgraph strategy toward real-
time dnn inference and training,” in 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2020, pp. 15–29.

[86] S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection system with multi-
path neural networks,” in 2020 IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS). IEEE, 2020, pp. 174–187.

[87] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” pp. 779–788, 2016.

[88] M. Daily, S. Medasani, R. Behringer, and M. Trivedi, “Self-driving cars,” Computer,
vol. 50, no. 12, pp. 18–23, 2017.

[89] J. Scott and C. Scott, “Drone delivery models for healthcare,” in Proceedings of the
50th Hawaii international conference on system sciences, 2017.

[90] W.-Y. G. Louie, T. Vaquero, G. Nejat, and J. C. Beck, “An autonomous assistive
robot for planning, scheduling and facilitating multi-user activities,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2014, pp.
5292–5298.

[91] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018.

[92] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in European conference on computer vision. Springer,
2016, pp. 21–37.

[93] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

169

[94] Z. Huang, Z. Chen, Q. Li, H. Zhang, and N. Wang, “1st place solutions of waymo open
dataset challenge 2020–2d object detection track,” arXiv preprint arXiv:2008.01365,
2020.

[95] J. Huang, C. Samplawski, D. Ganesan, B. Marlin, and H. Kwon, “Clio: enabling
automatic compilation of deep learning pipelines across iot and cloud,” in Proceedings
of the 26th Annual International Conference on Mobile Computing and Networking,
2020, pp. 1–12.

[96] S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher, “Deep compressive
offloading: Speeding up neural network inference by trading edge computation for net-
work latency,” in Proceedings of the International Conference on Embedded Networked
Sensor Systems (SenSys), 2020.

[97] T. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using dense
inverse search,” in European Conference on Computer Vision. Springer, 2016, pp.
471–488.

[98] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-matching
motion estimation,” IEEE transactions on Image Processing, vol. 9, no. 2, pp. 287–
290, 2000.

[99] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convo-
lutional networks,” in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 2758–2766.

[100] R. Holte, A. Mok, L. Rosier, I. Tulchinsky, and D. Varvel, “The pinwheel: A real-time
scheduling problem,” in Proceedings of the 22nd Hawaii International Conference of
System Science, 1989, pp. 693–702.

[101] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-based connected com-
ponents labeling with decision trees,” IEEE Transactions on Image Processing, vol. 19,
no. 6, pp. 1596–1609, 2010.

[102] T.-W. Chin, R. Ding, and D. Marculescu, “Adascale: Towards real-time video object
detection using adaptive scaling,” in Systems and Machine Learning Conference, 2019.

[103] R. Xu, C.-l. Zhang, P. Wang, J. Lee, S. Mitra, S. Chaterji, Y. Li, and S. Bagchi,
“Approxdet: content and contention-aware approximate object detection for mobiles,”
in Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 2020,
pp. 449–462.

[104] S. Lee and S. Nirjon, “Fast and scalable in-memory deep multitask learning via neural
weight virtualization,” in Proceedings of the 18th International Conference on Mobile
Systems, Applications, and Services, 2020, pp. 175–190.

170

[105] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-tod: Real-time object
detector with minimized end-to-end delay for autonomous driving,” in In Proc. IEEE
Real-time Systems Symposium (RTSS), December 2020.

[106] S. Yao, Y. Hao, Y. Zhao, H. Shao, D. Liu, S. Liu, T. Wang, J. Li, and T. Abdelzaher,
“Scheduling real-time deep learning services as imprecise computations,” in 2020 IEEE
26th International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2020, pp. 1–10.

[107] S. Liu, S. Yao, X. Fu, H. Shao, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha, and
T. Abdelzaher, “Real-time task scheduling for machine perception in intelligent cyber-
physical systems,” IEEE Transactions on Computers, 2021.

[108] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, “Deep feature flow for video recogni-
tion,” in Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 2349–2358.

