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ABSTRACT Recently, wireless sensor networks (WSNs) were perceived as the foundation infrastructure
that led to the development of the Internet of Things (IoT). However, a challenging issue exists when
WSNs are integrated into the IoT because of high energy consumption in their nodes and poor network
lifespan. Therefore, the elementary discussions in WSN are energy scarcity in sensor nodes, sensors’ data
exchange, and routing protocols. To address the aforesaid shortcomings, this paper develops an optimized
energy-efficient path planning strategy that prolongs the network lifetime and enhances its connectivity.
The proposed approach has four successive procedures: initially, the sensing field is partitioned into equal
regions depending on the number of deployed mobile sinks that eliminate the energy-hole problem. A
new heuristic clustering approach called stable election algorithm (SEA) is introduced to minimize the
message exchange between sensor nodes and prevent frequent cluster heads rotation. A sojourn location
determination algorithm is proposed based on the minimum weighted vertex cover problem (MWVCP) to
find the best position for the sinks to stop and collect the data from cluster heads. Finally, three optimization
techniques are utilized to evaluate the optimized mobile sinks’ trajectories using multi-objective evolution-
ary algorithms (MOEAs). Whilst the performance of the developed work was evaluated in terms of cluster
heads number, network lifetime, the execution time of the sinks’ sojourn locations determination algorithm,
the convergence rate of optimization techniques, and data delivery. The simulation scenarios conducted in
MATLAB and the obtained results showed that the introduced approach outperformed comparable existing
schemes. It succeeded in prolonging the network lifetime up to 66% compared to existing routing protocols.

INDEX TERMS Ant Colony Optimization; Clustering Protocol; Genetic Algorithm; IoT; M2M; Multiple
Mobile Sinks; Optimized Path; Routing Protocol; Simulated Annealing; Stable Election Algorithm; WSN.

I. INTRODUCTION

W IRELESS sensor network (WSN) is the preferred
term adopted by the academic scholars to describe

the “wireless sensor and control network" or “wireless sensor
and actuator network" [1]. WSN is characterized by small-
sized devices called sensor nodes which have the ability to
sense the surrounding environment and send the sensory data
to a centralized base station (sink node). The sensor nodes
are battery powered and sparsely deployed over the sensing
field in order to monitor and relay the data of the desired
phenomenon wirelessly in a multi-hop communication [2].
WSNs consist of a tremendous number of sensor nodes

that communicate with each other to form the network. The
sensor network may be semi or fully connected because the
sensor nodes are separated by a geographical distance when
they are deployed over a wide geographical area [3] [4].

Autonomous wireless sensors serve as the gist of the
WSNs and therefore, WSNs can be identified as one of
the Internet of things (IoT) pillars. The IoT is a recognized
paradigm that exemplifies the interrelation of ubiquitous
computing resources with diverse components in a dynamic
environment. Different technologies can be utilized to im-
plement assorted IoT applications such as (i) machine-to-
machine (M2M) communication that enables two or more
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FIGURE 1: A simplified IoT System

devices to communicate with each other without human
intervention, (ii) context-aware computing that senses the
surrounding environment and alters system behavior ac-
cordingly, and (iii) low power and low data rate wireless
communication (e.g. radio frequency identification (RFID),
Zigbee, etc.) that provides short-range communication at
minimum power consumption. The common examples of
IoT application including but not limited to wearable devices
like a smartwatch for healthcare applications, a smart lock
for smart home appliances, and drones or smart vehicles
for domestic industrial automation [5] [6]. The international
telecommunication union (ITU) depicted a comprehensive
vision of IoT as the transformation from anytime connectivity
for anyone at anywhere to the connectivity for anything [7].

Fig. 1 illustrates a simplified block diagram for IoT system.
The sensors are used to amass the sensory data at partic-
ularized time intervals. The microcontroller formulates the
data packets that include protocol stack control messages to
proceed with medium access control operations. The trans-
mission unit performs packet modulation and transmission
over the wireless link. The gateway (base station or sink
node) has two communication paths, the first is a low power
wireless link to communicate with the sensor nodes, and
the second is an Internet connection to store and/or retrieve
the data from the cloud. The gateway has an infinite energy
source and may execute complex algorithms to curtail the
number of data packets before being stored in the cloud.
Finally, the sensory data will be transferred to the end-user
for further data analysis where the reports are generated [8].

As stated earlier, the sensor nodes are battery powered and
it is not feasible to regularly replace their batteries especially

for a large number of sensor nodes while the gateway may be
mains powered. The report of Ericsson mobility articulated
that number of IoT connected devices will increase from
seven billion in 2017 to twenty billion in 2023 with 19%
annual growth [9]. Therefore, significant efforts are required
in order to replace and safely recycling this number of dispos-
able batteries. Accordingly, the energy-efficient techniques
are demanding in order to prolong the sensor node lifetime
as the sensor nodes anticipate to operate for a long lifespan
without human intervention and any maintenance.

The rest of the paper is organized as follows: Section II
explains the energy hole (hotspot) problems and the sink
mobility types. While Section III surveys the recent research
topics that are existed in the literature and related to the
proposed approach. In Section IV, a detailed explanation of
the proposed approach is presented. Section V provides a
comprehensive discussion about the obtained results. Finally,
Section VI suggests some future research directions and the
paper is concluded in Section VII.

II. SINK NODE IN WIRELESS SENSOR NETWORKS
In general, the sensor nodes are deployed in a harsh envi-
ronment that makes it difficult to recharge or replace the
nodes’ batteries when they depleted during nodes operation.
Several problems may exist when nodes are drained out of
power such as communication holes and coverage holes.
Therefore, several energy-efficient techniques have been con-
ducted in order to maintain the battery power and prolong
the node lifetime [10]. Duty-cycle scheduling is one of these
techniques that enables the sensor node to performing sleep
mode periodically without affecting the WSN operation [11].
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Another technique is utilizing an energy-efficient routing
mechanism that balances the energy consumption in every
sensor node [12] [13]. While data aggregation mechanism
is used to integrate similar or different multiple sensory
data into a single packet, and hence a reduction in data
transmission is achieved and node lifetime is extended as
well [14]. The other energy-saving technique is to deploy
mobile sensors that travel across the sensor field and change
their locations depending on the energy level of the other
nodes. A compromised approach is to adopt a mobile sink
instead of a static sink or mobile sensor nodes that relocate
its position in the sensing field to gather the data from the
sensor nodes to expand network lifespan. It is worth noting
that most of the aforementioned energy-efficient techniques
can exist together in the same sensor field [10] [15].

