
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

1-12-2007

Platform Independent Real-Time X3D Shaders
and their Applications in Bioinformatics
Visualization
Feng Liu

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Liu, Feng, "Platform Independent Real-Time X3D Shaders and their Applications in Bioinformatics Visualization." Dissertation,
Georgia State University, 2007.
https://scholarworks.gsu.edu/cs_diss/24

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

PLATFORM INDEPENDENT REAL-TIME X3D SHADERS AND THEIR APPLICATIONS

IN BIOINFORMATICS VISUALIZATION

by

FENG LIU

Under the Direction of Scott Owen

ABSTRACT

Since the introduction of programmable Graphics Processing Units (GPUs) and

procedural shaders, hardware vendors have each developed their own individual real-time

shading language standard. None of these shading languages is fully platform independent.

Although this real-time programmable shader technology could be developed into 3D application

on a single system, this platform dependent limitation keeps the shader technology away from

3D Internet applications. The primary purpose of this dissertation is to design a framework for

translating different shader formats to platform independent shaders and embed them into the

eXtensible 3D (X3D) scene for 3D web applications. This framework includes a back-end core

shader converter, which translates shaders among different shading languages with a middle

XML layer. Also included is a shader library containing a basic set of shaders that developers

can load and add shaders to. This framework will then be applied to some applications in

Biomolecular Visualization.

We first defined a minimal set of shaders for common elements in protein molecules such

as “Carbon”, “Nitrogen”, “Oxygen”, “Hydrogen”, “Phosphorus”, “Sulphur”, and “Other”, which

is used for all undefined elements. Then 3D molecule data sets are converted in a pipeline from

PDB to CML to X3D. During the conversion from CML to X3D, we automatically add

predefined shaders to each of the elements. At the end of this pipeline, a high quality real-time

shaded molecular structure is created and ready for use on the web. Considering the usability, a

set of functions for improving the user manipulation and optimizing the real-time interactive

performance has been designed. A Multi-Users Shared Envirnment has been set up for sharing

dynamic shaders on web3D application.

INDEX WORDS: web3D, Shader, GPU, X3D, VRML, Shader Language Converter, SLC, High-

Level Shading Language, Cg, OpenGL shading Language, XML, 3D Molecule Structure, PDB,

CML, Level of Quality, LOQ, Multi-Users Shared Envirnment, MUSE.

PLATFORM INDEPENDENT REAL-TIME X3D SHADERS AND THEIR

APPLICATIONS IN BIOINFORMATICS VISUALIZATION

by

FENG LIU

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

Atlanta, Georgia
2005

Copyright by

Feng Z. Liu

2005

PLATFORM INDEPENDENT REAL-TIME X3D SHADERS AND THEIR

APPLICATIONS IN BIOINFORMATICS VISUALIZATION

BY

FENG LIU

Major Professor: Scott Owen

Committee: Raj Sunderraman

Irene Weber

YanQing Zhang

Ying Zhu

Electronic Version Approved:

Office of Graduate Studies

College of Art and Sciences

Georgia State University

December 2005

vi

ACKNOWLEDGEMENTS

First of all, I would like to say “Thank you” to my adviser Dr. Owen for his many

years’ supports and giving me chance to explore the cutting edge technologies. He also

gave me proper direction in the field and eventually helped me find the topic for my

dissertation. This is an unforgettable support for me. I also cannot forget the support from

Dr. Sunderraman, a really nice graduate student advisor, with intelligent and

understanding. I would also like to express my thanks to all of my committee members

for your time reviewing my dissertation, discussing my dissertation topic and for the

corrections and suggestions from all of you.

The process of this dissertation is not only to achieve a degree. It bring more to

me is a spirit. A spirit of patience, working hard, and persistence prepared me to take on

many kinds of difficulties in my life.

The supports from my friends and my family have been the most valuable.

Whenever I lost and came back with them, they never give up on me. I can’t forget Yun’s

encourages. “Never give-up”, that is from my parents. I’d also like to have thanks to all

my sisters and brothers-in-law. Thanks for their no-hesitate-helps. Thanks to all my

lovely nieces and nephews being my buddies. Han Wei, my 247 helper, not only helped

me correct grammar mistakes but also my no-give-up supporter and a life long love. I’m

also like to say thanks you to people who were in my story. The experiences I had with

you encouraged me as well to achieve this goal. Thank you all!

-- Feng Liu in Atlanta Fall 2005

vii

For

Mom & Dad

Sumei Zhang & Yuxiang Liu

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. VI

TABLE OF CONTENTS..VIII

LIST OF FIGURES ..XIII

LIST OF TABLES... XVI

CHAPTER ...1

1 INTRODUCTION ..1

1.1 Contribution ...3

1.2 Content organization..4

2 BACKGROUND ..6

2.1 Graphics Processing Units (GPUs)..6

2.2 High-level Shading Languages ..11

2.2.1 Procedural Shading .. 11

2.2.2 C for Graphics from NVIDIA.. 17

2.2.3 OpenGL shading Language ... 22

2.2.4 High Level Shading Language... 25

2.3 X3D: The next generation of VRML97 in XML...28

2.4 The Challenge of Real-time Procedure Shaders in VRML/X3D.............................34

3 DESIGN AND IMPLEMENTATION ...40

3.1 A Framework of Platform Independent Shaders in X3D...................................40

3.1.0 Initial ideas of embedding Shaders into X3D... 43

ix

3.2 Shader Language Converter Design ..46

3.2.1 Why the XML middle layer? ... 47

3.2. 2 XML Layer definition... 50

3.2.2.1 Basic Data Types .. 50

3.2.2.2 Texture Sampler Types.. 55

3.2.2.4 Semantics in Cg/HLSL vs. Built-in Attributes and Variables in GLSL......... 58

3.2.2.5: Struct Definition .. 62

3.2.2.6 Operators/Operation Definition: .. 63

3.2.2.7: Statement definition ... 64

3.2.2.8 Functions Design .. 65

3.3 Shader language Converter Implementation..67

3.3.1 SLC Conversion pipeline... 67

3.3.2 Scanner... 69

3.3.3 Parser.. 70

3.3.3.1 Data types Conversion:.. 70

3.3.3.2 Declaration Conversion: .. 70

3.3.3.3 Parameter Conversion:... 72

3.3.3.4 Operator Conversion: ... 75

3.3.3.5 Function Conversion... 76

3.3.4 SLC interface ... 77

3.3.5 Shader comparisons between pre-converted and post-converted 78

x

3.4 Summary of Shader-X3D frameworks and preview of its application in Bio-

informatics Visualization. ..80

4 SHADER-X3D USES IN BIOINFORMATICS APPLICATIONS...............................82

4.0 Preface..82

4.1 Background of structural biology and Web 3D Bioinformatics Visualization........85

4.1.1 3D Protein structure in different formats ... 88

4.1.1.1 PDB... 88

4.1.1.2 CML .. 90

4.1.1.3 X3D/VRML.. 93

4.1.2 Software packages and other techniques for visualizing bioinformatics....... 103

4.2 Designs and Implementations shader-X3D for molecule presentation..................107

4.2.1 Standard shader for minimal element set for protein presentation 107

4.2.1.1 Design ... 107

4.2.1.2 Implementation ... 109

4.2.1.3 Performance analysis and visual effect comparisons 120

4.3 Enhanced user friendly interface for molecular presentation125

4.3.1 Design .. 125

4.3.2 Implementations... 128

2.4 Future interface design for 3D structural biology..139

5 MULTI-USER SHARED ENVIRONMENT IN X3D/VRML WITH SHADER

SUPPORTED...140

5.1 Concepts of Multi-user shared environment and ASEC..................................140

xi

5.2 Implantation and Improvement analysis of MUSE with shaders144

6 CONCLUSION...151

REFERENCE:..153

Appendix A. shaders examples in Cg and GLSL ..158

A1a – wood_vert.cg .. 158

A1aa – wood.vert .. 159

A1bb – wood.Frag .. 159

A1aaa – wood.vert.Xml .. 160

A1c – brick_vert.cg... 162

A1d – brick_frag.cg .. 163

A1cc – brick.vert... 163

A1dd – brick.frag .. 164

A1e – Carbon atom-shader in Cg.. 164

A1f –Carbon atom-shader in Cg... 165

A1ee –Carbon atom-shader in GLSL ... 165

A1ff –Carbon atom-shader in GLSL .. 166

Appendix B. Partially mapping tables in for Shader Language Converter..................166

B1 – Data Types/Sampler types mapping table.. 166

B2 – Operators mapping table (special case only).. 167

B3 – modifiers/qualifiers mapping table... 167

B4 – Transformation Matrices mapping table .. 168

B5 – Semantics in Cg or HLSL/building variables in GLSL mapping table.......... 168

xii

B5 – functions mapping table ... 168

Appendix C. Source Code..169

C1 – Partially Shader Language Converter Source Code....................................... 169

C2 – XSL source code for X3D + shader 2 VRML + shader conversion 175

C3b – example caffeine in VRML_Shader... 181

C4c – specular light adjustable Interface example functions and ROUTEs....... 187

C4e – bump adjustable Interface example functions and ROUTEs 188

C5 – MUSE bump sharing Interface example functions and 190

Appendix D – Image Credits ...192

Appendix E – code Credits ..193

Appendix F – SLC source code (Avaliable with requirment)193

xiii

LIST OF FIGURES

Figure 2 - 1 Plastic shader on the spherical surface...13

Figure 2 - 2 Graphics Pipeline ...15

Figure 2 - 3 GPU – CPU Interface in modern Graphics Pipeline......................................19

Figure 2 - 4 Cg Shaders loading process ...20

Figure 2 - 5 GLSL Shaders loading process ..23

Figure 2 - 6 Google Hits of 3D websites ...29

Figure 2 - 7 X3D/VRML Growing history ..32

Figure 2 - 8 Shaders in VRML/X3D web browser on single machine..............................35

Figure 2 - 9 Different Shaders format compatibility ...36

Figure 2 - 10 High-level overview of the Vertex/fragment shader....................................38

Figure 3 - 0 SLC convert shader skin ...40

Figure 3 - 1 a Framework of Platform Independent Shaders in X3D................................41

Figure 3 - 2 illustration of shader library ...42

Figure 3 - 3 Shader Language Converter in X3D application ...46

Figure 3 - 4 Structure of Shader Language Converter...47

Figure 3 - 5 Comparison of the SLC design structure with/without XML layer...............47

Figure 3 - 6 new shading language on the SLC structure design with XML layer............48

Figure 3 - 7 a new shading language on the SLC design structure without XML layer....49

Figure 3 - 8 : XML layer common data set definition ...53

Figure 3 - 9 Coordinate System and Transformation for Vertex Processing.....................57

Figure 3 - 10 example 3.4 struct in XML tree structure ..62

xiv

Figure 3 - 11 XML tree structure of example 3.5 ..63

Figure 3 - 12 : CG XML GLSL flow ...68

Figure 3 - 13 : CG XML GLSL conversion Path...69

Figure 3 - 14 : Varying variable in GLSL relocated as parameters in Cg73

Figure 3 - 15 : Shader Language Converter Interface..77

Figure 3 - 16 : Shader Comparison between pre_conversion and post_conversion78

Figure 3 - 17 : The Comparison of with and without shaders in shader library79

Figure 3 - 18 : Framework for Independent, real-time, interactive Shaders in X3D.........80

Figure 4 - 0: Beauty of life...82

Figure 4 - 1 Antibodies are immune system proteins ..83

Figure 4 - 2 Using light to measure an object,...84

Figure 4 - 3 : HIV proteases...86

Figure 4 - 4 : HIV protease cell ...87

Figure 4 - 5 : Node ROUTE function in VRML/X3D...96

Figure 4 - 6 : PDB CML & CML Shaded X3D Conversion...................................108

Figure 4 - 7 : ShaderAppearence Prototype in VRML ..112

Figure 4 - 8 : VetexShader Prototype in VRML..113

Figure 4 - 9 : FragmentShader Prototype in VRML..113

Figure 4 - 10 ProtoDeclare for Atom - Carbon without shader114

Figure 4 - 11 Shader Declarations for the ProtoDeclare of any atom..............................115

Figure 4 - 12 Shader Declaration for the ProtoDeclare of Atom – carbon115

Figure 4 - 13 Shader for the Atom – carbon after converted ...116

xv

Figure 4 - 14 ShaderAppearence definations in XSL modification.................................117

Figure 4 - 15 MovieTexture tag definition modification in XSL with shader added in ..117

Figure 4 - 16 cml2x3d_shader/ x3d_shader2_vrml_shader execute comments118

Figure 4 - 17 A converted shader-X3D riboflavinN 3D structure in VRML119

Figure 4 - 18 Caffeine Structure ..121

Figure 4 - 19 A closer comparison of the protein structures..123

Figure 4 - 20 Left: partially Est30 ball-stick structure with procedural shaders.124

Figure 4 - 21 using LOQ with shader for better performance ...127

Figure 4 - 22 Multi-shader selector interfaces ...128

Figure 4 - 23 Level of quality example for CH4O...131

Figure 4 - 24 Level of quality approach while close to model of CH4O.........................132

Figure 4 - 25 controlled specular light of shader on a atom surface................................137

Figure 4 - 26 A controlled bump shader on a atom surface...138

Figure 4 - 27 resulting image of adding new atoms in predefined functions138

Figure 4 - 28 user interface design for the structural biology..139

Figure 5 - 1 High-level structure of ASEC System ...140

Figure 5 - 2 the slides tutorial updated information real-time sharing structure142

Figure 5 - 3 Shader sharing of Caffeine structure in multi-user environment147

Figure 5 - 4 Shader sharing in multi-user environment ...148

xvi

LIST OF TABLES

Table 3 - 1 three shading language basic data type table 1 ...50

Table 3 - 2 three shading language basic data type mapping table 251

Table 3 - 3 Comparisons basic data type between Cg/HLSL with GLSL52

Table 3 - 4 X3D, XML and shading languages basic data type mapping table54

Table 3 - 5 X3D, XML and shading languages Sampler type mapping table55

Table 3 - 6 X3D, XML and shading languages basic Qualifiers mapping table56

Table 3 - 7 X3D, XML and shading languages Transformation matrix mapping table ...58

Table 3 - 8 XML, Semantics and shading languages built-in variable mapping table61

Table 3 - 9 Mix function in GLSL mapping to different languages66

Table 4 - 1 Shader definition for basic elements in Molecular Structure110

Table 4 - 2 Comparison molecular structure with and without procedural shaders122

 1

Chapter

1 Introduction

Since the introduction of programmable Graphics Processing Units (GPUs) and

procedural shaders, hardware vendors have each developed their own individual real-time

shading language standard. None of these shading languages is fully platform

independent. Although this real-time programmable shader technology could be

developed into 3D application on a single system, this platform dependent limitation

keeps the shader technology away from 3D Internet applications.

The primary purpose of this dissertation is to design a framework for translating

different shader formats to platform independent shaders and embed them into the

eXtensible 3D (X3D) scene for 3D web applications. This framework includes a back-

end core shader converter, which translates shaders among different shading languages

with a middle XML layer. Also included is a shader library containing a basic set of

shaders that developers can load and add shaders to. This framework will then be applied

to some applications in Biomolecular Visualization.

We first defined a minimal set of shaders for common elements in protein

molecules such as “Carbon”, “Nitrogen”, “Oxygen”, “Hydrogen”, “Phosphorus”,

“Sulphur”, and “Other”, which is used for all undefined elements. Then 3D molecule

data sets are converted in a pipeline from PDB to CML to X3D. During the conversion

2

from CML to X3D, we automatically add predefined shaders to each of the elements. At

the end of this pipeline, a high quality real-time shaded molecular structure is created and

ready for use on the web. The results show the interactivity and visualization

performance comparison between molecular structures with and without shaders in X3D.

Considering the usability, a set of functions for improving the user manipulation and

optimizing the real-time interactive performance has been designed.

One of the reasons that make these visualizations possible is the revolutionary

improvement of the GPU enabling user defined programmable shaders to produce high

quality visualizations in real-time. Current 3D web applications in VRML do not produce

high quality images due to the fast but low quality rendering algorithm used for specular

highlights. The introduction of programmable GPUs and the addition of procedural

shaders to X3D provide us with new techniques to develop real-time web based scientific

visualization environments. Additionally, this technique can be used not only for online

scientific research, but also in online filming, gaming, e-commerce, communication,

simulation, and online architectural demonstrations etc.

Three steps were taken for completing this dissertation. The First step was to

research the current status of on web based 3D applications; analyze shading languages

from different vendors; determine the compatibility problems for sharing shaders via the

web and propose a solution. A shader can be converted from one shading language into

another shading language another format for better compatibility with the hardware

before it communicates with the graphics API. An XML middle layer based shader

3

language converter (SLC) was partially developed to prove the concept of the shader’s

convertibility. An analysis of where the SLC could be added into the X3D publishing

process was performed.

The second step was to use our framework in a biomolecular application. We

researched the current status of web based 3D biomolecular visualizations and existing

3D data formats; analyzed the best way to introduce he shader plus X3D framework to

biomolecular research; defined Phong shaders for a typically used minimal set of atoms

in proteins; loaded the predefined shader for each atom during the conversion from the

popular 3D molecule format, PDB (Protein Data Bank), to CML (Chemical Markup

Language), to the X3D format. At the end of the conversion, comparisons are given on

the visual and interactivity performance of different sized biomolecular data sets with and

without the shader. For improved usability, we designed a user-friendly interface for

manipulating molecules. A set of basic functions was implemented for this interface. In

the last step, we added shaders into a multi-user shared environment (MUSE). We

performed an analysis of the benefits of using shaders in a MUSE and an analysis of the

potential shader use in MUSE applications.

1.1 Contribution

The main contribution of this dissertation is a framework design for sharing

platform independent shaders via the Internet and applying this framework to Bio-

informatics and chemistry research. Additionally, we give a perspective application

4

analysis of this framework for other industries. Core parts of this framework are, a

concept of exchangeable shaders and a partially developed shader language converter for

converting shader formats among different shading languages by use of a middle XML

layer, which proved the proposed exchangeable shader idea. To introduce the

independent shader framework in the biomolecular application in X3D, a set of shaders

was defined for a small set of common atoms found in proteins. These atom shaders are

implemented automatically when 3D molecular data in CML is converted to the X3D

molecule structure. We also developed a set of functions for manipulating the shaders

between the scenes and the dynamic shader shared between the scenes in the MUSE

system.

1.2 Content organization

The content of this dissertation is organized in four sections. In section 1 (chapters

2 and 3), we discuss the platform independent real-time shader framework, which

includes background and a literature review about GPUs, shader languages, X3D and

embedding shaders into X3D. It also includes explanations of the problems inherent in

using shaders in web 3D applications via the Internet. We proposed the idea of

converting shaders into different shading languages for solving this platform dependent

problem. We then implement a shader language converter to prove our proposal and build

a framework for platform independent real-time shaders, which allows shaders wider use

in practical applications.

5

In the section 2 (Chapter 4), we demonstrate the framework in section one by

applying it to biomolecular visualization, for example, a 3D molecule structure with

shaders displayed on the web. We define shaders for the common atoms found in

proteins. Then a pipeline is set-up to convert the Protein Data Bank (PDB) files to

Chemical Markup Language (CML) files, then from CML file to X3D files with shader

support. We also have visual and performance comparison analysis of the test results. We

show the necessary of applying shaders in bioinformatics / chemistry applications and

point out the benefits. For improving usability, we designed an interface for better

manipulation of the shaders in the X3D Scene. A set of basic functions was implemented.

In the section 3, (Chapter 5) we demonstrate how to share shader information in a

MUSE system with two scenarios. One is a collaborating work for molecular

visualization; the other is a shared bump painting in a 3D gallery.

The fourth section contains conclusion (Chapter 6), references, appendixes and

source code as supplementary information for sections 1, 2 and 3.

6

2 Background

We will begin our discussion with a review of recent literatures related to the

development of GPUs and the current popular programmable shading languages,

continuing with 3D Web Graphics and previous works of embedding shaders into X3D.

We then analyzed and revealed the difficulty for sharing shaders on the Internet.

In chapter 3, the design and implementation of a framework for sharing the

platform independent shader in X3D will be discussed.

2.1 Graphics Processing Units (GPUs)

A Graphics Processing Unit (GPU) is a microprocessor located on a graphics card

(or graphics accelerator) used in a personal computer, workstation or game console.

Modern GPUs implement a number of graphics primitive operations in a way that make

running them much faster than drawing directly to the screen with the host CPU. They

are efficient at manipulating and displaying computer graphics, and their highly parallel

structure makes them more effective than typical CPUs for a range of complex

algorithms.

GPUs when first introduced used monolithic graphics chips of the late 1970’s and

1980’s. They optimized two-dimensional imaging like that found in video games and

animations by quickly compositing several images together. Some GPUs at that time

were able to run several operations in a display list and use direct memory access (DMA)

7

to reduce the load on the host processor with no shape drawing support. It eventually

became possible to move drawing support onto the same chip as a regular frame buffer

controller such as (Video Graphics Array) VGA, first introduced by IBM. [Wikipedia

2005]

In the late 1980s and early 1990s, high-speed, general-purpose microprocessors

were popular for implementing high-end GPUs; graphics boards for PCs and

workstations using digital signal processor chips to implement fast drawing functions.

However, they were very expensive. In 1991, S3 Graphics introduced the first single-chip

2D accelerator. By 1995, every major PC graphics chip manufacturer had added 2D

acceleration support to their chips. At the same time, fixed-function Windows

accelerators had surpassed expensive general-purpose graphics coprocessors in terms of

Windows performance, and coprocessors faded away from the PC market.

Modern GPUs use most of their transistors to do calculations related to 3D

computer graphics. The GPU now exceeds the CPU in the number of transistors present

in each microchip. For example, Intel used 55 million transistors in its 2.4 GHz Pentium

IV; NVIDIA used over 125 million transistors in the GeForce FX GPU and the latest

NVIDDIA 7800 GXT has 302 million transistors. NVIDIA introduced the term of

“GPU” with its new meaning in the late 1990’s when the term VGA controller was

insufficient for describing it accurately. This is because the older styles of GPU, VGA,

are really CPU’s responsible for updating all pixel buffers. For the Modern GPU, the

pixel updates have been designed into the GPU. Since the major time consuming

8

operation of Computer Graphics applications is that they involve a large amount of

matrix and vector computations, the parallel architecture of new generation GPUs with

matrix and vector operations pipelined speeds up these computations. Engineers and

scientists have increasingly studied using GPUs for general-purpose computation.

Looking back at the history of the modern GPU development, it can be divided

into about five generations. In the pre-GPU stage, before NVIDIA announced the modern

GPU in 1998, some graphics companies like SGI and Evans & Sutherland, developed

graphics systems like we mentioned earlier. Those graphics systems introduced many

graphics concepts like vertex transformation and texture mapping, which are still used

widely today. However, those graphics systems were expensive.

The first generation GPU, up to 1998, includes; NVIDIA TNT2, ATI’s Rage and

3Dfx’s Voodoo3. These GPUs can update the pixel buffer independent from the CPU.

They are capable of rasterizing pre-transformed triangles and applying one or two

textures. However, they lack the ability to transform vertices of 3D objects; this means

vertex transformations have to happen on the CPU. The set of operations at this stage is

very limited and only used for math operation to combine textures to compute the final

pixel color.

In the second generation stage, from 1999 to 2000, the GPU took the task of 3D

object transformation and lighting (T&L), from the CPU. Both OpenGL and DirectX7

support hardware vertex transformation. This is a very important step, since before this

point only high-end workstations could achieve fast vertex transformation. The math

9

operation set extended to cube map texture etc. and the staged GPU’s are more

configurable. GPUs like NVidia GeForce 256, GeForce2 MAX, ATI Radeon 7500, etc

were all developed during this time.

In the third generation, in 2001, some GPUs like GeForce 3, GeForce 4Ti,

Microsoft Xbox and ATI’s 8500 etc., provided vertex programmability. These GPUs

allow the application to specify a sequence of instructions for processing vertices.

DirectX8, OpengGL extensions, and ARB_vertex_program exposed vertex-level

programmability to applications. They also provide limited pixel level configuration, but

no hardware support at this time.

In the fourth generation in late 2002 and 2003, NVIDIA’s GeForce FX and ATI’s

Radeon 9700 appeared on the market with vertex and fragment level programmability.

This key stage completed the process of offloading complex vertex transformations and

pixel-shading operations from CPU to GPU. The DirectX and various OpenGL

extensions exposed both vertex and fragment processors programmability.

Recently, since the power of the programmable GPU has been realized, people

keep thinking of ways to reduce the CPU’s workload as much as possible. Research

resulted in similar ideas with parallel computing on Dual-CPUs. NVidia announced the

"NVidia SLI" technology, a custom "X2" motherboard designed to accept a pair of

graphics components. Both graphics cards reside on the motherboard. Accordingly, an

updated version of motherboard with two graphic card slots is needed. Both of the cards

will have to talk between themselves via a connector. For speeding up the data transfer,

10

the Peripheral Component Interconnect (PCI) express bus was specifically selected for

the SLI technology. All PCI Express based GeForce 6800 Ultra, GeForce 6800 GT, or

Quadro FX 3400 boards support SLI technology. At the same time ATI also developed

The CrossFire platform that gave a multiple graphics processor platform. It combines the

power of ATI's Radeon® Xpress chipsets for Intel and AMD processors, a standard

Radeon® graphics processor and a Radeon® CrossFire Edition graphics card to bring

massive performance and image quality. Although their names are different, the core idea

is the same. The processors need to communicate via a connecter between them as well.

When tasks come they are distributed to both cards and the image is composited together

after computation on each individual card. These dual-GPUs/ multi-GPUs structures are

very powerful in heavy-duty graphics computation. One important potential application is

computer games where they will give much faster and higher quality images.

The reason we give an overview of the GPUs development is to show how fast

the development and generation changes are for modern GPUs. About every nine months

a new generation graphics card is released. This is good news for graphics application

development and possible uses for general-purpose computation as well. However, did

the hardware vendors use the same standard during the development of their GPU

hardware and software? Some times it is true that “Comparison is a good reason to speed

up developments”. The comparisons between different venders did push the GPUs’

development. However, a platform dependent application has limitations for sharing

resources via the Internet.

11

The current most popular GPUs manufacturers are NVIDIA Corporation, ATI

Technologies, 3Dlabs, Matrox, XGI Technology Inc and Intel. The use of a high-level

language interface to communicate with the GPU has almost completely replaced an

assembly language interface. ATI is pushing and testing all their GPUs with High Level

Shading Language (HLSL), a language designed by Microsoft that is limited to the

Microsoft Windows operating system. Nvidia designed its C for Graphics (Cg) shading

language for their hardware, and claimed it as a platform independent shader language.

3DLab is pushing the OpenGL Shading Language(GLSL), which has been incorporated

as part of OpenGL2.0. GLSL has the potential to eventually become a major standard

shading language. In the following section we will introduce the history of procedural

shader language development and focus on the Cg, HLSL, and GLSL. We also give a

comparison among these three shading languages. [NVIDIA 2005][3DLab 2005][ATI

2005][OpenGL 2005]

2.2 High-level Shading Languages

2.2.1 Procedural Shading

Rob Cook and Ken Perlin are credited with first introducing shader languages for

developing shading calculations. Rob Cook’s paper "Shade Trees", at SIGGRAPH 84,

[Cook 1984] and Ken Perlin’s paper “An Image Synthesizer”, at SIGGRAPH 85, [Perlin

1985], both target on offline rendering system. A shader is a program that describes the

output of light sources and how this light is attenuated by surfaces and volumes. The

12

programming language for describing the shader is called the shading language. Rob

Cook and Pat Hanrahan first used a shading language in the RenderMan specification.

[Apodaca 1999] RenderMan became the most widely used rendering system for high-end

special effects. A major reason for RenderMan’s success is that compared to earlier types

of model shading, the shader and shading language in RenderMan is not limited to a

single shading equation like Phong shading. Another book about RenderMan was

published in 1992 [Upstill, S. 1992]

When we talked about real-time computer graphics, it concerned vertices,

triangles and pixels. The programmable shading languages gave programmers more

flexibility for designing shader and surface effects by distinguishing what quantities they

compute and at what point they are invoked in the rendering pipeline. In RenderMan,

Shaders have been categorized as Surface shaders, Displacement shaders, Light shaders,

Image shaders and Volume shaders. The Programmable Shading language gives

programmers basic types to use for manipulation of points, vectors, color geometry

functions, access to the geometry state at the point being shaded, including position,

normal, surface and the amount of incoming light. Parameters supplied to the shader are

specified in the declaration of the shader or alternatively attached to the geometry itself.

The output of the shader program will be the resulting color, opacity and possibly the

surface normal and/or position on a particular point. The Programmable shading language

gives programmers more control over the processing and appearance of these graphics

primitives for designing the shader and surface effects. Following is an example for a

simple plastic like material effect. [Apodaca 1999]

13

 A shader program in RenderMan plastic.sl by Pixar is shown in Example 2.1.

Example 2.1 Renderman plastic shader code fragment

By adjusting different diffuse colors, the plastic ball surface effect is shown in Figure 2.1

Figure 2 - 1 Plastic shader on the spherical surface

As we can see, Shaders and the shading language give developers and users a

very realistic picture. However, by the time RenderMan was first introduced, a real-time

interactive scene with shading was still impossible due to the amount of memory and fast

processing needed.

Pixer’s Photo realistic RenderMan [Pixar 2000] renderer was an implementation

of the scan line rendering algorithm REYES (Renders Everything You Ever Saw)

Surface plastic(float Ka = 1;
 float Kd = .5;
 float Ks = .5;
 float roughness = .1;
 color specularcolor = 1;)
 {
 normal Nf = faceforward (normalize(N),I);
 Oi = Os;
 Ci = Os * (Cs * (Ka*ambient() + Kd*diffuse(Nf)) +
 specularcolor * Ks*specular(Nf,-normalize(I),roughness));
}

14

architecture. REYES was developed with the goal of creating a rendering system for

motion picture special effects. Cook first introduced REYES “The REYES Image

Rendering Architecture” at SIGGRAPH 87 [Cook 1987]. This architecture was aimed at

avoiding various flaws and constraint limitations, which they felt other algorithms like

polygon z-buffer, polygon scan line and ray tracing, had. Examples of these flaws are

Vast Visual Complexity, and speed and memory limitations. The resulting design brings

a revolutionary new work in flexible shading and stochastic anti-aliasing and allowed

renderers to produce photorealistic images.

The REYES algorithm is a geometry pipeline, and the shading procedure is done

before the visibility (hiding) test. One of the advantages of this order is that it made

displacement shading possible. However, the biggest disadvantage of shading before

hiding is that if the scene is huge, with a large depth complexity, large numbers of

geometry need to be shaded and then hidden by other objects closer to viewer. This

drastically increased the rendering time and memory space needed.

An article in 1995, from Chapel Hill, the first interactive “Real-Time

Programmable Shading” introduced a parallel architecture rendering pipeline, PixelFlow,

which could achieve a real-time 30 frames/second interactive rendering rate. This work

was contributed by Marc Olano [Olano and Lastra 1998]. As researchers work on

software algorithms to improve the rendering rate, architecture designers are also

working hard on their revolutionary graphics board designs.

15

A few years ago, all the transformation and rasterization algorithms had to relay

on the CPU to produce rendered images. Over time, programmers learned to access the

hardware provided graphics functionality through standard 3D programming interfaces,

such as OpenGL or Direct3D. In the beginning, such expensive graphic cards were only

available on expensive UNIX workstations. However, by Moore’s Law, the hardware

price reduced so much that low cost PC and game users could benefit as well. In 1998, a

SGI Infinite Reality Server rendering 13 million triangles per second cost $100,000, and

by 2004, an NVIDIA GeForce 6800 Ultra rendering up to 600 million triangles per

second, costs only $500.