[109] S. Wang, H. Lu, and Z. Deng, “Fast object detection in compressed video,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.
7104–7113.

[110] X. Zhu, Y. Wang, J. Dai, L. Yuan, and Y. Wei, “Flow-guided feature aggregation
for video object detection,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 408–417.

[111] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “Deepcache: Principled cache for mobile
deep vision,” in Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, 2018, pp. 129–144.

[112] M. Buckler, P. Bedoukian, S. Jayasuriya, and A. Sampson, “Eva2: Exploiting temporal
redundancy in live computer vision,” in 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 533–546.

[113] L. Cavigelli, P. Degen, and L. Benini, “Cbinfer: Change-based inference for convolu-
tional neural networks on video data,” in Proceedings of the 11th International Con-
ference on Distributed Smart Cameras, 2017, pp. 1–8.

[114] S. Zhang, W. Lin, P. Lu, W. Li, and S. Deng, “Kill two birds with one stone: Boost-
ing both object detection accuracy and speed with adaptive patch-of-interest com-
position,” in 2017 IEEE International Conference on Multimedia & Expo Workshops
(ICMEW). IEEE, 2017, pp. 447–452.

[115] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang, “Drq: dynamic
region-based quantization for deep neural network acceleration,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 1010–1021.

171

[116] A. R. Kumar, B. Ravindran, and A. Raghunathan, “Pack and detect: Fast object
detection in videos using region-of-interest packing,” in Proceedings of the ACM India
Joint International Conference on Data Science and Management of Data, 2019, pp.
150–156.

[117] H. Mao, T. Kong, and W. J. Dally, “Catdet: Cascaded tracked detector for efficient
object detection from video,” arXiv preprint arXiv:1810.00434, 2018.

[118] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freedman,
“Live Video Analytics at Scale with Approximation and Delay-Tolerance,” in 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),
ser. NSDI ’17, 2017.

[119] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali, “Reducto: On-
camera filtering for resource-efficient real-time video analytics,” in Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
2020, pp. 359–376.

[120] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and J. Jiang,
“Server-driven video streaming for deep learning inference,” in Proceedings of the An-
nual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
2020, pp. 557–570.

[121] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope: optimizing
neural network queries over video at scale,” arXiv preprint arXiv:1703.02529, 2017.

[122] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu, P. Bahl, and
J. Gonzalez, “Spatula: Efficient cross-camera video analytics on large camera net-
works,” in 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2020,
pp. 110–124.

[123] S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez, “Scaling video ana-
lytics systems to large camera deployments,” in Proceedings of the 20th International
Workshop on Mobile Computing Systems and Applications, 2019, pp. 9–14.

[124] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang, X. Yang, Y. Yao,
L. Zheng, P. Chakraborty, C. E. Lopez, A. Sharma, Q. Feng, V. Ablavsky, and
S. Sclaroff, “The 5th ai city challenge,” in The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR) Workshops, June 2021.

[125] Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Kumar, D. Anas-
tasiu, and J.-N. Hwang, “Cityflow: A city-scale benchmark for multi-target multi-
camera vehicle tracking and re-identification,” in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019, p. 8797–8806.

172

[126] M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection and people-
detection-by-tracking,” in 2008 IEEE Conference on computer vision and pattern
recognition. IEEE, 2008, pp. 1–8.

[127] Z. Zhou, D. Yin, J. Ding, Y. Luo, M. Yuan, and C. Zhu, “Collaborative tracking
method in multi-camera system,” Journal of Shanghai Jiaotong University (Science),
vol. 25, pp. 802–810, 2020.

[128] M. R. Garey and D. S. Johnson, Computers and intractability. freeman San Francisco,
1979, vol. 174.

[129] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica, “Chameleon: scalable
adaptation of video analytics,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018, pp. 253–266.

[130] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h.
264/avc video coding standard,” IEEE Transactions on circuits and systems for video
technology, vol. 13, no. 7, pp. 560–576, 2003.

