473 research outputs found

    Effective Node Clustering and Data Dissemination In Large-Scale Wireless Sensor Networks

    Get PDF
    The denseness and random distribution of large-scale WSNs makes it quite difficult to replace or recharge nodes. Energy efficiency and management is a major design goal in these networks. In addition, reliability and scalability are two other major goals that have been identified by researchers as necessary in order to further expand the deployment of such networks for their use in various applications. This thesis aims to provide an energy efficient and effective node clustering and data dissemination algorithm in large-scale wireless sensor networks. In the area of clustering, the proposed research prolongs the lifetime of the network by saving energy through the use of node ranking to elect cluster heads, contrary to other existing cluster-based work that selects a random node or the node with the highest energy at a particular time instance as the new cluster head. Moreover, a global knowledge strategy is used to maintain a level of universal awareness of existing nodes in the subject area and to avoid the problem of disconnected or forgotten nodes. In the area of data dissemination, the aim of this research is to effectively manage the data collection by developing an efficient data collection scheme using a ferry node and applying a selective duty cycle strategy to the sensor nodes. Depending on the application, mobile ferries can be used for collecting data in a WSN, especially those that are large in scale, with delay tolerant applications. Unlike data collection via multi-hop forwarding among the sensing nodes, ferries travel across the sensing field to collect data. A ferry-based approach thus eliminates, or minimizes, the need for the multi-hop forwarding of data, and as a result, energy consumption at the nodes will be significantly reduced. This is especially true for nodes that are near the base station as they are used by other nodes to forward data to the base station. MATLAB is used to design, simulate and evaluate the proposed work against the work that has already been done by others by using various performance criteria

    Modeling Crowd Mobility and Communication in Wireless Networks

    Get PDF
    This dissertation presents contributions to the fields of mobility modeling, wireless sensor networks (WSNs) with mobile sinks, and opportunistic communication in theme parks. The two main directions of our contributions are human mobility models and strategies for the mobile sink positioning and communication in wireless networks. The first direction of the dissertation is related to human mobility modeling. Modeling the movement of human subjects is important to improve the performance of wireless networks with human participants and the validation of such networks through simulations. The movements in areas such as theme parks follow specific patterns that are not taken into consideration by the general purpose mobility models. We develop two types of mobility models of theme park visitors. The first model represents the typical movement of visitors as they are visiting various attractions and landmarks of the park. The second model represents the movement of the visitors as they aim to evacuate the park after a natural or man-made disaster. The second direction focuses on the movement patterns of mobile sinks and their communication in responding to various events and incidents within the theme park. When an event occurs, the system needs to determine which mobile sink will respond to the event and its trajectory. The overall objective is to optimize the event coverage by minimizing the time needed for the chosen mobile sink to reach the incident area. We extend this work by considering the positioning problem of mobile sinks and preservation of the connected topology. We propose a new variant of p-center problem for optimal placement and communication of the mobile sinks. We provide a solution to this problem through collaborative event coverage of the WSNs with mobile sinks. Finally, we develop a network model with opportunistic communication for tracking the evacuation of theme park visitors during disasters. This model involves people with smartphones that store and carry messages. The mobile sinks are responsible for communicating with the smartphones and reaching out to the regions of the emergent events

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Practical security scheme design for resource-constrained wireless networks

    Get PDF
    The implementation of ubiquitous computing (or pervasive computing) can leverage various types of resource-constrained wireless networks such as wireless sensor networks and wireless personal area networks. These resource-constrained wireless networks are vulnerable to many malicious attacks that often cause leakage, alteration and destruction of critical information due to the insecurity of wireless communication and the tampers of devices. Meanwhile, the constraints of resources, the lack of centralized management, and the demands of mobility of these networks often make traditional security mechanisms inefficient or infeasible. So, the resource-constrained wireless networks pose new challenges for information assurance and call for practical, efficient and effective solutions. In this research, we focus on wireless sensor networks and aim at enhancing confidentiality, authenticity, availability and integrity, for wireless sensor networks. Particularly, we identify three important problems as our research targets: (1) key management for wireless sensor networks (for confidentiality), (2) filtering false data injection and DoS attacks in wireless sensor networks (for authenticity and availability), and (3) secure network coding (for integrity). We investigate a diversity of malicious attacks against wireless sensor networks and design a number of practical schemes for establishing pairwise keys between sensor nodes, filtering false data injection and DoS attacks, and securing network coding against pollution attacks for wireless sensor networks. Our contributions from this research are fourfold: (1) We give a taxonomy of malicious attacks for wireless sensor networks. (2) We design a group-based key management scheme using deployment knowledge for wireless sensor networks to establish pair-wise keys between sensor nodes. (3) We propose an en-route scheme for filtering false data injection and DoS attacks in wireless sensor networks. (4) We present two efficient schemes for securing normal and XOR network coding against pollution attacks. Simulation and experimental results show that our solutions outperform existing ones and are suitable for resource-constrained wireless sensor networks in terms of computation overhead, communication cost, memory requirement, and so on

    A Cooja-based tool for coverage and fifetime evaluation in an in-building sensor network.