Figure 2 - 2 Graphics Pipeline

Figure 2.2 shows the traditional pipeline converted into the modern Graphics

Pipeline with programmable shader, Vertex and Fragment shader. In this graph, vertex

processors have replaced the geometry transformation and lighting and the fragment

16

processors have replaced the texture mapping processes. The real-time programmable

shaders (vertex & fragment shader) on the new generation of graphics board replaced the

fixed pipeline of the old boards. At SIGGRAPH 2001, a group from NVIDIA presented a

paper on "A User-Programmable Vertex Engine". [Lindholm, et.al. 2001]. The paper

discussed the assembling language instructions necessary to program their board (the

NVIDIA GeForce 3). Because of the difficulty of programming with assembly language

a higher-level language interface was needed. A paper was presented at SIGGRAPH

2001 from Pat Hanrahan's group on "A Real-Time Procedural Shading System for

Programmable Graphics Hardware" [Proudfoot, et.al 2001]. Their shading language was

a high level shading language based on the RenderMan shading language.

In 2002, NVIDIA came out with an improved version of their programmable

graphics board that was programmable in the high-level language. Soon after, both ATI

and 3D Labs came out with graphics boards with programmable shading capability. Each

of these three companies came out with a high-level program language for programming

their boards. NVIDIA developed Cg (C for graphics), which was fully supported on

NVIDIA cards on both OpenGL and Direct3D API. Microsoft with ATI developed HLSL

(High Level Shading Language), which was limited to the Windows platform. 3D Labs

developed the OpenGL Shading Language (GLSL) front-end compiler according to

GLSL from SGI, which was released as part of OpenGL 2.0 on Sep. 2004. The GLSL

claims to be the standard shading language as the core part of OpenGL 2.0. More tests

still need to be done. [OpenGL 2005]

17

By SIGGRAPH 2004, there were a few more shading languages announced. For

example, Waterloo’s SH Shading Library and Brook, which is a system for general-

purpose computation on programmable graphics hardware. Brook extends C to include

simple data-parallel constructs, enabling the use of the GPU as a streaming computer on

graphics processors [Buck 2004].

In the following section, we will have a closer look at the three popular shading

languages, Cg from NVIDIA, OpenGL shading language from 3DLabs, and High Level

Shading Language from Microsoft.

2.2.2 C for Graphics from NVIDIA

June 2002, a C-like programming language Cg (C for Graphics) was developed

and first released for the programmable graphical processing units from NVIDIA. During

the 2002 SIGGRAPH conference, NVIDIA presented its Cg Toolkit version 1.0.1 with

great success.

The Cg language is based on both the syntax and the philosophy of C [Kernighan

and Ritchie 1988]. In particular, Cg is hardware oriented language and intended to be

general-purpose (as much as is possible on graphics hardware). As in C, most data types

and operators have an obvious mapping to hardware operations, so that it is easy to write

high-performance code. Cg includes a variety of new features designed to efficiently

support the unique architectural characteristics of programmable GPUs. Cg also adopts a

few features from C++ [Stroustrup 2000] and Java [Joy et al. 2000], with an intention to

be a language for small programs. Cg is most commonly used for implementing shading

18

algorithms, but Cg is not an application-specific shading language in the sense that the

RenderMan shading language [Hanrahan and Lawson 1990] or the Stanford real-time

shading language (RTSL) [Proudfoot et al. 2001] are. For example, Cg omits high-level

shading-specific facilities such as built-in support for separate surface and light shaders.

It also omits specialized data types for colors and points, but supports general-purpose

user-defined compound data types such as structs and arrays.

 Each shader would be called upon several times during the rendering process, i.e.,

generally speaking a vertex shader will be called once for each of the vertices on the

scene and the fragment shader (or pixel shader) will be called once for every pixel in the

screen. In the same way that a shader for RenderMan has to be called by a structure of a

scene in a RIB file, a Cg shader must be called by a structure of a scene in a main

program that draws to the screen. What we can see is that all the input information is the

properties of vertices, such as position and normal of each vertex and light source.

Additionally, the fixed matrixes also are provided as input for transformation from object

coordinate to world coordinate etc. Those matrixes come from the main program that will

load the shader. The output of the vertex shader will be the color and location of each

vertex in object coordinate or world space coordinate etc. Those values will be the input

of the fragment process on the pipeline.

19

Figure 2 - 3 GPU – CPU Interface in modern Graphics Pipeline

Figure 2.3, which is borrowed from the Cg Tutorial book [Fernando, R., and

Kilgard 2003], shows the GPU – CPU Interface in modern Graphics Pipeline. A 3D

application program which contains a vertex shader and a fragment shader compiles and

executes on both the CPU and GPU. The main program compiles and executes on the

CPU and communicates with the graphics API (either OpenGL or Direct3D). The shaders

are translated into assembly code. The main program calls the Cg run-time library,

provided by NVIDIA and sit between the application and underlying graphics API, to

execute the assembly code on the GPU. The calculation results from GPU are sent to the

frame buffer.

20

OpenGL/DirectX API

Application

Cg source code

OpenGL Driver
Assembly
Program

Assembly source code

Assembler

Executable code
Graphics Hardware

Cg Translator

 Provide by developer
 Provide by NVIDIA

Provide by graphics hardware vender

Figure 2 - 4 Cg Shaders loading process

 Let’s have a closer look at how a Cg shader is loaded into the executable

environment. Figure 2.4 [Rost 2004] illustrates how does a Cg shader is loaded and

handled by the execution environment. Compared to GLSL, Cg is designed as a source

code to source code translator. The Cg compiler is really a translator that is outside of the

OpenGL or Direct3D API compared to a GLSL driver that is in the OpenGL driver. The

Cg program really compiles to assembly code vertex shader and fragment shaders in

OpenGL or Direct3D. Advantage of Cg is that the translation can be done offline. But,

the assembly code has to be parsed and assembled at execution time.

21

For a better understand of the Cg shading language, let’s look at a simple example

of a vertex shader for brick shown as example 2.2.

Example 2.2: Vertex Shader of Brick in Cg language

Look at the parameter area in the main function, there is few parameters with the

modifiers “in”, “out”. In the end of some parameter, there is a “:” with some capital

letters which are called semantics in Cg. What are these decorations for? The modifier

“in”, “out” indicates this parameter is a connector of main application with the vertex

shader or from the vertex shader out to the fragment processor. The semantics tells which

graphics register this parameter will flows into. The semanticed variable is a connector

between shader programs to graphics API.

// Brick-vert.cg vertex shader of brick in Cg

const float3 LightPosition = float3(0.0, 0.0, 4.0);
const float specularContribution = 0.3;
const float diffuseContribution = 0.7;

void main(
 out float LightIntensity,
 out float2 MCposition,
 in float4 gl_Normal : NORMAL,
 float4 gl_Vertex : POSITION,

 out float4 gl_Position : POSITION,

 //out float4 Color0 : COLOR0,
 uniform float4x4 ModelView,
 uniform float4x4 gl_ModelViewProjectionMatrix,
 uniform float4x4 ModelViewIT
){
 float4 ecPosition = mul(ModelView , gl_Vertex);
 float3 tnorm = normalize(mul(ModelViewIT , gl_Normal).xyz);
 float3 lightVec = normalize(LightPosition - ecPosition.xyz);
 float3 reflectVec = reflect(-lightVec, tnorm);
 float3 viewVec = normalize((float3)(-ecPosition));
 float spec = max(dot(reflectVec, viewVec), 0.0);
 spec = pow(spec, 16.0);
 LightIntensity = diffuseContribution * max(dot(lightVec, tnorm), 0.0) +
 specularContribution * spec;
 MCposition = (float2)(gl_Vertex);
 gl_Position = mul(gl_ModelViewProjectionMatrix , gl_Vertex);
}

22

2.2.3 OpenGL shading Language

Three years ago, SGI started the definition of the OpenGL Shading Language,

which claimed to be a powerful high-level, hardware independent shading language, the

OpenGL Shading Language (GLSL). This language enables direct compilation of C-like

programs to graphics hardware machine code, creating enormous opportunities for

compiler and graphics architectural innovation and bringing real-time realistic rendering

a step closer to reality. [OpenGL 2005]

OpenGLSL has been designed to allow application programmers to define

processing at those programmable points of the graphics pipeline. Two shaders in the

pipeline are vertex shaders and fragment shaders. Both are independently compilable

units separated from the main program. Like the Cg shading language, the OpenGL

Shading Language is based on ANSI C with extended vector and matrix data types which

make it more concise for the typical operations carried out in 3D graphics. Before the

OpenGLSL can been supported by the OpenGL standard, it does have to have a set of

extensions that are supported by a number of graphics card vendors.

If there is an OpenGL application, we should disable the original rendering fixed

pipeline function and add the programmable shader into the rendering pipeline. Built-in

access to the existing OpenGL state keeps the API entry points the same as developer are

used to. Another benefit from GLSL is that shader compiles during runtime. The major

difference GLSL has with other formats of shading languages is that it allows GLSL to

23

be compiled inside of OpenGL rather than compiled with individual hardware venders.

This could bring optimal performance on the graphics hardware. [Rost 2004]

OpenGLSL is getting closer to becoming the cross-platform standard for all

shadings languages. The GLSL is included as a subset of the release of OpenGL2.0 on

Sep. 9th 2004. This also depend on if GLSL will became so dominant so that every

hardware vendor like to develop the back end compiler for it.

 Application

GLSL source code

OpenGL Driver
Shader
Object

Program
Object

Shader Source code

OpenGL API

Compiler

Linker

Executable code
Graphics Hardware

 Provide by developer
 Provide by graphics hardware vender

Figure 2 - 5 GLSL Shaders loading process

24

Let’s look at how the GLSL shader is loaded by the main program and executed

on the GPU. Figure 2.5 illustrates how the OpenGL shaders are handled in the execution

environment of OpenGL. Applications communicate with OpenGL functions by calling

functions in the OpenGL API. An OpenGL function “glCreatShaderObjectARB” allows

a shader data structure to be created within the OpenGL driver. Then a character string is

sent to the OpenGL API to indicate the name of the shader program. 3DLabs released

their GLSL front-end compiler. This front-end compiler tokenizes the shader string and

produces a binary, high-level representation of the language. The back end of the

compiler has to be implemented individually by different hardware vendors. This should

be typically packaged inside of the hardware driver. Of course, hardware support for

GLSL depends on each of the hardware vendor’s willingness to implement the compiler

for GLSL.

Example 2.3 A vertex shader for brick in OpenGL shading language.

// GLSL
const vec3 LightPosition=vec3(0.0, 0.0, 4.0);
const float specularContribution = 0.3;
const float diffuseContribution = 0.7;//0.7 = 1.0 - specularContribution

varying float LightIntensity;
varying vec2 MCposition;

void main(void)
{
 vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
 vec3 lightVec = normalize(LightPosition - vec3 (ecPosition));
 vec3 reflectVec = reflect(-lightVec, tnorm);
 vec3 viewVec = normalize(vec3 (-ecPosition));
 float spec = max(dot(reflectVec, viewVec), 0.0);
 spec = pow(spec, 16.0);
 LightIntensity = diffuseContribution * max(dot(lightVec, tnorm), 0.0)

+ specularContribution * spec;
 MCposition = vec2 (gl_Vertex);
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

25

Next, example 2.3 shows the OpenGLSL shader. One of the differences between

Cg and OpenGLSL is that the connector which glues the shader with the underlying

graphics APIs. In GLSL, a set of built-in variables does the gluing job. They have prefix

of “gl_” for example, “gl_ModelViewMatrix” is a uniform matrix passed in from main

program; and “gl_Vertex” is a variable for the position of each vertex. These variables

are needed during vertex shader is executed. Compare to Cg shader, In GLSL the matrix

variables for transformation were predefined and can be used directly in shader program.

On the other hand, Cg shader takes care of the connection by some developer defined

variables binding with a set of Semantics, i.e. POSITION, COLOR etc. and the uniform

matrixes which passed in from main program.

On the other hand, in Cg, the “gl_” are not predefined. In GLSL, the inputs of the

vertex shader are vertex information such as normal, color, texture coordinate and so on.

Data flows into vertex shaders via attribute built-in/user-defined variable, uniform built-

in/user-defined variable, and built-in/user-defined varying variable, as well as special

vertex shader output variables will pass the information to be rasterized and then to the

fragment shader on the next step of the rendering pipeline.

More details of the OpenGL Shading Language functionality and data type’s

built-in/user defined variable and functions will be discussed in detail in chapter 3.

2.2.4 High Level Shading Language

High Level Shading Language (HLSL) is subset of DirectX 9 that allows shader

developers to write programmable shaders on the Windows platform. HLSL also has all

26

of the usual advantages of a high level language such as easy code reuse, improved

readability and the presence of an optimizing compiler. However, this language is limited

by the platform dependency on Windows platforms.

Example 2.4 is a vertex shader for a wood shader written in HLSL. This code is

from [Peeper and Mitchell 2002].

Example 2.4 A vertex shader for wood in High-Level shading language.

In Example 2.4, the first two lines declare a pair of 4×4 matrices called

view_proj_matrix and texture_matrix0. Following these global-scope matrices, a

structure is declared. This VS_OUTPUT structure has two members: a float4 called Pos

and a float3 called Pshade. The main function for this shader takes a single float4 input

parameter and returns a VS_OUTPUT structure. The float4 input vPosition is the only

input to the shader while the returned VS_OUTPUT struct defines this vertex shader’s

output.

Looking at the code of the main function, you’ll see that a function called “mul"

is used to multiply the input vPosition vector by the view_proj_matrix matrix. This

// HLSL shader of wood
float4x4 view_proj_matrix;
float4x4 texture_matrix0;
struct VS_OUTPUT
{

float4 Pos : POSITION;
float3 Pshade : TEXCOORD0;

};
VS_OUTPUT main (float4 vPosition : POSITION)
{

VS_OUTPUT Out = (VS_OUTPUT) 0;
// Transform position to clip space
Out.Pos = mul (view_proj_matrix, vPosition);
// Transform Pshade
Out.Pshade = mul (texture_matrix0, vPosition);
return Out;

}

27

function is commonly used in vertex shaders to perform vector-matrix multiplication.

Following the transformation of the input position vPosition to clip space, vPosition is

multiplied by another matrix called texture_matrix0 to generate a 3D texture coordinate.

The results of both of these transformations have been written to members of a

VS_OUTPUT structure, which is returned. Those values output from the vertex shader

are interpolated across the rasterized polygon and are available as inputs to the pixel

shader. In this case, Pos is an output from vertex shader and an input for the fragment

shader. Pshade is passed from the vertex to the pixel shader via an interpolator.

We discussed each of the shading languages and gave examples for each of them.

Interestingly, the public release of the NIVIDIA Cg system was done concurrently with

the design and development of similar systems by 3Dlabs OpenGLSL, and Microsoft

HLSL. There has been significant cross-pollination of ideas between the different efforts

and they are very similar in structure [Rost 2004]. We will discuss detail of these

similarities and differences between these systems throughout chapter 3 Design for the

shader converter. In our design, we will try to keep the advantage of those three

languages and keep the design and implementation as simple as possible.

The OpenGL 2.0 specification, which includes the OpenGL Shading Language

specification, was released as the new OpenGL standard. This cleared the way for

graphics vendors to ship OpenGL drivers that support the industry's first open standard,

high-level shading language. However there are still many programmers that are not

familiar with OpenGLSL, instead, they are used to Cg structure. At the same time, the

28

older version of graphics card, which only supports Cg or HLSL, will be out-of-date for

the new standard shading language. So, how to avoid these cards from becoming trash?

Our design of a shader converter will be one of the answers. The converter proved the

concept of converting the shaders from one language format to another shading language

format. And the converted shader would be able to load from the main program, execute

and display.

With the rapidly developing speed of the GPUs and shaders, some work has been

done on embedding shaders into web 3D applications. In next two sections, we are going

to briefly introduce the history of the most popular web 3D application formats

VRML/X3D, the prior works on embedding shaders into X3D and the problem of sharing

shaders via the Internet.

2.3 X3D: The next generation of VRML97 in XML

VRML (Virtual Reality Modeling Language) was first introduced in 1995 and its

increased development and wide use over the past decade has made it the industry

standard for 3D web. X3D is the next generation of VRML in XML. An Internet survey

[googleHit 2004] of various web3D technologies showed the usage of VRML/X3D is

more widely used for web 3D. This is one of the reasons VRML/X3D has been chosen as

part of this dissertation research work.

29

Figure 2 - 6 Google Hits of 3D websites

Tim Berners-Lee first used the term Virtual Reality Markup Language (VRML)

when he discussed a need for a 3-D Web standard during a European Web conference in

1994. Soon afterward, an active group of artists and engineers formed a mailing list

called www-vrml. They changed the name of the standard to Virtual Reality Modeling

Language to emphasize the connection to graphics. The result of their efforts was to

produce the VRML1.0 specification [web3D 2005]. As a basis for this specification, they

used a subset of the Open Inventor file format from Silicon Graphics created in 1992.

[Open Inventor 2005]. The VRML1.0 standard was implemented in several VRML

browsers, but it only allowed you to create static virtual worlds. This limitation reduced

the possibility of its widespread use. Clearly, the language needed a robust extension to

add animation and interactivity. The VRML 2.0 standard was developed by the year 1997

and was adopted as the International Standard ISO/IEC 14772-1:1997. Since then it is

referred to as VRML97. A book “VRML2.0 Sourcebook” gives an overview of

VRML97 and how to use it [Ames. et.al 1997].

In the following paragraph, we will give few examples in VRML and X3D format

to show how to create a VRML/X3D file and the tools or plug-ins required for displaying

VRML/X3D files.

30

 For creating a virtual world with VRML, a developer will need to have a VRML

browser and a text editor. Like building a house or office building, the VRML file serves

as a blueprint for the virtual world. Developers create this virtual world by specifying

and organizing the structure of the VRML world in a scene graph schema describing how

to build shapes, where to put them, and what color or texture their surfaces should have.

Displaying this blueprint in the VRML browser will be much more attractive than the

traditional 2D printout, because what the user will see is a 3D interactive virtual reality

world displayed via the Internet. An early VRML browser developed by SGI was Cosmo

Player. Cosmo World was an interface for creating VRML worlds which turned out to be

a very useful API, and was further developed and made available from many companies

including Cosmo Software, SGI (Silicon Graphics), and Platinum. Unfortunately SGI

stopped supporting its PC version. You can still download a copy of the player for IRIX.

[SGI 2005]

Other successful VRML browsers are Blaxxun Contact by www.blaxxun.com,

Cortona from ParallelGraphics, Flux from MediaMachines.com and Octaga from

Octaga.com which are commercial browsers. Some open sources VRML browsers are

FreeWRL for Linux/Mac, and the Xj3D active project from web 3D consortium that was

developed in Java. Most active browsers can be found at the web3D consortium website

[web3D 2005].

31

Example 2.5 simple shapes built in VRML step by step

For a better understanding of the VRML language structure, example 2.5 presents

each step for building a simple shape in VRML.

Besides the basic structure, VRML also supports animation by defining a route,

texture mapping and other extensible functions by creating new nodes for the world.

#VRML V2.0 utf8
Group{
 children[
 # draw first object
 Shape{
 appearance DEF Brown Appearance {
 material Material {
 diffuseColor 0.6 0.4 0.0
 }
 }
 geometry Cylinder {
 height 2.0
 radius 2.0
 }
 }
 # draw second object
 Transform { # Transfer 2nd shape
 translation 0.0 2.0 0.0
 children Shape{
 appearance USE Brown
 geometry Cone {
 height 2.0
 bottomRadius 2.5
 }
 }
 }
]
}

Transfer 2nd shape

Draw first shape

Draw second shape

32

VRML is an easily mastered script language. Detailed explanations about the route and

extensible node design will be given in chapter 4.

As the Internet rapidly developed in the late 1990s, the platform independent

eXtensible Markup Language (XML) was adopted by the W3C [W3C 2005]. XML gives

structural rules for developers to extend systems by defining their elements in a flexible

way. An XML document is structured with elements and attributes. A developer defined

Document Type Definition (DTD) provides agreements for what elements and attributes

are valid to be used in developer owned programs. XML has become the standard

language format for transferring data on the Internet. X3D was developed as VRML

defined in the XML format, i.e., the next generation of VRML97. By 1999, San Ramon

from the web3D consortium initiated the process to define X3D. It was decided that X3D

would be developed in XML. In Figure 2.7[web3D 2005], we can see the developmental

history of VRML/X3D from 1997 to 2002.

Figure 2 - 7 X3D/VRML Growing history

33

By SIGGRAPH 2004, X3D immerged as the standard web3D format on the

Internet [web3D 2005]. Hopefully soon Internet browsers will be embedded with X3D

plug-ins as standard and users will be able to view X3D scenes without the additional

download each time they load a web3D scene.

Next, lets see how the same shape in example 2.6 built in X3D with detail commented.

Example 2.6 A step by step example of a simple X3D scene

<X3D> # header ...#
<Scene>

<Group>
<Shape> # draw 1st shape

 <Cylinder height='2.0' radius='2.0'/>
 <Appearance DEF='Brown'>
 <Material diffuseColor='0.6 0.4 0.0'/>
 </Appearance>
 </Shape>
 <Transform center='0.0 0.0 0.0' translation='0.0 2.0 0.0'> # transform 2nd shape
 <Shape> # draw 2nd shape
 <Cone height='2.0' bottomRadius='2.5'/>
 <Appearance USE='Brown'/>
 </Shape>
 </Transform>

</Group>

</Scene>
</X3D>

Draw 1st shape draw 2nd shape transform 2nd shape

* This scene is displayed in Flux 1.1 browser from mediamachines.com.

34

The format differences between VRML and X3D can be shown by the following

example. In VRML you define a viewpoint like this:

In X3D, the same viewpoint is defined as a tag with few attributes:

Example 2.6 a simple viewpoint definition in both VRML and X3D

An X3D program can be implemented by using XML parsers. The XML format

allows X3D to become an interchangeable web 3D format on the Internet. There are tools

for generating X3D scenes, like Xeena from IBM [Xeena 2005]. The Xj3D group also

worked on this, [Xj3d CVS 2005] their CVS parser was available on the web3D website.

Mediamachines released their X3D browser Flux [Flux 2005], which allows the X3D

world to be visualized in web browser.

For creating X3D scenes, developers can either use tool kits like Xeena from IBM

or export the X3D format from 3D software applications like AutoCAD, Blender, or H-

Anim. Also, 3D Studio Max and Maya support the exporting to VRML format. Updated

information can be viewed on the web3D web page [web3D 2005].

2.4 The Challenge of Real-time Procedure Shaders in VRML/X3D

The reason VRML/X3D does not produce an acceptable realistic rendering is

because VRML/X3D browsers calculate lighting using the Gouraud shading algorithm.

DEF MyView viewpoint {position 0 0 1}

<viewpoint DEF=‘MyView’ postiotion=‘0 0 10’ />

35

The advantage of the Gouraud shading algorithm is that it’s rendering time is much less

than other shading algorithms, such as Phong shading. The Phong shading algorithm

gives a more realistic visual effect for specular highlights. When programmable shaders

became available in 2002, developers started working on ways to bring this new

technique into VRML/X3D. By SIGGRAPH 2003, some significant success was gained

and the possibility of using embedded shaders in the VRML/X3D was explored. [De

Carvalho 2003][Parisi 2003]

Figure 2.8 illustrates a single machine browser showing a Phong model shader

and a reflection environment mapping shader [De Carvalho et al. 2004], respectively.

Figure 2 - 8 Shaders in VRML/X3D web browser on single machine

The most important feature of X3D is that it is a 3D web language for 3D

applications on the Internet. The previous examples however, were limited to a single PC

and no sharing over the Internet was demonstrated. So the question we are faced with is

whether or not it is possible to move shaders to the Internet and share real-time,

interactive, and realistic environments.

36

As we have previous discussed the different shading languages from different

vendors have yet to achieve platform independence at this time. This is a serious problem

if we want to share data over the Internet that includes shaded models and/or

environments. The compatibility of these shaders among each other is illustrated in

Figure 2.9. The lable “Y” in the graph means fully compatible and “N” means not fully

compatible.

N N

HLSL
shader

CG
Shader

GLSL
Shader

N

N

HLSL
shader

CG
Shader

GLSL
Shader

Y

Y

Y

N

N

Figure 2 - 9 Different Shaders format compatibility

During SIGGRAPH 2004, a Bird of Feather (BOF) meeting of the X3D shader

group presented a solution of solving the non-compatible hardware problem. The solution

was to provide multiple formats of the same shader. When the X3D file arrived at the

local machine the browser would determine which type of code it should be complied as.

There are some inherent problems with this proposal: first, for one shader effect to

be used on the web, a programmer has to learn three shading languages, duplicate the

shader in three formats and have three different machine platforms to test whether the

shader is running correctly before it can be published. This proposal is not a very

37

practical solution. However, it proved the equivalent functionality between Cg, GLSL

and HLSL. This provided an assumption for our converter design. The assumption was

that as long as we can convert the shader between the different formats, display it on

different graphics cards and platforms it will be correctly handled by the VRML/X3D

browsers plug-in. At this time that only Bitmanagement Contact version 6.2 VRML/X3D

[Bitmanagement 2005] web browsers plug-in, correctly supports Cg and HLSL shaders in

DirectX9.0. It is believed that more vendors will support shader functions, enabling a

better future for 3D web applications. Other evidence that supports our assumption is that

in March 2005, 3DLab announced a shader tool called “ShaderGen” [ShaderGen 2005].

This tool aims to show that programmable hardware can be used to obtain the same

rendering results as the OpenGL fixed function path. According to 3DLab the utility

"allows you to set the parameters for fixed function rendering through a convenient GUI.

With the click of a mouse, ShaderGen creates an OpenGL shader that will produce the

same result as the fixed function state you've set." [3DLab 2005] What we surmise from

this description of the new tool is shader writing in OpenGL shading language is

equivalent to fix functions in the graphics pipeline. This is exactly the same purpose as

Cg was pushed out. “It replaced the part of the fixed functions in the graphics pipeline”.

In this dissertation, we assume that all the different formats of shaders have

equivalent functionality in different language formats. We propose a solution with a

XML middle layer converter for making the shader platform independent and sharable

via the Internet. The shader converter reads different formats of shaders written by shader

developers in arbitrary shading language (currently, Cg, GLSL, and HLSL) and converts

38

them to the XML format before the X3D world is published. After the X3D world was

downloaded, the shader is converted to the corresponding client machine supported

shader format by the converter and displays the equivalent shading result on the client’s

machine.

Imagine the graphics pipeline as a product producing assembly line. If one of the

pieces of the assembly line breaks down, a functionally equivalent piece needs to be put

back in its place for the machine to operate properly. The same is true for the graphics

pipeline. Let’s look closely at the graphics pipeline with different shader formats. We try

to find the differences and similarities among different formats of shaders. All of the

vertex and pixel shaders are located in the same positions in the pipeline. Vertex shaders

are located between loading vertices from the main application and outputting

corresponding transformed object/world coordinate vertices back to the main application.

Fragment shaders are located between loading and textureing colors and drawing with

rasterizing colors and textures down to each pixel. Figure 2.10 shows a high-level

overview of different format shaders that are located almost same spot in the graphics

pipeline and contain both vertex and fragment shaders.

3D Application
3D API FV

Frame
Buffer

GPU:

Vertex attributes
Light Positions…

Pixels attributes
….

Figure 2 - 10 High-level overview of the Vertex/fragment shader in the graphics pipeline

39

In section 2.2.2 – 2.2.4, we had a close look at the detailed structure of how each

of the shader formats communicates with the graphics API. We also know that both

GLSL and Cg or HLSL vertex/pixel shaders are located at the same position in the

graphics pipeline except for the connector with a little different gluing method (Cg/HLSL

Semantic uses an “in”, “out” modifier and GLSL uses built-in variables). This means

they still have an equivalent functionality as part of the programmable graphic pipeline.

So if we can convert their skin to the different corresponding platform supported format,

the different formats of shader will be shareable in web3D applications. We assume

X3D/VRML can load different individual shaders successfully.

40

3 Design and Implementation

3.1 A Framework of Platform Independent Shaders in X3D

X3D Application

GLSL source code

OpenGL Driver
Shader
Object

Program
Object

Shader Source code
OpenGL API

Compiler

Linker

Executable code
Graphics Hardware

 Provide by developer
 Provide by graphics hardware vender

Cg source code

OpenGL Driver
Assembly
Program

Assembly source code
OpenGL/DirectX API

Assembler

Executable code
Graphics Hardware

Cg Translator

 Provide by developer
 Provide by NVIDIA
 Provide by graphics hardware vende

Shader Langugae Converter

Figure 3 - 0 SLC convert shader skin before loaded to API

Let’s go back and look at how the GLSL and CG /HLSL shaders have been

loaded into the main application in Figure 2.4 and Figure 2.5. Once the Cg shader has

been loaded, it will be translated to assembly code. On the other hand, when the GLSL

shader is loaded, it will compile until it gets connected with the OpenGL API without the

need to be translated into assembly code. Clearly they went to different pipelines. This

means we can not control them once it loaded and parsed to the Graphics API. At the

same time, we realized there is so much similarity in syntax and functions etc. among

these three languages that we decided do some work before it reaches the API. That’s

41

means we will do a conversion between the languages with a Shader Language Converter

(SLC) shown in Figure 3.0. Thus the SLC functions as a shader translator among

different languages, therefore making the shaders platform independent.

The next step was to design a framework for fitting the independent platform real-

time shaders into the X3D scene. This framework includes a back-end core shader

language converter (SLC), which translates shaders between different shading languages,

and a library containing a basic set of shaders. In chapter 4, this framework will be

demonstrated with an example of a shaded X3D scientific visualization of protein

structures using data gathered from x-ray crystallography. This section will focus on the

shader converter design and a brief introduction of the shader library. Figure 3.1 shows

the converter framework.

Framework for Independent platform real-time shaders in X3DFramework for Independent platform real-time shaders in X3D

X3D SceneX3D Scene

Application Experiment:
Bioinformatics
visualization on X3D

Application Experiment:
Bioinformatics
visualization on X3D

Shader
A

djustable
interface

Shader
A

djustable
interface Shaders L

ibrary

Cg

GL
SL

HL
SL

SLC

Shaders L
ibrary

Shaders L
ibrary

CgCg

GL
SL

HL
SL
HL
SL

SLCSLC

Figure 3 - 1 a Framework of Platform Independent Shaders in X3D

42

The problem of multiple shader formats being gradually released on the market by

different vendors appears to be one of the most important issue for shaders being applied

in X3D on the web. The shader language converter translates shaders between different

shading languages. It is a core for the function of sharing independent shaders on the

Internet. The shader language converter takes one of the most important roles of this

entire framework. In section 3.2, we are going to discuss the detail design and

implementation of this converter.

Figure 3 - 2 illustration of shader library

We collected all of the shaders used during the SLC implementation and

bioinformatics visualization tests in chapter 4. We then set up a library with this basic set

of shaders for different materials, like wood, brick, noise bump texture, and Phong

shading and Blinn-Phong shaders for plastic materials. The Phong shader is used for

defining different elements in the protein structures.

The purpose of design this library is to give shader users a chance to share their

platform independent shaders and give them space to communicate both shader design

Shader Library
Simple shader

Fog shader

Texture shader

Environment shader

Wood shader

Noise shader

Brick shader

Metal shader

Shader Library
Simple shader

Fog shader

Texture shader

Environment shader

Wood shader

Noise shader

Brick shader

Metal shader

Shader Library
Simple shader

Fog shader

Texture shader

Environment shader

Shader LibraryShader Library
Simple shaderSimple shader

Fog shaderFog shader

Texture shaderTexture shader

Environment shaderEnvironment shader

Wood shaderWood shader

Noise shaderNoise shader

Brick shaderBrick shader

Metal shaderMetal shader

43

and bug reports in the SLC. The more shader developers use the SLC, the more useful

shaders will be tested, the more bugs found and fixed, the more shaders added to the

library. When the SLC has finished its testing period, there will be a much larger set of

useful shaders added to the library by developers and the more general user can use them

more efficiently.

This shader library contains some successfully converted shaders from different

languages. All shader examples used in this chapter or later chapters are all from the

shader library. Please refer to the appendix A for shader examples.

Beside the shader converter and shader library, another important part of this

framework is a shader supported VRML/X3D browser needed for displaying the shaders.

