1,461 research outputs found

    Lightweight Face Relighting

    Get PDF
    In this paper we present a method to relight human faces in real time, using consumer-grade graphics cards even with limited 3D capabilities. We show how to render faces using a combination of a simple, hardware-accelerated parametric model simulating skin shading and a detail texture map, and provide robust procedures to estimate all the necessary parameters for a given face. Our model strikes a balance between the difficulty of realistic face rendering (given the very specific reflectance properties of skin) and the goal of real-time rendering with limited hardware capabilities. This is accomplished by automatically generating an optimal set of parameters for a simple rendering model. We offer a discussion of the issues in face rendering to discern the pros and cons of various rendering models and to generalize our approach to most of the current hardware constraints. We provide results demonstrating the usability of our approach and the improvements we introduce both in the performance and in the visual quality of the resulting faces

    Shadow mapping algorithms: Applications and limitations

    Get PDF
    This study provides an overview of popular and famous algorithms and techniques in shadow maps generation.Well- known techniques in shadow maps generation is described detail, along with a discussion of the advantages and drawbacks of each. Basic ideas, improvements and future works of the techniques are also comprehensively summarized and analyzed in depth. Often, programmers have difficulty selecting an appropriate shadow generation algorithm that is specific to their purpose. We have classified and systemized these techniques. The main goal of this paper is to provide researchers with background on a variety of shadow mapping techniques so as make it easier for them to choose the method best suited to their aims. It is al-so hoped that our analysis will help researchers find solutions to the shortcomings of each technique. © 2015 NSP Natural Sciences Publishing Co

    Platform Independent Real-Time X3D Shaders and their Applications in Bioinformatics Visualization

    Get PDF
    Since the introduction of programmable Graphics Processing Units (GPUs) and procedural shaders, hardware vendors have each developed their own individual real-time shading language standard. None of these shading languages is fully platform independent. Although this real-time programmable shader technology could be developed into 3D application on a single system, this platform dependent limitation keeps the shader technology away from 3D Internet applications. The primary purpose of this dissertation is to design a framework for translating different shader formats to platform independent shaders and embed them into the eXtensible 3D (X3D) scene for 3D web applications. This framework includes a back-end core shader converter, which translates shaders among different shading languages with a middle XML layer. Also included is a shader library containing a basic set of shaders that developers can load and add shaders to. This framework will then be applied to some applications in Biomolecular Visualization

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Exploiting the GPU power for intensive geometric and imaging data computation.

    Get PDF
    Wang Jianqing.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 81-86).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Overview --- p.1Chapter 1.2 --- Thesis --- p.3Chapter 1.3 --- Contributions --- p.4Chapter 1.4 --- Organization --- p.6Chapter 2 --- Programmable Graphics Hardware --- p.8Chapter 2.1 --- Introduction --- p.8Chapter 2.2 --- Why Use GPU? --- p.9Chapter 2.3 --- Programmable Graphics Hardware Architecture --- p.11Chapter 2.4 --- Previous Work on GPU Computation --- p.15Chapter 3 --- Multilingual Virtual Performer --- p.17Chapter 3.1 --- Overview --- p.17Chapter 3.2 --- Previous Work --- p.18Chapter 3.3 --- System Overview --- p.20Chapter 3.4 --- Facial Animation --- p.22Chapter 3.4.1 --- Facial Animation using Face Space --- p.23Chapter 3.4.2 --- Face Set Selection for Lip Synchronization --- p.27Chapter 3.4.3 --- The Blending Weight Function Generation and Coartic- ulation --- p.33Chapter 3.4.4 --- Expression Overlay --- p.38Chapter 3.4.5 --- GPU Algorithm --- p.39Chapter 3.5 --- Character Animation --- p.44Chapter 3.5.1 --- Skeletal Animation Primer --- p.44Chapter 3.5.2 --- Mathematics of Kinematics --- p.46Chapter 3.5.3 --- Animating with Motion Capture Data --- p.48Chapter 3.5.4 --- Skeletal Subspace Deformation --- p.49Chapter 3.5.5 --- GPU Algorithm --- p.50Chapter 3.6 --- Integration of Skeletal and Facial Animation --- p.52Chapter 3.7 --- Result --- p.53Chapter 3.7.1 --- Summary --- p.58Chapter 4 --- Discrete Wavelet Transform On GPU --- p.60Chapter 4.1 --- Introduction --- p.60Chapter 4.1.1 --- Previous Works --- p.61Chapter 4.1.2 --- Our Solution --- p.61Chapter 4.2 --- Multiresolution Analysis with Wavelets --- p.62Chapter 4.3 --- Fragment Processor for Pixel Processing --- p.64Chapter 4.4 --- DWT Pipeline --- p.65Chapter 4.4.1 --- Convolution Versus Lifting --- p.65Chapter 4.4.2 --- DWT Pipeline --- p.67Chapter 4.5 --- Forward DWT --- p.68Chapter 4.6 --- Inverse DWT --- p.71Chapter 4.7 --- Results and Applications --- p.73Chapter 4.7.1 --- Geometric Deformation in Wavelet Domain --- p.73Chapter 4.7.2 --- Stylish Image Processing and Texture-illuminance De- coupling --- p.73Chapter 4.7.3 --- Hardware-Accelerated JPEG2000 Encoding --- p.75Chapter 4.8 --- Web Information --- p.78Chapter 5 --- Conclusion --- p.79Bibliography --- p.8