Abundant energy is consumed by the sensor node to
performing data sensing and data transmission towards the
sink node. The sensor nodes closer to the sink node exhaust
their residual energy faster than the farther nodes due to
heavy data traffic while relaying the other sensors’ data.
Sensor node deaths around the sink node will cause topology
disruption and lowering sensing coverage. This situation is
called a hotspot problem and leads to isolating the sink node
and hindering the aggregation of the sensory data across the
network. A mobile sink is employed to alleviate the hotspot
problem by visiting every sensor node in the sensor field
during the data collection phase. However, the sink node
traveling may be time-consuming especially in large sensor
fields, and hence some packets may be dropped by the sensor
nodes due to finite buffer size. Therefore, effective delay-
aware mechanisms are in demand to reduce packet losses and
extend the network lifetime. Rendezvous points technique is
one of the mobile sink scheduling techniques that reduces
the data collection delay in WSNs. They are sensor nodes
or specific locations in the sensor field in which the mobile
sink visits while collecting sensor field data [16] [17]. The
mobility patterns of the sink node depend on the application
area where the WSN being deployed.

A good summary of the classification of sink mobility
patterns has been provided in [3] [18]:

1) Random mobility: it is the simplest form of mobility in
WSN as the mobile sink does not need any network in-
formation. Unfortunately, this pattern does not provide
optimal lifetime enhancement due to frequent update
of sink position and route reconstruction accordingly;

2) Predictable mobility: it is also called deterministic
mobility as the sensor nodes can predict the arrival time
and position of the mobile sink because the mobile sink
visits certain nodes periodically to collect the data;

3) Controlled mobility: it is also called optimized mobil-
ity as the data collection path of the sink node will
be determined based on network parameters such as
nodes residual energy, event location and sink speed.
In addition, the mobile sink visits certain nodes at a
particular time interval and starts to collect the sensed
data until the node’s buffer becomes empty.

The existing challenges of the static sink in multi-hop and
dense WSN led to utilize the mobile sink for collecting and
disseminating sensory data. Accordingly, the main advan-
tages of using mobile sinks in WSN include [19]:

• Improvement network reliability due to reducing the
contention and collisions while accessing the wireless
medium by collecting the nodes’ data in single or finite
hop transmissions;

• Improve the hotspot region by reducing the dependency
on the relay nodes that are closer to the static sink,
resulting in extending the network lifetime;

• Enhance network connectivity as the mobile sinks can
collect the data from the isolated sensor nodes;

• Sporadic network architecture indicates lowered appli-
cation cost because a limited number of nodes are
required and the mobile elements are available such as
cars, trains, and wildlife, etc.

III. RELATED WORKS
The available researches that handling the hotspot (energy
hole) problem can be classified into two main groups based
on the sink mobility: static (stationary) sink, and mobile
(movable) sink. The previous works are done in mobile sink
that solved the network performance degradation issues can
be subdivided into single mobile sink and multiple mobile
sinks. Therefore, employing multiple mobile sinks in WSNs
could improve network performance by sharing the network
overhead among the deployed sinks. Over the past decades,
the researchers proposed different approaches to extend the
WSN lifespan. Among them, the most effective strategy is
the determination of the mobile sink path to balance the
energy depletion in sensor nodes. Hence, mobile sink path
determination received considerable attention from academic
scholars and researchers due to its importance in developing
IoT-based real-world applications. In the recent literature, the
sink mobility problem classified into two main categories:
(1) optimized mobile sink path without clustering, and (2)
optimized mobile sink path with clustering.

A. OPTIMIZED MOBILE SINK PATH WITHOUT
CLUSTERING
Deng et al. [20] introduced an online algorithm that solved
the issue of data gathering in sensor field with multiple
mobile sinks by primal-dual approach. The main aim of their
approach was to maximize the data transmitted by the sensor
nodes. The online algorithm performed real-time decisions
for the newly employed mobile sink based on the new sink
data capacity and its location.

Thomas et al. [21] presented an intelligent method to find
the best path for the mobile sink based on modified travel
salesman problem to collect the data from the sensor nodes.
The mobile sink node in their proposed approach traveled
along the circle’s chord that served as the maximum commu-
nication range of the sensor nodes. Their intelligent algorithm
found out the optimal locations of the aforementioned chords
along the mobile sink path.
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Cheng et al. [22] developed a fast and efficient broadcast
(FEB) protocol for asynchronous WSNs with mobile sink.
The sink traveled along the sensor field in a predefined path
based on the coverage information between the sensor nodes
and the mobile sink before starting the transmission process.
The authors argued that their proposed approach minimized
the broadcast delay and reduced the energy consumption.

Sun et al. [23] presented hybrid positive and negative
particle swarm optimization algorithm (HPNPSOA) to de-
termine the optimal path for multiple mobile sinks and stop
positions in hexagonal grids. The authors concluded that
their proposed approach eliminated the energy hole problem,
reduced network latency, and prolonged the network lifetime.

Gharaei et al. [24] developed energy-efficient mobile-sink
sojourn location optimization (EMSLO) scheme for hetero-
geneous home network. Robovac is employed as a mobile
sink and the sojourn location was optimized to solve the
energy hole and network coverage problems. The obtained
results from their approach enhanced the coverage time and
improved the network lifetime.

Kumar and Prasanth [25] proposed an optimized path
selection technique for mobile sink based on weighted
rendezvous planning (WRP). Their approach employed Q-
learning based adaptive zone partition method in order to
partition the sensing field into small regions. The particle
swarm optimization (PSO) algorithm was used to evaluate
the optimum path from the rendezvous to the mobile sink.
The authors argued that the network lifetime was extended
because the energy consumption was reduced in multi-hop
transmissions.