At this time, the only successful shader supported X3D/VRML browser is

Bitmanagement BS contact version 6.2. The only support shader format at this time is in

Cg/HLSL in DirectX9.0. [Bitmanagement 2005]

3.1.0 Initial ideas of embedding Shaders into X3D

Initially, our design for embedding shaders into X3D was trying to define a new

set of nodes for the shaders used in X3D. These shader nodes simply contain a set of

shaders that are connect to the X3D/VRML file by calling shader names with a few

parameters and function names. A connection interface contains parameters that can be

defined by the user. The Shader could also be external to the VRML/X3D main program.

The benefit of this design is that it simplifies the interface for both the developers and

44

users. The conversion among different shading languages is handled by SLC and hidden

from users.

The usability of the final user interface for implementing shaders in X3D takes a

key role in the design. A good, convenient and consistent interface will give us a simple,

friendly test-bed and possibly add to the longevity of the application.

The basic idea for the initial design is shown in the following simple example of

an X3D file:

Example 3.1 Illustration of initial design idea

The advantage of this design was that it has a simple user interface. The

disadvantage was that for complex shaders, especially for the shaders that need to write

the texture out dynamically for texture mapping it might cost more time for updating the

shader file. In that case, we have to define an interface for the browser to dynamically

send events in/out with the intermediate output.

//X3D Application e.g.: A attribute of a sphere surface
Appearance {

Shader = “wood3”;
parameter1 = value1;
Parameter2 = value2;
Parameter3= value3;
……}

X3DShaderNode : X3DNode
{
SFNode [in,out] metadata NULL X3DMetadataObject]
......}

45

Due to the lack of source code for the VRML plug-in, we are limited in our

design of the connector interface to a very basic level. At the same time, the X3D shader

group is working on standardizing the interface for shader embedding into X3D. They

also pointed out the multi-shading language non-exchangeable problem in the web3D

symposium Oct. 2004[web3D-Shader-Group 2005]. We switched our direction to focus

more on designing the shader language converter to solve the shaders’ platform

dependent problem. We designed an XML middle layer Shading Language Converter

(SLC). We believe the only task needed for matching the XML layer to the X3D shader

nodes once the X3D shader group defines their standards is to match our XML nodes to

the new X3D’s standard definitions.

This converter was called the “Universal Converter” in the SIGGRAPH 2004,

Web Graphics presentation “Universal Converter for platform independent shader in

X3D” [Liu 2004]. Later we changed the name to “Shader Language Converter” (SLC) as

suggested by Dr. Owen and Dr. Don Brutzman.

46

3.2 Shader Language Converter Design

Figure 3 - 3 Shader Language Converter in X3D application

The X3D application published and shared via the web. For example, developer

“A” is working on a windows platform and develops his shader in HLSL, which is

converted by the SLC into the XML format before it is published to the X3D format.

User “B” working on a Linux operating system with a 3DLab wildcat graphics card

which best supports GLSL, receives this file and after the SLC is notified that the

hardware supports GLSL, converts this XML formatted shader to the GLSL 3DLab card

supported GLSL format. The equivalent shading result should be achieved.

The basic structure of the SLC is to first read any of the natural shading languages

(Cg/GLSL/HLSL), and then convert it to the XML format before the X3D files are

published. The SLC on the client side browser converts the XML format shader to the

client’s machine compatible shader format. The structure is shown in Figure 3.4.

Server： Developer

X3D web

XML format(shader)

XML format(shader)

User

Cg shader

GLSL shader

Server：Server： DeveloperDeveloper

X3D webX3D web

XML format(shader)XML format(shader)

XML format(shader)XML format(shader)

UserUser

Cg shaderCg shader

GLSL shaderGLSL shader

47

GLSL GLSL

XML Cg

HLSL

Cg

HLSL SLC

Figure 3 - 4 Structure of Shader Language Converter

3.2.1 Why the XML middle layer?

People might ask, why bother use the middle XML layer, why not write a wrapper

and wrap the code like Cg shader up and output it in GLSL / HLSL format. When one

calculates how many conversions will need to be written, we see that for the current three

shading languages, 12 conversions are required. This is illustrated in Figure 3.5. On the

other hand, if there is a XML layer, the conversions required are 3 shading language

formats for input and 3 formats for output. So the total number of conversions is only 6.

 GLSLGLSL

Cg

HLS

Cg

HLS

Figure 3 - 5 Comparison of the SLC design structure with/without XML layer

48

There might be new shading languages with special platform support appearing

on the market, in that case we have to add these new shading language conversions to the

SCL structure so that all existing clients can compile and show these new shaders. At the

same time this new platform will be able to display equivalent shaders from other

formats. If one new shading language appears on the market and needs to be added into

the conversion framework, the only conversions needed to be added into the XML layer

structure is from the new shader format to the XML middle layer and from XML middle

layer to the new Language format. The total extra conversions needed for each new

added language will be 2, shown in Figure 3.6. However, adding a new language in the

structure without XML layer, the conversion will be from each existing shading language

to the new language and from new language to each of the old language for a total of six

conversions, shown on Figure 3.7.

New

New Shading Language

GLSLGLSL

XML Cg

HLSL

Cg

HLSL SLC

Figure 3 - 6 new shading language on the SLC structure design with XML layer

49

GLSL GLSL

Cg

HLSL

Cg

HLSL

New

New Shading Language

Figure 3 - 7 a new shading language on the SLC design structure without XML layer

Overall, using XML as a middle layer design has several advantages. They are,

1. For every new shading language added to the converter, a constant number

of conversions (2, 2, and 2…) need to be added in SLC with XML middle

layer. On the other hand without the XML middle layer the number of

conversions increases linearly (6, 8, and 10…) with each new language.

2. The XML middle layer format is easily embedded into X3D standard

because X3D is designed as an XML format.

3. The XML middle layer has potential for implementation of validating

shader checks for scene graph structure.

 Some disadvantages of the XML layer are,

1. The possible loss of some unique function supported by one of the

languages.

50

2. The XML structure might add more lines of code to the shader program

because of the XML validation and checking structure.

For long-term design, we choose the XML structure with the XML middle layer.

Before designing our converter, let’s first determine the common structures in the

existing three shading languages and then decide whether to take the common parts of all

three languages to setup the middle XML layer structures and functions.

3.2. 2 XML Layer definition

3.2.2.1 Basic Data Types

Let’s look at the following Table 3.1 of the data types in Cg, GLSL, and HLSL.

Actually, data types vary for various profiles, what is show here is latest version profile

for Cg: vp30 (vertex profile version 3.0) and fp30 (fragment profile version 3.0).

Table 3 - 1 three shading language basic data type table 1

Cg HLSL GLSL
bool Bool Bool
bool[] Bool[] bool[]
int Int int
half
float float float
float[] float[] float[]
double double
double[] double[]
 float
 float[]
float2 float2
float2[] float2[]
float3 float3
float3[] float3[]
float4 float4
float4[] float4[]
 vec2
 vec2[]

51

 vec3
 vec3[]
 vec4
 vec4[]
float3x3 float3x3
float3x3[] float3x3[]
float4x4 float4x4
float4x4[] float4x4[]
 mat3
 mat3[]
 mat4
 mat4[]

The following table shows data type mapping.

Table 3 - 2 three shading language basic data type mapping table 2

Cg HLSL GLSL
bool bool bool
bool[] bool[] bool[]
int int int
half float float
float float float
float[] float[] float[]
float[] int[] int[]
float int int
double double float
double[] double[] float[]
double double float
double[] double[] float[]
float2 float2 vec2
float2[] float2[] vec2[]
float3 float3 vec3
float3[] float3[] vec3[]
float4 float4 vec4
float4[] float4[] vec4[]
float3x3 float3x3 mat3
float3x3[] float3x3[] mat3[]
float4x4 float4x4 mat4
float4x4[] float4x4[] mat4[]

The data types of Cg and HLSL are almost identical. (Refer to Table 3.3). The

following three cases will be the comparison between Cg/HLSL with GLSL

52

Table 3 - 3 Comparisons basic data type between Cg/HLSL with GLSL

Cg/HLSL GLSL
float float

 Case (1)
Another example:

Cg/HLSL GLSL
float2 vec2
float2[] vec2[]
float4x4 Mat4
float4x4[] Mat4[]

 Case (2)
Further more:

Cg/HLSL GLSL
float2 ivec2
float2[] bvec2[]
half float

 Case (3)

We compared CG, GLSL, and HLSL language formats. Next we showed how the

XML middle layer data types have been defined. Three cases in Table 3.3 show that the

data types can easily find their match because they are either exactly the same data type

with the same name or exactly the same data type with a different name. However, there

are some data types that are hard or impossible to find exact matches. For example: for

data type “half” in Cg, there is no exact match in other languages. The data type “half” is

a new data type defined in Cg, and does not exist in C or C++. It holds a half-precision

floating-point value (typically 16-bit). This is more efficient in both storage and

performance than the standard 32-bit precision floating-point value. However, for sharing

this data type via the web, we have to give up this benefit for now. This is a tradeoff for

making all client machines able to compile the shader smoothly and sharable via the

Internet. Figure 3.8 shows our strategy for deciding what data types should be eventually

listed in XML middle layer.

53

Common
Data Types

HLSL
Data Types

Cg
Data Types

GLSL
Data Types

Figure 3 - 8 : XML layer common data set definition

The final data type set chosen for XML is the common set of Cg, HLSL, and

GLSL. The ones that couldn’t find matching data types will be matched with its looser

data type. For example, there is no matching data type for “half” in GLSL, so we use

“float” instead in the XML data set. During the SIGGRAPH 2004 presentation, some

suggestions were given for enlarging the data type set to contain every single data type in

each of the languages. A problem with this idea is for each new data type added into one

of the shading languages; we need to update our whole data matching set for six

directions, instead of just matching the new data type to an existing common data type

set. This strategy is not strict in the situation where there is no existing data type to match

within the common set, even with a looser condition. For sharing this data we have to add

this new data type to all mapping tables and add the part of new matching into the code

manually.

Table 3.4 shows the matching data types from Cg, HLSL, and GLSL to XML, and

X3D proposed data types.

54

Table 3 - 4 X3D, XML and shading languages basic data type mapping table

X3D XML Cg HLSL GLSL
SFBool Bool bool bool bool
MFBool bool[] bool[] bool[] bool[]
MFInt32 Float[] float[] int[] int[]
SFInt32 Float float int int
SFFloat Float float float float
MFFloat Float[] float[] float[] float[]
SFDouble double double double float
MFDouble double[] double[] double[] float[]
SFTime double double double float
MFTime double[] double[] double[] float[]
SFNode Node

fields
Node fields Node fields Node fields

MFNode Node
fields

Node fields Node fields Node fields

SFVec2f Float2 float2 float2 vec2
MFVec2f Float2[] float2[] float2[] vec2[]
SFVec3f Float3 float3 float3 vec3
MFVec3f Float3[] float3[] float3[] vec3[]
SFVec4f Float4 float4 float4 vec4
MFVec4f Float4[] float4[] float4[] vec4[]
SFVec3d Float3 float3 float3 float3
MFVec3d Float3[] float3[] float3[] float3[]
SFVec4d Float4 float4 float4 float4
MFVec4d Float4[] float4[] float4[] float4[]
SFRotation Float4 float4 float4 vec4
MFRotation Float4[] float4[] float4[] vec4[]
MFColor Float4[] float4[] float4[] vec4[]
SFColor Float4 float4 float4 vec4
SFImage int[] int[] int[] int[]
MFImage int[] int[] int[] int[]
SFString Not

supported
Not
supported

Not upported Not
supported

MFString Not
supported

Not
supported

Not upported Not
supported

SFMatrix3f Float3x3 float3x3 float3x3 mat3
MFMatrix3f Float3x3[] float3x3[] float3x3[] mat3[]
SFMatrix4f Float4x4 float4x4 float4x4 mat4
MFMatrix4f Float4x4[] float4x4[] float4x4[] mat4[]

In Table 3.4, the first column is the proposed data type by the X3D shader group.

It has been submitted for approval but its definition has not been finalized at this time.

Since we do not have a standard at this time, we will define our data types for XML layer

55

now. The only job that will need to be done once the new standard X3D data types have

been approved is mapping all the data types from XML to them.

3.2.2.2 Texture Sampler Types

A comparison of sampler type objects is done for Cg, HLSL and GLSL. The

sampler type “sampler2DShadow” is specified in GLSL, which similarly done in Cg and

HLSL by the sampler type “sample2D”. However in Cg the sampler type

“samplerRECT” for video temporary support, has no matching sampler type. We will

use sample2D to represent this two dimension multi-frames data. The texture sampler

types in XML are listed in the first column of Table 3.5. Its matching types in

Cg/HLSL/GLSL are listed in the remaining columns.

Table 3 - 5 X3D, XML and shading languages Sampler type mapping table

XML Cg HLSL GLSL
sampler1D sampler1D sampler1D sampler1D
sampler2D sampler2D sampler2D sampler2D
sampler3D sampler3D sampler3D sampler3D
samplerCUBE samplerCUBE samplerCUBE samplerCube
samplerRECT samplerRECT samplerRECT No-support
sampler1D sampler1D sampler1D sampler1DShadow
Sampler2D Sampler2D Sampler2D sampler2DShadow

3.2.2.3 Qualifiers / Modifiers

The meaning of “uniform” in Cg is not same as it is in Renderman. In

Renderman, the uniform modifier indicates those values that are constants over the

surface. In Cg, a “uniform” qualifier variable obtains its initial value externally, for

example from the main program. In Cg, all variables are changeable unless its qualifier is

56

“const”. In GLSL, “uniform” qualifier variables are changed at most once per primitive

vertex and they pass user defined states from the application to both shaders. The

“attribute” qualifier variable is typically changed per vertex. Because there is no attribute

qualifier in Cg, both “attribute” and “uniform” are mapped as uniform. In HLSL, vertex

and pixel shaders have two types of input data, “varying” and “uniform”. The varying

input is the data that is unique to each execution of a shader. For a vertex shader, the

varying data (i.e. position, normal, etc.) comes from the vertex streams. The uniform data

(i.e. material color, world transform, etc.) is constant for multiple executions of a shader.

Another important qualifier in GLSL is “varying”. The “varying” variable passes

information from the vertex shader to the fragment shader. In Cg, this task is done to

some variables with the modifiers, “IN”, “OUT” or “INOUT”. We will give an example

to explain how to convert the “IN/OUT” with “varying” in the later implementation

section.

We choose “const”, “uniform”, “IN/OUT” as the middle XML layer qualifier.

Please refer following mapping table 3.6.

Table 3 - 6 X3D, XML and shading languages basic Qualifiers mapping table

XML Cg HLSL GLSL
const Const uniform uniform
uniform Uniform varying attribute
In, out, inout In, out, inout In, out, inout varying

3.2.2.3 Transformation Matrixes Parameters in Cg/HLSL vs. Build in Matrixes in
GLSL

57

The conventional arrangement of transformations used to position process vertex

positions. The Transformation Matrices in both languages Cg and GLSL are doing the

same task. Let’s look at the Figure 3.9 borrowed from Cg tutorial book as following. This

graph illustrates

In GLSL, there is a set of built-in uniform transformation matrices that are

responsible for vertex transformation. For example, “gl_ModelViewMatrix” takes care of

the modeling and viewing transformation. If object vertices in the object space are

multiplied with “gl_ModelViewMatrix”, the coordinate of the object result in Clip space.

It is same situation for

Modeling
Transform

View
Transform

Projection
Transform

Perspective
Transform

ViewPoint and
Depth range
transformation

World Space

Eye space

Clip space

Normalized
Device Space

Window space

Object space

Figure 3 - 9 Coordinate System and Transformation for Vertex Processing

other “gl_” built in matrix operations. Since the matrices in Cg don’t have fixed names,

they can be user defined, as long as it is named the same as it is in the main program,

where the matrices were sent out, it will have no compile errors. For X3D application, we

58

assume we are loading the loading different shader from one main program. So, we

simply use the same name as the matrices in GLSL. The following Table 3.7 gives a

mapping between Cg, XML and GLSL built-in uniform matrices. XML transformation

matrices named the same as the ones in GLSL.

Table 3 - 7 X3D, XML and shading languages Transformation matrix mapping table

XML Cg HLSL GLSL
gl_ModelViewMat
rix

gl_ModelViewMat
rix

gl_ModelViewMat
rix

gl_ModelViewMat
rix

gl_NormalMatrix

gl_NormalMatrix

gl_NormalMatrix

gl_NormalMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewPro
jectionMatrix

For this set of transformation matrices mapping, the program works with a

condition, which is the transformation matrices are named the same as it is in the

mapping table. When users use this converter, they have to clean their code with the same

name as the ones we specified in table 3.7 and change their name back to the ones used in

main program once after the conversion. The reason we can assume they are the same in

the X3D program is that we had an assumption that these converted shader will be used

in one X3D program, so the Transformation Matrix from the same X3D main program

should stay the same.

3.2.2.4 Semantics in Cg/HLSL vs. Built-in Attributes and Variables in GLSL
 - Shader program and Main program connector design

Let’s look at a simple example first in both the Cg and OpenGL shading

Language:

59

Example 3.2 Cg semantic binding example

In Example 3.2, “POSITION” and “COLOR” are both called semantics.

Semantics are in a sense, the connector that binds a Cg program to the rest of the graphics

pipeline. “POSITION” and “COLOR” indicates the hardware resource that the respective

member feeds when the shader program returns its output. “POSITION” is the clip-space

position for the transformed vertex. “COLOR” means “primary color” in OpenGL or

“diffuse vertex color” in Direct3D. In Cg profile vp20 based on OpenGL for example, let'

look at the following out vertex to application connector:

Example 3.3 Cg vp 20 binding example

In Example 3.3, we can see output has two members: HPosition and Color0.

#pragma binds are used to specify register locations for the variables. In this case,

Homogeneous position information resides in the hardware register HPOS and vertex

color information reside in the register COL0. This earlier version of binding method

already has been replaced by introduced the Semantics concept. We will focus on the

struct output {
float4 position : POSITION;
float4 color : COLOR;

};

#pragma bind appin.Position = HPOS
#pragma bind appin.Position = COL0

// define inputs from application
struct output {

float4 HPosition;
float4 Color0;

};

60

comparison between Semantics format connector in Cg and the binding method of GLSL

shader with its application.

Since OpenGL shading Language is the core part of the OpenGL library, a set of

attribute and built-in variables have been defined as part of OpenGL shading language for

vertex shader and fragment shader respectively. According to Cg’s semantics, in GLSL,

these attributes and built-in variables take the connectors’ task and talk to the OpenGL

API. For example, a vertex shader can access the standard attribute using the following

attributes.

In GLSL, there are special output variables for output in the Vertex shader. For

example, “gl_Position” is write position in clip space. So these attribute and variables

really do the same thing that the semantics does in Cg, i. e., function as a connector

between the shader program and main application.

The same situation happens to the fragment shader program. A fragment shader

can read in varying variables and the fragment shaders special output variables listed as

follows. Most of the varying names in fragment processor are similar to the attributes in

vertex shader. However, there is no conflict, because the scope of vertex attributes is

within the shader. The detail mappings are shown in Table 3.8. Because the “gl_XXX”

has been defined as part of glstate, we choose “gl_XXX” as the name in the XML middle

layer to minimize some possible conversions.

61

 // vertex Attributes

attribute vec4 gl_Color;
attribute vec4 gl_Vertex;
attribute vec4 gl_Normal;
attribute vec4 gl_SecondColor;
attribute vec4 gl_MultiTexCoord0;
attribute vec4 gl_MultiTexCoord1;
………
attribute vec4 gl_MultiTexCoord7;
attribute vec4 gl_FogCoord;

// vertex build-in variables

vec4 gl_Position;
vec4 gl_ClipVertex;
float gl_PointSize;

// fragment Attributes

varying vec4 gl_Color;
varying vec4 gl_SecondColor;
varying vec4 gl_MultiTexCoord0;
varying vec4 gl_MultiTexCoord1;
………
varying vec4 gl_MultiTexCoord7;
varying vec4 gl_FogFragCoord;

// fragment special output variables in GLSL

varying vec4 gl_FragColor;
varying vec4 gl_FragDepth;

Vertex / Fragment shader attributes and built-in variables list in GLSL

In the Table 3.8, the Semantics, which are widely used in all existing profiles, are

listed in the second column in the following table. Accordingly the matching XML layer,

Cg, HLSL and GLSL attribute names are listed in the first, third and fourth columns:

Table 3 - 8 XML, Semantics and shading languages built-in variable mapping table

XML Cg HLSL GLSL
gl_Position POSITION POSITION gl_Position
gl_Vertex POSITION POSITION gl_Vertex
gl_Normal NORMAL NORMAL gl_Normal

62

gl_Color COLOR COLOR gl_Color
gl_SecondColor COLOR0 COLOR0 gl_SecondColor
gl_MultiTexCoord0 TEXCOORD0 TEXCOORD0 gl_MultiTexCoord0
gl_MultiTexCoord1 TEXCOORD1 TEXCOORD1 gl_MultiTexCoord1
…… …… …… ……
gl_MultiTexCoord6 TEXCOORD6 TEXCOORD6 gl_MultiTexCoord6
gl_MultiTexCoord7 TEXCOORD7 TEXCOORD7 gl_MultiTexCoord7

3.2.2.5: Struct Definition

We define our XML layer as native XML format of tree structure. In Example

3.4, since all the three shading languages are coming from C, this struct structure in all

three languages is the same.

Example 3.4 simple struct in Cg/HLSL/GLSL

Its tree structure in XML is shown in Figure 3.10:

A

m n

A

m n

Figure 3 - 10 example 3.4 struct in XML tree structure

Its XML format structure is shown as:

Example 3.4 (a) example 3.4 struct in XML format

struct A
{
 float m;
 float4X4 n;
}

<struct value = “A”>
 <struct_member type = “float” name = “m”/>
 < struct_member type = “float4X4 ” name = “n”/>
</struct>

63

3.2.2.6 Operators/Operation Definition:

Since all shading language design was based on C, most mathematic operations

are the same. We are not going to give details about each operation here; instead, we will

talk briefly about the structure of the operators and operands in the XML tree structure.

For separate operators with other user-defined variables, we reserve “op_” as the key

word standing for operation. Please refer to the appendix operator for a detailed operation

map.

Again, operator and operation also will also show as tree structure. For a simple

operation example in Cg as following:

Example 3.5 simple expression with operation in Cg/HLSL/GLSL

Its tree structure is shown as:

B CB C

=

A +

=

A +

Figure 3 - 11 XML tree structure of example 3.5

Its XML format structure is shown as Example 3.5 (a):

A = B + C;

64

Example 3.5 (a) example 3.5 in XML format

There is a special operator in shading languages called swizzle. What this

operator does is select vectors in multi-dimension arrays. For example, a position vertex

defined as “position1 (20.0, 10.0, 0.0)”. We could assign a variable float pos_x = pos.x;

or a two dimension float vector name float2 position_xy = position.zz.. We should give

the swizzle property a definition in XML layer. Fortunately, this swizzle does exist in all

three shading languages and they function equivalently. We keep the swizzle name and

define it as an operator in XML layer.

3.2.2.7: Statement definition

As in C, the shading language supports flow control with “if…else”, “for”,

“while/ do…. while” conditions. In the following is an example of the “if” statement. We

used keywords “if”, “else” as tag names in XML and “condition” and “body” are

represented as “()” and “{}” respectively. The following examples show a condition

expression in Cg/HLSL/GLSL and XML formats accordingly.

<oper_assignment>
 <parameter1 name = “A”>
 <parameter2 >

 <oper_unary_plus>
 <parameter1 name = “B”>
 <parameter2 name = “C”>
 </ oper_unary_plus >

 </parameter2>
</oper_assignment>

65

Example 3.6 condition statement in Cg

Example 3.6 (a) example 3.6 in XML tree structure

The “if...else” condition statement is shown as example 3.6 (a) in XML format.

Since Cg and GLSL have similar structures for the “if” condition expression in

example 3.6. We defined a set of tag elements named as keywords of the statement. i.e.

“if” and “else”. Example 3.6 (a) shows the XML tree structure if example 3.6.

3.2.2.8 Functions Design

In this section I will give comparisons of built-in functions exist in all shading

languages and define one for the XML layer function set. The format of the function will

be included inside of a pair of <function> </function> tags. Functions include

mathematical functions, geometric functions, texture map functions etc. Most of the

functions are similar and easy to find matches for and we will ignore the obvious ones

here. Two situations for non-matching functions were found. The first one is that they

have defined exactly the same function with a different name in one of the languages. For

<if>
 <condition> A </condition>
 <body> B </body>
<if>
<else>
 <condition> A </condition>
 <body> C </body>
</else>

 if (A)
 { B ; }
 else
 { C ; }

66

this situation, we picked one of the function names as the XML middle layer function. An

example is the function “frac(x)” in Cg returns the fractional part of value x. The function

“fract(x)” in GLSL does exactly the same task. In this case, we selected “fract(x)” as the

function name in the XML middle layer. The second case is that some of the functions

only exist in one of the languages. For example, in GLSL, function Mix(a, b, z) does a

mixing of the values a and b by percentages of z and 1-z, respectively. However, there is

no similar function in Cg. So, how should we handle this if it is needed to mix two values

in XML? So that after it is converted to Cg, it does the same job? One way for realizeing

this function is write an equivalent expression shown in example 3.7 (a). The result from

the expression in example 3.7 (a) is the same as the Mix() from example 3.7. In this

example, the corresponding expression from Table 3.9 will be used for processing the

same function of Mix () in GLSL. Please refer more detail of functions mapping in

Appendix B5

Example 3.7 Mix function in GLSL

Example 3.7 (a) equivalent expression of mix function in example 3.7

Use this function as following:

Table 3 - 9 Mix () function in GLSL mapping to different languages

 acolor*(1.0 - w)+ bColor*(w);

Mix(a, b, z)

67

XML color = acolor*(1.0 - w)+ bColor*(w);
GLSL color = mix(aColor, BColor, w)
Cg color = acolor*(1.0 - w)+ bColor*(w);
HLSL color = acolor*(1.0 - w)+ bColor*(w);

There are few other functions, e.g. lit () in Cg, etc. please refer to the appendix of

function mapping table for details.

Another special case is for matrix/vertex multiplication. In Cg, a function mul(m,

n), where at lease one of (m, n) has to be matrix. In GLSL, all the vertex/ matrix

multiplications are simply done by an operator “*”. We choose mul (m, n), at lease one of

(m, n) have to be matrix, the way Cg represent for minimize conversion..

Summary of the design rules for defining middle XML layer function.

(1) If map exist for similar functions in shading languages use one of them as the

name of XML function name.

(2) Choose common expression implementation for the unique functions only

supported by one language.

3.3 Shader language Converter Implementation

3.3.1 SLC Conversion pipeline

 Each of three languages, CG, HLSL, GLSL, are located in exchangeable position

with other ones in the SLC structure and conversion process. CG and HLSL are more

similar to each other. We are going to show the conversion between Cg and GLSL. For

68

simplification, the conversion pipeline from Cg to XML to GLSL is shown in the Figure

3.12. This pipeline is composed of a scanner, a parser, and XML DOM components.

Figure 3 - 12 : CG XML GLSL flow

Shaders written in the Cg format are first read in by the scanner and then sent to

the parser to be passed to a DOM tree. This DOM tree can be a simple output like the

XML format. This output will be the version used when a shader is published to the web.

On the client side, if the user needs a GLSL shader format, the XML format shader is

downloaded from the Internet and loaded into the DOM tree, then the parser outputs it to

the GLSL shader format. The converted GLSL shader is sent to the GPU. The equivalent

shader effect will appear in the web browser.

In Figure 3.13, the conversion of CG XML GLSL is shown as highlighted

with a dashed line path in the entire SLC structure. Since the SLC is a symmetric

structure, we developed the conversion between CG, XML, and GLSL to prove the

concept of our proposed idea. The remaining implementation should be very similar.

Scanner Parser

XML
format

Parser
Load to

DOM Tree
Open
GLSL

DOM
TreeCg ScannerScannerScanner ParserParserParser

XML
format
XML

format
XML

format

ParserParserParser
Load to

DOM Tree
Load to

DOM Tree
Load to

DOM Tree
Open
GLSL
Open
GLSL
Open
GLSL

DOM
Tree
DOM
Tree
DOM
TreeCgCgCg

69

 GLSL GLSL

XML Cg

HLSL

Cg

HLSL SLC

Figure 3 - 13 : CG XML GLSL conversion Path

3.3.2 Scanner

The Scanner’s function is to reformat and simplify input code, in this case, Cg

code. Every developer friendly programming language is designed with maximum

flexibility for the developer. Very often, developer’s code that is written in a slightly

different format will still work correctly, as long as it doesn’t have any syntax errors. A

very simple example is for the empty line in a code. Most languages have no compile

error for this. We try to optimize the XML layer by cleaning up “dirty” code. “Dirty”

here means, for example to define a variable a, I write “float A = /n b;” code written in

two lines. This does not effect compilation, however it cause difficulty for later

conversion to the tree structure. So, cleaning up code is an important part of Scanners job.

Simplifying is the second job of the scanner. XML is a binary tree structure and

this means the output will only allow up to two children. For example, a statement A = B

+ C + D has to be simplified as: A = (B + C) + D. This simplification makes it easier for

later parsing. Another simplification that needs to be done is to rename the uniform

70

matrix parameters as its defined name in the XML layer, which is the same as built-in

matrix names in GLSL.

3.3.3 Parser

The Parser contains both conversion and parsing processes. After conversion, The

Microsoft XML DOM component has been empolysed to parse the final output. We are

going to focus on the conversion processes. The conversion process includes Data type

conversion, declaration conversion, parameter conversation, operator conversion, and

function conversion.

3.3.3.1 Data types Conversion:

Data type conversions includes basic date types conversions and sampler types

conversions. This process is straight forward and based on the mapping definition of the

XML layer (table 3.3 and table 3.4). Conversion from CG to XML is based on the data

type mapping table of Cg2XML. Conversion from XML to GLSL is based on the data

type mapping table of XML2GLSL. Please refer to the mapping tables in section 3.2.2

and source code in the Appendix C1.

3.3.3.2 Declaration Conversion:

Let’s look at two declaration examples 3.9 and example 3.10. The first example is

a 4 floating point elements vector “position1” declaration with a value assigned. The

value is a result of function return. The function is the multiplication of two pre-defined

variables. The second example is also a 4 floating point vector named “oPosition”. This

71

vector is an output position from the vertex shader, which is indicated by the modifier

“out”. Its semantics is POSITION. These two declarations cover most cases we need to

consider for declaration conversions.

Example 3.8 declaration conversion example 1

Example 3.9 declaration conversion example 2

This declaration conversion basically includes data type conversions,

qualifier/modifier conversions, assignment/operation conversions and semantics

conversions as well. Each of these conversions is based on the mapping tables 3.4 - 3.9

and the XML tree structure. The outputs of the XML format of these two examples above

are shown as follows:

Example 3.9 (a) XML format output of Example 3.9

<declaration>
 <modifier></modifier>
 <qualifier></qualifier>
 <type>float4</type>
 <op_assign>
 <para>pos</para>
 <func>
 <para>mul</para>
 <parameters>
 <para> gl_matrix </para> // build-in variable
 <para> vPosition </para>
 </parameters>
 </func>
 </op_assign>
</declaration>

 out float4 oPosition : POSITION

 float4 position1 = mul(matrix, vPosition);

72

Example 3.10 (a) XML format output of Example 3.10

When the conversion reaches the second part of the path, from XML2GLSL, all

modifer/qualifier and data types are converted according to the mapping table of

XML2GLSL. For “op_mul”, originally the mul() function, will output as operation“*” .

The Output in GLSL is as follows:

Example 3.9 (a) GLSL format output of Example 3.9 (a)

For the second example, the output position from the vertex shader will be

converted to the built-in variable in GLSL as “gl_position”. So there is no declaration

needed other than variable “gl_position”. In the next section, we are going to discuss

parameter conversion.