[131] K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose,
P. B. Gibbons, and O. Mutlu, “Focus: Querying large video datasets with low la-
tency and low cost,” in 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), 2018, pp. 269–286.

[132] Y. Zhang and A. Kumar, “Panorama: a data system for unbounded vocabulary query-
ing over video,” Proceedings of the VLDB Endowment, vol. 13, no. 4, pp. 477–491,
2019.

[133] M. R. Anderson, M. Cafarella, G. Ros, and T. F. Wenisch, “Physical representation-
based predicate optimization for a visual analytics database,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE). IEEE, 2019, pp. 1466–1477.

[134] C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and
S. R. Dulloor, “Scaling video analytics on constrained edge nodes,” arXiv preprint
arXiv:1905.13536, 2019.

[135] H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi: Cross-camera region
of interest optimization for efficient real time video analytics at scale,” arXiv preprint
arXiv:2105.06524, 2021.

[136] S. Paul, U. Drolia, Y. C. Hu, and S. T. Chakradhar, “Aqua: Analytical quality as-
sessment for optimizing video analytics systems,” arXiv preprint arXiv:2101.09752,
2021.

[137] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu, P. Bahl, and
M. Philipose, “Videoedge: Processing camera streams using hierarchical clusters,” in
2018 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp. 115–131.

173

[138] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live video analytics with
workload-adaptive distributed edge intelligence,” in Proceedings of the 18th Conference
on Embedded Networked Sensor Systems, 2020, pp. 409–421.

[139] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile deep learning
framework for edge video analytics,” in IEEE INFOCOM 2018-IEEE Conference on
Computer Communications. IEEE, 2018, pp. 1421–1429.

[140] W. Xu, Y. Shen, N. Bergmann, and W. Hu, “Sensor-assisted face recognition sys-
tem on smart glass via multi-view sparse representation classification,” in 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(IPSN). IEEE, 2016, pp. 1–12.

[141] S. A. Rokni and H. Ghasemzadeh, “Synchronous dynamic view learning: a framework
for autonomous training of activity recognition models using wearable sensors,” in Pro-
ceedings of the 16th ACM/IEEE International Conference on Information Processing
in Sensor Networks. ACM, 2017, pp. 79–90.

[142] S. Shen, H. Wang, and R. Roy Choudhury, “I am a smartwatch and i can track
my user’s arm,” in Proceedings of the 14th annual international conference on Mobile
systems, applications, and services. ACM, 2016, pp. 85–96.

[143] Y. Liu, Z. Li, Z. Liu, and K. Wu, “Real-time arm skeleton tracking and gesture infer-
ence tolerant to missing wearable sensors,” in Proceedings of the 17th Annual Inter-
national Conference on Mobile Systems, Applications, and Services. ACM, 2019, pp.
287–299.

[144] X. Liu, P. Ghosh, O. Ulutan, B. Manjunath, K. Chan, and R. Govindan, “Caesar:
cross-camera complex activity recognition,” in Proceedings of the 17th Conference on
Embedded Networked Sensor Systems. ACM, 2019, pp. 232–244.

[145] Y. Yuan, G. Xun, K. Jia, and A. Zhang, “A multi-view deep learning method for
epileptic seizure detection using short-time fourier transform,” in Proceedings of the
8th ACM International Conference on Bioinformatics, Computational Biology, and
Health Informatics. ACM, 2017, pp. 213–222.

[146] Y. Zhao, S. Yao, D. Liu, H. Shao, and S. Liu, “Greenroute: A generalizable fuel-saving
vehicular navigation service,” in 2019 IEEE International Conference on Autonomic
Computing (ICAC). IEEE, 2019, pp. 1–10.