Byun [26] proposed a cost balancing algorithm for multi-
ple mobile data collectors. His proposed algorithm aimed at
achieving uniform delay while gathering the data from the
stationary sensor nodes. The sensor field was partitioned into
several grids where the mobile collectors traveled to collect
the data. The mobile sinks’ trajectories for the multiple
mobile collectors were determined based on the traveling dis-
tance and the energy consumption of the nodes. The author
argued that the network lifetime was extended by balancing
the energy depletion in sensor nodes.

Zhong et al. [27] introduced a hyper-heuristic framework
(HHF) that intelligently organized the mobile sink move-
ments based on heuristic rules. Based on the prior knowledge
of their networks, predefined low-level heuristics and training
networks were designed and assigned as input to the genetic
programming (GP) algorithm to automatically built-up high-
level heuristics. As a result, the GP algorithm produced the
heuristics with the highest fitness.

Wang et al. [28] introduced a trajectory scheduling method
based on coverage rate for multiple mobile sinks (TSCR-
M) that utilized particle swarm optimization (PSO) to find
the optimal rendezvous points for the mobile sinks. TSCR-
M integrated the genetic algorithm (GA) for scheduling the
traveling trajectory of the multiple sinks. The authors argued
that the network lifetime enhanced due to the reduction in
node’s energy consumption.

Jain et al. [29] proposed an event-based data transmission
scheme called delay-aware green routing protocol (DGRP)
that created virtual infrastructure by introducing multiple
rings within the sensing field. The DGRP scheme limited the
location information updates of the mobile sink to the sensor
nodes that belonged to the designated ring only. The authors
argued that the DGRP employed a single mobile sink and
showed a remarkable improvement in terms of throughput
and nodes’ energy consumption.

Lin et al. [30] aimed at prolonging the network lifespan
of heterogeneous WSN by adopting mobile sink. They in-
troduced DDCF as a data collection mechanism that pri-
marily comprised of two phases: data collection points and
tree topology construction that were executed during each
simulation round. The authors argued that the introduced
mechanism improved the lifespan of the WSN.

B. OPTIMIZED MOBILE SINK PATH WITH CLUSTERING

Zhong and Ruan [31] proposed an energy-efficient routing
technique for WSN utilizing multiple mobile sinks. The
authors studied the effect of mobile sink numbers on network
performance when the clustering method was used to group
the sensor nodes across the erring field. The authors argued
that the optimum number for mobile sinks was 3 and there is
no need to deploy more sinks as the sink node cost increased.

Koosheshi and Ebadi [32] presented multiple mobile sinks
path determination strategy for WSN employed clustering
technique. Their proposed approach divided the sensor nodes
into unequal clusters based on fuzzy logic. The sensing field
was divided into 16 equal regions and the average residual
energy was evaluated in order to determine the optimal path
for the mobile sinks. The authors argued that their proposed
approach decreased energy consumption and solved the en-
ergy holes that existed in WSNs.

Wen et al. [33] proposed cooperative data collection al-
gorithm (CDCA) in order to extend the WSN lifetime. The
CDCA algorithm consisted of three phases: network parti-
tion phase, collection points selection and path construction
phase, and speed control phase. Their introduced algorithm
began with splitting the sensor nodes into groups and ap-
pointed a mobile sink to each group. The authors argued
that the energy consumption was minimized and the network
lifetime was extended accordingly.

Wang et al. [34] presented a routing scheme based on sink
mobility with clustering approach. The proposed energy-
efficient scheme divided the sensor field into sub-regions
with equal sizes. Within each sub-region, the sensor nodes
elected cluster heads and calculated the routing path based on
the optimal consumed energy while transmitting the sensory
data to the cluster heads using single-hop or multi-hops
communication.

Sun et al. [35] proposed mobile intelligent computing
based on compressive sensing data gathering (MIC-CSDG)
algorithm. Their proposed approach was based on multi-hop
data routing among sensor nodes. A clustering approach was
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adopted with compressive sensing data gathering mechanism
to minimize the sampling data between cluster members.

Krishnan et al. [36] introduced a modified clustering tech-
nique based on low energy adaptive clustering hierarchy
(LEACH) protocol for WSN utilizing multiple mobile sinks.
The mobile sinks traveled along the sensing field to collect
the data from the cluster heads and their paths evaluated using
the ant colony optimization (ACO) technique. The authors
argued that their proposed approach eliminated data loss and
improved the network lifetime.

Vijayashree and Dhas [37] proposed a data collection strat-
egy for multiple mobile sinks with a clustering scheme. The
cluster heads were selected based on nodes’ residual energy
while the data collection path for the multiple mobile sinks
evaluated using an artificial bee colony (ABC) algorithm.
The obtained results from their proposed approach showed an
effective reduction in redundant data transmission, conserved
nodes’ energy, and enhanced the network lifespan.

Donta et al. [38] proposed a hierarchical agglomerative
clustering-based data collection (HACDC) algorithm. The
HACDC approach determined the optimal rendezvous points
using unsupervised machine learning for 3D WSNs. In addi-
tion, a novel statistical approach was used to find the optimal
number of clusters in HAC, and set the rendezvous points at
the center of each cluster.

Pang et al. [39] proposed collaborative data collection
scheme that utilized multiple mobile sinks. The authors intro-
duced a path equalization algorithm (PEABR) to determine
the optimal path for the mobile sinks when visiting the cluster
heads. The network was divided into clusters and the cluster
heads were chosen based on their residual energy to collect
the sensory data from cluster members. The authors argued
that their proposed approach was feasible while balancing
the path length of each mobile sink without increasing the
additional path calculation cost.