3.3.3.3 Parameter Conversion:

During parameter conversion, we have few decisions to make. They are the

modifiers decision (in/out modifier variables in Cg with varying variable in GLSL),

 Vec4 position1 = matrix * vPosition;

<declaration>
 <modifier>out</modifier>
 <qualifier></qualifier>
 <type>float4</type>
 <para>gl_Position</para> // oPosition in Cg
 <semantic>POSITION</semantic>
</declaration>

73

semantic decision, and relocations decision. We give the explanation with an Example

3.11. First let’s compare two equivalent code fragments in both Cg and GLSL.

Example 3.11 Parameters Conversion

By observing both examples in 3.11 and the knowledge that all GLSL main

function voids any argument or parameter, where should the Cg out parameters go? We

realize there are list of varying variables located ahead of main function in the GLSL

shader. Those variables are equivalent to the out parameters in Cg. Figure 3.14 illustrates

that the varying variables of GLSL are relocated as the parameters of Cg with the

equivalent code shown in Example 3.11.

Figure 3 - 14 : Varying variable in GLSL relocated as parameters in Cg

// GLSL
const scale = 2.0;

varying position;
varying LightPos;

void main(void)
{…..}

// Cg
const scale = 2.0;

void main(
 out position;
 out LightPos;
)
{……}

Varying variables

out Parameters

Main entry Main entry

parameter
body body

74

As we know the parameter of the main function in the vertex shader of Cg is not

only the “out” parameter, but there are some “in” parameters and uniform parameters as

well. All “in” parameters are the input from main programs. They are vertex attributes,

vertex positions and normals. Those attributes are defined as built-in variables in GLSL

as gl_Vertex and gl_Normal individually. Other types of uniform parameters are

transformation matrices like modelViewMatrix, these matrixes are defined as built-in

parameters and can be access from calling the name of certain matrices anytime in GLSL.

That transformation matrix conversion is shown next.

The following two code fragments in Example 3.12 contain uniform

transformation matrices in Cg and built-in transformation matrices in GLSL. The uniform

floart4x4 matrix name as “gl_ModelViewProjectMatrix” is displayed as the built-in

variable gl_ModelViewProjectMatrix in GLSL, after the process of two conversions. The

reason we show matrices with the same name in both formats is because that the uniform

matrix in Cg does not have a fixed name. As long as the matrix name is the same as the

uniform matrix name of main program the shader in Cg will work. For simplification, we

used the GLSL built-in matrix name set as both Cg matrix name set and XML layer name

set. All uniform matrices in the parameters section of Cg have been renamed according to

the built-in matrix names in GLSL. For the converter to successful convert, the user has

to pay close attention to renaming their uniform transformation matrices before and after

the conversion.

75

 Example 3.12 Transformation Matrix Conversion

Example 3.12 (a) Transformation Matrix output in XML format

Example 3.12 (a) shows variable “gl_ ModelViewProjectionMatrix” as an output

in XML fomat. Meanwhile, another decision can be made during the matching of the

semantic name of the variables in Cg and the built-in attributes in GLSL, in this

conversion, the mapping Table 3.8 used.

3.3.3.4 Operator Conversion:

Most operators are the same for all languages. We defined the middle layer XML

operation with “op_” with each name of the operators. A few special cases are explained

here. The first one is, operator * in GLSL also matches the mul () function in Cg. This

means, during the conversion from GLSL XML Cg, whenever an operator has been

read in XML, we have to check both of the children of the two parameters (the two

<declaration>
 <modifier>in</modifier>
 <qualifier>uniform</qualifier>
 <type>float4x4</type>
 <para>gl_ModelViewProjectionMatrix</para>
</declaration>

//Cg
const scale = 2.0;

void main(
 uniform float4x4
 gl_ModelViewProjectMatrix;
 uniform float4x4 Matrix2;
 uniform float4x4 Matrix3;
…){… …}

// GLSL
const scale = 2.0;

void main(void)
{
Pos =
gl_ModelViewProjectMatrix*gl_vertex;
… … …
}

76

tokens of the mul function). If one of the data types of the children is a vector and the

other one is a type of matrix, the output will be a function mul (parameter1, paremeter2),

otherwise it will be (parameter1 * paremeter2), a multiplication function. Converting

from the other direction Cg XML GLSL would be straight forward because of the

function of “mul ()” is already defined as tag of “op_mul” in XML layer. Once

“op_mul” read for processing XML GLSL. It is simply converted to operation “*” as

output in GLSL.

3.3.3.5 Function Conversion

Function conversions include built-in functions conversion, texture functions

conversion and user-defined functions conversion. For built-in function, the main task is

mapping functions from Cg2XML and XML2GLSL. Texture function conversions are

also based on the function mapping table. For those unable to find mapping even with a

looser scope, we can’t support them at this time. This is a limitation, but they are a very

small percentage of the total number of functions. Function conversion includes Return

type conversion, Function name conversion, Parameters conversion, and Body

conversion, which includes Statements conversion, Assignments conversion, and

Declarations conversion. Since functions build from data, operations, assignment,

statements, etc. We talked about each of the parts above individually. When the function

conversion comes, it is automatically completed with all conversion parts done. The only

extra points we need to mention are the return type and how to determine if it is a

77

function. Determining function by the function tag in XML structure and return type will

be the type attribute after function name.

In the next section, we are going to give some demonstration pictures of the SLC
and example shaders in Shader Library.

 3.3.4 SLC interface

Figure 3 - 15 : Shader Language Converter Interface

 On the left part of the interface shown in Figure 3.15, the user can input their

shaders in Cg. By clicking on the button “Cg => Xml”, the XML format of the shader is

displayed in the middle section. Continue by clicking on the button “Xml=>GLSL”, the

shader in GLSL will be available in the right hand section. For running demo, simple

click the “Run” bottuns.

78

3.3.5 Shader comparisons between pre-converted and post-converted

Figure 3 - 16 : Shader Comparison between pre_conversion and post_conversion

 This example shows same shader in different shading languages showing same

shading effect. In this case, it is a wood shader. First of all, a wood shader is loaded into

the Cg source area. Then, we show its result by clicking “run” button. The Cg main

program is applying this wood shader on a teapot. When the executable file successfully

loads this wood shader, a wood teapot window appears in the lower left corner. By

clicking Cg=>Xml and Xml=>GLSL button, a wood shader in GLSL format is produced.

A main program loads the GLSL wood shader after clicking the “run” button in the

GLSL area. Then, we can see a same wood shader applied on the teapot. Adjusting the

parameters allows further testing of the shaders. Some of the parameters adjusted in one

format can affect the result in another format

79

3.3.6 More sample shaders in shader library

Figure 3 - 17 : The Comparison of shaders in shader library between pre_conversion and

post_conversion

 Figure 3.17 shows some of the shaders listed in the shader library. The images on

the left are the results of different shaders in Cg format applied to the teapot. The images

80

on the right are the results of shaders in GLSL format applied. Source codes for these

shaders are available the Appendix B.

3.4 Summary of Shader-X3D frameworks and preview of its
application in Bio-informatics Visualization.

Figure 3 - 18 : Framework for Independent, real-time, interactive Shaders in X3D

So far, we introduced the different parts of Shader-X 3D frameworks. We spent

time on the SLC design and implementation. We successfully converted a few example

shaders. It proved the idea of our proposal that the skin conversion of the different

language shaders can make the shading independent from platform. We gave a brief

introduction of the shader library. Now, let’s overview the framework again and

Framework for Independent platform real-time shaders in X3DFramework for Independent platform real-time shaders in X3D

X3D SceneX3D Scene

Application Experiment:
Bioinformatics
visualization on X3D

Application Experiment:
Bioinformatics
visualization on X3D

3DDMI3DDMI
Possible
Extension
Possible
Extension

PDB filePDB file CML fileCML file

Shader
A

djustable
interface

Shader
A

djustable
interface Shaders L

ibrary

Cg

GL
SL

HL
SL

SLC

Shaders L
ibrary

Shaders L
ibrary

CgCg

GL
SL

HL
SL
HL
SL

SLCSLC

81

introduce a pipeline for this framework applied to Bioinformatics 3D Molecular

structures on the web.

We discussed the upper half of the Figure 3.18. Let’s look at the remaining

bottom half of the picture. We are going to translate a popular 3D format of molecule

structures. Protein Data Bank (PDB file format) to a XML based Chemistry Model

Language (CML format). Then shaders will be added during the translation from CML to

X3D/VRML web 3D format. After that our shader-X3D framework can be applied to the

biomolecular structure in an online 3D application. In the coming chapter we will discuss

the process of PDB to CML to Shader-X3D conversions. This is an important step for

preparing realistic 3D bioinformatics application for sharing online. The future direction

for this MDB1 supported project might involve taking advantage of hardware, like head

mounted displays, gloves and haptic devices to realize direct 3D manipulation (3DDMI)

for multi-user environment and 3D bioinformatics visualization online.

1 Molecular Basis of Disease

82

4 Shader-X3D uses in Bioinformatics Applications

4.0 Preface

“Through the lens of a microscope or the shaft of a telescope exists a
universe of life and beauty that is unknown too many. Hidden from sight
because of the human eyes restricted ability, atoms, crystals, grains of
pollen, sear comets, live and die”

- From Heaven & Earth by Roucoux K.

Figure 4 - 0: Beauty of life – Picture from Heaven & Earth

Observed though both microscopes and telescopes, man discovered and

understood more about the universe. We are living on a huge ball and didn’t even realize

the ground was curved. This globe we call earth is just one cell in the universe. Looking

out the window we see cars, buildings, and many living organisms like humans, animals

and plants. It is a very complex ball. What exists on other balls in the universe? Are they

as complex as this one? Do they resemble the worlds of science fiction like “Star Wars”?

Are the functions and rules that organize them in some kind of balance? Scientists are

trying to land on each of them to find the answer. Zoom into a living cell and you can see

the similarities between those cellular environments and the bodies that make up the

universe. Looking at Figure 4.0, can you tell which is star and which is cell? We can’t

help asking what’s inside of the cell of human body. Are they as complex as the bodies of

the universe?

83

Zooming in to human cells, they are built from proteins. Proteins are the body’s

worker molecules. “A protein called alpha-keratin forms hair and fingernails, it is also a

major component of feathers and wools etc. Muscle proteins called actin and myosin,

enable all muscular movement – from blinking to breathing to roller blading. Receptor

protein studs the outside of your cell and transmits signals to partner proteins on the

inside of the cell. The hemoglobin protein carries oxygen in your blood to everywhere in

your body and antibodies are proteins that help defend your body against foreign

invaders, such as bacteria and viruses.” [NIH2005]. Proteins are built with different

shaped small molecules called amino acids. Twenty different shapes and sizes of amino

acids are used to build the different structures and sequences in proteins. Most proteins

contain 50 to 5000 amino acids hooked end to end in different combinations. They twist

and fold finding a balance when forming each of the proteins. Because proteins are built

in three dimensional spaces, studying the 3D structure of those shapes will help biologist

discover the secrets of those proteins which cause human diseases and behaviors. Figure

4.1 shows a set of sample of proteins.

Figure 4 - 1 (a) Antibodies are immune system proteins that rid the
body of foreign material, including bacteria and viruses. The two arms of the Y-shaped
antibody bind to a foreign molecule. The stem of the antibody sends signals to recruit
other members of the immune system. (b) Some proteins latch onto and regulate the

(a) (b) (c)

84

activity of our genetic material, DNA. Some of these proteins are donut shaped, enabling
them to form a complete ring around the DNA. Shown here is DNA polymerase III,
which cinches around DNA and moves along the strands as it copies the genetic material.
(c) Troponin C triggers muscle contraction by changing shape. The protein grabs calcium
in each of its "fists," then "punches" other proteins to initiate the contraction.

Using microscopes, we are able to study the cell level component of objects.

current technologies that allow us to study molecular structures are X-Ray

crystallography and nuclear magnetic resonance (NMR). The X-Ray technique was first

used in 1959 at Cambridge University by John Kendrew to determine the structure of

myoglobin. X-Ray Crystallography uses wavelengths of 0.5 to 1.5 angstroms, to measure

the distance between atoms. One angstrom is one ten–billionth of a meter, that’s 10

million times smaller than the “.”, used to complete this sentence. Visible light with a

wavelength 4,000 to 7,000 angstroms is used in ordinary light microscopes. Figure 4.2

shows how big a water molecule is by comparison to objects that we can see with the

naked eye.

Figure 4 - 2 : Using light to measure an object, the wavelength of the light needs to be
similar to the size of the object. X-rays, with wavelengths of approximately 0.5 to 1.5
angstroms, can measure the distance between atoms. Visible light, with a wavelength of
4,000 to 7,000 angstroms, is used in ordinary light microscopes because it can measure
objects the size of cellular components. [NIH 2005]

85

Beyond microscope, complex arrangement of atoms within molecules has
been displayed on a naked eye seeable screen by collecting molecule data,
complicated computation, and computer modeling techniques.

- Art marries Science from “the structure of life”

What we will focus on is taking advantage of computers to show atoms bigger

and universes smaller so that they can be seen with the human eye, hence to help

understand the beauty of life. With the help of computer graphics, we will be lead beyond

the limited scope of our sight and our feet. Beyond the computer screen, technologies are

trying to bring the 3D model of the molecule to life to touch, to feel, to study them.

4.1 Background of structural biology and Web 3D Bioinformatics
Visualization

Amino acids are comprised of atoms with different structural bonding

configurations between them. Proteins are built from 20 different amino acids. A protein

consists of a chain with of length of more than 100 amino acids. This means the number

of possible proteins is 20100. Functions of proteins determined by its structure can be

divided as the following four levels: primary structure is the sequence of the chain;

secondary structure is the spatial arrangement, its screw-shaped structure, unfolded;

tertiary structure shows the 3D conformation of the chain; quaternary structure is how the

chains, which proteins are composed of are related.

86

Figure 4 - 3 : HIV protease 2is a symmetrical molecule with two equal halves
and an active site 3near its center

Let’s look at some research on Human immunodeficiency virus (HIV) structure

based drug design to see how structural biology helps. In 1981, doctors discovered HIV

or Aids, a virus that attacks the human immune system; it is the big killer for humans.

Although no cure for protecting the immune system from HIV has been discovered,

structured modeling in biology played a key role during the development of drugs for

fighting this virus. The X-Ray Crystallography structure of HIV protease1 was

determined by 1989, shown in Figure 4.3. Since then scientists have been interested in

blocking the enzyme away from the virus. HIV protease is a symmetrical molecule with

two equal halves and an active site2 near the center. [NIH 2005]

Figure 4.4 shows a single blood cell named T-lymphocyte infected with

HIV. It is scanned with electric micrograph, magnified 24000 times. The virus

particle is shown as red dot in the picture. By attacking the T-cell, HIV reduces

the efficiency of the whole immune system.

2 Protease: An enzyme that cleaves peptide bonds that link amino acids in protein molecules.

3 Active site: the active site of an enzyme is the binding area where has an acceleration of the chemical
reaction rate.

87

Figure 4 - 4 : HIV protease cell

 The Molecules of HIV, an article written by Dan Stowell give us a story of “HIV

life-cycle” [Stowell 2005] and an excellent animation of the HIV life-cycle is available at

[HIV-Animation 2005]

After one or more virus particles must enter the body. These particles will be

borne in fluid such as blood or semen. “The first step of the HIV life cycle is binding to

the cell membrane, followed by membrane fusion, to get the virus particle's contents into

the host cell. Then follows reverse transcription of the HIV's genome from RNA into

DNA, and its integration into the host genome. Last step is producing new virus. Once

integrated the virus can lie low in human cells, or can begin the production of new viral

RNA and proteins, turning the cell into a HIV factory. This production is followed by

assembly, budding, and maturation, in which the new HIV particles are packaged up and

sent out to infect new cells.” [Stowell 2005]

With the help of computers researchers can finally see their target molecules

structure. By feeding the structural information into a computer-modeling program, they

88

can spin a model of protease around and zoom in/out on particular atoms. Computer

visualization has become one of most important tools to determine the type of molecule

and location of the structure, which has been attacked or blocked away from the virus.

The process of retrieving molecular data from the chemistry lab as input for the computer

and design from computer lab back to biology lab saves a lot of time and money. It has

good potential to be used on drug design.

Beyond drug design: “As its root, structural biology can teach us about the
fundamental nature of biological molecules”

- The structure of life

Beyond visualization, humans gain knowledge through touch. Structural physical

modeling with computers can also help with the manufacturing of a touchable model for

biologist intuitive design [Mike bailey 2005]. One potential idea is that a physical model

can dynamically simulate the real protein structure. However at this time, there is no

existing technology with this ability. The best we can do is to simulate with the computer

as much as possible. Virtual/Augment reality would be one of the best choices.

In the following section the 3D data format for molecules and the way to visualize

them will be introduce. It will also introduce some 3D bioinformatics software for

structural chemistry and biology.

4.1.1 3D Protein structure in different formats

4.1.1.1 PDB

The Protein Data Bank (PDB) [PDB 2005] is a public database that can be

downloaded in PDB file format with the extension *.pdb. It contains 3D coordinates of

89

atoms of 3D biological macromolecular data. The 3D structure files, the *.pdb format, is

widely supported by various 3D visualization and/or modelling applications. In the

Biology Department at Geogia State University the Arp/Warp software package for

bioinformatic research has been used. One of output format of Arp/Warp could be the

PDB. A PDB file containing the 3D structure of proteins could be successfully

represented in VRML, especially the coordinates of each atom, or say the center of the

atom. But PDB does not contain the information of how the atoms are connected, which

is very important. The connection between atoms is called “bond” or “electron bond”.

To determine where the bond should form and how long the bond length should

be Olive Krown developed a formula for calculating this in his thesis in spring 2003

[Krone 2003].

According to Oliver, due to some hydrogen atom missed in the PDB dataset, it is

not ideal to use the electron charge density for calculating the bonds between atoms. PDB

gives the coordinate position of most of the atoms. Sizes of different atoms and the

connection length between them are already known so by using the following formula,

the single bonds between atoms A and B will be determined. The double bond is

determined by shortening the single bond by 0.21% [Krone 2003].

D(A - B) = r A + rB – 0.08 * |xA – x B|

Atomic spacing = sum of both atoms radius – 0.08 (different of both Electron

Affinity values)

90

Comparing this value with the standard connection length, we can determine if a

possibility exists for a connection between those particular atoms. Next step Oliver took

was to calculate the angles between the atoms to select the possible connections.

There were two steps for calculating the molecular structure. One for storing

atoms for later connection computation and another is the actual calculation. A container

named ResidueContainer for checking the amino acid by pushing each of the atoms in

and comparing with the standard amino acids. The calculations of bonds between atoms

run until the last line of PDB file. At the same time bonds are build, the output of the

conversion was in CML – Chemistry Markup Language.

4.1.1.2 CML

Much research has been done on how to represent biomolecular structures. The

Chemical Markup Language (CML) [CML 2005] is a data format for storing chemical

data in eXtensible Markup Langue (XML). As a new markup language defined in XML,

CML defined its own elements and attributes rules especially for chemistry research. It

contains numeric and string data in scalar, array, matrix or tabular form of molecular

information.

The chemical Markup language (CML) was developed by P. Murray-Rust and H.

S. Rzepa and published in 1999 [CML 2005]. Molecule data stores reaction data and data

of crystallography. There are two profiles of CML at this time: coreCML and fullCML.

coreCML is a subset of the full version and is mainly for representing small molecules.

The structure of a document is given more firmly in coreCML rather than fullCML

91

[Kroen 2003]. In the following paragraph, a CML document will be shown. There is

some source available on CML site for converting PDB2CML [Zara 1999]

Example 4.1 An example of molecule CML structure

An example of a typical CML file is shown in Example 4.1. The file starts with

root element “molecule”, with all other information as children inside of the molecule

element. First, all atoms in the element atomic array are listed. Each atom element

possesses the same structure. The attribute ID identifies an atom clearly. An atom

contains float elements, which describe the exact coordinate positions in the molecule,

<molecule>
 <atomArray>
 <atom id="a_1">
 <float builtin="x3" units="A">1.0303</float>
 <float builtin="y3" units="A">0.8847</float>
 <float builtin="z3" units="A">0.9763</float>
 <string builtin="elementType">C</string>
 </atom>
 :
 <atom id="a_9">
 <float builtin="x3" units="A">3.7056</float>
 <float builtin="y3" units="A">2.1820</float>
 <float builtin="z3" units="A">2.1139</float>
 <string builtin="elementType">H</string>
 </atom>
 </atomArray>
 <bondArray>
 <bond id="b_1">
 <string builtin="atomRef">a_1</string>
 <string builtin="atomRef">a_2</string>
 <string builtin="order">1</string>
 </bond>
 <bond id="b_2">
 <string builtin="atomRef">a_1</string>
 <string builtin="atomRef">a_4</string>
 <string builtin="order">1</string>
 </bond>
 :
 </bondArray>
</molecule>

92

and a string element, which specifies the chemical type of element. After the listing of

the atoms the connections between the atoms are specified.

The connections are described by one bond for each element. Each bond element

is exactly characterized by the clear attribute ID as well. The Bond element contains three

string elements, where the first two elements are atom’s IDs and ID attribute value,

between which atoms the connection exists. Last string of the element indicates the type

of the connection.

CML is not able to be visualized as 3D structure. After PDB to CML conversion,

we’d like to visualize high quality imaging molecule structures in 3D scene, especially on

the Web. Oliver did a conversion from CML to X3D. The extensibility which X3D

inherited from XML allows a new set of prototypes to be defined for chemistry elements

and attributes. These prototypes were used for converting from CML to X3D. Poly also

did a conversion from CML to X3D/VRML [Polys 2003]. These conversions are an

important step to bring the 3D molecular dataset to be visible. However, duo to the low

quality shading algorithm in VRML/X3D, we can interact with the 3D scene, but not with

very realistic images. Adding shaders into the 3D structure will rapidly improve the

realism. It brings more immersive environment for biology researches. We will discuss

our design and implementation of how to automatically add shader in during the

conversion of CML to X3D in section 4.2.

93

Example 4.2 an example of caffeine CML structure from [Polys 2003]

The format of CML by Olivers is the format that Polys used to develop his XSLT

for CML2X3D. Example 4.2 is a CML format of a caffeine structure example. Since

Polys’s code base is more accessible, our work will be based on his.

4.1.1.3 X3D/VRML

For viewing the CML or PDB file as a 3D structure over the web, the most

popular format is VRML/X3D.We briefly introduced the syntax and structure of both

VRML and X3D in chapter 2, and how these 3D structures are displayed in a 3D

<molecule convention="MDLMol" id="nicotine" title="CAFFEINE">
 <formula>C8 H10 N4 O2</formula>
<atomArray>
 <atom id="caffeine_karne_a_1" convention="mol">
 <float builtin="x3" units="A">-2.8709</float>
 <float builtin="y3" units="A">-1.0499</float>
 <float builtin="z3" units="A">0.1718</float>
 <string builtin="elementType">C</string>
 </atom>
 .
 .

 <atom id="caffeine_karne_a_24" convention="mol">

 <float builtin="x3" units="A">-2.0682</float>
 <float builtin="y3" units="A">-3.5218</float>
 <float builtin="z3" units="A">1.1381</float>
 <string builtin="elementType">H</string>
 </atom>
 </atomArray>
 <bondArray>
 <bond id="caffeine_karne_b_1" convention="mol">
 <string builtin="atomRef">caffeine_karne_a_1</string>
 <string builtin="atomRef">caffeine_karne_a_2</string>
 <string builtin="order" convention="MDL">1</string>
 </bond>
 .
 .
 <bond id="caffeine_karne_b_25" convention="mol">
 <string builtin="atomRef">caffeine_karne_a_14</string>
 <string builtin="atomRef">caffeine_karne_a_24</string>
 <string builtin="order" convention="MDL">1</string>
 </bond>
 </bondArray>
</molecule>

94

However, only displaying a 3D scene of molecule structure is not enough for purpose of

doing research on structural biology. After converting a CML file to a shader supported

X3D scene, we also developed a set of powerful functions for convenient user

interactions. The next few paragraph, we will talk about some fundamental components

we can used to implement those functions in VRML/ X3D with shaders.

ROUTE:

Since VRML 2.0, web 3D had the ability to interact with the 3D world. This

function was realized by “Event” based concept, which was taken by X3D completely

from VRML. Sensors register each action from users and release whenever certain events

been called. These sensors and routes allow developers to write some condition scripts

for controlling certain nodes with some desired response. Let’s see some detail about the

communication between nodes in VRML. A scene could be as simple as two nodes; both

have some attributes. When there is a communication between nodes, an event path has

to be set up between them.

Some attributes of nodes are changed when events are exchanged. When the event

happens, the node needs to be identified and the data fields (or attributes) between which

communication is required as indicated. It is critical how the data field is to be accessed.

The following four field types can receive or send data in VRML2.0/X3D.

• eventIn (inputOnly) : Over this field type a node can receive events at run-time.

95

• eventOut (outputOnly) : This field type makes it possible for a node to send

events. These can be received and processed then from one input field of another

node.

• exposedField (input / output) : Over this field type both events can be taken up

and sent away, this filed more like a global variable in C, it can be changed and

then noticed anywhere in the program.

• field (initializeOnly) : No new values can be assigned to fields of this type at run-

time. However it can be assign data by “IS” from the predefined field.

In Figure 4.5, Node A sends event out to node B by ROUTE1, 2. Two field of

node B received the data. In code fragment Example 4.3, the function ROUTE of the

concept illustrated in both VRML and X3D. For the indication of a ROUTE, the

attribute (field) names and the node names are indicated. In X3D field attributes indicated

the input and output nodes. In VRML, The node names must be specified in addition

before the DEF field.

Besides the suitable field types, the data types of both fields must fit with each

other. Only fields with identical data types can be interconnected with updated values. A

Script can connect fields with different data types indirectly with their data conversion.

We will show a few examples later in this chapter. More complex events are processed

by implementing functions. These functions can be written either directly in the file as

JavaScript / vrmlScript, or externally in a Java class. Those features really make this

96

simple script language very flexible and as powerful as other programming languages.

For controlling objects in the scene, VRML/X3D also provide us with some handy

sensors.

Figure 4 - 5 : Node ROUTE function in VRML/X3D

Example 4.3 example of ROUTE format in X3D/VRML

SENSOR:

In VRML and/or X3D different sensors can be defined. The most useful sensors

we used are explained in detail.

• ProximitySensor

With this sensor one can determine the exact position of the viewer of a scene. The

data field specifies the center and the size of a region. Once the viewer enters this

ROUTE
Node A:
eventIn

eventOut

exposedFiel
d

Node B:
eventIn

eventOut

exposedFiel
d

ROUTE 1

ROUTE 2

< ROUTE fromField="eventOut "A" fromNode="node toField="eventIn "toNode="node B"/>

the above is in X3D and the following is in VRML

ROUTE Node.eventOut_changed TO Node.set_eventIn

97

region, value “TRUE” is assigned to the field “isActive”. Within the region, it returns

a value of position_changed and orientation_changed. ProximitySensor needs a size,

so that if the user is outside the virtual box then the ProximitySensor will NOT

generate events. To avoid viewer jump out of the active region, we can always define

the size of the ProximitySensor to be larger than the world itself.

• TouchSensor

This sensor makes the processing of mouse actions possible. If the mouse pointer is

over an object, a value “TRUE” is assigned to the data field. If the mouse is moved

from the object, the value is changed to “FALSE”. The TouchSensor has a single

field which specifies if the sensor is “enabled” or not. The “isOver” event is

generated with the value “TRUE” by this node when the field is “enabled” and the

mouse moves from a position where it is not over a shape contained within the group

to a position where it is over a shape. A value “FALSE” is generated by this event

when the sensor is “enabled” and the mouse over a shape within the group. We can

define a route to change a touched object’s texture and/or color. When the mouse is

over a shape as a TouchSensor, then the events of hitPoint_changed ,

hitTextCoord_changed and hitNormal_changed are generated when the mouse

moves. Example 4.4 shows touch sensor change color example in X3D.

In this example, a red ball is defined, which is provided with a

TouchSensor. If one activates the sensor by one mouse click, an appropriate

event is sent at the Script node

98

Example 4.4 A touch sensor example in X3D from [From Krone 2003]

• PlaneSensor, SphereSensor, CylinderSensor

PlaneSensor objects are movable within the X/Y level. Movement is limited by

the data field min position and max position. About the field translation the exact

coordinates are communicated to the object, which can be shifted. SphereSensor

maps the movement to the surface of a conceptual sphere. CylinderSensor Maps

the movement to the surface of a conceptual cylinder.

Example 4.5 shows an example of using a PlaneSensor to move a Sphere in a

rectangular area defined by (-1,-1), (1, 1).

<Scene>
 <Transform DEF="trans" translation="3 0 0">
 <TouchSensor DEF="touch"/>
 <Shape>
 <Sphere radius="2"/>
 <Appearance>
 <Material diffuseColor="1 0 0"/>
 </Appearance>
 </Shape>
 </Transform>
 <Script DEF="schieben">
 <field accessType="inputOnly" name="input" type="SFBool"/>
 <field accessType="outputOnly" name="output"
 type="SFVec3f"/>
 <![CDATA[javascript:
 function input(){ output = new SFVec3f(6, 0, 0);}]]>
 </Script>
 <ROUTE fromField="isActive" fromNode="touch"
 toField="input" toNode="schieben"/>
 <ROUTE fromField="output" fromNode="schieben"
 toField="translation" toNode="trans"/>
</Scene>

99

Example 4.5 a plane sensor move a sphere in VRML

One might ask where “translation_change” and “set_translation” from? Actually,

“isActive” (Boolean), “translation_changed” (SFVec3f) and “trackPoint_changed” (3D

point) are predefined variables in each of PlaneSensor. The value of “set_translation” will

be assigned to the new value of “translation_change”. “translation_change” would be the

new location of the object.

• PROTO DEFINITION IN VRML AND/OR X3D

Besides the given nodes in VRML / X3D, we can define our own object nodes.

That makes sense if an object occurs several times in an easily modified form in a scene.

For example, if we have a stool with a seat face and four legs. The legs have different

colors, a very special stool. If a leg is described by prototypes with its color changeable,

each individual leg does not have to be defined separately. This is the same thing as a

virtual function in C++.

#VRML V2.0 utf8
Group {

children [DEF ps PlaneSensor {
minPosition -1 -1
maxPosition 1 1
} DEF tr Transform {
children Shape {geometry Sphere {}}
}]

}

ROUTE ps.translation_changed TO tr.set_translation

100

Another mechanism, with which objects in a scene can be reused, is the

“DEF/USE” concept. An object is defined over its names with the keyword “DEF”,

which make the object referable in further scenes. With “USE” calling this defined node,

it can be used arbitrarily as often as needed. Create instance with “USE”, only the exactly

node is reloaded, which was specified by DEF. During this process, no variations can be

inserted. For example, the legs in the stool example can not be created in different with

“DEF/USE”. So if we want to customize the object, PROTO should be used. In VRML a

prototype with the node “PROTO” is defined in X3D with “ProtoDeclare”. The concept

is identical in both cases but with different syntax. Before an object is used in the scene,

the exact structure must be fixed. That is defined in the node “ProtoDeclare” in X3D, or

“PROTO” in VRML. The further of organization prototypes in X3D are divided into two

parts: “ProtoInterface” and “ProtoBody”. In the declaration section, which is defined by

the node ProtoInterface, the different data fields in prototypes are specified, and as many

fields can be put in as desired. They are eventIn, eventOut, exposedField and field. They

are the interface when the instance object communicates with other nodes using ROUTE.

Following “ProtoInterface” section, “ProtoBody” with the actual characteristics

prototypes are specified. In the following example, the default values of fields from the

declaration section are used. In order to specify different appearances, an initialized value

should be assigned to each data field. This will produced different instances of the

prototypes.

In the program Example 4.6, a C_ball is defined by a set of parameters in X3D.

The first element of the declaration of C_Ball, ProtoDeclare, is indicated. In this case the

101

name “C_Ball”. In the following declaration three data fields are defined. The first data

field is named “translation”, the field type “input/output” and the data type “SFVec3f”.

The structure of the other data fields is similar. When we define different balls for

different atoms, they are only data field with different input values. ProtoInterface are

needed.