    Interactive Virtual Hair Salon

    Get PDF
    Abstract User interaction with animated hair is desirable for various applications but difficult because it requires real-time animation and rendering of hair. Hair modeling, in cluding styling, simulation, and rendering, is computationally challenging due to the enormous number of deformable hair strands on a human head, elevating the computational complexity of many essential steps, such as collision detection and self-shadowing for hair. Using simulation localization techniques, multi-resolution representations, and graphics hardware rendering acceleration, we have developed a physically-based virtual hair salon system that simulates and renders hair at accelerated rates, enabling users to interactively style virtual hair. With a 3D haptic interface, users can directly manipulate and position hair strands, as well as employ real-world styling applications (cutting, blow-drying, etc.) to create hairstyles more intuitively than previous techniques

    Sistemas interativos tangíveis e processos de mediação tecnológica: hipóteses sobre agência, significação e cognição a partir da investigação do MIT Tangible Media Group

    Get PDF
    A presente dissertação toma a investigação em sistemas de interação tangível do MIT Tangible Media Group como objeto, a pretexto da sua inclusão na edição de 2016 do Festival Ars Electronica, sob o tema Radical Atoms: The Alchemists of Our Time. Pretende-se compreender quais os pontos de contato da investigação do grupo com os estudos dos media, de forma a localizar a sua relevância para a programação do festival. O enquadramento nos estudos dos media é feito pela localização de um conjunto de termos-chave no trabalho do grupo, os quais evocam questões afetas à fenomenologia, filosofia da tecnologia e mediação tecnológica. Conclui-se que estes sistemas de interação tangível ativam processos particulares de constituição de agência, significação e cognição. Na ausência de outros materiais que explorem estas relações no contexto do festival, a dissertação apresenta-se assim como complemento à leitura do tema Radical Atoms: The Alchemists of Our Time.This dissertation thesis takes the research of the MIT Tangible Media Group as its object, by occasion of its inclusion in the 2016 edition of Ars Electronica Festival under the theme Radical Atoms: The Alchemists of Our Time. The aim is to understand what are the common points between the group's research and media studies, in order to locate this object's relevance to the festival programming scope. The framing within media studies is done by surveying a set of keywords from the group's research, which evoke topics from phenomenology, philosophy of technology and technological mediation. It's concluded that these tangible interactive systems activate specific processes of agency, signification, and cognition. Given the lack of materials which explore these relationships within the context of the festival, the dissertation presents itself as a supplement to the reading of the Radical Atoms: The Alchemists of Our Time theme
    • …
    corecore