Liu et al. [40] proposed iterative sensor node associa-
tion and trajectory planning policy to reduce the age of
information (AoI) of each ground sensor node. Dynamic
programming was used by the trajectory planning algorithm
to evaluate the optimum value of the maximum and average
AoI for the unmanned ariel vehicle (UAV). Their proposed
scheme had an optimized clustering weight that guaranteed
a balance between the uploading time of the sensor node
and the flight time of the UAV when different simulation
scenarios were executed.

This paper was motivated by the recent IoT applications
that implicitly needed sink mobility. For instance, the per-
sonal digital assistance (PDA) handled by a rescuer moving
across a disaster area to search for any survivors [41] and
may other applications with similar scenarios surveyed in
[42] [43]. While the sink mobility enhanced the network
lifetime, it also incurred route adjustments overhead to the
routing protocol. In a conventional way, there is only one
stationary sink resided at the center of the sensing field
to gather the sensory data through single-hop or multi-hop
transmissions. Therefore, the energy consumption of the

nodes nearer to the sink was high and caused energy holes
in WSNs. While in cluster hierarchy, all the cluster members
sent their data to the cluster head, and unbalance energy
depletion existed due to the increased burden on these cluster
heads. In order to address the aforementioned problems, this
paper employed mobile sinks in order to reduce the number
of hops during data transmissions, achieve uniform energy
depletion among the sensor nodes, and thereby prolong the
network lifespan. An optimized path determination strategy
is proposed with clustering techniques for both homogeneous
and heterogeneous sensor networks. Fig. 2 illustrates the
hierarchical structure of the proposed approach and the major
contributions are as follows:

1) Developing a stable election algorithm (SEA) that en-
ables the sensor nodes to form clusters and the cluster
heads are selected based on heuristic rules. The SEA
is capable of preventing unnecessary frequent cluster
head selection and/or rotation in homogeneous and
heterogeneous WSNs;

2) Developing a cognitive sojourn location determina-
tion algorithm based on minimum weighted vertex
cover problem (MWVCP). The introduced algorithm
searches for the optimum minimum number of virtual
vertices that cover the sensing field while each virtual
vertex must cover a maximum number of cluster heads
within its vicinity. These sojourn locations represent
the best locations for the mobile sinks to stop while
traveling across the sensing field to collect cluster
heads’ data;

3) Developing an optimized mobile sink trajectory based
on a multi-objective evolutionary algorithm (MOEA).
The optimized mobile sinks’ paths are calculated using
the sojourn locations’ coordinates in which four mobile
sinks are deployed to gather the sensing field data. In
addition, three optimization techniques are employed
to determine the best technique that provides efficient
data collection and faster convergence to the optimal
solution.

FIGURE 2: The proposed approach scheme
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IV. PROPOSED APPROACH
In this paper, we assume that the sensor field consists of 200
randomly deployed sensor nodes distributed over a geograph-
ical area (200 × 200 m2). The sensor nodes are stationary
and aware of their geographical locations only when certain
sensor node is elected to be a cluster head. Multiple mobile
sinks are employed to gather the sensory data. The sensor
nodes are grouped together to form a cluster. The cluster head
is responsible for collecting cluster members’ data within
single-hop transmission. The sink nodes travel along the field
freely (aerial or terrestrial movement without obstacle) and
their optimized moving paths are calculated when the cluster
heads locations are received at the base station.

A. NETWORK MODEL
In this paper, three types of networks have been employed
to provide comprehensive simulation scenarios of all avail-
able IoT based WSN applications. The sensor nodes in the
introduced models are assumed to be stationary, unaware of
their geographical location expect when the node becomes a
cluster head, identical in terms of sensing facility, and com-
munication range. All the networks models have N sensor
nodes and can be described as follows:

1) Homogeneous network (single-tier)
In this model, all the sensor nodes are similar in having
the same initial energy when the simulation started.
The sensor node with initial energy (e0) is called the
normal node. The total initial energy of the homoge-
neous sensor network can be expressed by:

Etotal 1−tier =

N∑
i=1

e0 (1)

2) Two-tier heterogeneous network
In this model, the sensor nodes are classified into two
main groups: normal and advanced nodes. The fraction
of advanced nodes in the heterogeneous network is n.
Therefore, the number of advanced nodes in the sensor
field is nN and the advanced node equipped with α
times more energy than the normal node. Hence, the
total initial energy of two-tier heterogeneous sensor
network can be expressed by:

Etotal 2−tier =N(1− n)e0 + nNe0(1 + α)

=Ne0(1 + αn) (2)

3) Three-tier heterogeneous network
In this model, the sensor nodes are characterized into
three main classes: normal, advanced, and super nodes.
The fraction of advanced and super nodes in the hetero-
geneous network is n. Let n0 is the percentage of super
nodes from n, and Nn(1 − n0) is the total number of
advanced node whilst the remaining N(1 − n) is the
number of normal nodes in the three-tier heterogeneous
network.The super node equipped with β times more
energy than the normal node. Accordingly, the total ini-
tial energy of thee-tier heterogeneous sensor network
can be expressed by:

Etotal 3−tier = Nnn0e0(1 + β)

+ Nn(1− n0)e0(1 + α)

+ N(1− n)e0

= Ne0(1 + n(α+ n0(β − α))) (3)

B. ENERGY CONSUMPTION MODEL
The first order radio model introduced by Heinzelman in [44]
is employed in this paper for later energy consumption per-
formance simulation. Fig. 3 depicts the block diagram of the
adopted radio model whilst the mathematical representation
is given in Eq. 4 and Eq. 5 for transmission and receiving
energies, respectively.

FIGURE 3: The first order radio model diagram

ETX(P, d) = Ecircuit(P ) + Eamp(P, d)

= Ecircuit × P + Eamp × P ∗ d2 (4)

ERX(P ) = Ecircuit(P )

= Ecircuit × P (5)

The ETX is the energy dissipated during transmission of a
packet and ERX is the energy consumed during receiving a
packet. While P is the packet size and d is the geographical
distance between the cluster head and its members, and
between the mobile sink and the cluster heads which is as-
sumed to be fixed in the introduced simulation scenarios. The
Ecircuit is the depleted energy in the transmitter and receiver
electronic circuits that is equal to 50 nJ/bit while the con-
sumed energy in amplifier circuit Eamp is 100 pJ/bit/m2

for attaining a specific level of signal-to-noise ratio (SNR).
The cluster heads and cluster members can communicate

directly; this type of communication is called intra-cluster
communication. We assume that the mobile sink can reach
each cluster head within the mobile sink’s transmission range
using a single-hop communication. The cluster members
cannot send any data to the mobile sink directly. Finally, a
symmetric radio channel is adopted during the simulation in
which the transmission energy between two nodes remains
the same for a fixed SNR.