Example 4.6 Example of prototype define in X3D

< ProtoDeclare name="C_Ball">
 <ProtoInterface>
 <field accessType="inputOutput" name="translation"
 type="SFVec3f"/>
 <field accessType="initializeOnly" name="radius"
 type="SFFloat"/>
 <field accessType="inputOutput" name="color"
 type="SFColor"/>
 </ProtoInterface>
 <ProtoBody>
 <Transform DEF="s_transform">
 <IS>
 <connect nodeField="translation"
 protoField="translation"/>
 </IS>
 <Shape>
 <Sphere DEF="sphere">
 <IS>
 <connect nodeField="radius" protoField="radius"/>
 </IS>
 </Sphere>
 <Appearance>
 <Material DEF="s_mat">
 <IS>
 <connect nodeField="diffuseColor"
 protoField="color"/>
 </IS>
 </Material>
 </Appearance>
 </Shape>
 </Transform>
 </ProtoBody>
 </ProtoDeclare>

102

This could be realized with some connecting attribute, which is a “IS”. “IS” is an

element can only be used inside the prototype definition. It is the transportation who

carries the input value from interface to the local variable, like data field as “field”. The

object receives the information from the declaration about the data field name. The

individual data fields are still initialized with the node field value when it is instanced.

The exposeField data field is a global variable which can receive updated data from

anywhere. An instance of C_Ball was initialized as follow, Example 4.7.

Example 4.7 Example of instance of C_Ball in X3D

For visualize CML files, they can be converted to the X3D/ VRML format [Polys

2003], which can be viewed on the Internet. A set of chemical structures has been

successfully converted to X3D and VRML formats and viewed on the Internet with an

Extensible Stylesheet Language Transformation (XSLT) translation sheet available. This

Translation sheet is what we used to implement shaders into the X3D scene.

The standard VRML shading algorithm [Gouraud 1971] can only produce

relatively low quality images with smeared specular highlights, especially with low

polygon count models. By defining a set of standard procedural fragment shaders for a

small set of atoms and applying these shaders to molecular structure visualization in

X3D, we are able to visualize higher quality 3D molecular structures over the Web and

still allow real-time user interaction. In this dissertation, we will take advantage of

<ProtoInstance name="C_Ball">
 <fieldValue name="translation" value="10 0 0"/>
 <fieldValue name="radius" value="2"/>
 <fieldValue name="color" value="1 0 0"/>
 </ProtoInstance>

103

graphic hardware by displaying the shading of each element of molecule and computing

its shading on the GPU instead of the CPU, allow real-time rendering and interactive

protein structures on the World Wide Web.

4.1.2 Software packages and other techniques for visualizing
bioinformatics on the Web

The PDB file format of 3D molecule structure is widely supported by various 3D

visualization and/or modelling applications. It could be viewed in some of standalone

package like Rasmol [Rasmol 2005]. With the internet developing so rapidly today, there

are many collabrations between institutions or research centers. The web-based

interactive realistic visualization will take a very important role in bioinformatic research.

Before X3D appeared, the ability to display 3D molecular structures with a 3D

viewer like VRML, the PDB files were first transformed into VRML 3D scenes. There

are a few tools available to convert PDB files into VRML 3D models.

A small open-sourced Perl script named pdb2vrml.pl [pdb2vrml-perl 2005] is

available for converting PDB into VRML but only VRML 1.0 and the conversion is

limited in the space-fill mode. A free Windows executable called pdb2vrml.exe

[pdb2vrml-chem] is also avaliable, its current version is 1.4. The program is written in

ASCII C by David N. Blauch. It converts PDB into VRML 2.0 in spacefill, ballstick and

wireframe mode. It only works from from Window prompt or command, and is limited to

the number of atoms, it can convert, to 1337 as experiment found out (test was done on a

desktop in HVL lab).

104

A free Unix/Linux binary, pdb2vrml [PDB2VRML-vrml 2005] is available from

Institute für Physikalische Chemie. The authors also provide a web interface for

converting PDB to VRML. [PDB2VRML-vrml 2005]

A small open source C++ library, pdb2vrml, was created by Vieri Di Paola

[pdb2vrml-c]. It is incomplete and not well maintained since 1997. A program called

MolScript; [molscript 2005] developed in ASCII C and older versions, 1.4 or earlier,

were written in Fortran 77. The source code and UNIX binary are distributed under

licenses. The MolAuto component of MolScript can generate VRML presentations of 3D

structures. The MolScript is powering the VRML web interface at the protein data bank

[PDB 2005].

There are a few online conversion services via a web interface. The ChemVis

[Chem-vis 2005] project provides an online VRML file creator, allowing users to input a

PDB file. The protein data bank has a default 3D viewer in VRML and also provides a

more detailed VRML file rendering.

Software such as Spartan [spantan 2005], MOLDEN [molden 2004] and Molda

[molda 2005] provide functions for saving 3D scenes into VRML. A cross-platform

application with an easy-use graphics user interface, for converting PDB to VRML

named MolVRML is in development as a platform independent, standalone program with

a graphic interface in Java. This give us a hope, however, they are still far from real-time

interactive realistic rendering.

105

A paper published by Frenklin Oliver in 1999, named “Texture-based Volume

Visualization for Multiple Users on the World Wide Web” [Engel and Ertl 1999],

presented a texture-based volume visualization tool, which permits remote access to

radiological data and supports multi-user environments. The application uses JAVA and

VRML, and therefore platform-independent and able to use fast 3D graphics acceleration

hardware of client machines. The application allows shared viewing and manipulation of

three-dimensional medical datasets in a heterogeneous network. However, this

application was only able to display data 28 x 128 x 64 data set at 7 fps and 256 x 256 x

128 dataset at 2 fps. Which is far away from real-time by today’s standard. In later

implementations, the advantage of programmable graphics card will be used for the better

performance of bioinformatics visualization.

 There is much research being done for Web based molecular structure

visualization. [ChemVis 2004] [Zou 1999] [Perrakis et al. 1999] [Badger 2003] Most use

(VRML). However, due to the low image quality of the shading/modeling algorithm in

VRML and the limited CPU rendering capability, it is difficult to render high quality

images of large proteins in real-time. Some of the packages, such as Raster3D

[Raster3D], can generate high quality images for PDB structures, but don't have the

capability of sharing such information over the Internet. None of the implementations can

achieve web based high quality visualization and real-time interaction for large protein

visualization.

The introduction of programmable Graphics Processing Units (GPUs) and the

addition of procedural shaders to the web3D standard X3D provide us with new

106

techniques to develop real-time Web based visualization. In the last section, we discussed

the applications of these techniques to bioinformatics and chemistry visualization, in the

next section; we will discuss our design and implementation of taking advantage of

procedural shaders for bioinformatics visualization, specifically the visualization of large

biomolecules. By using procedural shaders, we are able to produce higher quality

visualizations with minimal performance penalty. We have developed methods to

automatically convert from the standard bioinformatics PDB format to CML and then to

X3D. The procedural shaders are automatically inserted during the CML to X3D

conversion. This provides higher quality images and leads to future possibilities of more

flexible and enhanced visualizations.

107

4.2 Designs and Implementations shader-X3D for molecule
presentation

4.2.1 Standard shader for minimal element set for protein presentation

4.2.1.1 Design

In chapter 1, we discussed the use of programmable GPUs and how they enable

the creation of real-time high quality visualization. In section 4.1 we introduced

background for viewing a given 3D structure PDB file of proteins, and the need for

converting the PDB to CML format and then to X3D. During CML to X3D conversion,

we applied shaders to the protein atoms in order to get a real-time high quality interactive

3D visualization.

After the CML2X3D and shader conversion, the next step is to make the structure

displayable via the Web. Because of the limited resource of X3D Viewer, we have to

view the shaders in the VRML format in a web browser which has the BS v6.2 plug in

installed, Bs v6.2 successfully supported shader VRML browser with DirectX 9.0. And

therefore, a conversion from X3D to VRML is required as the last part of presentation.

As already discussed there is a Extensible Stylesheet Language Transformation

(XSLT) (CML2X3D [Polys 2003]) to convert from CML to X3D. The only required

modification to CML2X3D is adding the shader’s transformation into the style sheet. So

the insertion of shaders happens between the CML to X3D conversion as shown in Figure

4.6.

108

The implementation of the pipeline is done in three steps. First, convert the PDB

file to CML file format; we talked about the bond calculation from PDB to CML in

Oliver’s thesis. However, we do not have the source or executable files. We used

PDB2CML from [Zara 1999]

Figure 4 - 6 : PDB CML & CML Shaded X3D Conversion

For the size molecule translation, it does have a limitation of up to 1337 atoms on

some machines. Most molecule sizes will be much larger than that. Secondly, define a set

of different shaders as standard for “Carbon”, “Nitrogen”, “Oxygen”, “Hydrogen”,

“Phosphorus”, “Sulphur”, and “Other”; third, embed the standard shaders set into the

CML2X3D translation sheet. Since we are primarily interested in biomolecules,

especially proteins and RNA/DNA, we only required the above small set of atoms, since

the six defined atoms account for over 99% of all the atoms in these molecules. “Other”

is for the occasional different atom, e.g., Iron in Myoglobin.

PDB CML X3D/
VRML

XML Parser

Shaders
Hs
Os
Cs
Ns
Ss
Ps
Xs

109

After creating the X3D file, users can download and view the 3D protein structure

interactively as long as they have an X3D/VRML (currently only VRML format

supported) viewer or plug in for their browser. However, there is a problem when sharing

the element shaders since the shaders are platform dependent and we can’t assume all

users are working on the same platform (operating system or graphics card). To solve this

problem, SLC is used as a tool to convert shaders into XML format before publishing and

converting to the compatible shading format, which is supported by the destination

platform. We showed the function of SLC in chapters 3 and 4.

For example, a shader written by a developer in HLSL may be displayed on the

developer’s machine nicely. However, it may not be displayed on a client’s machine,

because that client’s machine does not support HLSL. In this case, SLC helps to translate

shaders into XML format and then convert it to the shading language supported by the

second client’s machine, for instance, GLSL.

4.2.1.2 Implementation

Defining a set of shaders for basic elements

We define a set of different shaders as standard for ‘Cs’, ‘Ns’, ‘Os’, ‘Hs’, ‘Ps’,

‘Ss’, and ‘Xs’ which represents shaders for “Carbon”, “Nitrogen”, “Oxygen”,

“Hydrogen”, “Phosphorus”, “Sulphur”, and “Other” respectively. We used a slightly

modified CPK color scheme and set ‘Other’ to green for easier distinction from the other

standard colors. (In the CPK standard, “other” is deep pink which is very similar to

Oxygen which is red)

110

Table 4.1 shows the result of applying the fragment shader of each element with

Blinn-Phong per-pixel shading on “Carbon”, “Nitrogen”, “Oxygen”, “Hydrogen”,

“Phosphorus”, “Sulphur”, and “Other”.

Table 4 - 1 Shader definition for basic elements in Molecular Structure

 Os Ns Cs Hs Ss Ps Xs

Phong
shader
applied

Surface
Material

1.0,
0.0,
0.0

0.6,
0.6,
1.0

0.5,
0.5,
0.5

0.9,
0.9,
0.9

1.0,
0.8,
0.2

1.0
0.65
0.0

0.0
1.0
0.0

In this table “Surface Material” refers to the ambient and diffuse reflection

coefficients. The specular reflection coefficient was set to white (1.0 1.0 1.0). The user

can modify these values if they wish. We used the [Phong 1975] illumination and per

pixel shading algorithm except that we used the [Blinn 1977] half angle lobe (dot (N,H))

rather than the Phong mirror reflection lobe (dot(V,R)). [Ngan et al. 2004] showed that

this decreases the average fitting error by 40% because at low light angles it gives a more

correct shape of the specular lobe than does the normal mirror reflection angle. Table 1:

Basic set of shaders for atoms

We start by converting the PDB files to the CML format with the XML Parser,

Xerces 2.0 based on PDB2CML[Zara 1999]. Then, we added pre-defined shaders as

nodes (as shown in Table. 1), during the CML to X3D translation. We updated Polys’

CML2X3D by adding the shader nodes translation. The format of the defined shader

111

nodes is based on the web3D shader group proposal [web3D-Shader-Group 2005] and is

also compatible with the VRML browser BS Contact by Bitmanagement [Bitmanagement

2005]. The shader can be a separate file loaded as a URL into the conversions with some

adjustable parameters.

Let’s go though an example of loading shaders in the XSLT translation sheet

during the CML2X3D translation. For instance, the vertex and pixel shaders of “Carbon”

defined and loaded in CML2X3D XSLT are as follows. A vertex and fragment shader

example of “Carbon” in Cg is shown in example 4.8.

// Vertex Sahder
void main(in float4 position : POSITION, //in object space
 in float4 position1:POSITION,
 in float4 normal : NORMAL, //in object space

 //mandatory parameters
 uniform float4x4 modelViewProjection,
 uniform float4x4 model,
 uniform float4x4 modelIT,
 uniform float3 viewPosition,

 //output parameters
 out float4 oPosition : POSITION, //
 out float3 oObjectPos : TEXCOORD0, //
 out float3 oNormal : TEXCOORD1 //
){

float4 nposotion =
float4(position.x,position.y,position.z,position.w);

 oPosition = mul(modelViewProjection, nposotion);
 //transform the vertex position and normal into World Space:
 oObjectPos = mul(model, position).xyz;
 oNormal = mul(modelIT, normal).xyz;
}

112

Example 4.8 Carbon vertex and fragment shader in Cg

ShaderAppearances, vertex and fragment shader node prototype according to

bitmanagement is defined in VRML as Figure 4.7, 4.8, 4.9:

Figure 4 - 7 : ShaderAppearence Prototype in VRML

// Fragment shader
void main(in float4 position : TEXCOORD0, //in world space
 in float3 normal : TEXCOORD1, //in world space
 uniform float3 viewPosition, //mandatory in world space
 uniform float3 baseColor,
 uniform float3 lightPosition, //defined in world space
 out float4 oColor : COLOR){
 float3 lightColor = float3(1.5f, 1.5f, 1.5f);
 float3 P = position.xyz;
 float3 N = normalize(normal);

 //get lightPosition into space
 lightPosition.z = -lightPosition.z;
 //compute the diffuseColor value, assume lightColor is white
 float3 L = normalize(lightPosition + P);
 float diffuseLight = max(dot(N, L), 0);
 float3 diffuse = baseColor * lightColor * diffuseLight;
 float3 V = normalize(viewPosition - P);
 float3 H = normalize(L + V);
 float specularLight = pow(max(dot(N, H), -dot(N, H)), 256);
 if(diffuseLight <= 0)
 specularLight = -specularLight;
 float3 specular = lightColor * specularLight;

 oColor.xyz = (diffuse+ .3*specular)/1.5;
 oColor.w = 0.5;
}

ShaderAppearance{
 exposedField SFNode fragmentShader NULL
 exposedField SFNode material NULL
 exposedField SFNode texture NULL
 exposedField SFNode textureTransform NULL
 exposedField SFBool transparent TRUE/FALSE
 exposedField SFNode vertexShader NULL
}

113

Shader Appearance node defined as support transparent function. This function is

effective until the alpha value of the output colors is less than one in fragment shader, and

is listed in the fragment shader code as “oColor.w = 0.5;”.

Figure 4 - 8 : VetexShader Prototype in VRML

Figure 4 - 9 : FragmentShader Prototype in VRML

Our implementation is a two steps process. First, redesign prototype for the

minimal set elements in X3D format; secondly, adding the corresponding shader / vertex

shader. All elements of fragment shader are defined is a Document Type Definition

(DTD) file. For smoothly showing shaders in VRML browser by Bit management, the

second step uses the defined shader nodes based on bitmanagement nodes definition,

shown above. The prototype of the “Carbon” nodes in CML2X3D.xsl [Polys 2003] are

shown as Figure 4.10:

VertexShader{
 exposedField MFString url []
 exposedField SFBool mustEvaluate FALSE
 exposedField MFString paramName []
 exposedField MFString paramType []
 # fields ...
}

FragmentShader{
 exposedField MFString url []
 exposedField SFBool mustEvaluate
 exposedField MFString paramName []
 exposedField MFString paramType []
}

114

Figure 4 - 10 ProtoDeclare for Atom - Carbon without shader

The following changes we made based on Poly’s program CML2X3D. (1) added

shaderAppearance , vertex and fragment shader elements based on elements defined in

X3D; (2) define conversion from X3D to VRML for shader node in X3D2VRML97,

which is from web3D[web3D-ToolKits 2003].

 <ProtoDeclare name="Carbon">
<field IS="atoC.translation" accessType="exposedField"
name="position" type="Vector3Float"/>
<field IS="atoC_mat.transparency" accessType="exposedField"
name="MAT" type="Float" value=".6"/>

 <Transform DEF="atoC">
 <Group>
 <Transform>
 <Shape>
 <Appearance >

<Material DEF="atoC_mat" diffuseColor="0 0 0"
shininess="0.8" specularColor=".29 .3 .29"
transparency="0.6"/>

 </Appearance>
 <Sphere radius=".77"/>
 </Shape>
 </Transform>
 <Transform>
 <Shape>
 <Appearance/>
 <Text string="C">
 <FontStyle size=".8"/>
 </Text>
 </Shape>
 </Transform>
 </Group>
 </Transform>
 </ProtoDeclare>

115

Figure 4 - 11 Shader Declarations for the ProtoDeclare of any atom

For any of the atoms, its ShaderAppreance element in X3D should follow the

format shown in Figure 4.11. For the element “Carbon”, the shaderAppearance section of

the prototype is shown in the Figure 4.12.

Figure 4 - 12 Shader Declaration for the ProtoDeclare of Atom – carbon

The two fields of “baseColor” and “lightPosition”, with its predefined color

values, are the input to the shader uniform variables baseColor” and “lightPosition”

defined in Cg or GLSL. For our predefined shader for each of the basic elements the

difference between each element is the baseColor value in table 1. The external link of

“Carbon-v.cg” and “carbon-f.cg” will send data from the X3D file to shader program and

the return value will be sent back to X3D and displayed on the screen. Because of the

<ProtoDeclare name="element">
 ……
 <Shape> ……
 <ShaderAppearance transparent = “TRUE”>
 <VertexShader url=" element -v.cg">… </VertexShader>
 <FragmentShader url=" element -f.cg>…</FragmentShader>
 <Material ….> … </Material>
 </ShaderAppearance>
 <Sphere radius=".6"/>
 </Shape>
……
</ProtoDeclare>

<ShaderAppearance transparent = “TRUE”>
 <VertexShader url="Carbon-v.cg"/>
 <FragmentShader url="Carbon-f.cg">
 <field accessType="inputOutput" name="baseColor"
 type="SFColor" value ="0.6 0.6 0.6"/>
 <field accessType="inputOutput" name="lightPosition"
 type="SFVec3f" value ="-10 10 -10"/>
 </FragmentShader>
</ShaderAppearance>

116

similar structure of shaders for different atom, a “ProtoDeclare” can be used in a uniform

interface and instance them with different color variable.

After designing the prototype of the shader’s in X3D, we converted the CML files

to the X3D format which should be the same format as the prototype is shwn in the

Figure 4.13.

Figure 4 - 13 Shader for the Atom – carbon after converted

The CML file is converted to X3D with defined shaders. Because currently only

VRML browsers are supporting shaders, to display the result, we have to convert the

X3D file format to VRML. In order to display the shaded protein structure, we modified

the X3D2VRML97 [web3D-ToolKits 2003] XSLT by adding the ShaderAppearance /

VertexShader / FragmentShader nodes into the XSLT. We use VRML browser BS V6.2

[Bitmanagement 2005] because it supports shaders. The nodes defined in the new version

of the XSLT for X3D2VRML are compatible with the browser and the shader format

specified in the web3D shader group proposal. For example, a new node of

“ShaderAppearance” with its “transparent” attribute has been added into the XSLT with

its subnodes of VertexShader and Fragment Shader. After translating each of the shaders

<ShaderAppearance transparent = “TRUE”>
 <VertexShader url="Carbon-v.cg"/>
 <FragmentShader url="Carbon-f.cg">
 <field accessType="inputOutput" name="baseColor"
 type="SFColor" value ="0.6 0.6 0.6"/>
 <field accessType="inputOutput" name="lightPosition"
 type="SFVec3f" value ="-10 10 -10"/>
 </FragmentShader>
</ShaderAppearance>

117

of the elements, the protein structure can be viewed in a shader supported VRML

browser on a single machine.

For example, for “shaderAppearance” elements, the node will be same name as

“shaderAppearance” in VRML. Same thing works for vertex and fragment shaders. This

shaderAppearance element for example can contain at lease six attributes. That means

each of the attributes needs to check if their parent node is shaderAppearance. If yes,

write nodes with format of shaderAppearnce. If no, continue check for other nodes.

Refer to Figure 4.14.

Figure 4 - 14 ShaderAppearence definations in XSL modification

For the child node to determine its structure, we need to check if their parent is

shader appearance. An example is shown here for element node movieTexture shown in

Figure 4.15:

Figure 4 - 15 MovieTexture tag definition modification in XSL with shader added in

<xsl:when test="local-name()='ShaderAppearance' or
$nodeType='ShaderAppearance'
 or $EPnodeType='ShaderAppearance' or
@nodeType='ShaderAppearance' ">
 <xsl:text>appearance </xsl:text></xsl:when>

<xsl:when test="(local-name()='MovieTexture' or
$nodeType='MovieTexture' or ……
 and (local-name(..)='ShaderAppearance' or
$parentType='ShaderAppearance' or
$EPparentType='ShaderAppearance' or
../@nodeType='ShaderAppearance' or
local-name(..)='texture')"><xsl:text>texture
</xsl:text></xsl:when>

118

The above simply shows the steps to add nodes according to the shader defined in

both X3D and movieTexture. The same will happen to all shaderAppearance children and

ShaderAppearance parent node as well, i.e., vertexShader / fragmentShader, material,

texture, textureTransform, transparent.

After the conversions from PDB2CML and from CML2X3D with shader,

Shaded-X3D2VRML also produced by X3D2VRML.

The command of converting shader from CML Shader-X3D Shader-VRML is

shown as:

Figure 4 - 16 cml2x3d_shader/ x3d_shader2_vrml_shader execute comments

We are ready to show our shader 3D model of any molecule structure. For

example in a single machine browser we open a single chemistry riboflavinN.wrl file,

shown in Figure 4.17.

To show this 3D structure via the Internet, we have to make sure it can be display

on the user’s machine correctly. As we know, current existing shader formats are

platform dependent. For solving this problem, in this step the Shader Language Converter

will be empolysed as a tool

saxon -o riboflavinN.xml.x3d riboflavinN.xml cml2X3d_2ccd-301.xsl
saxon -o riboflavinN.xml.x3d.wrl riboflavinN.xml.x3d
x3dToVrml97_2275.xslt

119

Figure 4 - 17 A converted shader-X3D riboflavinN 3D structure in VRML

Example 4.9 A SLC converted vertex shader in GLSL for riboflavinN 3D in X3D

Before the Shaded 3D model is published and after it’s been downloaded to the user’s

machine. For example, the shaders in GLSL displayed on machine that only support

GLSL shader as in Example 4.9, 4.9(a).

In example 4.9 and 4.9 (a), the Shader Language Converter was used to convert

shaders from its original source code, written in Cg, to the clients’ machine compatible

language, GLSL. It should successfully display on the client machine. Both of them

passed the test in a stand alone application on a Cg and GLSL compatible platform. Due

// VertexShader

uniform mat4 modelViewProjection ;
uniform mat4 model ;
uniform mat4 modelIT ;
uniform vec3 viewPosition ;
void main(void)
{
 vec4 nposotion =
 vec4(gl_vector.x, gl_vector.y ,gl_vector.z, gl_vector.w);
 gl_vector =modelViewProjection * nposotion;
 gl_MultiTexCoord0.xyz =model * position.xyz ;
 gl_MultiTexCoord1.xyz =modelIT * normal.xyz ;
}

120

to the shortage of the GLSL shader supported VRML/X3D web browser, we can’t test

the GLSL shader over the web at this moment. Currently the only browser that we are

aware of that supports programmable shaders is BS Contact and it only supports

HLSL/Cg shaders using DirectX 9 on Microsoft Windows. However, we assume that

when the shader proposal is accepted and becomes a part of X3D that other browsers for

other platforms will be developed.

The fragment shader is shown in GLSL as follows in Example 4.9(a):

Example 4.9(a) a SLC converted fragment shader in GLSL for riboflavinN 3D in X3D

4.2.1.3 Performance analysis and visual effect comparisons

Biologists and Chemists work with molecules on a daily basis. 3D virtual protein

structures provide them with visual images of the molecules structure. It was our

hypothesis that a higher image quality would improve their understanding and

// VertexShader –GLSL vertex shader
uniform vec3 viewPosition ;
uniform vec3 baseColor ;
uniform vec3 lightPosition ;
void main(void){
 vec3 lightColor =vec3(1.5f, 1.5f, 1.5f);
 vec3 P =gl_MultiTexCoord0 .xyz ;
 vec3 N =normalize(gl_MultiTexCoord1.xyz);
 lightPosition.z -lightPosition .z ;
 vec3 L =normalize(lightPosition +P);
 float diffuseLight =max(dot(N, L), 0);
 vec3 diffuse =baseColor *lightColor *diffuseLight ;

 vec3 V =normalize(viewPosition *P);
 vec3 H =normalize(L +V);
 float specularLight =pow(max(dot(N, H),-dot(N, H)), 256);

 if(diffuseLight <=0)
 {
 specularLight =-specularLight;
 }
 vec3 specular = lightColor * specularLight;
 gl_Color.xyz = (diffuse+ .3*specular)/1.5;
 gl_Color.w = 0.5;
}

121

productivity. We evaluated our X3D based biomolecular visualization in terms of user

preference and program performance.

Initially, we tested the system on some simple small biomolecules. We produced a

set of procedurally shaded X3D biomolecules, which were converted by the new XSLT

and the corresponding X3D molecules without shaders and displayed them in IE 6.0 and

FireFox 1.0 with the B.S. V6.2 VRML plug-in. Then, we had biology students

manipulate the protein structures with and without the shaders. The evidence indicated

the higher quality shaded molecules were superior as evidenced by the following

comments made by the students:

• Large improvement in image quality;

• Better depth of view made the 3D structure easier to understand.

• Easily view and distinguish the different atoms with their uniform appearance.

Figure 4 - 18 Caffeine Structure
(a) Solid atoms in X3D/VRML without shaders

(b) in X3D/VRML with shaders from CML �X3D

(a) (b)

122

In Figure 4.18, the caffeine molecule is displayed with and without procedural

shaders. Next, we applied our shaders to some larger molecular structures the following

table 4.2, shows a comparison of the molecule geobacillus stearothermophilus

carboxylesterase Est30 (1TQH) [Liu et at. 2004] and molecule HIV-1 protease (1S6G)

[Tie et al. 2004] 3D structure with and without shaders. Figure 4.21 shows a closer

comparison of the protein structure displayed with and without procedural shaders.

Table 4 - 2 Comparison of Est30 (1TQH) and HIV protease (1S6G). Molecular structure
with and without procedural shaders

 X3D X3D + Shaders

 1TQH

1S6G

123

(a)

(b)

Figure 4 - 19 (a) a closer comparison of the protein structure with and without shaders

(b) a comparison of the HIV structure displayed with and without shaders

Figure. 4.20 show two protein structures. On the left is the intermediate result of

Est30 which contains 1327 atoms and on the right is a Non-Psychrophilic Trypsin from A

Cold-Adapted Fish Species, which contains 7106 atoms. [Schroder etc. 1998]

124

Figure 4 - 20 Left: partially Est30 ball-stick structure with procedural shaders. Right:
Trypsin Molecule space-filling structure with procedural shader in X3D/VRML

We evaluated the performance of the shaded version by looking at two metrics:

the change in file size caused by adding the shaders and also by the interactive

performance. Adding the extra code necessary to implement the shader capability

increased the VRML file size by less than three kilobytes. Considering that a small

molecule, such as cortisone, has a VRML file size of 22 Kilobytes, this is not much of an

increase. A very large protein, e.g., one with 7100 atoms has a VRML file size of 643

kilobytes.

The second measure of performance is in interactivity of the display, that is, the

ability to move smoothly through the molecule and rotate it to see different views. We

tested on two different machines. On a “low end” machine, a laptop with a 1.6 Ghz

Pentium M CPU and a Nvidia 5650 (128 M bytes of graphics RAM), a protein of 1300

125

atoms was smoothly interactive. However, the CPU usage was 100% during movement.

On this same machine the 7100 atom protein was not smooth, it was quite jerky.

The second system was a desktop with a 3 GHZ Pentium CPU and an Nvidia

6600 GT (PCI Express with 128 M bytes of graphics Ram). The 7,100 atom protein was

smoothly interactive on this system, even at full screen resolution (1600 x 1200 pixels).

The CPU usage was up to 60% for this molecule. Since geometric transformations in

VRML are done by the CPU, it appears that the system is CPU limited and not graphics

card limited, thus even the older 5650 may have been sufficient given a faster CPU.

Displaying molecule structure effectively is only one of our goals. Designing a

user friendly interface for scientist to manipulate with the atoms and freely build

structures is our next task.

4.3 Enhanced user friendly interface for molecular presentation

During few discussions with a researcher at the CDC (Center for Disease

Control), some desired functions have been specifies. For example, freedom to move

atoms to a position they want. The ability to highlight a particular atom will be useful

during remote collaboration. Based on these desired functions, a set of interface features

have been developed for improving molecular 3D presentations.

4.3.1 Design

1. Add level of Quality (LOQ) with shaders into the X3D/VRML scenes. This addition

reduces rendering consuming time and improves real-time interactions performance.

126

VRML provides a LOD function. This function defines, for example, one object

with multiple resolutions. Different levels of detail will be selected as the viewer gets

closer to the object in certain predefined distances. We borrow the traditional LOD idea

and create a new concept LOQ, Level of Quality. It means the image quality increased

while the viewer getting close to the object. The high quality images achived by loading

shader in.

Why is LOQ better for our basic molecule structures instead of subdivision

technology, which dynamictelly create the sub-polygons for a detail area? Subdivision

technology achiched a good preformance for very big structures with a lot of detail in

particular parts of the object, sharp curves etc. this also means that large big models will

have to be treated as one single object. However, for the molecule structure, we treat each

atom as a separate object; similar atoms are just copies with a transformed 3D position.

We don’t have very complex surfaces for a single atom. But we want it to look detailed

when we approach it. We use high level of quality with a shader to represent those

molecules close to us, while the rest of the molecules can be displayed in low resolution.

This will give an extra dimension control of the surface quality.

Benefit: lower numbers of polygons in distant views, high resolution and detailed

shading in closer views. This is exactly the goal that we need. Let’s simulate the steps

when trying to view detail of a particular part of a molecule. First, we rotate it expose the

area of interest within the whole structure, at this time the model is relatively far from

viewer (low image quality). Then going closer, we begin to see a partial view of the

127

whole molecule and correct the direction we need to go (middle level). Eventually, we

approach the element we want to inspect closely; a very high resolution shaded object

showing details of the element is viewable. Another benefit is, comparing to the whole

scene shaded, this strategy just shades a small portion of the structure. It should have a

very significant performance improvement.

Figure 4 - 21 using LOQ with shader for better performance

2. Add multiple options for choosing different shader styles / (different shader select)

This interface includes a few buttons that select different shader styles. The

purpose for changing shader styles would be to help clearly show the position and other

effects. For example, a transparent shader will give the user the ability to look though

objects and view other objects behind or inside. A solid color shader gives a better depth

of field.

128

Figure 4 - 22 Multi-shader selector interfaces

3. Adjustable slider for specular lighting for different atoms => highlighting the

emphasis atom element. (We will show this function in multi-user shard environment)

4. Interface for building molecular structures easily: (1). freely moving atoms (2)

Adding atoms by functioned path

4.3.2 Implementations

Taking advantage of the VRML language which accepts script, we designed set of

prototypes for controlling different atoms in molecules by changing their colors and

specular highlights with shaders to identify or highlight the particular objects. Also, we

implemented some manipulating methods, like rotation and move certain atoms to help

biologist conveniently build their predication of 3D structures. A function based molecule

structure generation will also be demonstrated. All demos apply some shaders in some

Transparent

Trans. + Fur

Fur + volume

129

atoms. Here, we’ll show some code fragment or prototypes for realizing different

functions.