[147] H. Xue, W. Jiang, C. Miao, Y. Yuan, F. Ma, X. Ma, Y. Wang, S. Yao, W. Xu, A. Zhang
et al., “Deepfusion: A deep learning framework for the fusion of heterogeneous sensory
data,” in Proceedings of the Twentieth ACM International Symposium on Mobile Ad
Hoc Networking and Computing. ACM, 2019, pp. 151–160.

[148] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A unified deep
learning framework for time-series mobile sensing data processing,” in Proceedings of
the 26th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 2017, pp. 351–360.

174

[149] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina, and F. Kawsar,
“Towards multimodal deep learning for activity recognition on mobile devices,” in Pro-
ceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous
Computing: Adjunct. ACM, 2016, pp. 185–188.

[150] X. Wang, X. Wang, and S. Mao, “Rf sensing in the internet of things: A general deep
learning framework,” IEEE Communications Magazine, vol. 56, no. 9, pp. 62–67, 2018.

[151] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and
F. Kawsar, “Deepx: A software accelerator for low-power deep learning inference on
mobile devices,” in Proceedings of the 15th International Conference on Information
Processing in Sensor Networks. IEEE Press, 2016, p. 23.

[152] N. D. Lane, S. Bhattacharya, A. Mathur, P. Georgiev, C. Forlivesi, and F. Kawsar,
“Squeezing deep learning into mobile and embedded devices,” IEEE Pervasive Com-
puting, vol. 16, no. 3, pp. 82–88, 2017.

[153] S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning layers
for constrained resource inference on wearables,” in Proceedings of the 14th ACM
Conference on Embedded Network Sensor Systems CD-ROM. ACM, 2016, pp. 176–
189.

[154] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?” in Advances in neural information processing systems, 2014,
pp. 3320–3328.

[155] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity moni-
toring,” in 2012 16th International Symposium on Wearable Computers. IEEE, 2012,
pp. 108–109.

[156] T. Sztyler and H. Stuckenschmidt, “On-body localization of wearable devices: An
investigation of position-aware activity recognition,” in 2016 IEEE International Con-
ference on Pervasive Computing and Communications (PerCom). IEEE, 2016, pp.
1–9.

[157] K. Altun, B. Barshan, and O. Tunçel, “Comparative study on classifying human ac-
tivities with miniature inertial and magnetic sensors,” Pattern Recognition, vol. 43,
no. 10, pp. 3605–3620, 2010.

[158] M. Bachlin, D. Roggen, G. Troster, M. Plotnik, N. Inbar, I. Meidan, T. Herman,
M. Brozgol, E. Shaviv, N. Giladi et al., “Potentials of enhanced context awareness in
wearable assistants for parkinson’s disease patients with the freezing of gait syndrome,”
in 2009 International Symposium on Wearable Computers. IEEE, 2009, pp. 123–130.

[159] S. Yao, Y. Zhao, H. Shao, D. Liu, S. Liu, Y. Hao, A. Piao, S. Hu, S. Lu, and T. F.
Abdelzaher, “Sadeepsense: Self-attention deep learning framework for heterogeneous
on-device sensors in internet of things applications,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 2019, pp. 1243–1251.

175

[160] C. Wang, M. Peng, T. A. Olugbade, N. D. Lane, A. C. D. C. Williams, and N. Bianchi-
Berthouze, “Learning bodily and temporal attention in protective movement behavior
detection,” arXiv preprint arXiv:1904.10824, 2019.

[161] M. Zeng, H. Gao, T. Yu, O. J. Mengshoel, H. Langseth, I. Lane, and X. Liu, “Under-
standing and improving recurrent networks for human activity recognition by continu-
ous attention,” in Proceedings of the 2018 ACM International Symposium on Wearable
Computers. ACM, 2018, pp. 56–63.

[162] B. Chandrasekaran, S. Gangadhar, and J. M. Conrad, “A survey of multisensor fusion
techniques, architectures and methodologies,” in SoutheastCon 2017. IEEE, 2017,
pp. 1–8.