C. CLUSTER FORMATION
The number of sensing field partitions depends on the de-
sired number of the deployed mobile sinks. The introduced
segmentation procedure works for square sensing fields only.
The division procedure targets to divide the field into multiple
equal areas and each area should have the same side length.
Therefore, each side of the sensing field is divided into equal
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(a) No. of mobile sinks = 3 (b) No. of mobile sinks = 4 (c) No. of mobile sinks = 5 (d) No. of mobile sinks = N

FIGURE 4: Sensing field segmentation based on the number of deployed mobile sinks

N congruent segments, where N is the number of deployed
mobile sinks. Then, choosing a corner for an odd number
of mobile sinks or the middle point of the field side for
the even number of mobile sinks to start the sensing field
division process. Once the starting point is identified, the
total number of sides’ segments is divided by the number of
mobile sinks to determine how many segments should each
area have. Finally, a line is drawn from the starting point of
each segment to the center of the sensing field to determine
the segment border. Fig. 4 illustrates how the sensing field is
divided for 3, 4, 5, and N mobile sinks respectively.

The sensor field is portioned into four equal regions in or-
der to a achieve distributed cluster head selection that solved
the scalability issues while prolonging the network lifetime
by ultimately minimizing the energy depletion in sensor
nodes. The topology of the sensor network is unexpected
due to random node deployment in the sensing field. The
random deployment of sensor nodes does not guarantee that
each subregion of the sensing field will have all three types
of nodes (normal, advanced, super). It could be possible that
a certain region may not contain any advanced and/or super
nodes when random node deployment is adopted. Therefore,
the main goal of the introduced clustering algorithm is to re-
duce the overall energy depletion by utilizing a new heuristic
mechanism that reduces unnecessary re-clustering frequency.

The introduced stable election algorithm (SEA) conserves
sensors’ energies by eliminating cluster formation message
exchange while providing stable distributed clusters. The
SEA consists of three phases: cluster initiation, cluster head
rotation, and data collection.

1) Cluster initiation phase starts once the sensor nodes
were powered on after deployment. In the homoge-
neous network, all the nodes have a similar proba-
bility to become a cluster head because they have
equal residual energy (e0). The sensor nodes begin
to broadcast “Hello” messages to their neighbors and
receive acknowledgment messages from them. After
the aforementioned message exchange is finished, each
node constructs a neighbors table. The sensor node
that has a maximum number of neighbor nodes will be
elected as an initial cluster head among the neighbor

nodes within its vicinity. While in a heterogeneous
network, the initial cluster head is chosen based on the
total number of neighbor nodes and the node’s residual
energy. In other words, the advanced and supernodes
have a higher priority to become a cluster head than
normal nodes because they have higher residual energy.

2) Cluster head rotation phase launches when the residual
energy (Er) of the current cluster head dropped below
a certain predefined threshold (ETh) value. After the
initial cluster head selection procedure finished, every
sensor node in the sensor field consciously monitors its
residual energy and evaluates the cluster head rotation
index (R) that is given in Eq. 6 during each simulation
round. An advertisement message is broadcasted by the
current cluster head to initiate the cluster head rotation
procedure when its Er reached a certain predefined
value. The node with a high rotation index value will
win the competition to be elected as the next cluster
head for that cluster. The heuristic approach used in
evaluating the rotation index will prevent the sensor
nodes from generating multiple control messages for
cluster head selection and rotation. In addition, the
SEA eliminates the frequent cluster head rotations that
deplete the node’s energy without performing a useful
functions.

Ri =

[√∣∣∣∣ γ

1− γ(i mod (1/γ))

∣∣∣∣ ∗ Er ∗ ψ

]
∗ η (6)

Where γ is a random number between 0 and 1 that
serves as a seed for later cluster head selection, i is
the simulation round for the current scenario, ψ is the
number of times that the current node became a cluster
head so far, and η is the multiplication index (η=1 when
Er > ETh and η=0 when Er < ETh). The η blocks
old cluster heads from being chosen in the future while
allowing them to participate in the communication
until they deplete their remaining energies.

3) The data collection phase begins upon the comple-
tion of cluster head selection and/or rotation. At the
beginning of this phase, the selected cluster heads
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report their geographical locations to a centralized base
station in order to compute the optimized path(s) of
the mobile sink(s). Once the node is chosen to serve
as a cluster head, it activates the global system for
mobile communications (GSM) module to determine
its location using the global positioning system (GPS)
and send its location to the base station using short
message service (SMS). Upon the completion of SMS
transmission, the cluster head turns off the GSM mod-
ule and never uses it again. The sensor nodes within the
cluster start sending the sensory data to the cluster head
in order to be aggregated before sending the received
data to the mobile sink. The cluster head can reach
the mobile sink in a single-hop within its transmission
range. When the sink node arrives at the sojourn lo-
cation, it broadcasts a notification message to inform
the cluster heads within its transmission range to start
sending the aggregated data. The sink node waits and
then it moves to the next sojourn location after the time
out of no data received timer.

D. OPTIMIZED MOBILE SINK PATH DETERMINATION
In this paper, the sojourn point can be defined as the best
point (location) in the sensor field where the mobile sink node
can communicate with the maximum number of cluster heads
that are covered by its transmission range. The introduced
algorithm for sojourn point determination scans the received
cluster heads’ locations and searches for the best position
that satisfied the sojourn point definition. Fig. 5 shows three
cluster heads and their corresponding sojourn point.