1. Add level of quality (LOQ) function with shaders into the X3D/VRML

scenes. This function helps improve real-time interaction performance.

For realizing LOQ function with shaders, we have the following file

CH4O_LOD.wrl and three individual level1, level2, and level3 files. In the file

CH4O_LOD.wrl, a switch script for distance determine between the viewer and the

object. This distance is the control for selecting the different level of quality files. We

will use the CH4O structure to show a simple technique for adding shader in as high-level

detail to improve performance.Code fragment in example 4.10, is a piece of switch script

that controls level of quality:

Example 4.10 Code segment for LOQ control

The level 2 code is as follows

LOD {
 center 0.0 0.0 0.0
 range [7.5, 12.0]
 level [
 # High-detail
 Inline { url "CH4O_shader.wrl" }
 # Medium-detail
 Inline { url "CH4O_wrl" },
 # Low-detail
 Inline { url " CH4O_wireframe.wrl" },
]
}

130

Example 10 (a) Low level of quality scene for CH4O

 The level 3 code is as follows

Example 10 (b) High level of quality scene for CH4O

In a simple sphere model of low level of quality, we can see the code is very

simple. Call primitive shape Sphere and give it a size. However, if we want to show more

detail like when doing bump mapping, we have to give the normal index coordinates and

texture coordinate index etc, of each vertex. I ignored the detail value to save space in the

above level 3 codes, which are a big chunk of data. Please refer to the simple code for

LOD with shader, LOQ, in appendix source code section. Level 3, the highest detail,

Shape {
 appearance DEF MATslategrey_1_75 Appearance {

material Material {
 diffuseColor 0.439215686275 0.501960784314 0.564705882353

ambientIntensity 0.5
 specularColor 1.0 1.0 1.0
 shininess 0.75
 }
 geometry Sphere { radius 0.425 }
}

Shape {
 appearance ShaderAppearance
 {
 vertexShader DEF VertexShader1 VertexShader
 {
 url "BumpPlastic.fx"

 field SFVec4f LightPos 1 0.5 2 0
 field SFFloat Bumpy 5
 exposedField SFNode diffuseMap ImageTexture { url "dna_1-1.jpg" }
 exposedField SFNode normalMap ImageTexture { url "dna_1-1_hf.jpg"}
 }

……
 }
 geometry DEF _IndexedFaceSet IndexedFaceSet {
 coord Coordinate {point [......]}
 texCoord MultiTextureCoordinate {coord [
 TextureCoordinate {point [......]}
 TextureCoordGen { mode "TANGENT" parameter [0 2] }]}
 coordIndex [......]
 creaseAngle 3.16
 texCoordIndex [......]
 }
}

131

shows a bump mapping on the surface of a sphere. There is a very high detail of the

object shown. Showing this technique for the surface of a single atom might not be very

interesting. However, imagine if we have a very large size molecule with many atoms,

we’d like to see the whole structure from a distant viewpoint and easily rotate the whole

structure. Then move closer to see the details of group of atoms from the whole structure.

In this case the LOD + shader will give a quick manipulation with low level of quality

and fewer polygons number and high level of quality shader applyed for closer views and

only to the atoms close enough. That means only those atoms close to you need to be

rendered with a shader. This will ensure the real-time performance of the interaction.

As the user gets closer to the 3D structure, the detail of object and the quality of

the images will increase as shown in the Figure 4.23:

Figure 4 - 23 Level of detail and quality example for CH4O

(a) Shows the whole structure with single wire frame; (b) CH4O stick-ball structure
without shader; (c) CH4O structure has C with its bumpy shader

The Figure 4.24 shows the combination of using LOD and shaders. We first

defined a level of detail and quality for each atom, and then we assign each a detail level

with a distance as the viewer moves closer to the atoms. Whoever closes to the viewer

 (a) (b) (c)

132

enough shows their detail. Example 4.11, shows the code fragment for repeat use of the

DEF atom Carbon which has shader in its high level detail defined. More complex

shaders can be designed with LOD and shader techniques in X3D/VRML. i.e., a shader

with changeable ambient color can be changed to darker for distance view.

Figure 4 - 24 Level of detail approach while close to model of CH4O

Fragment of code below shows how to call in each of element “C” with different

levels of detail.

Example 4.11 Reuse predefined C with shader as high level detail

Another example of the level of quality with shader show as following:

2. Add multiple shader styles options

 Take advantage of flexibility of VRML interactivity. We designed a button to

select different shaders of a demo chemistry structure atom’s surfaces. In the code

segment of Example 4.12, we first defined different shader choices, and then we defined

DEF Atom_C_LOD Inline { url " CH4O_LOD.wrl" }
….
USE Atom_C_LOD …

133

a switch to control the choice iteratively. This is nothing new except we used shader as a

multiple-choice object. We’ll not show detail of this function.

Example 4.12 multi-shader interface code fragment

3. Controllable specular lighting

Beside the above two controls, we also defined some scripts for controlling shader

parameters though a slide sensor, such as controlling the phongN value which effects

specular light of the Blinn-Phong shader on the objects surface This function will be

useful for collaborative work. By highlight particular atoms, collaborators in different

location can easily identified individual atoms, etc. We will talk more about this in

Chapter 5.

 The following code fragment shows how a script control parameter of phongN in

Blinn-Phong shader is controlled with the slide sensor. First we pick the index [0] value

DEF Multistyle Switch {
 whichChoice 0 choice {…shader 1 …}

whichChoice 1 choice {…shader 2 …}
 whichChoice 2 choice {…shader 3 …}
…..

DEF switchscript Script {
 eventOut SFInt32 value_changed
 eventIn SFBool isActive
 field SFInt32 current 0
 url ["vrmlscript:
 function isActive(value) {
 if (value == true) {
 current = (current + 1)%3;
 value_changed = current;
 }
 }
 "
]
}
….

ROUTE touch.isActive TO switchscript.isActive
ROUTE switchscript.value_changed TO Multistyle.whichChoice

134

of the translation change in planeSensor ps and rearranged the value scope more fitting to

phongN and assign the new value to phongN.

We used vertex and fragment shader of Phong shading as a test sample. The

fragment shader fragment is shown as follows.

Example 4.13 Fragment phong shader example for parameters control

Uniform variables and input variables are all coming from the VRML/X3D

scenes. The interface of shader nodes allows defined variables to go though it and send

value of defined variable out and in as shown in Example 4.13(a):

void main(in float4 position : TEXCOORD0, //in world space
 in float3 normal : TEXCOORD1, //in world space
 uniform float3 viewPosition, //in world space
 uniform float3 Ka, uniform float3 Kd, uniform float3 Ks,
 uniform float phongN,
 uniform float3 ambientLight,
 uniform float3 lightColor,
 uniform float3 lightPosition, //in world space
 out float4 oColor : COLOR)
{

 float3 P = position.xyz;
 float3 N = normalize(normal);
 float3 ambient = Ka * ambientLight; // ambient light contribution

 //compute the diffuse light contribution
 float3 L = normalize(lightPosition - P);
 float diffuseLight = max(dot(N, L), dot(N, L)*1.1);
 float3 diffuse = Kd * lightColor * diffuseLight;

 // compute the specular light contribution
 float3 V = normalize(viewPosition + P);
 float3 H = normalize(L + V);
 float specularLight = (pow(max(dot(N, H), -dot(N, H)), phongN));
 if(diffuseLight < 0)
 { diffuseLight = -diffuseLight;
 float3 specular = lightColor * specularLight;
 oColor.xyz = (ambient - diffuse*0.2 + abs(specular));
 }
 //specularLight = 0;
 else{
 float3 specular = lightColor * specularLight;
 oColor.xyz = (ambient +(diffuse) + specular);}

 oColor.w = 0.9;
}

135

Example 4.13(a) fragment shader interface with main program

Example 4.13(b) Example of a fragment phone shader declaration in main program

Example 4.13(c) fragment shader interface with main program

fragmentShader DEF Hydrogen_Frag FragmentShader {

 exposedField SFColor Ka IS Ka
 exposedField SFColor Kd 0.8 0.6 0.4
 exposedField SFColor Ks 0.7 0.7 0.7
 exposedField SFColor ambientLight 0.2 0.2 0.2
 exposedField SFFloat phongN 100
 exposedField SFColor lightColor 1.0 1.0 1.0
 exposedField SFVec3f lightPosition 0 0 15
 exposedField SFFloat transparency IS transparency

url ["phong_shader/phong_frag.cg"]}

Transform {
translation -2 0 0
children [
 DEF slidersensor PlaneSensor {
 minPosition 0.0 0.0
 maxPosition 1.5 0.0
 offset 0 0 0
 autoOffset TRUE
 }
 DEF regler Transform {
 scale 3 6 3
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor .5 0 0
 specularColor .5 .4 .2
 shininess .4
 }}
 geometry Sphere { radius .05 }
 }}
 Transform {
 translation 0.56 0 0
 rotation 0 0 1 1.5708
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor .3 .3 .3
 specularColor .7 .7 .8
 shininess .2
 }}
 geometry Cylinder { radius .1 height 2 }
 }}]}

FragmentShader{
 exposedField MFString url []
 exposedField SFBool mustEvaluate
 exposedField MFString paramName []
 exposedField MFString paramType []}

136

Let’s use variable “phongN” as an example to be manipulated using a slider in

VRML/X3D.We give an MFString name as “phongN” and paramType as SFFTIME. As

the interface for uniform phongN to output from main program and input to fragment

shader as follows.

By looking at the code, we see the value of variable phongN is fixed. That means,

if we want to control it in main program, we have to make it changeable. Let’s design a

slider controller first, create a cylinder as the slider controller and a scaled ball “regler” as

the slider. A plane sensor is needed for tracking the controller’s movement:

Example 4.13(d) route function control phongN value with slider

However, since the data type of phongN and the translation type of the slider are

not compatible, we need to write a fraction script to convert the value to the right data

type and value range.

Example 4.13(e) fraction functions for data field type conversion

And we correct the route as follows:

Example 4.13(f) ROUTE control interface for specular light

ROUTE slidersensor.translation_changed TO Hydrogen_Frag.phongN

DEF fractionscript Script {
eventIn SFVec3f set_translation
eventOut SFFloat oneDFloat
eventOut SFColor threeDFloat

url "vrmlscript:
function set_translation(value) {
oneDFloat = ((value[0])*10000/100);
threeDFloat [0]= value[0];
}"}

ROUTE slidesensor.translation_changed TO regler.set_translation
ROUTE slidesensor.translation_changed TO fractionscript.set_translation
ROUTE fractionscript.oneDFloat TO Hydrogen_Frag.phongN

137

Furthermore, if we want to use this specular light control as a prototype, meaning,

if we would like to control all specular of the same atoms, a prototype needs to be

defined. Create object with the defined proto.

Example 4.13(g) A proto with specular light of shader control

Figure 4.25 shows the comparison of before and after the parameter had been

change and shows the result of the effect by the control.

Figure 4 - 25 controlled specular light of shader on a atom surface

PROTO My_P [

 exposedField SFFloat phongN 100
 exposedField SFFloat transparency 0.3
 exposedField SFColor Ka 0.8 0.6 0.4

]{Shape {
 appearance ShaderAppearance {
 transparent TRUE
 vertexShader VertexShader {
 url ["phong_shader/phong_vert.cg"]
 }
 fragmentShader DEF Hydrogen_Frag FragmentShader {
 exposedField SFColor Ka IS Ka
 field SFColor Kd 0.8 0.6 0.4
 field SFColor Ks 0.7 0.7 0.7
 field SFColor ambientLight 0.2 0.2 0.2
 exposedField SFFloat phongN IS phongN
 field SFColor lightColor 1.0 1.0 1.0
 field SFVec3f lightPosition 0 0 15
 exposedField SFFloat transparency IS
 transparency
 url ["phong_shader/phong_frag.cg"]
 }
 }
 geometry Sphere { radius .20 } }}

Transform { translation 0 0 0 children [
 DEF my_P_1 My_P {# phongN 100}]}

138

Same other examples for control bump level:

Figure 4 - 26 A controlled bump shader on a atom surface

4. Building molecule structure easily:

 With the defined shaded atoms’ prototypes, we can create new atoms with shader

in the 3D structure. After added atoms in, we would like to move them around to a

desired position. A plane sensor has been used to track the new position of the atom. We

can also predefine some functions for some known structures or patterns. This will save

time for building a structure. Some resulting images are shown in Figure 4.27.

Figure 4 - 27 resulting image of adding new atoms in predefined functions

139

2.4 Future interface design for 3D structural biology

Figure 4 - 28 user interface design for the structural biology.

In section 4.2, we developed a set of basic functions which improved user

interaction with 3D visualizations of Bio-molecule information. In this section, we extend

the basic functions and gave a proposed user interactive interface design for future 3D

structural biology research.

This interface design includes three parts. One is the data display area. Two is the

interaction EAI with database. Last important part is manipulation controls, which

includes selector, adjuster, etc. the information of molecule could be the query result of

the on Java which connect to a database.

 Atom adder

Input Query Output Extension:

Submit

Applet Database
connection

R

G

B

A

Atom S
X: 560.23
Y: 223.22
Z: 100.00

Atom Selector

Atom adjustor

140

5 Multi-User shared Environment in X3D/VRML with
Shader supported

5.1 Concepts of Multi-user shared environment and ASEC

Figure 5 - 1 High-level structure of ASEC System

A multi-user shared environment (MUSE) was built in 2000 for the ACM

SIGGRAPH Education Committee. It was a 3D multi-user real-time interactive shared

environment. This environment included galleries and a tutorial class room, etc. The

galleries collected all posters from 1993 to 2000 from the Education Committee SPACE

competition. The 3D environment made users feel more like a real gallery. Users can

click the posters on the wall to read more detail information in another pop-up window.

Users also can jump among 1993 room to 2000 room. In the tutorial section, a classroom

for a texture mapping technology is set up for shared between instructor and students. A

Blaxxun

Applet

Bluxxun

Applet

Server

Java Control

Real time
Data Update
and Mapping

TCP socket

First time load

Client2
ASEC_world

Client1
ASEC_world

First time load

141

shared environment here means, when users getting into same room, they will see each

other’s avatar movement, they can chat with each other by typing in a message. This

ASEC system was build on DeepMatrix multi-user shared environment. [DeepMatrix

2000] The architecture of system is shown as follows.

Figure 5.1 shows the high-level structure of how a multi-user shared environment

works. The initial environment (VRML world) is transferred to the client only once

during the initial load; after that it exists in the cache of the client browser, assuming no

changes. The shared objects and Avatars are the only items transferred from the server-

client afterward. Those shared objects are controlled by the Java (applet) and

communicate with the VRML world using the eventIn / eventOut field of the Network

nodes defined in the VRML file, pursued by VRML EAI (External Authoring Interface).

Figure 5.2 shows that a button clicked leading slides tutorial shared in a classroom

in one of designed multi-user shared room. In this slide tutorial of texture mapping for

SIGGRAPH97, when a page button is clicked in the teacher’s (client#1) scene, the slides

advance to next page, and the new page is displayed on each student’s (client#2) screen.

142

Figure 5 - 2 the slides tutorial updated information real-time sharing structure

A loader program continually checks for any changes and any updated information

needed to be transferred. Once a click happens on the forward button, an eventOut of new

URL address, containing the new slides, is sent to the client’s local applet by the loader

though EAI. The updated information is sent to the server though the network socket.

After the server updates the data with new URL, the new URL address is broadcasted to

all the clients. All clients (students) see the updated slides. Since only data that is

transferred is the URL string, the data sharing process achieves a real-time update in all

clients.

The original multiple user environments achieved a real-time interactive

environment on the web with the following characteristics:

1. Modeling: describe objects with the lowest amount of polygons as possible

143

2. Viewing: removed all scene data from behind the viewer (back surface), clipping

 as well

3. Shading: Gouraud Shading instead of Phong Shading, which is very time

 consuming if it is computed on a single CPU.

4. Rendering: Scan-line Rendering instead of Ray-Tracing or Radiosity rendering

5. Extensible prototype defined makes it possible to have communicated with the

 external world.

6. Flexible JavaScript enriched the client’s interactivity with the 3D scene and the

data transformation is only the changed ones though the network.

 You might notice that we didn’t claim the output is realistic. Scenes do not look

realistic because of VRML’s poor shading and rendering algorithm. They don’t have a

very good image resolution. If there were shading and rendering algorithm like Phong-

shading, Ray-Tracing or Radiosity the scene could approach to a very realistic image.

Unfortunately, their computation time on the CPU keeps them away from real-time

methods.

Using the newly discovered GPU technology, we applied the high image quality

visualization into the X3D/VRML scene with real-time procedural shaders, which gives

highly realistic, real-time image result without much increase in CPU computation time.

This is because Shaders are running on the GPU. We talked about how to embed shaders

into the single X3D/VRML scene. We designed a shader language converter for solving

the shader hardware dependent problem. Those preparations gave the feasibility to share

144

shaders in a multi-user shared environment. In this section, we will talk about how to

share these real-time procedure shaders in a multi-user shared environment. We first give

a whole structure of how the original system works, and then we discuss how shaders are

added and designed to be shared in that system. Then, we will go though some examples

of adjusting parameters in shader to explain how the shader has been shared.

5.2 Implantation and Improvement analysis of MUSE with
shaders

We first add shaders into the individual scene to improve the rendering quality of

the multi-user shared environment. Then we shared the updated shader information to all

users. We’ll give two scenarios of control and share shaders in X3D/VRML scenes.

First example is motivated by collaboration work for bio-molecule modeling and

manipulation. For example, when two researchers share a same data set of a protein

molecule, one of them tries to point out which atom he is talking about. The easiest way

is highlighting this particular atom. This is the same function as gaining readers attention

by highlighting some keyword in an article. First of all each of the atoms have its own

Phong shaders which resulted from chapter 4, which can be controlled by a slidersensor

in section 4.2.2.3. We will not repeat code here. Again, the movement of slidersensor is

sent to the predefined Hydrogen_Frag shader as its variable phongN is updated. (Show

as follows).

When the local researcher moves the slider, the particular atom will be

highlighted. For sharing the highlighting information with researcher on the remote side,

ROUTE slidersensor.translation_changed TO Hydrogen_Frag.phongN

145

a Network node needs to be defined with few variables. One variable is eventIn of

datatype SFVec3f, which carries the updated 3D coordinate of the slider. The other one is

an eventIn of data type SFBool, which works as a flag to the loader signaling there is

information that has been updated. Accordingly, a pair of eventOuts needs to be defined

as receiver for the updated information. Since the original system network node contains

only Boolean variables, we have to add a SFVec3f variable to carry the 3D coordinate.

Example 5.1 shows the code fragment for the prototype of a Network node which will

carry the datatype as SFVec3f and the script for computing the SFVec3f data. Example

5.1(a) shows a net node of NetworkSFV3f defined as global variable, in charge of

transferring data. Example 5.1(b) shows the new ROUTE for the updated scene

information transferred by the network.

As we can see, the whole updating process only deals with sliders in both scenes.

The advantage of this design is it minimized the transferring data. We’d like to mention

here, the transferred data has to go thought the SLC after it is received by destination user

due to the possibility of different user works on different platform. Since the variable

names are just interface with main program, we assume they are same in most case in

different languages. The shader itself is not necessary transferred. This minimizes the

server transferring load.

With network node help, the new updated data is sent to the remote site and the

highlight object is shown on the remote screen. Sharing highlighted objects is one

example of the multi-users system benefits collaborative work online.

146

Example 5.1 A NetworkSFVec3f nodes for transferring the 3D movement of the slider

Example 5.1(a) net node defined for transferring the 3D movement

Example 5.1(b) ROUTE of net node transferring the 3D movement of the slider

Group {
 children [
 DEF MATRIX_TRACKER ProximitySensor {
 size 100000 100000 100000
 },
 DEF net NetworkSFVec3f { … …},

#ROUTE slidersensor.translation_changed TO Hydrogen_Frag.phongN

ROUTE slidersensor.translation_changed TO net.set_value
ROUTE net.value_changed TO net. value_tonet
ROUTE net. value_fromnet TO net.set_value
ROUTE net.value_changed TO slidersensor.set_value
ROUTE slidersensor.translation_changed TO Hydrogen_Frag.phongN

PROTO NetworkSFVec3f [
 eventIn SFVec3f set_value
 eventOut SFVec3f value_changed
 eventIn SFVec3f value_fromnet
 eventOut SFVec3f value_tonet
 … …
 exposedField SFBool pilotOnly TRUE
 … …
]
{ Script {
 eventIn SFVec3f InSc IS set_value
 eventOut SFVec3f OutSc IS value_changed
 eventIn SFVec3f netInSc IS value_fromnet
 eventOut SFVec3f netOutSc IS value_tonet

… …
 url "javascript:
 function InSc(value) {
 netOutSc = value;
 if(local == true)
 OutSc = value;
 } function netInSc(value) {
 OutSc = value;
 } "
 }
}

147

Figure 5 - 3 Shader sharing of Caffeine structure in multi-user environment

Figure 5.3 shows a multi-users shared environment for a simple caffeinnin

stuctrue. When user on the right screen move the slider to control the highlight of some

particular atoms “N”, user on the left screen can see that some of the atoms “N” have

been highlighted.

Another scenario we are giving next is a directly manipulation of a gallery image.

Traditional paintings on canvas are two dimensional images; texturing canvas gives a 2D

image more depth. We design this scenario based on the gallery poster section in ASEC

world. Pick one poster on the wall of one scene. This painting has a lot of texture on it.

We first create a high-field image of this painting. Then we use a bump-map shader to

apply the high-field to the surface of the canvas. After that, we add a slider bar which is

the controller for the bump level.

We are not going to show code details. Functions are similar to the last example

except the bump data would be transferred. Figure 5.3 shows the architecture of shader

sharing procedure.

148

Figure 5 - 4 Shader sharing in multi-user environment

In Figure 5.3, when the slider is moved by user in the left window, two actions happen,

the “value_changed” of the slider is sent to the network node and to the shadein X3D

with customized shaders

Extending the two simple scenarios we gave in last section, a few potential

applications can be implemented based on this shader-X3D/VRML multi-user shared

environment.

• Bio-molecule structural application

• Online game

• E-real estate

• Online – education

• E-CAD production

• E-historical site Construction

• Etc.

We talked a lot about bio-molecule research in the last chapter. A powerful

interface could be designed based on a more detailed user study. Shaders give more space

VRML/X3D +
Shader

Loader

EAI

Applet

Network Socket

Server

VRML/X3D +
Shader

Loader

EAI

Applet

……

149

for game designers to realize their ideas. First of all, the LOQ with shader will reduce the

number of polygon calculations and achieve a high quality image. Secondly, a realistic

real-time interactive scene gives players a better visual experience. Third, complex

shaders, for example deformation (which change the shape of an object), can give user a

dynamic customizable appearance. For example the user can customize himself/ herself

with a transparent shader or protect him/her with a shell. When enemies shoot at him, he

can become invisible or protect himself inside the shell. These functions give another

layer of interest to the game.

For the applications in real estate, a customizable lighting will be attractive to the

users. VRML97 does not have a very good method for dealing with lighting. Lighting is

very important for presenting an interior design. As the time an agent shows customers a

house, they always turn the lights on to show the structure of each room. A shadow

shader with diffuse color changeable light can not only show off the house design, it also

gives the customer an idea of what would be their best choice.

As talking to E-CAD design, a lot of industry companies are international based.

For example, the Delph Product Corp. sends their product assembling line to Shanghai,

China. Afterward, they spend a lot of time and money traveling between its design center

Rochester, NY and Shanghai. The cost for communication became a big budget each

year. A lot of international based companies face similar problem. A multi-user

environment for collaborating is desired. Our multi-user shader X3D scene can allow

designers to share their work with their design partners, i.e. customized color, material

150

with adjusting shader parameters and preview the updated result instantly online. It also

can be used as a remote training platform.

Shader can add a lot of surface effect. For example, people might not like to

reconstruct a historic site the way it is. However, they would like to show what it looked

like when it was famous or when special events happened. A customizable shader can

restore the beauty of the building as it was in the past. An interactive function like a touch

sensor can bring the visitors to a museum to its old time.

There are many more applications that can take advantage of this shader-shared

real-time realistic environment.

151

6 Conclusion

The contents of this dissertation can be summarized in three parts as follows.

A Shader Language Converter was designed (and partially developed) for solving

the platform dependant problem that exists with current shading languages paving the

road for applications to share Shader information via the Internet. This process was

further developed and demonstrated when we built a framework for embedding shaders

into a 3D application with X3D. Other enhancements were demonstrated that would

further improve the process of implementing Shader sharing and dissemination via the

Internet.

An application for molecule structure visualization utilizing shaders was

developed. It included converting PDB files, the output file format of the Arp/Warp

program, to CML, Chemical Mark-up Language. A conversion from CML to X3D was

then performed and during this conversion process predefined shaders for the elements

contained in protein molecules were added. The next step was converting the X3D file to

VRML, which allowed the molecule to be visualized in a 3D scene. Some basic

functionality was added to the user interface that allows manipulation of the X3D/VRML

scene. These functions included; slider controlled Shader parameters such as, specular

lighting, surface color, and surface bump level. Also functions for multiple surface styles

and an interface for adding atoms into the scene with predefined functions. Another

function that was added was LOQ, level of quality, which reduces both shaders and

surface detail in predefined levels related to the distance the molecule structure is being

152

viewed in the 3D scene. The usage of applying Phong shader to the surface of the basic

atoms in molecular structures is a primary introduction of using shader in more complex

way. Some future work of more complex shaders can be used for taking the advantage of

the GPUs parallelized computation capability. For example, an electrostatic or electron

density surface can be dynamically computed and displayed.

We also discussed methods by which the previous developments would best be

utilized for collaboration via the Internet with the implementation of multi-user shared

real-time interactive environment. A network node carries the updated Shader

information send it to the server and the server would broadcast the updated information

to all clients on the network who are sharing the scene. The types of applications that

would benefit from this Shader shared multi-user environments are Bio-molecule

structural application, Online game, E-real estate, Online – education, E-CAD production,

E-historical site Construction etc

153

Reference:

3DLab: http://www.3dlabs.com/ (2005)

Ames, A.L. Nadeau, D.R., and Moreland, J. L. The VRML 2.0 sourcebook (2nd ed.), John Wiley & Sons,

Inc., New York, NY, 1997

Apodaca A.A. and Gritz L., Advanced RenderMan: Creating CGI for Motion Pictures, ed, Morgan-

Kauffman, (1999)

ATI: www.ati.com (2005)

Badger, J.: An evaluation of automated model-building procedures for protein crystallography. Acta

Crystallographica. International Union of Crystallography pp. 823-827. (2003)

Bernstein, H. J. and Sayle, R: RasMol Molecular Graphics Visualization Tool. (2000):

www.openrasmol.com

Bitmanagement (2005): www.bitmanagement.de

Blinn, J. F. : a Generalization of Algebraic Surface Drawing. ACM Transactions on Graphics, 1:3, pp. 235-

256. (1982)

Blinn, J. F.: Models of Light Reflection for Computer Synthesized Pictures. Computer Graphics, Vol. 11,

No. 2, pp. 192-198, July 1977 (Proceedings of SIGGRAPH 77).

Buck, L., Foley, T., Horn D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P., Brook for

GPUs: stream computing on graphics hardware Full text ACM Transactions on Graphics Volume 23 ,

Issue 3 Special Issue: Proceedings of the 2004 SIGGRAPH Conference (August 2004)

Casher O., Leach C., Page, C. S. and Rzepa, H. S.. Virtual Reality Modelling Language (VRML) in

Chemistry. Chemistry in Britain, 34, 26 (1998)

Chemical Markup Language (2005): www.xml-cml.org

ChemVis Group on Chemistry Visualization. (2005)

Chem-Vis: www2.chemie.uni-erlangen.de/projects/ChemVis/index.html

Cook R. L.: Shade trees. In Proceedings of the 11th annual conference on Computer graphics and

154

interactive techniques, ACM Press, pp. 223--231. (1984)

Cook, R. L., L. Carpenter and E. Catmull, "The Reyes Image Rendering Architecture", SIGGRAPH 87, pp.

95-102.

De Carvalho G. N. M.: High-level procedural shading VRML/X3D, Proceedings of the SIGGRAPH 2003

conference on Web graphics: in conjunction with the 30th annual conference on Computer graphics and

interactive techniques, San Diego, California (2003)

De Carvalho, G. N. M., and Gill, T., Parisi, T.: X3D Programmable Shaders Proceedings of the ninth

international conference on 3D Web technology 2004: pp. 99 - 108 (2004)

DeepMatrix: http://www.geometrek.com/ (2000)

Engel K. and Ertl. T. Texture-based Volume Visualization for Multiple Users on the World Wide Web. In

Gervautz, M. and Hildebrand, A. and Schmalstieg, D., editor, Virtual Environment '99, pages 115-124.

Eurographics, Springer, 1999.

Fernando, R., and Kilgard, M. J.: The Cg Tutorial: The Definitive Guide to Programmable Real-Time

Graphics. Addison-Wesley (2003)

Flux: www.mediamachines.com (2005)

Google hits for various web3D technologies: (2004): www.macWeb3D.org/ewiki/index.php?id=most%20

popular%20 Web3D%20format

Gouraud, H.: Continuous Shading of Curved Surfaces. IEEE Transactions on Computers Vol. C-20, No. 6

pp. 623-629, June 1971.

Hanrahan, P. and J. Lawson, "A Language for Shading and Lighting Calculations", SIGGRAPH 90, pp.

289-298.

HIV-Animation HIV life-cycle , available at www.hopkins-aids.edu/hiv_lifecycle/hivcycle_txt.html (2005)

Joy, B., Steele, G., Gosling, J., and Bracha, G. 2000.Java(TM) Language Specification, 2nd ed. Addison-

Wesley.

155

Kernighan, B. W, Ritchie D. M. 1988. The C Programming Language. Prentice Hall.

Krieger, J. H.: Doing Chemistry in a virtual world: VRML, a new web technology, holds promise for

chemistry in three dimensions American Chemical Society (1996)

Krone Oliver thesis: avalible at : http://www-lehre.inf.uos.de/~okrone/DIP/Diplomarbeit.html (2003)

Lindholm, E., Kilgard, M. J., and Moreton, H.: A User-Programmable Vertex Engine. Proceedings of the

28th annual conference on Computer graphics and interactive techniques. pp 149-158. (2001)

Liu, F., Owen, G. S. Zhu, Y. Universal Converter for platform independent shader in X3D ACM

SIGGRAPH 2004 Web Graphics Los Angeles Aug. 2004

Liu, P., Wang, Y. F., Ewis, H. E., Abdelal, A. T., Lu, C. D., Harrison, R. W., and Weber, I. T.: Covalent

Reaction Intermediate Revealed in Crystal Structure of the Geobacillus Stearothermophilus

Carboxylesterase Est30. Journal of Molecular Biology. pp.342-551 (2004)

Marc Olano , Anselmo Lastra, A shading language on graphics hardware: the pixelflow shading system,

Proceedings of the 25th annual conference on Computer graphics and interactive techniques, p.159-168,

July 1998

Mark, W.R, Glanville, R. S., Akeley, K., and M.J. Kilgard: Cg: a system for programming graphics

hardware in a C-like language. ACM Transactions on Graphics 22(3), pp. 896-907. ACM Press, July

(2003)

Molda : http://www.molda.org/ (2005)

MOLDEN: http://www.caos.kun.nl/~schaft/molden/molden.html (2004)

MolScript : http://www.avatar.se/molscript/ (2005)

Ngan, A., Durand F., Matusik, W.: Experimental Validation of Analytical BRDF Models. Sketch of

SIGGRAPH2004 July (2004)

NIH: The Structure of life : http://www.nigms.nih.gov/news/science_ed/structlife/ (2005)

NVIDIA : www.nvidia.com (2005)

Open Inventor: SGI: http://oss.sgi.com/projects/inventor/ (2005)

OpenGL www.opengl.org (2005)

Parisi, T.,: Flux: lightweight, standards-based Web graphics in XML, Proceedings of the SIGGRAPH 2003

156

conference on Web graphics: in conjunction with the 30th annual conference on Computer graphics and

interactive techniques. San Diego, California (2003)

PDB: Protein Data Bank Resource. (2005): www.rcsb.org/pdb/

PDB2VRMl-c: http://www.geocities.com/gnubioq/pdb2vrml/ (2005)

PDB2VRML-chem: http://www.chm.davidson.edu/VRML/pdb2vrml.html (2005)

PDB2VRMl-Perl: http://molmovdb.mbb.yale.edu/MolMovDB/vrml/ (2005)

PDB2VRML-vrml : http://www.pc.chemie.tu-darmstadt.de/research/vrml/pdb2vrml_right.shtml

Peeper, C. and Mitchell, J. L.: Introduction to the DirectX® 9 High Level Shading Language (2002):

www.ati.com/ developer/ ShaderX2_ IntroductionToHLSL.pdf

Perlin, K., 1985, An Image Synthesizer. Computer Graphics 1985: 19(3), pp. 287- 296. 43

Perrakis A., Morris R., and Lamzin V.S.: Automated protein model building combined with iterative

structure refinement. Nature Struct. Biol., pp 458-463 (1999)

Phong, B.T.: Illumination for Computer Generated Pictures, Communications of the ACM, Vol. 18, No. 6,

pp. 311-317, June 1975.