[163] O. Rippel, J. Snoek, and R. P. Adams, “Spectral representations for convolutional
neural networks,” in Advances in neural information processing systems, 2015, pp.
2449–2457.

[164] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[165] S. Jetley, N. A. Lord, N. Lee, and P. H. Torr, “Learn to pay attention,” arXiv preprint
arXiv:1804.02391, 2018.

[166] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[167] “Tensorflow lite interpreter.” [Online]. Available: https://www.tensorflow.org/lite/
guide/inference

[168] “Monsoon high voltage power monitor.” [Online]. Available: https://www.msoon.
com/online-store/High-Voltage-Power-Monitor-Part-Number-AAA10F-p90002590

[169] D. Hall and J. Llinas, Multisensor data fusion. CRC press, 2001.

[170] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “Moddrop: adaptive multi-modal ges-
ture recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 38, no. 8, pp. 1692–1706, 2015.

[171] V. Vielzeuf, A. Lechervy, S. Pateux, and F. Jurie, “Multi-level sensor fusion
with deep learning,” CoRR, vol. abs/1811.02447, 2018. [Online]. Available:
http://arxiv.org/abs/1811.02447

[172] Z. Liu, W. Zhang, T. Q. Quek, and S. Lin, “Deep fusion of heterogeneous sensor data,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 5965–5969.

176

[173] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo, M. K. Marina, and
F. Kawsar, “Multimodal deep learning for activity and context recognition,” Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1,
no. 4, p. 157, 2018.

[174] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[175] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[176] S. Chaudhari, G. Polatkan, R. Ramanath, and V. Mithal, “An attentive survey of
attention models,” arXiv preprint arXiv:1904.02874, 2019.

[177] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.

[178] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
7794–7803.

[179] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “Aˆ 2-nets: Double attention
networks,” in Advances in Neural Information Processing Systems, 2018, pp. 352–361.

[180] “Amazon alexa.” [Online]. Available: https://developer.amazon.com/en-US/alexa

[181] “Google assistant.” [Online]. Available: https://assistant.google.com/

[182] M. Manisha, K. Neeraja, V. Sindhura, and P. Ramaya, “Iot on heart attack detection
and heart rate monitoring,” International Journal of Innovation in Engineering and
Technology (IJIET), 2016.

[183] N. Constant, O. Douglas-Prawl, S. Johnson, and K. Mankodiya, “Pulse-glasses: An
unobtrusive, wearable hr monitor with internet-of-things functionality,” in 2015 IEEE
12th International Conference on Wearable and Implantable Body Sensor Networks
(BSN). IEEE, 2015, pp. 1–5.

[184] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affordance for
direct perception in autonomous driving,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2722–2730.

[185] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, 2012, pp. 3354–3361.

[186] Y. Jie, J. Y. Pei, L. Jun, G. Yun, and X. Wei, “Smart home system based on iot
technologies,” in 2013 International Conference on Computational and Information
Sciences. IEEE, 2013, pp. 1789–1791.

177

[187] “Google nest.” [Online]. Available: https://nest.com/

[188] J. Sherly and D. Somasundareswari, “Internet of things based smart transportation
systems,” International Research Journal of Engineering and Technology, vol. 2, no. 7,
pp. 1207–1210, 2015.

[189] A. Roy, J. Siddiquee, A. Datta, P. Poddar, G. Ganguly, and A. Bhattacharjee, “Smart
traffic & parking management using iot,” in 2016 IEEE 7th Annual Information Tech-
nology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2016,
pp. 1–3.

[190] Y. Zhao, S. Yao, D. Liu, H. Shao, S. Liu, and T. Abdelzaher, “Simulation evaluation
of fuel-saving systems in the city of chicago,” in 2019 28th International Conference
on Computer Communication and Networks (ICCCN). IEEE, 2019, pp. 1–9.

[191] D. Vasisht, Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha, A. Kapoor, M. Su-
darshan, and S. Stratman, “Farmbeats: An iot platform for data-driven agriculture,”
in 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17), 2017, pp. 515–529.