After receiving the cluster heads’ locations, the centralized
base station assumes that the sensing field is an undirected
weighted graph G(V,E,w), where v = {1, 2, . . . , a} is the
vertices set, E = {1, 2, . . . , b} is the edges set, and w is the
weights. The vertices represent the cluster heads while the
edges represent the communication link between them. The
introduced sojourn location determination algorithm is based
on MWVCP. The weighted vertex cover problem aimed at
finding a subsets of minimum number of virtual vertices
(VV) where V V ⊆ V , such that ∀(u, v) ∈ E, either
u ⊆ V V or v ⊆ V V , and every vertex v linked to c weights,
w1(v), w2(v), . . . , wc(v). The proposed sojourn algorithm
will search for a set of VV that minimize the m objective
functions fi(V) =

∑
V[v] wi(v), where i = 1, 2, . . . , c.

Finally, the MWVCP of the sojourn location algorithm can
be formulated as follows:

Min F (V) = (f1(V), f2(V), . . . , fm(V))T (7)

Where V is a binary vector that represents the optimal
solution. When V V is the solution then V = 1 otherwise
V = 0. In summary, the V V represents the minimum sojourn
locations for the multiple mobile sinks and each location
covers the maximum number of cluster heads.

Two main scenarios are conducted: single mobile sink
and multiple mobile sinks. For the single mobile sink, the
centralized base station is located at one of the sensing

field corners. Whilst in multiple mobile sinks scenario, the
centralized base station is positioned at the sensing field
center. When employing multiple mobile sinks, the sensing
field is portioned into four equal regions in order to extend
the network lifetime and improve network delay.

FIGURE 5: The sojourn location of a mobile sink node
among three cluster heads

In this paper, the optimized mobile sink path is one of the
NP-hard optimization problems that required the evaluation
of a closed shortest path with minimum cost and delay.
The optimized path should pass through a predefined set of
sojourn points where each sojourn point can be visited only
once. The multi-objective evolutionary algorithms (MOEAs)
may be deemed as an optimum solution for multiple-criteria
decision making (MCDM) problems because MOEAs eval-
uation encompasses many metrics. The developed algorithm
aimed at minimizing simultaneously the cost, distance and
delay of the mobile sink path. Let ξ is a sojourn point and S
is a set of ξ (i, j = 1, 2, . . . ,m), Ci,j is the cost of moving
from ξi to ξj , di,j is the distance from ξi to ξj , and τi,j is
the traveling delay from ξi to ξj . The decision variable Γ is
given in Eq. 8. While the objective functions for minimizing
the cost, distance and delay are given in Eq. 9, in Eq. 10, and
in Eq. 11 respectively.

Γi,j =

{
1 if ξj is visited from ξi
0 otherwise (8)

C : Min

m∑
i

m∑
j

Ci,j Γi,j (9)

D : Min

m∑
i

m∑
j

di,j Γi,j (10)

T : Min

m∑
i

m∑
j

τi,j Γi,j (11)

While the optimization constraints are:
∑m

i Γi,j = 1 for all i
and j, the evaluated route must not be chosen more than once
(Γi,j + Γj,i 6 1) and Γi,j > 1.
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The evolutionary algorithm (EAs) received considerable
attention from industrial researchers and academic scholars
in different fields because of the robust and effective merits
that exist while finding a set of trade-off solutions. Three EAs
are utilized in the optimized mobile sink path determination
algorithm: ant colony optimization (ACO), genetic algorithm
(GA), and simulated annealing (SA). These optimization
techniques have been employed in the simulation scenar-
ios for both single mobile sink and multiple mobile sinks.
There are many similarities between the aforementioned
EAs. However, each intelligent heuristic algorithm possesses
unique characteristics primarily in its strategy for seeking
the optimum solution. The three EAs are employed in this
work to solve the same multi-objective optimization problem
(optimized mobile sink path).

V. RESULTS AND DISCUSSIONS
In this work, the simulation scenarios were conducted using
MATLAB 2020a running on a Windows 10 operated PC
with Intel Core i5 CPU and 4 GB of RAM. In addition, all
the results were evaluated when the sensor network had the
maximum number of clusters. Table 1 shows the detailed
parameters’ values for the conducted simulation scenarios.

TABLE 1: The parameters of simulation scenarios

Parameter Value

Sensing field dimensions 200× 200m2

Number of sensor nodes N 200
Deployment type Random

Sensor node’s initial energy e0 0.5 J
Packet size 127 bytes

Idle state energy consumption (Ecircuit) 50 nJ/bit
Data aggregation energy consumption 5 nJ/bit

Amplifier energy (Eamp) 100 pJ/bit/m2

Number of mobile sinks 1 and 4
Simulation rounds 9000

The developed SEA approach was compared among four
well-known cluster-based routing protocols in terms of net-
work lifetime and cluster heads’ count. Low energy adaptive
clustering hierarchy (LEACH) is a pioneer cluster-based hier-
archical routing protocol that is employed in WSNs to extend
the network lifetime. The sensor nodes in LEACH managed
themselves in groups called clusters and only one node in
each group is nominated to be a cluster head. Every node
executed a stochastic algorithm during each simulation round
to decide if it will be a cluster head or not during this round.
The cluster head rotation carried out in a random fashion or
the node that had the highest energy level was chosen to be a
cluster head for the current simulation round [45].

Stable election protocol (SEP) is a two-level heteroge-
neous cluster-based protocol. The SEP protocol guaranteed
that the advanced node had a higher priority to be selected
frequently as a cluster head. Therefore, the clustering mech-
anism resulted in random cluster heads selection that was
distributed based on their respective energy [46].

Threshold sensitive energy-efficient sensor network
(TEEN) is a cluster-based routing protocol with a hierar-
chical multi-hop feature that is used broadly in time-critical
applications. The TEEN protocol is designed for reactive
networks that interacted with unexpected variations in the
surrounding environment. The TEEN protocol employed in
two-tier heterogeneous networks with two attributes: soft and
hard thresholds value. The cluster heads selection criteria in
TEEN were similar to LEACH [47] [48].