Pixar www.pixar.com (2005)

Polys, N.: Stylesheet Transformations for Interactive Visualization: Towards Web3D Chemistry Curricula.

Proceeding of the eighth international conference on 3D Web technology pp 。 85 – 91 (2003):

www.3dez.net/X3D/CML/

Proudfoot, K., Mark, W. R., Tzvetkov, S., AND Hanrahan, P. 2001. A real-time procedural shading system

for programmable graphics hardware. In SIGGRAPH 2001.

Purcell, T. J., Buck, I., Mark, W. R., and Hanrahan, P.: Ray Tracing on Programmable Graphics Hardware

ACM Transactions on Graphics 21: 3, pp 703-712 (2002).

RasMal : http://www.umass.edu/microbio/rasmol/ (2005)

Raster3D: www.bmsc.washington.edu/raster3d/raster3d.html

Rost. R. J. And Licea-Kane B.: The OpenGL(R) Shading Language. Addison-Wesley (2004)

Roucoux, K., Heaven and Earth: Unseen by the Naked Eye Press by Phaidon (2002)

157

Schroder, H. K., Willassen, N. P., and Smalas, A. O.: Structure of a non-psychrophilic trypsin from a cold-

adapted fish species. Acta Crystallogr D Biol Crystallogr 54 pp. 780 (1998)

SGI : www.SGI.org (2005)

ShaderGen : http://developer.3dlabs.com/downloads/shadergen/index.htm (2005)

ShaderTechs : www.cgshaders.org (2005)

Spartan: http://www.wavefun.com/ (2005)

Steve Upstill. The Renderman Companion. Addison Wesley, Reading, MA, 1989.

Stowell, D., The Molecules of HIV" available at www.mcld.co.uk/hiv; http://www.mcld.co.uk/hiv/?q=

HIV%20life-cycle 2005

Stroustrup, B. 2000. The C++ Programming Language, 3rd ed. Addison-Wesley.

Tie, Y., Boross, P. I., Wang, Y. F., Gaddis, L., Hussain, A. K., Leshchenko, S., Ghosh, A. K., Louis, J. M.,

Harrison, R. W., and Weber, I. T.: High Resolution Crystal Structures of HIV-1 Protease with a Potent

Non-Peptide Inhibitor (Uic-94017) Active Against Multi-Drug-Resistant Clinical Strains. Journal of

Molecular Biology. pp.338-341 (2004)

W3C: World Wide Web Consortium: www.w3c.com (2005)

Web3D Consortium. (2005): www.Web3D.org

Web3D-Shader-Group (2005): www.web3d.org/x3d/workgroups/ x3d-shaders.html

Web3D-ToolKits: X3D Toolkits CD SIGGRAPH2003. (2003)

Web3D-Tools (2005): www.web3d.org/applications/tools/viewers_and_browsers/

Wikipedia (2005): www.en.wikipedia.org/wiki/Graphics_processing_unit

www.ccc.uni-erlangen.de/

wwwvis.informatik.uni-stuttgart.de/

Xeena: IBM: http://www.alphaworks.ibm.com/tech/xeena: http://www.garshol.priv.no/download/xmltools/

prod/Xeena.html (2005)

Xj3D: CVS avalible: http://www.xj3d.org/cvs.html (2005)

Zara, S.: PDB2CML Implementation (1999): www.xml-cml.org/ software/pdb2cml.html

Zou, Y.: Built VRML model of 3D molecular structures (1999): www.molvrmltripod.com

158

Appendix A. shaders examples in Cg and GLSL

A1a – wood_vert.cg

A1b – wood_frag.cg

// FragmentShader
const float GrainSizeRecip = 1.0;
const float3 DarkColor = float3(0.6, 0.3, 0.1);
const float3 colorSpread = float3(0.15, 0.075 , 0.0);

void main (
 in float lightIntensity: TEXCOORD0,
 in float3 Position: TEXCOORD1,
 out float4 gl_FragColor:COLOR0)

{
 float3 location = Position;
 float3 floorvec = float3(floor(Position.x * 10.0),

0.0, floor((Position).z * 10.0));
 float3 noise = Position * 10.0 - floorvec - 0.5;
 noise *= noise;
 location += noise * 0.12;

 float dist = location.x * location.x + location.z * location.z;
 float grain = dist * GrainSizeRecip;

 float brightness = frac(grain);
 if (brightness > 0.5)
 brightness = (1.0 - brightness);
 float3 color = DarkColor + brightness * (colorSpread);

 brightness = frac(grain*7.0);
 if (brightness > 0.5)
 brightness = 1.0 - brightness;
 color -= brightness * colorSpread;
 color = clamp(color * lightIntensity, 0.0, 1.0);
 gl_FragColor = float4(color, 1.0);}

// VertexShader
 const float3 LightPosition =float3(0, 0, 4.0);
 const float Scale =2.0 ;
 void main(

out float lightIntensity ,
out float3 Position ,
in uniform float4x4 gl_ModelViewMatrix ,
in float4 gl_Vertex :POSITION ,
in float4 gl_Normal :NORMAL ,
in uniform float4x4 gl_NormalMatrix ,
in uniform float4x4 gl_ModelViewProjectionMatrix ,
out float4 gl_Position :POSITION){
float4 pos =mul(gl_ModelViewMatrix, gl_Vertex);
Position =(float3)(gl_Vertex)*Scale ;

 float3 tnorm =normalize(mul(gl_NormalMatrix, gl_Normal).xyz);
lightIntensity =max(dot(normalize(LightPosition -(float3)(pos)), tnorm
), 0.0)*9.5 ;
gl_Position =mul(gl_ModelViewProjectionMatrix, gl_Vertex);}

159

A1aa – wood.vert

A1bb – wood.Frag

// FragmentShader in GLSL

const float GrainSizeRecip = 1.0;
const vec3 DarkColor = vec3(0.6,0.3,0.1);
const vec3 colorSpread = vec3(0.15,0.075,0.0);

varying float lightIntensity;
varying vec3 Position;

void main (void)
{
 vec3 location = Position;
 vec3 floorvec = vec3(floor(Position.x * 10.0), 0.0, floor(Position.z * 10.0));
 vec3 noise = Position * 10.0 - floorvec - 0.5;

 noise *= noise;
 location -= noise * 0.12;
 float dist = location.x * location.x + location.z * location.z;
 float grain = dist * GrainSizeRecip;
 float brightness = fract(grain);
 if (brightness > 0.5)
 brightness = (1.0 - brightness);
 vec3 color = DarkColor + brightness * (colorSpread);

 brightness = fract(grain*7.0);
 if (brightness > 0.5)
 brightness = 1.0 - brightness;
 color -= brightness * colorSpread;
 color = clamp(color * lightIntensity, 0.0, 1.0);
 gl_FragColor = vec4(color, 1.0);
}

// VertexShader in GLSL

const vec3 LightPosition =vec3(0, 0, 4.0);
const float Scale =2.0 ;

varying float lightIntensity ;
varying vec3 Position ;
void main(void)
{
 vec4 pos =gl_ModelViewMatrix * gl_Vertex;
 Position =vec3(gl_Vertex)*Scale ;
 vec3 tnorm =normalize(gl_NormalMatrix * gl_Normal.xyz);
 lightIntensity =max(dot(normalize(LightPosition -vec3(pos)),
 tnorm), 0.0)*9.5 ;
 gl_Position =gl_ModelViewProjectionMatrix * gl_Vertex;
}

160

A1aaa – wood.vert.Xml
<?xml version="1.0"?>
<VertexShader>
 <func>
 <returnType>void</returnType>
 <funcName>main</funcName>

 <parameters>
 <declaration>
 <modifier>in</modifier>
 <qualifier>
 </qualifier>
 <type>float4</type>
 <para>position</para>
 <semantic>TEXCOORD0</semantic>
 </declaration>
 <declaration>
 <modifier>in</modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <para>normal</para>
 <semantic>TEXCOORD1</semantic>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>uniform</qualifier>
 <type>float3</type>
 <para>viewPosition</para>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>uniform</qualifier>
 <type>float3</type>
 <para>baseColor</para>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>uniform</qualifier>
 <type>float3</type>
 <para>lightPosition</para>
 </declaration>
 <declaration>
 <modifier>out</modifier>
 <qualifier>
 </qualifier>
 <type>float4</type>
 <para>oColor</para>
 <semantic>COLOR</semantic>
 </declaration>
 </parameters>
 <body>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>lightColor</para>
 <func>
 <para>float3</para>

 <parameters>
 <para>1.5f</para>
 <para>1.5f</para>
 <para>1.5f</para>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>P</para>
 <op_reference>
 <para>position</para>
 <para>xyz</para>
 </op_reference>
 </op_assign>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>N</para>
 <func>
 <para>normalize</para>
 <parameters>
 <para>normal</para>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <op_reference>
 <para>-lightPosition</para>
 <para>z</para>
 </op_reference>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>L</para>
 <func>
 <para>normalize</para>
 <parameters>
 <op_plus>
 <para>lightPosition</para>
 <para>P</para>
 </op_plus>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <declaration>

161

<modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float</type>
 <op_assign>
 <para>diffuseLight</para>
 <func>
 <para>max</para>
 <parameters>

<func>
 <para>dot</para>
 <parameters>
 <para>N</para>
 <para>L</para>
 </parameters>
 </func>
 <para>0</para>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>diffuse</para>
 <op_multi>
 <para>baseColor</para>
 <op_multi>
 <para>lightColor</para>
 <para>diffuseLight</para>
 </op_multi>
 </op_multi>
 </op_assign>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>V</para>
 <func>
 <para>normalize</para>
 <parameters>
 <op_multi>
 <para>viewPosition</para>
 <para>P</para>
 </op_multi>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>

 <type>float3</type>
 <op_assign>
 <para>H</para>
 <func>
 <para>normalize</para>
 <parameters>
 <op_plus>
 <para>L</para>
 <para>V</para>
 </op_plus>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <declaration>
 <modifier>
 </modifier>

<qualifier>
 </qualifier>
 <type>float</type>
 <op_assign>
 <para>specularLight</para>
 <func>
 <para>pow</para>
 <parameters>
 <func>
 <para>max</para>
 <parameters>
 <func>
 <para>dot</para>
 <parameters>
 <para>N</para>
 <para>H</para>
 </parameters>
 </func>
 <func>
 <para>-dot</para>
 <parameters>
 <para>N</para>
 <para>H</para>
 </parameters>
 </func>
 </parameters>
 </func>
 <para>256</para>
 </parameters>
 </func>
 </op_assign>
 </declaration>
 <if>
 <condition>
 <op_rela_not_greater>
 <para>diffuseLight</para>
 <para>0</para>
 </op_rela_not_greater>
 </condition>
 <body>
 <op_assign>
 <para>-specularLight</para>
 </op_assign>
 </body>
<para>specularLight</para>

162

A1c – brick_vert.cg

 </if>
 <declaration>
 <modifier>
 </modifier>
 <qualifier>
 </qualifier>
 <type>float3</type>
 <op_assign>
 <para>specular</para>
 <op_multi>
 <para>lightColor</para>
 <para>specularLight</para>
 </op_multi>
 </op_assign>
 </declaration>
 <op_div>
 <op_plus>
 <para>diffuse</para>
 <op_multi>
 <para>.3</para>
 <para>specular</para>
 </op_multi>
 </op_plus>
 <para>1.5</para>
 </op_div>
 <para>0.5</para>
 </body>
 </func>
</VertexShader>

// VertexShader IN Cg for brick
const float3 LightPosition =float3(0.0, 0.0, 4.0);
const float specularContribution =0.3 ;
const float diffuseContribution =0.4 ;
void main(
 out float LightIntensity ,
 out float2 MCposition ,
 in uniform float4x4 gl_ModelViewMatrix ,
 in float4 gl_Vertex :POSITION ,
 in float4 gl_Normal :NORMAL ,
 in uniform float4x4 gl_NormalMatrix ,
 in uniform float4x4 gl_ModelViewProjectionMatrix ,
 out float4 gl_Position :POSITION
)
{
 float4 ecPosition =mul(gl_ModelViewMatrix, gl_Vertex);
 float3 tnorm =normalize(mul(gl_NormalMatrix, gl_Normal).xyz);
 float3 lightVec =normalize(LightPosition -(float3)(ecPosition));
 float3 reflectVec =reflect(-lightVec, tnorm);
 float3 viewVec =normalize((float3)(-ecPosition));
 float spec =max(dot(reflectVec, viewVec), 0.0);
 spec =pow(spec, 16.0);

LightIntensity =diffuseContribution *max(dot(lightVec, tnorm), 0.0
)+specularContribution *spec ;

 MCposition =(float2)(gl_Vertex);
 gl_Position =mul(gl_ModelViewProjectionMatrix, gl_Vertex);
}

163

A1d – brick_frag.cg

A1cc – brick.vert

// Vertex shader in GLSL for brick

uniform vec3 LightPosition=vec3(0.0, 0.0, 4.0);
const float specularContribution = 0.3;
const float diffuseContribution = 0.7;//0.7 = 1.0 - specularContribution

varying float LightIntensity;
varying vec2 MCposition;

void main(void)
{
 vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex;
 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
 vec3 lightVec = normalize(LightPosition - vec3 (ecPosition));
 vec3 reflectVec = reflect(-lightVec, tnorm);
 vec3 viewVec = normalize(vec3 (-ecPosition));
 float spec = max(dot(reflectVec, viewVec), 0.0);
 spec = pow(spec, 16.0);
 LightIntensity = diffuseContribution * max(dot(lightVec, tnorm), 0.0) +
 specularContribution * spec;
 MCposition = vec2 (gl_Vertex);
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

const float3 BrickColor = float3(1.0, 0.3, 0.2);
const float3 MortarColor = float3(0.85, 0.86, 0.84);
const float ColumnWidth = 0.30;
const float RowHeight = 0.15;
const float Bwf = 0.94;
const float Bhf = 0.90;
float4 main(
 float2 MCposition : TEXCOORD1,
 float LightIntensity : TEXCOORD0

):COLOR0
{
 float3 color;
 float ss, tt, w, h;

 ss = MCposition.x / ColumnWidth;
 tt = MCposition.y / RowHeight;

 if (frac(tt * 0.5) > 0.5) // frac = fract()in GLSL
 ss += 0.5;

 ss = frac(ss); // fract() is fract(in open GLSL)
 tt = frac(tt);

 w = step(ss, Bwf);
 h = step(tt, Bhf);
 color = (MortarColor*(1.0 - w * h) + BrickColor*(w * h)) * LightIntensity;

 float4 gl_FragColor = float4 (color, 1.0);
 return gl_FragColor;
}

164

A1dd – brick.frag

A1e – Carbon atom-shader in Cg

// Carbon atom vertex shader in Cg: atom_vert.cg

void main(in float4 position : POSITION, //in object space
 in float4 position1:POSITION,
 in float4 normal : NORMAL, //in object space

 //mandatory parameters
 uniform float4x4 modelViewProjection,
 uniform float4x4 model,
 uniform float4x4 modelIT,
 uniform float3 viewPosition,

 //output parameters
 out float4 oPosition : POSITION, //
 out float3 oObjectPos : TEXCOORD0, //
 out float3 oNormal : TEXCOORD1 //
)
{
 float4 nposotion = float4(position.x,position.y,position.z,position.w);
 oPosition = mul(modelViewProjection, nposotion);

 //transform the vertex position and normal into World Space:
 oObjectPos = mul(model, position).xyz;
 oNormal = mul(modelIT, normal).xyz;
}

const vec3 BrickColor = vec3(1.0, 0.3, 0.2);
const vec3 MortarColor = vec3(0.85, 0.86, 0.84);
const float ColumnWidth = 0.30;
const float RowHeight = 0.15;
const float Bwf = 0.94;
const float Bhf = 0.90;

varying vec2 MCposition;
varying float LightIntensity;

void main(void)
{
 vec3 color;
 float ss, tt, w, h;

 ss = MCposition.x / ColumnWidth;
 tt = MCposition.y / RowHeight;

 if (fract(tt * 0.5) > 0.5)
 ss += 0.5;
 ss = fract(ss);
 tt = fract(tt);

 w = step(ss, Bwf);
 h = step(tt, Bhf);

 color = mix(MortarColor, BrickColor, w * h) * LightIntensity;
 gl_FragColor = vec4 (color, 1.0);
}

165

A1f –Carbon atom-shader in Cg

A1ee –Carbon atom-shader in GLSL

// Carbon atom vertex shader in GLSL: atom.vert
// VertexShader

uniform mat4 modelViewProjection ;
uniform mat4 model ;
uniform mat4 modelIT ;
uniform vec3 viewPosition ;
void main(void)
{

vec4 nposotion = vec4(gl_vector .x ,gl_vector .y ,gl_vector .z ,gl_vector .w);
 gl_vector = modelViewProjection * nposotion;
 gl_MultiTexCoord0.xyz = model * position.xyz ;
 gl_MultiTexCoord1.xyz = modelIT * normal.xyz ;

}

// Carbon atom fragment shader in Cg: atom_frag.cg

void main(in float4 position : TEXCOORD0, //in world space
 in float3 normal : TEXCOORD1, //in world space
 uniform float3 viewPosition, //mandatory in world space
 uniform float3 baseColor,
 uniform float3 lightPosition, //defined in world space
 out float4 oColor : COLOR
)
{
 float3 lightColor = float3(1.5f, 1.5f, 1.5f);

 float3 P = position.xyz;
 float3 N = normalize(normal);

 //get lightPosition into space
 lightPosition.z = -lightPosition.z;
 //compute the diffuseColor value, assume lightColor is white
 float3 L = normalize(lightPosition + P);
 float diffuseLight = max(dot(N, L), 0);
 float3 diffuse = baseColor * lightColor * diffuseLight;

 float3 V = normalize(viewPosition * P);
 float3 H = normalize(L + V);
 float specularLight = pow(max(dot(N, H), -dot(N, H)), 256);
 if(diffuseLight <= 0)
 specularLight = -specularLight;
 float3 specular = lightColor * specularLight;

 oColor.xyz = (diffuse+ .3*specular)/1.5;
 oColor.w = 0.5;
}

166

A1ff –Carbon atom-shader in GLSL

Appendix B. Partially mapping tables in for Shader Language
Converter

B1 – Data Types/Sampler types mapping table
(same as Table 3.4 X3D, XML and shading languages basic data type mapping table)

X3D XML Cg HLSL GLSL
SFBool bool bool bool bool
MFBool bool[] bool[] bool[] bool[]
MFInt32 float[] float[] int[] int[]
SFInt32 float float int int
SFFloat float float float float
MFFloat float[] float[] float[] float[]
SFDouble double double double float
MFDouble double[] double[] double[] float[]
SFTime double double double float
MFTime double[] double[] double[] float[]
SFNode Node

fields
Node fields Node fields Node fields

MFNode Node
fields

Node fields Node fields Node fields

// Carbon atom fragment shader in GLSL: atom.frag
// FragmentShader

uniform vec3 viewPosition ;
uniform vec3 baseColor ;
uniform vec3 lightPosition ;

void main(void)
{
 vec3 lightColor =vec3(1.5f, 1.5f, 1.5f);
 vec3 P =gl_MultiTexCoord0 .xyz ;
 vec3 N =normalize(gl_MultiTexCoord1.xyz);
 lightPosition.z -lightPosition .z ;
 vec3 L =normalize(lightPosition +P);
 float diffuseLight =max(dot(N, L), 0);
 vec3 diffuse =baseColor*lightColor *diffuseLight ;
 vec3 V =normalize(viewPosition *P);
 vec3 H =normalize(L +V);
 float specularLight =pow(max(dot(N, H),-dot(N, H)), 256);
 if(diffuseLight <=0){
 specularLight =-specularLight;
 }

 vec3 specular = lightColor * specularLight;
 gl_Color.xyz = (diffuse+ .3*specular)/1.5;
 gl_Color.w = 0.5;
}

167

SFVec2f float2 float2 float2 vec2
MFVec2f float2[] float2[] float2[] vec2[]
SFVec3f float3 float3 float3 vec3
MFVec3f float3[] float3[] float3[] vec3[]
SFVec4f float4 float4 float4 vec4
MFVec4f float4[] float4[] float4[] vec4[]
SFVec3d float3 float3 float3 float3
MFVec3d float3[] float3[] float3[] float3[]
SFVec4d float4 float4 float4 float4
MFVec4d float4[] float4[] float4[] float4[]
SFRotation float4 float4 float4 vec4
MFRotation float4[] float4[] float4[] vec4[]
MFColor float4[] float4[] float4[] vec4[]
SFColor float4 float4 float4 vec4
SFImage int[] int[] int[] int[]
MFImage int[] int[] int[] int[]
SFString Not

supported
Not
supported

Not upported Not
supported

MFString Not
supported

Not
supported

Not upported Not
supported

SFMatrix3f float3x3 float3x3 float3x3 mat3
MFMatrix3f float3x3[] float3x3[] float3x3[] mat3[]
SFMatrix4f float4x4 float4x4 float4x4 mat4
MFMatrix4f float4x4[] float4x4[] float4x4[] mat4[]

Table 3.5 X3D, XML and shading languages Sampler type mapping table

XML Cg HLSL GLSL
sampler1D sampler1D sampler1D sampler1D
sampler2D sampler2D sampler2D sampler2D
sampler3D sampler3D sampler3D sampler3D
samplerCUBE samplerCUBE samplerCUBE samplerCube
samplerRECT samplerRECT samplerRECT No-support
sampler1D sampler1D sampler1D sampler1DShadow
Sampler2D Sampler2D Sampler2D sampler2DShadow

B2 – Operators mapping table (special case only)
XML Cg HLSL GLSL

Op_mul Mul() (one
element is
matrix)

Mul() *

Op_mul * * *
Op_others others others others

B3 – modifiers/qualifiers mapping table
(Table 3.6 X3D, XML and shading languages basic Qualifiers mapping table)

XML Cg HLSL GLSL

168

const const uniform uniform
uniform uniform varying attribute
In, out, inout In, out, inout In, out, inout varying

B4 – Transformation Matrices mapping table

(Table 3.7 X3D, XML and shading languages Transformation matrix mapping table)
XML Cg HLSL GLSL

gl_NormalMatrix

gl_NormalMatrix

gl_NormalMatrix

gl_NormalMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewPro
jectionMatrix

gl_ModelViewMat
rix

gl_ModelViewMat
rix

gl_ModelViewMat
rix

gl_ModelViewMat
rix

B5 – Semantics in Cg or HLSL/building variables in GLSL mapping
table

(Table 3.8 XML and shading languages built-in variable mapping table)
XML Cg HLSL GLSL

gl_Position POSITION POSITION gl_Position
gl_Vertex POSITION POSITION gl_Vertex
gl_Normal NORMAL NORMAL gl_Normal
gl_Color COLOR COLOR gl_Color
gl_SecondColor COLOR0 COLOR0 gl_SecondColor
gl_MultiTexCoord0 TEXCOORD0 TEXCOORD0 gl_MultiTexCoord0
gl_MultiTexCoord1 TEXCOORD1 TEXCOORD1 gl_MultiTexCoord1
gl_MultiTexCoord2 TEXCOORD2 TEXCOORD2 gl_MultiTexCoord2
gl_MultiTexCoord3 TEXCOORD3 TEXCOORD3 gl_MultiTexCoord3
gl_MultiTexCoord4 TEXCOORD4 TEXCOORD4 gl_MultiTexCoord4
gl_MultiTexCoord5 TEXCOORD5 TEXCOORD5 gl_MultiTexCoord5
gl_MultiTexCoord6 TEXCOORD6 TEXCOORD6 gl_MultiTexCoord6
gl_MultiTexCoord7 TEXCOORD7 TEXCOORD7 gl_MultiTexCoord7

B5 – functions mapping table
For simplification, we show the maps of Cg, GLSL, and XML here only. HLSL should
be very similar to Cg function set.

Function category GLSL XML Cg
Basic functions
& built-in functions

normalize(v)
dot(a, b)

mat matrixCompMult (mat x, mat y) and
function operator: “ * ” .

lerp(x, y, k)
Smoothstep()
reflect(I, N) (I,N could be float or vec2-4)
step(a, x)
clamp(x, a, b)

fract()

mix(x, y, a)

Func_normalize
Func_dot

Func_mul(x, y)
* operation (op_mul)

Fun_lerp
Func_Smoothstep
Func_reflect
Func_step
Func_clamp

Func_ fract

x*(1-a) + y*a

normalize(v)
dot(a, b)

mul(x, y)
x, y could be matrix or vector

lerp(x, y, k)
Smoothstep()
reflect(I, N)/refrect(I, N, eta)
step(a, x)
clamp(x, a, b)

fract()

x*(1-a) + y*a

169

//lit function :
float dCol;
dCol = max(diffuse, 0.0);
Guidoutput.diffCol = float4(dCol);
float sCol; sCol = min(diffuse, speclar);
if (sCol < 0)
sCol = 0.0;
else
sCol = pow(speclar, 32);
Guidoutput.specCol = float4(sCol);

Others

//lit function :
float dCol;
dCol = max(diffuse, 0.0);
Guidoutput.diffCol =
float4(dCol);
float sCol; sCol =
min(diffuse, speclar);
if (sCol < 0)
sCol = 0.0;
else
sCol = pow(speclar, 32);
Guidoutput.specCol =
float4(sCol);

Func_others

lit(diffuse, specular,32)

Others

Texture lookup functions vec4 texture1D (sampler1D sampler,
float coord [, float bias])
vec4 texture1DProj (sampler1D sampler,
vec2 coord [, float bias])
vec4 texture1DProj (sampler1D sampler,
vec4 coord [, float bias])
vec4 texture1DLod (sampler1D sampler,
float coord, float lod)
vec4 texture1DProjLod (sampler1D sampler,
vec2 coord, float lod)
vec4 texture1DProjLod (sampler1D sampler,
vec4 coord, float lod)
Others

Func_tex1D

Func_tex1D

Func_tex1D

Func_tex1D

Func_ tex1Dproj

Func_ tex1Dproj

Others

tex1D(sampler1D tex, float s)

tex1D(sampler1D tex, float s, float
dsdx, float dsdy)
tex1D(sampler1D tex, float sz)

tex1D(sampler1D tex, float sz, float
dsdx, float dsdy)
tex1Dproj (sampler1D tex, float2 sq)

tex1Dproj (sampler1D tex, float3 szq)

Others

Appendix C. Source Code

C1 – Partially Shader Language Converter Source Code
Due to the paper space, we are not going to show each line of the code (total 80 pages
even in font 8). But would like to show two of the most important functions. Since the
conversion is consist 3 parts symetraclly. We show 2 of them, rests can follow this
one. Cg2XML_Click function and XML2GLSL_Click function which developed in C#

1. Function 1 Cg2Xml_Click () function

// Function 1 Cg2Xml_Click () function
// Author Feng Liu
// Last Modifyed by Sep 26 2004
private void cg2Xml_Click(object sender, System.EventArgs e)
{

 mOp2Prior=maps_Load("cgOperator2Priority.txt");
 mOp2Xml=maps_Load("cgOperator2Xml.txt");
 mQual2Xml=maps_Load("cgQualifier2xml.txt");
 mType2Xml=maps_Load("cgType2xml.txt");
 mSema2Xml=maps_Load("cgSemantic2xml.txt");
 //prepare for a xml dom tree

 XmlNode xmlnode,xmlnode2;

 //XmlText xmltext;
 //XmlAttribute xmlattr;
 //xmldoc=new XmlDocument();
 //let's add the XML declaration section
 createXmlDom();
 xmlnode=xmldoc.CreateNode(XmlNodeType.XmlDeclaration,"","");
 xmldoc.AppendChild(xmlnode);
 //***************************
 string sLine1 = textBox1.Text;
 string shaderNameType = sLine1.Substring(sLine1.IndexOf("-")+1,4);

170

 if (shaderNameType=="vert")
 {
 xmlnode2=xmldoc.CreateNode(XmlNodeType.Element,"VertexShader","");
 }
 else xmlnode2=xmldoc.CreateNode(XmlNodeType.Element,"FragShader","");
 xmldoc.AppendChild(xmlnode2);
 //****Feng*********
 string sLine="";
 //read source code from a file
 fname=textBox1.Text;

 fname=fname.Trim();
 StreamReader objReader=null;
 if(textBox1.Modified || !(richTextBox1.Modified))
 { richTextBox1.Clear();
 try
 {
 objReader= new StreamReader(fname);
 // listBox1.Items.Clear();
 while((sLine=objReader.ReadLine())!=null)
 {
 richTextBox1.AppendText(sLine+"\n");
 Console.WriteLine("sLine="+sLine);
 }//end while objReader.readline()
 objReader.Close();
 textBox1.Modified = false;
 }
 catch(Exception e1)
 {

MessageBox.Show(e1.Message, "Error",MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);

 return;
 }
 }
 ArrayList aList=new ArrayList(richTextBox1.Lines);
 ArrayList nList=new ArrayList();
 aList=statement_Adjust(aList);
 int i=0;
 bool btag=false;
 string tLine;
 while(i<aList.Count)
 {
 sLine=(string)aList[i];

sLine=sLine.Trim();
 btag=false;
 if(!btag && isStruct(sLine))
 {
 int start=i;
 int tag=0;
 nList.Clear();
 while(i<aList.Count)
 {
 tLine=(string)aList[i];
 nList.Add(tLine);
 if(tLine.IndexOf("{")!=-1) tag=tag+1;
 if(tLine.IndexOf("}")!=-1) tag=tag-1;
 i=i+1;
 if(tag==0) break;
 }
 //foreach(string s in nList)
 // listBox1.Items.Add(s);
 int t=0;
 xmlnode=struct_Convert(nList,ref t);
 xmlnode2.AppendChild(xmlnode);
 //i=i+1;
 btag=true;

171

 }//end if isStruct
 if(!btag && isDeclaration(sLine)>0)
 {
 xmlnode=declaration_Convert(sLine);
 xmlnode2.AppendChild(xmlnode);
 btag=true;
 i=i+1;
 }//end if isDeclaration
 if(!btag && isFunc(sLine))
 {
 int start=i;
 int tag=0;
 nList.Clear();
 while(i<aList.Count)
 {
 tLine=(string)aList[i];
 nList.Add(tLine);
 if(tLine.IndexOf("{")!=-1) tag=tag+1;
 if(tLine.IndexOf("}")!=-1) tag=tag-1;

 i=i+1;
 if(tag==0) break;
 }
 //nList.Clear();

 //foreach(string s in nList)
 // listBox1.Items.Add(s);
 int t=0;
 xmlnode=func_Convert(nList,ref t);
 xmlnode2.AppendChild(xmlnode);
 //i=i+1;
 btag=true;
 }//end if isFunc
 if(!btag) i++;
 }//end while i<aList.count
 xmldoc.Save(fname+".xml");
 try
 {
 richTextBox2.LoadFile(fname+".xml",RichTextBoxStreamType.PlainText);
 //richTextBox3.LoadFile(fname+".xml",RichTextBoxStreamType.PlainText);
 }
 catch(Exception e1)