[192] S. Prathibha, A. Hongal, and M. Jyothi, “Iot based monitoring system in smart agri-
culture,” in 2017 international conference on recent advances in electronics and com-
munication technology (ICRAECT). IEEE, 2017, pp. 81–84.

[193] P. Verma and S. K. Sood, “Fog assisted-iot enabled patient health monitoring in smart
homes,” IEEE Internet of Things Journal, vol. 5, no. 3, pp. 1789–1796, 2018.

[194] D. O. Bos et al., “Eeg-based emotion recognition,” The Influence of Visual and Audi-
tory Stimuli, vol. 56, no. 3, pp. 1–17, 2006.

[195] S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, S. Hu, D. Liu, S. Liu, L. Su, and
T. Abdelzaher, “Sensegan: Enabling deep learning for internet of things with a semi-
supervised framework,” vol. 2, no. 3. ACM New York, NY, USA, 2018, pp. 1–21.

[196] S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, D. Liu, S. Liu, L. Su, and T. Abdelza-
her, “Apdeepsense: Deep learning uncertainty estimation without the pain for iot
applications,” in 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018, pp. 334–343.

[197] M. K. Markey, G. D. Tourassi, M. Margolis, and D. M. DeLong, “Impact of missing
data in evaluating artificial neural networks trained on complete data,” Computers in
Biology and Medicine, vol. 36, no. 5, pp. 516–525, 2006.

[198] R. Qiao, C. Qing, T. Zhang, X. Xing, and X. Xu, “A novel deep-learning based frame-
work for multi-subject emotion recognition,” in 2017 4th International Conference on
Information, Cybernetics and Computational Social Systems (ICCSS). IEEE, 2017,
pp. 181–185.

178

[199] Y. Vaizman, N. Weibel, and G. Lanckriet, “Context recognition in-the-wild: Unified
model for multi-modal sensors and multi-label classification,” Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1–22,
2018.

[200] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,
“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv
preprint arXiv:1207.0580, 2012.

[201] N. Jaques, S. Taylor, A. Sano, and R. Picard, “Multimodal autoencoder: A deep learn-
ing approach to filling in missing sensor data and enabling better mood prediction,”
in 2017 Seventh International Conference on Affective Computing and Intelligent In-
teraction (ACII). IEEE, 2017, pp. 202–208.

[202] A. Saeed, T. Ozcelebi, and J. Lukkien, “Synthesizing and reconstructing missing sen-
sory modalities in behavioral context recognition,” Sensors, vol. 18, no. 9, p. 2967,
2018.

[203] C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang, “Multimodal deep autoencoder for
human pose recovery,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp.
5659–5670, 2015.

[204] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning, 2008, pp. 1096–1103.

[205] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[206] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-
ties of neural machine translation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

[207] O. Banos, M. A. Toth, M. Damas, H. Pomares, and I. Rojas, “Dealing with the effects
of sensor displacement in wearable activity recognition,” Sensors, vol. 14, no. 6, pp.
9995–10 023, 2014.

[208] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R. Wolpaw,
“Bci2000: a general-purpose brain-computer interface (bci) system,” IEEE Trans-
actions on biomedical engineering, vol. 51, no. 6, pp. 1034–1043, 2004.

[209] M. K. Gill, T. Asefa, Y. Kaheil, and M. McKee, “Effect of missing data on perfor-
mance of learning algorithms for hydrologic predictions: Implications to an imputation
technique,” Water resources research, vol. 43, no. 7, 2007.

[210] C. M. Ennett, M. Frize, and C. R. Walker, “Influence of missing values on artificial
neural network performance,” in Medinfo, 2001, pp. 449–453.