Distributed energy-efficient clustering (DEEC) protocol
is a significant three-tier heterogeneous routing protocol in
which selection of cluster heads carried on the ratio be-
tween the remaining energy of each node and the average
of network’s energy. Thus, the sensor nodes that equipped
with high initial and remaining energies possessed more
opportunities to be selected as cluster heads than the low
energy nodes [49] [50].

Fig. 6 shows the number of cluster heads versus simulation
rounds for the proposed SEA approach and the four well-
known routing protocols. The SEA approach was employed
in both homogeneous and heterogeneous sensor networks
and it is clear that the developed algorithm for cluster head
selection exhibited a stable behavior due to the heuristic na-
ture. The SEA approach did not have any fluctuation during
cluster head selection and rotation compared to LEACH,
SEP, TEEN, and DEEC protocols because the clusters being
formed according to formula presented in Eq. 6 that prevents
cluster head rotation to occur in each simulation round.

Many diverse definitions for sensor network lifetime and
stability period existed in the literature. For simplicity, this
work adopted the definitions introduced by Mak in [51] and
Abo-Zahhad in [52]. The term “network lifetime” stands for
the time interval between the instant the sensor network starts
operating to the death of the last alive sensor node. Whilst the
term “stability period” stands for the time interval between
the instant the sensor network starts operating to the death of
the first alive sensor node. These definitions also support a
fairer basis for similar sensor network protocol performance
comparisons among the proposed approach.

Fig. 7 depicted the network lifetime in terms of the num-
ber of alive nodes versus the simulation rounds. The SEA
approach conserved the node’s energy by eliminating unnec-
essary message exchange during cluster formation and hence,
the node’s lifetime increased. The network lifespan for sensor
network adopted optimized single mobile sink with SEA
approach can be extended by 41%, 39.5%, 22%, and 16%
compared to LEACH, SEP, TEEN, and DEEC respectively.
Whilst for the sensor network that employed multiple mobile
sinks with SEA approach can extend the network lifespan by
66%, 64%, 48% and 41% compared to LEACH, SEP, TEEN,
and DEEC respectively.

Without any doubt that with a larger stability period, the
reliability of the sensor network clustering process will be
better. On the other hand, there should be a trade-off between
sensor network lifetime and its reliability. Since the failure of
a single sensor node does not block the other sensor nodes
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(a) Homogeneous network (Single Tier) (b) Hetrogeneous network (2-Tier) (c) Hetrogeneous network (3-Tier)

FIGURE 6: The number of cluster heads versus simulation rounds

(a) Homogeneous network (Single Tier) (b) Hetrogeneous network (2-Tier) (c) Hetrogeneous network (3-Tier)

FIGURE 7: Network lifetime in terms of alive sensor nodes

from transmitting their data due to the self-organized feature
of WSN and the redundancy nature of the deployed sensor
nodes in the sensor field. Hence, the proposed approach has
a short stability period compared to other approaches while
it has a longer network lifetime.

Fig. 8 shows the optimized sink path when utilizing a
single mobile sink that traveled across the sensing field and
stopped at the determined sojourn locations. The optimized
path was calculated using ACO, GA, and SA techniques,
and Fig. 9 depicts their corresponding convergence to the
optimum solution. Different paths were calculated based on
the optimization technique being used. The obtained results
showed that SA determined the optimized sink path with
88.5% and 79.5% faster than ACO and GA respectively.

Fig. 10 shows the optimized paths that were calculated for
each mobile sink when four mobile sinks employed in the
sensing field. Three optimization techniques were utilized
(ACO, GA, and SA) in order to study the effectiveness of
the best technique. The determined paths by different tech-
niques were similar in some regions because of the limited
number of sojourn locations that made the objective function
converged to the same path. The multiple mobile sinks suc-
ceeded in prolonging the network lifetime by shortening the
communication path between the cluster heads and mobile
sinks. Therefore, the hotspot problem or energy holes around
the sink was eliminated when an optimized path was adopted
when the mobile sink(s) traveled across the sensing field.

Fig. 11 depicts a comprehensive run for optimized path
determination when four mobile sinks were employed. The
sensing field was partitioned into four regions and the number
beside the optimization techniques represents the region’s
index. The obtained simulation results showed that for a
different number of cluster heads the SA calculated the
optimum path faster than the ACO and GA by 19.6% and
49% respectively.

Fig. 12 shows the execution time of sojourn points deter-
mination algorithm versus cluster heads number. This algo-
rithm is adopted for both single mobile and multiple mobile
sinks as there is no change in the clustering algorithm. The
algorithm’s execution time increases as the number of cluster
heads increases because the search space of virtual vertices
for the developed algorithm became large. The relationship
between the algorithm execution time (Es) and the number of
cluster heads (ν) is obtained after performing curve fitting to
the sampled data that was shown in Fig. 12. Eq. 12 depicted
the obtained formula of evaluating the execution time when
a particular number of clusters exited in the sensor network.

Es = −0.0001ν3 + 0.0137ν2 − 0.0186ν + 0.0722 (12)

The sensor nodes rely on their accumulated energy in the
attached battery to perform sensing and data transmission
tasks during their lifetime. One of the important metrics that
affect the network lifespan is packet delivery especially when
energy-constrained devices are deployed.
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(a) ACO (b) GA (c) SA

FIGURE 8: Optimized energy-efficient path for single mobile sink

(a) ACO (b) GA (c) SA

FIGURE 9: Best cost of optimization objective function for single mobile sink

(a) ACO (b) GA (c) SA

FIGURE 10: Optimized energy-efficient paths for multiple mobile sinks

FIGURE 11: The simulation result for multiple mobile sinks
scenario

FIGURE 12: The execution time for the proposed sojourn
algorithm
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Fig. 13 depicted the network remaining energy versus the
simulation rounds. In LEACH, TEEN, SEP, and DEEC, the
sensor nodes depleted their energy much quicker than the
proposed SEA approach. Due to the heuristic scheme in clus-
ter head selection and rotation, the introduced SEA scheme
had a smooth slope compared to the aforementioned rout-
ing protocols. While Fig. 13(d) illustrated the comparison
between the proposed approach and the work presented by
Krishnan [36]. Krishnan’s approach adopted multiple mobile
sinks with ACO to determine the mobile sink trajectory.
However, his work is suitable only for homogeneous net-
works and limited to three mobile sinks only. It is clear that
the proposed SEA scheme exhibited the same behavior when
it is deployed in homogeneous or heterogeneous networks by
utilizing fair load balancing techniques.