    Get PDF
    Contiki’s Cooja is a very popular wireless sensor network (WSN) simulator, but it lacks support for modelling sensing coverage, focusing instead on network connectivity and protocol performance. However, in practice, it is the ability of a sensor network to provide a satisfactory level of coverage that defines its ultimate utility for end-users. We introduce WSN-Maintain, a Cooja-based tool for coverage and network lifetime evaluation in an in-building WSN. To extend the network lifetime, but still maintain the required quality of coverage, the tool finds coverage redundant nodes, puts them to sleep and automatically turns them on when active nodes fail and coverage quality decreases. WSN-Maintain together with Cooja allow us to evaluate different approaches to maintain coverage. As use cases to the tool, we implement two redundant node algorithms: greedy-maintain, a centralised algorithm, and local-maintain, a localised algorithm to configure the initial network and to turn on redundant nodes. Using data from five real deployments, we show that our tool with simple redundant node algorithms and reading correlation can improve energy efficiency by putting more nodes to sleep

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    Distributed scheduling algorithms for LoRa-based wide area cyber-physical systems

    Get PDF
    Low Power Wide Area Networks (LPWAN) are a class of wireless communication protocols that work over long distances, consume low power and support low datarates. LPWANs have been designed for monitoring applications, with sparse communication from nodes to servers and sparser from servers to nodes. Inspite of their initial design, LPWANs have the potential to target applications with higher and stricter requirements like those of Cyber-Physical Systems (CPS). Due to their long-range capabilities, LPWANs can specifically target CPS applications distributed over a wide-area, which is referred to as Wide-Area CPS (WA-CPS). Augmenting WA-CPSs with wireless communication would allow for more flexible, low-cost and easily maintainable deployment. However, wireless communications come with problems like reduced reliability and unpredictable latencies, making them harder to use for CPSs. With this intention, this thesis explores the use of LPWANs, specifically LoRa, to meet the communication and control requirements of WA-CPSs. The thesis focuses on using LoRa due to its high resilience to noise, several communication parameters to choose from and a freely modifiable communication stack and servers making it ideal for research and deployment. However, LoRaWAN suffers from low reliability due to its ALOHA channel access method. The thesis posits that "Distributed algorithms would increase the protocol's reliability allowing it to meet the requirements of WA-CPSs". Three different application scenarios are explored in this thesis that leverage unexplored aspects of LoRa to meet their requirements. The application scenarios are delay-tolerant vehicular networks, multi-stakeholder WA-CPS deployments and water distribution networks. The systems use novel algorithms to facilitate communication between the nodes and gateways to ensure a highly reliable system. The results outperform state-of-art techniques to prove that LoRa is currently under-utilised and can be used for CPS applications.Open Acces

    Challenges and Solutions for Location-based Routing in Wireless Sensor Networks with Complex Network Topology

    Get PDF
    Complex Network Topologies (CNTs)–network holes and cuts–often occur in practical WSN deployments. Many researchers have acknowledged that CNTs adversely affect the performance of location-based routing and proposed various CNT- aware location-based routing protocols. However, although they aim to address practical issues caused by CNTs, many proposed protocols are either based on idealistic assumptions, require too much resources, or have poor performance. Additionally, proposed protocols are designed only for a single routing primitive–either unicast, multicast, or convergecast. However, as recent WSN applications require diverse traffic patterns, the need for an unified routing framework has ever increased. In this dissertation, we address these main weaknesses in the research on location- based routing. We first propose efficient algorithms for detecting and abstracting CNTs in the network. Using these algorithms, we present our CNT-aware location- based unicast routing protocol that achieves the guaranteed small path stretch with significantly reduced communication overhead. We then present our location-based multicast routing protocol that finds near optimal routing paths from a source node to multicast member nodes, with efficient mechanisms for controllable packet header size and energy-efficient recovery from packet losses. Our CNT-aware convergecast routing protocol improves the network lifetime by identifying network regions with concentrated network traffic and distributing the traffic by using the novel concept of virtual boundaries. Finally, we present the design and implementation details of our unified routing framework that seamlessly integrates proposed unicast, multicast, and convergecast routing protocols. Specifically, we discuss the issues regarding the implementation of our routing protocols on real hardware, and the design of the framework that significantly reduces the code and memory size to fit in a resource constrained sensor mote. We conclude with a proactive solution designed to cope with CNTs, where mobile nodes are used for “patching” CNTs to restore the network connectivity and to optimize the network performance
    corecore