179

[211] O. Baños, M. Damas, H. Pomares, I. Rojas, M. A. Tóth, and O. Amft, “A benchmark
dataset to evaluate sensor displacement in activity recognition,” in Proceedings of the
2012 ACM Conference on Ubiquitous Computing, 2012, pp. 1026–1035.

[212] V. Jurcak, D. Tsuzuki, and I. Dan, “10/20, 10/10, and 10/5 systems revisited: their
validity as relative head-surface-based positioning systems,” Neuroimage, vol. 34, no. 4,
pp. 1600–1611, 2007.

[213] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: a
comprehensive review,” Computational Social Networks, vol. 6, no. 1, p. 11, 2019.

[214] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neural
networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[215] “Electroencephalography.” [Online]. Available: https://en.wikipedia.org/wiki/
Electroencephalography

[216] X. Yi, Y. Zheng, J. Zhang, and T. Li, “St-mvl: filling missing values in geo-sensory
time series data,” in Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, 2016, pp. 2704–2710.

[217] L. Z. Wong, H. Chen, S. Lin, and D. C. Chen, “Imputing missing values in sensor
networks using sparse data representations,” in Proceedings of the 17th ACM interna-
tional conference on Modeling, analysis and simulation of wireless and mobile systems,
2014, pp. 227–230.

[218] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in
Advances in neural information processing systems, 2001, pp. 556–562.

[219] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’networks,” nature,
vol. 393, no. 6684, p. 440, 1998.

[220] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in ICML, 2017.

[221] Y.-J. Hong, I.-J. Kim, S. C. Ahn, and H.-G. Kim, “Activity recognition using wearable
sensors for elder care,” in 2008 Second International Conference on Future Generation
Communication and Networking, vol. 2. IEEE, 2008, pp. 302–305.

[222] P. Lukowicz, A. Timm-Giel, M. Lawo, and O. Herzog, “Wearit@ work: Toward real-
world industrial wearable computing,” IEEE Pervasive Computing, vol. 6, no. 4, pp.
8–13, 2007.

[223] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram
(eeg) classification tasks: a review,” Journal of neural engineering, vol. 16, no. 3, p.
031001, 2019.

180

[224] K. Hara, D. Saitoh, and H. Shouno, “Analysis of dropout learning regarded as ensemble
learning,” in International Conference on Artificial Neural Networks. Springer, 2016,
pp. 72–79.

[225] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[226] A. Mahendran and A. Vedaldi, “Understanding deep image representations by invert-
ing them,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 5188–5196.

[227] A. Dosovitskiy and T. Brox, “Generating images with perceptual similarity metrics
based on deep networks,” in Advances in neural information processing systems, 2016,
pp. 658–666.

[228] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[229] T. Hossain, H. Goto, M. A. R. Ahad, and S. Inoue, “A study on sensor-based activity
recognition having missing data,” in 2018 Joint 7th International Conference on In-
formatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on
Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2018, pp. 556–561.

[230] J. Zhou and Z. Huang, “Recover missing sensor data with iterative imputing network,”
in Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[231] B. Fekade, T. Maksymyuk, M. Kyryk, and M. Jo, “Probabilistic recovery of incomplete
sensed data in iot,” IEEE Internet of Things Journal, vol. 5, no. 4, pp. 2282–2292,
2017.

[232] F. Imani, C. Cheng, R. Chen, and H. Yang, “Nested gaussian process modeling for
high-dimensional data imputation in healthcare systems,” in IISE 2018 Conference &
Expo, Orlando, FL, May, 2018, pp. 19–22.

[233] X.-Y. Huang, W. Li, K. Chen, X.-H. Xiang, R. Pan, L. Li, and W.-X. Cai, “Multi-
matrices factorization with application to missing sensor data imputation,” Sensors,
vol. 13, no. 11, pp. 15 172–15 186, 2013.

[234] V. F. Rey and P. Lukowicz, “Label propagation: An unsupervised similarity based
method for integrating new sensors in activity recognition systems,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 3,
pp. 1–24, 2017.

181