Table 2 shows a numerical comparison between the work
presented in this paper and the work introduced by Pang [39]
in terms of the number of lost packets. In Pang’s work, when
the distance between the mobile sinks and the cluster heads
increased, the number of lost packets increased until the mo-
bile sinks became unable to receive any packet because they
were out of the transmission range of the cluster heads. While
in the presented work, this situation is not possible because
the developed sojourn location determination algorithm takes
into account that the sojourn locations should be within the
transmission range of the cluster heads, and therefore very
few packets will be lost.

TABLE 2: The data delivery comparison

Lost Packets
Distance Sent Packets

Pang [39] Proposed
Approach

10 1000 0 0
15 1000 0 0
20 1000 1 0
25 1000 23 5
30 1000 101 12
35 1000 382 N/A
40 1000 1000 N/A

Table 3 depicts the length of mobile sink trajectory for
multiple mobile sinks approaches. In this paper, multiple
scenarios were conducted in order to study the effectiveness
of the proposed approach. The work presented by Krishnan
[36] is used in the comparison and it was based on ACO
when calculating the mobile sink path trajectory and his work
is limited to three mobile sinks that collected the sensory
data from cluster heads. Whilst the multiple mobile sinks
in the SEA scheme with ACO, GA, and SA visited sojourn
locations to collect the sensory data from multiple cluster
heads. The obtained results showed that the proposed ap-
proach outperformed Krishnan’s work by providing a shorter
traveling tour when the mobile sinks visited the sojourn
locations. The developed optimized path algorithm shortens
the traveling path by introducing virtual vertices that covered
the maximum number of cluster heads within its vicinity.

TABLE 3: The multiple mobile sinks trajectory comparison

Mobile Sinks LabelsNo. of
CHs

Algorithm
#1 #2 #3 #4

10

Krishnan [36] 540 540 545 N/A
SEA + ACO 286 233 179 198
SEA + GA 260 275 230 269
SEA + SA 243 164 170 225

20

Krishnan [36] 840 846 853 N/A
SEA + ACO 287 295 207 298
SEA + GA 277 304 270 239
SEA + SA 230 319 308 319

30

Krishnan [36] 988 996 997 N/A
SEA + ACO 337 308 323 307
SEA + GA 318 331 304 344
SEA + SA 350 326 265 313

VI. OPEN RESEARCH DIRECTIONS
Most of the previous and ongoing researches that focused on
sink mobility issues heavily depend on simulation scenarios.
While hardware testbeds are necessary for laboratory re-
searches in order to transfer and deploy the confirmed results
in WSN-based real-world systems. The following factors
are essential in designing WSN testbed in general and sink
mobility in particular.

• Cost: robots are considered as mobile objects that ex-
plore the sensing field and collect the sensed data.
However, these mobile robots are expensive as they are
designed for commercial purposes. Hence, the testbed
cost needs to be monitored when deploying mobile sinks
in real-world WSN-based applications.

• Energy consumption: the sensor nodes and mobile sinks
deplete their stored energy during sensing, processing,
and communication tasks. Batteries are the common
approach in powering the sensor nodes but a power
cable may be considered as the best choice if the system
is deployed in an indoor environment.

• Stability: testbed steadiness related concerns are worth
research attention. The hardware and software malfunc-
tions could be managed and fixed promptly in small
scale WSN testbeds. Large-scale WSN testbeds should
have diverse stable mobility management schemes as
they are deployed in real-world applications.

VII. CONCLUSION
This paper presents an optimized path planning strategy
based on the SEA scheme that formed clusters based on
heuristic information from the sensor nodes. The proposed
scheme can be employed in both homogeneous and hetero-
geneous sensor networks with variable sensor nodes that are
deployed randomly in a predefined sensing area. A com-
prehensive review has been done in order to address the
challenges of adopting single and multiple mobile sinks in
WSNs. Hence, the surveyed recent research led to classify
the existing routing protocols and identify their advantages
and drawbacks that could be used to enhance the performance
requirements of the developed approach.
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(a) LEACH (b) SEP and TEEN (c) DEEC (d) Krishnan [36]

FIGURE 13: The remaining network energy versus simulation rounds

Uneven energy depletion among the deployed sensor
nodes participates in the generation of hotspots or energy
holes. The network lifetime extension is affected by these
energy holes and therefore mobile sinks were utilized to
enhance the current WSN architecture performance. In this
work, four mobile sinks were adopted to gather the sensed
data from the distributed cluster heads. The sinks sojourn
locations were evaluated based on the minimum weighted
vertex cover problem (MWVCP). Whilst the optimized sink
path should pass through all the sojourn locations and it is
calculated through multi-objective EAs that aimed at mini-
mizing the traveling distance and time.

Four well-known routing protocols were used in the eval-
uation of the proposed approach: LEACH, SEP, TEEN, and
DEEC. While ACO, GA, and SA techniques were employed
to find the optimum path for mobile sinks. The simulation
results showed that the network lifespan for sensor network
adopted optimized single mobile sink with SEA approach
can be extended by 41%, 39.5%, 22% and 16% compared
to LEACH, SEP, TEEN, and DEEC respectively. Whilst for
the sensor network that employed multiple mobile sinks with
SEA approach can extend the network lifespan by 66%,
64%, 48% and 41% compared to LEACH, SEP, TEEN,
and DEEC respectively. In addition, The simulation results
showed that SA determined the single optimized sink path
with 88.5% and 79.5% faster than ACO and GA respectively.
While for the multiple mobile sinks, the SA calculated the
optimum path faster than the ACO and GA by 19.6% and
49% respectively.
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