 {MessageBox.Show(e1.Message, "Error",MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);

 return; }
 // System.Diagnostics.Process.Start(fname+".xml");

}// end of Cg2Xml_Click () function

172

2. // Function 2 Xml2GLSL_Click() function:

// Function 1 Cg2Xml_Click () function
// Author Feng Liu
// Last Modifyed by Sep 26 2004
private void Xml2GL_Click(object sender, System.EventArgs e)
{ // this is really xml2Cg

 mOp2Prior=maps_Load("cgOperator2Priority.txt");
 mOp2Xml=maps_Load("cgOperator2Xml.txt");
 mQual2Xml=maps_Load("cgQualifier2xml.txt");
 mType2Xml=maps_Load("cgType2xml.txt");
 mSema2Xml=maps_Load("cgSemantic2xml.txt");
 mglType2Xml=maps_Load("glType2xml.txt");
 mglFunc2Xml=maps_Load("glFunction2xml.txt");
 mglSema2Xml=maps_Load("glSemantic2xml.txt");
 mglQual2Xml=maps_Load("glQualifier2xml.txt");

 //XmlElement xmlelem;
 XmlNode xmlnode,xmlnode2;
 //XmlText xmltext;
 //XmlAttribute xmlattr;
 //xmldoc=new XmlDocument();
 //let's add the XML declaration section
 createXmlDom();
 xmlnode=xmldoc.CreateNode(XmlNodeType.XmlDeclaration,"","");
 xmldoc.AppendChild(xmlnode);
 //****Feng*************
 string sLine1 = GLSLfileName.Text;

 string shaderNameType =
sLine1.Substring(sLine1.IndexOf(".")+1,sLine1.Length-sLine1.IndexOf(".")-1);

 if (shaderNameType=="vert")
 {
 xmlnode2=xmldoc.CreateNode(XmlNodeType.Element,"VertexShader","");
 }
 else xmlnode2=xmldoc.CreateNode(XmlNodeType.Element,"FragShader","");
 xmldoc.AppendChild(xmlnode2);
 //****Feng**************
 string sLine="";
 //read source code from a file
 string fname=GLSLfileName.Text;
 fname=fname.Trim();
 StreamReader objReader=null;
 if(GLSLfileName.Modified || !(richTextBox3.Modified))
 {
 richTextBox3.Clear();
 try
 {
 objReader= new StreamReader(fname);
 // listBox1.Items.Clear();
 while((sLine=objReader.ReadLine())!=null)
 {
 richTextBox3.AppendText(sLine+"\n");
 Console.WriteLine("sLine="+sLine);
 }//end while objReader.readline()
 objReader.Close();
 GLSLfileName.Modified = false;
 }
 catch(Exception e1)
 {

MessageBox.Show(e1.Message, "Error",MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);

 return; }
 }
 ArrayList aList=new ArrayList(richTextBox3.Lines);
 ArrayList nList=new ArrayList();

173

 aList=statement_Adjust(aList);
 ArrayList pList=glStatement_Adjust(aList);
 int i=0;
 bool btag=false;

 string tLine;
 while(i<aList.Count)
 {
 sLine=(string)aList[i];
 sLine=sLine.Trim();
 btag=false;

 if(isglDeclaration(sLine)>0)
 {
 xmlnode=glDeclaration_Convert(sLine);
 xmlnode2.AppendChild(xmlnode);
 btag=true;
 i=i+1;
 }//end if isDeclaration
 if(isglFunc(sLine))
 {
 int start=i;
 int tag=0;
 nList.Clear();
 while(i<aList.Count)
 {
 tLine=(string)aList[i];
 nList.Add(tLine);
 if(tLine.IndexOf("{")!=-1) tag=tag+1;
 if(tLine.IndexOf("}")!=-1) tag=tag-1;

 i=i+1;
 if(tag==0) break;
 }
 //nList.Clear();

 //foreach(string s in nList)
 // listBox1.Items.Add(s);
 int t=0;
 xmlnode=glFunc_Convert(nList,ref t);
 xmlnode2.AppendChild(xmlnode);
 //i=i+1;
 btag=true;
 }//end if isFunc
 if(!btag) i++;

 }//end while i<aList.count
 xmldoc.Save(fname+".xml");
 try
 {
 richTextBox2.LoadFile(fname+".xml",RichTextBoxStreamType.PlainText);

 }
 catch(Exception e1)
 {

MessageBox.Show(e1.Message, "Error",MessageBoxButtons.OK,
MessageBoxIcon.Exclamation);

 return;
 }
 // System.Diagnostics.Process.Start(fname+".xml");

}// end of Xml2GLSL function

174

C2 – XSL source code for CML to X3D + shader conversion
(protoDeclearation part only)
<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<!--
 <Header>
 <meta name="filename" content="cmlToX3d_3.xsl" />
 <meta name="Orig-author" content="Nicholas F. Polys" />
 <meta name="author" content="Feng Liu : Modify for include shader in" />
 <meta name="revised" content="March 1 2005 by Feng Liu" />
 <meta name="description" content=" XSL stylesheet to convert CML-XML files to X3D
files for Xj3D" />
 <meta name="url"
content="http://www.web3D.org/TaskGroups/x3d/translation/cml2X3d.xsl" />
 </Header>

Recommended tools:
- Gnome Libs and Perl Modules
- SAXON XML Toolkit (and Instant Saxon) http://users.iclway.co.uk/mhkay/saxon
- Can also be used with Apache server, Xalan & Cacoon

-->

 <!--xsl:output method="xml" encoding="UTF-8" media-type="model/x3d+xml" cdata-section-
elements="Script"
indent="yes" doctype-system="http://www.web3d.org/specifications/x3d-3.0.dtd"/-->

<xsl:output method="xml" encoding="UTF-8" media-type="model/x3d+xml" cdata-section-
elements="Script"
indent="yes" doctype-system="x3d-3.0.dtd"/>

<!—The fololowing part are predefined Carbon with Phong shader as appearance-->
<ProtoDeclare name="Carbon">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>
 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="atoC">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>
 <!--#############################-->
 <ShaderAppearance>
 <VertexShader url="Carbon-v.cg"/>
 <FragmentShader url="Carbon-f.cg">
 <field accessType="inputOutput" name="baseColor" type="SFColor" value
="0.6 0.6 0.6"/>
 <field accessType="inputOutput" name="lightPosition" type="SFVec3f" value
="-10 10 -10"/>
 </FragmentShader>
 </ShaderAppearance>
 <!--#############################-->
 <Sphere radius=".68"/>
 </Shape>

……
 </ProtoBody>
</ProtoDeclare> … …

175

C2 – XSL source code for X3D + shader 2 VRML + shader conversion

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
 xmlns:saxon="http://icl.com/saxon" saxon:trace="no">

<!-- XSL namespaces are in transition! Tools are slow to catch up.
 *** Edit the topmost stylesheet tag on line 2 of this file to match the xmlns
namespace URI for your XSL tool. ***
 W3C:
 Saxon: <xsl:stylesheet xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 IBM XSLEditor: <xsl:stylesheet xmlns:xsl='http://www.w3.org/XSL/Transform/1.0'>
 IE 5: <xsl:stylesheet xmlns:xsl='http://www.w3.org/TR/WD-xsl'>
 XT: <xsl:stylesheet xmlns:xsl='http://www.w3.org/XSL/Transform'>
-->
<!--
 <head>
 <meta name="filename" content="X3dToVrml97.xslt" />
 <meta name="author" content="Don Brutzman" />
 <meta name="LatticeXvl author" content="Marc Jablonski" />
 <meta name="revised" content="25 May 2003" />
 <meta name="revised" content="1 March 2005” by Feng Liu added shader
appearance support/>
 <meta name="description" content="XSL stylesheet to convert X3D files to VRML 97
format, fourth draft matching x3d-compromise.dtd" />
 <meta name="url"
content="http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xslt" />
 </head>

Recommended tool:
- SAXON XML Toolkit (and Instant Saxon) from Michael Kay of ICL,
http://saxon.sourceforge.net

- Can also be used with Apache server -->
<!-- * recurse through each of the tree node elements, including ProtoInstance * -->
<xsl:template match="*">
 <xsl:param name="indent"><xsl:text>0</xsl:text></xsl:param>
 ………….
 local-name()='ProtoInstance' or $nodeType='ProtoInstance' or
$EPnodeType='ProtoInstance' or @nodeType='ProtoInstance')
 and (local-name(..)='LoadSensor' or $parentType='LoadSensor'
or $EPparentType='LoadSensor' or ../@nodeType='LoadSensor' and
 @containerField='watchList') ">
 <!-- appears to be a valid watchList node --></xsl:when>
 <!-- 4-way node-type tests: native VRML node, ProtoDeclared ProtoInstance,
ExternProtoDeclared ProtoInstance, or internal DTD declaration by content -->
<!--################################-->
 <xsl:when test="local-name()='ShaderAppearance' or
$nodeType='ShaderAppearance' or $EPnodeType='ShaderAppearance' or
@nodeType='ShaderAppearance' "><xsl:text>appearance </xsl:text></xsl:when>
 <xsl:when test="local-name()='VertexShader' or $nodeType='VertexShader'
or $EPnodeType='VertexShader' or @nodeType='VertexShader'
"><xsl:text>vertexShader </xsl:text></xsl:when>
 <xsl:when test="local-name()='FragmentShader' or $nodeType='FragmentShader'
or $EPnodeType='FragmentShader' or @nodeType='FragmentShader'
"><xsl:text>fragmentShader </xsl:text></xsl:when>
<!--############## ##################-->
 <xsl:when test="local-name()='Appearance' or $nodeType='Appearance'
or $EPnodeType='Appearance' or @nodeType='Appearance' "><xsl:text>appearance
</xsl:text></xsl:when>
 <xsl:when test="local-name()='AudioClip' or $nodeType='AudioClip'
or $EPnodeType='AudioClip' or @nodeType='AudioClip' "><xsl:text>source
</xsl:text></xsl:when>
 <xsl:when test="local-name()='Box' or $nodeType='Box'

176

<!--################################-->
 <xsl:when test="(local-name()='MovieTexture' or $nodeType='MovieTexture'
or $EPnodeType='MovieTexture' or @nodeType='MovieTexture')
 and (local-name(..)='ShaderAppearance' or
$parentType='ShaderAppearance' or $EPparentType='ShaderAppearance' or
../@nodeType='ShaderAppearance' or
local-name(..)='texture') "><xsl:text>texture </xsl:text></xsl:when>

 <xsl:when test="(local-name()='MovieTexture' or $nodeType='MovieTexture'
or $EPnodeType='MovieTexture' or @nodeType='MovieTexture')
 and (local-name(..)='Sound' or $parentType='Sound'
or $EPparentType='Sound' or ../@nodeType='Sound' or
 local-name(..)='source') "><xsl:text>source
</xsl:text></xsl:when>
 <xsl:when test="((local-name()='Normal' or $nodeType='Normal'
or $EPnodeType='Normal' or @nodeType='Normal') and
not(@containerField='skinNormal'))"><xsl:text>normal </xsl:text></xsl:when>
 <xsl:when test="local-name()='PixelTexture' or $nodeType='PixelTexture'
or $EPnodeType='PixelTexture' or @nodeType='PixelTexture'
<xsl:with-param name="DEF" select="../../@DEF"/>
 </xsl:call-template>
</xsl:when>
<xsl:when test="@nodeField and
(preceding::ProtoDeclare[@name=$protoName]/ProtoInterface/field[@name=$nodeField])">

</xsl:when>

177

C3 – example caffeine in X3D_With_Shader
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE X3D
 SYSTEM "x3d-3.0.dtd">
<X3D profile="Immersive">
 <head>
 <meta content="translatedCML.x3d" name="filename"/>
 <meta content="http://www.xml-cml.org" name="description"/>
 <meta content="today" name="revised"/>
 <meta content="cml2x3d.xsl" name="author"/>
 </head>
 <Scene>
 <ProtoDeclare name="Carbon">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>
 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="atoC">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>
 <ShaderAppearance>
 <VertexShader url="test-v.cg"/>
 <FragmentShader url="test-f.cg">

<field accessType="inputOutput" name="baseColor"
type="SFColor" value="0.6 0.6 0.6"/>
<field accessType="inputOutput" name="lightPosition"
type="SFVec3f" value="-10 10 -10"/>

 </FragmentShader>
 <Material DEF="atoC_mat" diffuseColor="0 0 0" shininess=".8"
specularColor=".29 .3 .29">

 <IS>
 <connect nodeField="transparency" protoField="Mat"/>
 </IS>
 </Material>
 </ShaderAppearance>
 <Sphere radius=".68"/>
 </Shape>
 <Shape>
 <Appearance/>
 <Text string="C">
 <FontStyle size=".8"/>
 </Text>
 </Shape>
 </Transform>
 </Group>
 </ProtoBody>
 </ProtoDeclare>
 <ProtoDeclare name="Hydrogen">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>
 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="atoH">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>

 <ShaderAppearance>
 <VertexShader url="Fur.fx">

178

<field accessType="inputOutput" name="GlowColor"
type="SFVec4f" value="0.98 0.98 0.98 0.4"/>
<field accessType="inputOutput" name="GlowThickness"
type="SFFloat" value="0.015"/>

 </VertexShader>
<Material DEF="atoC_mat" diffuseColor="0 0 0" shininess=".8"
specularColor=".29 .3 .29">

 <IS>
 <connect nodeField="transparency" protoField="Mat"/>
 </IS>
 </Material>
 </ShaderAppearance>
 <Sphere radius=".30"/>
 </Shape>
 <Shape>
 <Appearance/>
 <Text string="H">
 <FontStyle size=".4"/>
 </Text>
 </Shape>
 </Transform>
 </Group>
 </ProtoBody>
 </ProtoDeclare>
 <ProtoDeclare name="Nitrogen">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>
 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="atoN">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>
 <ShaderAppearance transparent="TRUE">
 <VertexShader url="test-v.cg"/>
 <FragmentShader url="test-f.cg">

<field accessType="inputOutput" name="baseColor"
type="SFColor" value="0.56 0.56 .98"/>
<field accessType="inputOutput" name="lightPosition"
type="SFVec3f" value="-10 10 -10"/>

 </FragmentShader>
 <Material DEF="atoC_mat" diffuseColor="0 0 0" shininess=".8"
specularColor=".29 .3 .29">

 <IS>
 <connect nodeField="transparency" protoField="Mat"/>
 </IS>
 </Material>
 </ShaderAppearance>
 <Sphere radius=".65"/>
 </Shape>
 <Shape>
 <Appearance/>
 <Text string="N">
 <FontStyle size=".8"/>
 </Text>
 </Shape>
 </Transform>
 </Group>
 </ProtoBody>
 </ProtoDeclare>
 <ProtoDeclare name="Oxygen">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>

179

 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="atoO">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>
 <ShaderAppearance>
 transparent TRUE

 <VertexShader url="test-v.cg"/>
 <FragmentShader url="test-f.cg">

<field accessType="inputOutput" name="baseColor"
type="SFColor" value=".98 .0 .0"/>
<field accessType="inputOutput" name="lightPosition"
type="SFVec3f" value="-10 10 -10"/>

 </FragmentShader>
<Material DEF="atoC_mat" diffuseColor="0 0 0"
shininess=".8" specularColor=".29 .3 .2">

 <IS>
 <connect nodeField="transparency" protoField="Mat"/>
 </IS>
 </Material>
 </ShaderAppearance>
 <Sphere radius=".63"/>
 </Shape>
 <Shape>
 <Appearance/>
 <Text string="O">
 <FontStyle size=".8"/>
 </Text>
 </Shape>
 </Transform>
 </Group>
 </ProtoBody>
 </ProtoDeclare>
 <ProtoDeclare name="Sulphur">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>
 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="atoS">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>
 <ShaderAppearance>
 <VertexShader url="test-v.cg"/>
 <FragmentShader url="test-f.cg">

<field accessType="inputOutput" name="baseColor"
type="SFColor" value=".98 .78 .20"/>

<field accessType="inputOutput" name="lightPosition"
type="SFVec3f" value="-10 10 -10"/>

 </FragmentShader>
<Material DEF="atoC_mat" diffuseColor="0 0 0"
shininess=".8" specularColor=".29 .3 .29">

 <IS>
 <connect nodeField="transparency" protoField="Mat"/>
 </IS>
 </Material>
 </ShaderAppearance>
 <Sphere radius="1.3"/>
 </Shape>
 <Shape>

180

 <Appearance/>
 <Text string="S">
 <FontStyle size=".8"/>
 </Text>

 </Shape>
 </Transform>

 </Group>
 </ProtoBody>
 </ProtoDeclare>
 <ProtoDeclare name="unknown">
 <ProtoInterface>
 <field accessType="inputOutput" name="position" type="SFVec3f"/>
 <field accessType="inputOutput" name="Mat" type="SFFloat" value=".6"/>
 </ProtoInterface>
 <ProtoBody>
 <Group>
 <Transform DEF="ato_">
 <IS>
 <connect nodeField="translation" protoField="position"/>
 </IS>
 <Shape>
 <ShaderAppearance>
 <VertexShader url="test-v.cg"/>
 <FragmentShader url="test-f.cg">

<field accessType="inputOutput" name="baseColor"
type="SFColor" value=".0 .98 .0"/>

<field accessType="inputOutput" name="lightPosition"
type="SFVec3f" value="-10 10 -10"/>

 </FragmentShader>
<Material DEF="atoC_mat" diffuseColor="0 0 0"
shininess=".8" specularColor=".29 .3 .29">

 <IS>
 <connect nodeField="transparency" protoField="Mat"/>
 </IS>
 </Material>
 </ShaderAppearance>

 <Sphere radius="0.6"/>
 </Shape>
 <Shape>
 <Appearance/>
 <Text string="?">
 <FontStyle size=".8"/>
 </Text>
 </Shape>
 </Transform>
 </Group>
 </ProtoBody>
 </ProtoDeclare>
 <Group>
 <Transform>
 <ProtoInstance name="Carbon" DEF="caffeine_karne_a_1">
 <fieldValue name="position" value="-2.8709 -1.0499 0.1718"/>
 </ProtoInstance>
 </Transform>
 <Transform translation="0 0 0">
 <ProtoInstance name="line" DEF="caffeine_karne_b_25">
 <fieldValue name="bond_set" value="-1.6764 -3.1997 0.1458, -2.0682 -3.5218
1.1381"/>
 </ProtoInstance>
 </Transform>
 </Group>
 </Scene>
</X3D> <!—end of the X3D with Shader caffeinn strructure-->

181

C3b – example caffeine in VRML_Shader
#VRML V2.0 utf8
X3D-to-VRML-97 XSL translation autogenerated by X3dToVrml97.xsl
http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xsl

[X3D] VRML V3.0 utf8
[X3D] profile=Immersive
[X3D] noNamespaceSchemaLocation=http://www.web3d.org/specifications/x3d-3.0.xsd
[X3D] version=3.0

[head]
[meta] filename: translatedCML.x3d
[meta] description: http://www.xml-cml.org
[meta] revised: today
[meta] author: cml2x3d.xsl
[Scene]

PROTO Carbon [
 exposedField SFVec3f position 0 0 0
 exposedField SFFloat Mat .6
] {
 Group {
 children [
 DEF atoC Transform {
 translation IS position
 children [
 Shape {
 appearance ShaderAppearance {
 vertexShader VertexShader {
 url ["test-v.cg"]
 }
 fragmentShader FragmentShader {
 exposedField SFColor baseColor 0.6 0.6 0.6
 exposedField SFVec3f lightPosition -10 10 -10
 url ["test-f.cg"]
 }
 material DEF atoC_mat Material {
 diffuseColor 0 0 0
 shininess .8
 specularColor .29 .3 .29
 transparency IS Mat
 }
 }
 geometry Sphere {
 radius .68
 }
 }
 Shape {
 appearance Appearance {
 }
 geometry Text {
 string ["C"]
 fontStyle FontStyle {
 size .8
 }
 }
 }
]
 }
]
 }
}

PROTO Hydrogen [
 exposedField SFVec3f position 0 0 0
 exposedField SFFloat Mat .6

182

] {
 Group {
 children [
 DEF atoH Transform {
 translation IS position
 children [
 Shape {
 vertexShader VertexShader {
 url ["test-v.cg"]
 }
 fragmentShader FragmentShader {
 exposedField SFColor baseColor 0.98 0.98 0.98
 exposedField SFVec3f lightPosition -10 10 -10
 url ["test-f.cg"] }
 material DEF atoC_mat Material {
 diffuseColor 0 0 0
 shininess .8
 specularColor .29 .3 .29
 transparency IS Mat
 }
 }
 geometry Sphere {
 radius .30
 }
 }
 Shape {
 appearance Appearance {
 }
 geometry Text {
 string ["H"]
 fontStyle FontStyle {
 size .4
 }
 }
 }
]
 }
]
 }
}
PROTO Nitrogen [
 exposedField SFVec3f position 0 0 0
 exposedField SFFloat Mat .6
] {
 Group {
 children [
 DEF atoN Transform {
 translation IS position
 children [
 Shape {
 appearance ShaderAppearance {
 transparent TRUE
 vertexShader VertexShader {
 url ["test-v.cg"]
 }
 fragmentShader FragmentShader {
 exposedField SFColor baseColor 0.56 0.56 .98
 exposedField SFVec3f lightPosition -10 10 -10
 url ["test-f.cg"]
 }
 material DEF atoC_mat Material {
 diffuseColor 0 0 0
 shininess .8
 specularColor .29 .3 .29
 transparency IS Mat }
 }

 }

183

 geometry Sphere {
 radius .65
 }
 }
 Shape {
 appearance Appearance {
 }
 geometry Text {
 string ["N"]
 fontStyle FontStyle {
 size .8
 }
 }
 }
]
 }
]
 }
}
PROTO Oxygen [
 exposedField SFVec3f position 0 0 0
 exposedField SFFloat Mat .6
] {
 Group {
 children [
 DEF atoO Transform {
 translation IS position
 children [
 Shape {
 appearance ShaderAppearance {
 vertexShader VertexShader {
 url ["test-v.cg"]
 }
 fragmentShader FragmentShader {
 exposedField SFColor baseColor .98 .0 .0
 exposedField SFVec3f lightPosition -10 10 -10
 url ["test-f.cg"]
 }
 material DEF atoC_mat Material {
 diffuseColor 0 0 0
 shininess .8
 specularColor .29 .3 .2
 transparency IS Mat
 }
 }
 geometry Sphere {
 radius .63
 }
 }
 Shape {
 appearance Appearance {
 }
 geometry Text {
 string ["O"]
 fontStyle FontStyle {
 size .8
 }
 }
 }
]
 }
] }}
PROTO Sulphur [
 exposedField SFVec3f position 0 0 0
 exposedField SFFloat Mat .6
] {
 Group {

184

 children [
 DEF atoS Transform {
 translation IS position
 children [
 Shape {
 appearance ShaderAppearance {
 vertexShader VertexShader {
 url ["test-v.cg"]
 }
 fragmentShader FragmentShader {
 exposedField SFColor baseColor .98 .78 .20
 exposedField SFVec3f lightPosition -10 10 -10
 url ["test-f.cg"]
 }
 material DEF atoC_mat Material {
 diffuseColor 0 0 0
 shininess .8
 specularColor .29 .3 .29
 transparency IS Mat
 }
 }
 geometry Sphere {
 radius 1.3
 }
 }
 Shape {
 appearance Appearance {
 }
 geometry Text {
 string ["S"]
 fontStyle FontStyle {
 size .8
 }
 }
 }
]
 }
]
 }
}
PROTO unknown [
 exposedField SFVec3f position 0 0 0
 exposedField SFFloat Mat .6
] {
 Group {
 children [
 DEF ato_ Transform {
 translation IS position
 children [
 Shape {
 appearance ShaderAppearance {
 vertexShader VertexShader {
 url ["test-v.cg"]
 }
 fragmentShader FragmentShader {
 exposedField SFColor baseColor .0 .98 .0
 exposedField SFVec3f lightPosition -10 10 -10
 url ["test-f.cg"]
 }
 material DEF atoC_mat Material {
 diffuseColor 0 0 0
 shininess .8
 specularColor .29 .3 .29
 transparency IS Mat
 }
 }

185

 geometry Sphere {
 }
 }
 Shape {
 appearance Appearance {
 }
geometry Text {
 string ["?"]
 fontStyle FontStyle {
 size .8
 }
 }
 }
]
 }
]
 }
}
.
.
.
Group {
 children [
 Transform {
 children [
 DEF caffeine_karne_a_1 Carbon {
 position -2.8709 -1.0499 0.1718
 }
]
 }
 Transform {
 children [
 DEF caffeine_karne_a_2 Nitrogen {
 position -2.9099 0.2747 0.1062
 }
]
 }
 Transform {
 children [
 DEF caffeine_karne_a_3 Carbon {
 position -1.8026 0.9662 -0.1184
 }
]
 }
 Transform {
 children [
 DEF caffeine_karne_a_4 Carbon {
 position -0.6411 0.2954 -0.2316
 }
]
 }
 Transform {
 children [
 DEF caffeine_karne_a_5 Carbon {
 position -0.6549 -1.0889 -0.1279
 }
]
 }
 Transform {
 children [
 DEF caffeine_karne_a_6 Nitrogen {
 position -1.7352 -1.7187 0.0624
 }
]
 }
.
.

186

.
 Transform {
 children [
 DEF caffeine_karne_b_25 line {
 bond_set [-1.6764 -3.1997 0.1458, -2.0682 -3.5218 1.1381]
 }
]
 }
]
} // eof cafeinn.cml.x3d_shader.vrml

187

C4c – specular light adjustable Interface example functions and
 ROUTEs
#VRML V2.0 utf8
#Simple_Specular_Light_Control.wrl
June 8 2005 Writen by Feng Liu

PROTO My_P [

 exposedField SFFloat phongN 100
 exposedField SFFloat transparency 0.3
 exposedField SFColor Ka 0.8 0.6 0.4

]{

Shape {
 appearance ShaderAppearance {
 transparent TRUE
 vertexShader VertexShader {
 url ["phong_shader/phong_vert.cg"]
 }
 fragmentShader DEF Hydrogen_Frag FragmentShader {

 exposedField SFColor Ka IS Ka
 field SFColor Kd 0.8 0.6 0.4
 field SFColor Ks 0.7 0.7 0.7
 field SFColor ambientLight 0.2 0.2 0.2
 exposedField SFFloat phongN IS phongN
 field SFColor lightColor 1.0 1.0 1.0
 field SFVec3f lightPosition 0 0 15
 exposedField SFFloat transparency IS transparency

 url ["phong_shader/phong_frag.cg"]

 }
 }
 geometry Sphere { radius .20 }
 }
}

Transform { translation 0 0 0
 children [
 DEF my_P_1 My_P {
 # phongN 100
 }
]
}
Transform { translation 1 0 0
 children [
 DEF my_P_1 My_P {
 # phongN 100
 }
]
}

define a sensor

Transform {
translation -2 0 0
 children [
 DEF slidesensor PlaneSensor {
 minPosition 0.0 0.0
 maxPosition 1.5 0.0
 offset 0 0 0

188

 autoOffset TRUE
 }
 DEF regler Transform {
 scale 3 6 3
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor .7 0 0
 specularColor .6 .1 .2
 shininess .8
 }}
 geometry Sphere { radius .05 }
 }}
 Transform {
 translation 0.56 0 0
 rotation 0 0 1 1.5708
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor .3 .3 .3
 specularColor .7 .7 .8
 shininess .2
 }}
 geometry Cylinder { radius .1 height 2 }
 }}
]}

DEF fractionscript Script {
eventIn SFVec3f set_translation
eventOut SFFloat oneDFloat
eventOut SFColor threeDFloat

url "vrmlscript:
function set_translation(value) {
oneDFloat = ((value[0])*10000/100);
threeDFloat [0]= value[0];
//threeDFloat [1]= value[1];
}"}

ROUTE slidesensor.translation_changed TO regler.set_translation
ROUTE slidesensor.translation_changed TO fractionscript.set_translation
ROUTE fractionscript.oneDFloat TO my_P_1.phongN

ROUTE fractionscript.oneDFloat TO my_P_1.transparency
ROUTE fractionscript.threeDFloat TO my_P_1.Ka
EOF Simple_Specular_Light_Control.wrl

C4e – bump adjustable Interface example functions and ROUTEs
#VRML V2.0 utf8
#Simple_BUMP_Control.wrl
June 8 2005 Writen by Feng Liu

PROTO My_P [
 exposedField SFFloat phongN 100
 exposedField SFFloat transparency 0.3
 exposedField SFColor Ka 0.8 0.6 0.4
]{
Shape {
 appearance ShaderAppearance {
 transparent TRUE
 vertexShader VertexShader {
 url ["phong_shader/phong_vert.cg"]
 }
 fragmentShader DEF Hydrogen_Frag FragmentShader {

189

 exposedField SFColor Ka IS Ka
 field SFColor Kd 0.8 0.6 0.4
 field SFColor Ks 0.7 0.7 0.7
 field SFColor ambientLight 0.2 0.2 0.2
 exposedField SFFloat phongN IS phongN
 field SFColor lightColor 1.0 1.0 1.0
 field SFVec3f lightPosition 0 0 15
 exposedField SFFloat transparency IS transparency
 url ["phong_shader/phong_frag.cg"]

 }
 }
 geometry Sphere { radius .20 }
 }
}
Transform { scale .5 0.5 0.5
children[
Shape {
 appearance ShaderAppearance {
 transparent TRUE
 vertexShader DEF VertexShader1 VertexShader
 {

 url "BumpPlastic.fx"
 exposedField SFVec4f LightPos 1 0.5 2 0
 exposedField SFFloat Bumpy 5

exposedField SFNode diffuseMap ImageTexture { url "dna_1-
1.jpg" }
exposedField SFNode normalMap ImageTexture { url "dna_1-
1_hf.jpg" }

 }
 }
 geometry DEF _IndexedFaceSet IndexedFaceSet {

 coord Coordinate {point [
3.82137e-015 -1 8.74228e-008,-8.52767e-009 -0.980785 -0.19509,-1.67276e-
008 -0.92388 -0.382683,-2.42847e-008 -0.83147 -0.55557,
.
.
.
texCoord
 MultiTextureCoordinate { coord
[TextureCoordinate {point [
1 0,1 0.0625,1 0.125,1 0.1875,
.
.
.

define a sensor

Transform {
translation -2 0 0
 children [
 DEF slidesensor PlaneSensor {
 minPosition 0.0 0.0
 maxPosition 1.5 0.0
 offset 0 0 0
 autoOffset TRUE
 }
 DEF regler Transform {
 scale 3 6 3
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor .7 0 0
 specularColor .6 .1 .2
 shininess .8

190

 }}
 geometry Sphere { radius .05 }
 }}

Transform {

 translation 0.56 0 0
 rotation 0 0 1 1.5708
 children Shape {
 appearance Appearance {
 material Material {
 diffuseColor .3 .3 .3
 specularColor .7 .7 .8
 shininess .2
 }}
 geometry Cylinder { radius .1 height 2 }
 }}
]}

DEF fractionscript Script {
eventIn SFVec3f set_translation
eventOut SFFloat oneDFloat
eventOut SFColor threeDFloat

url "vrmlscript:
function set_translation(value) {
oneDFloat = ((value[0])*10000/100);
threeDFloat [0]= value[0];
//threeDFloat [1]= value[1];
}"}

ROUTE slidesensor.translation_changed TO regler.set_translation
ROUTE slidesensor.translation_changed TO fractionscript.set_translation
ROUTE fractionscript.oneDFloat TO VertexShader1.Bumpy
EOF Simple_BUMP_Control.wrl

C5 – MUSE bump sharing Interface example functions and
 ROUTEs (partially on network node information exchange)

#VRML V2.0 utf8
#Simple_BUMP_Control.wrl
June 8 2005 Writen by Feng Liu

#Matrix PROTOS

PROTO NetworkSFVec3f [
 eventIn SFVec3f set_value
 eventOut SFVec3f value_changed
 eventIn SFVec3f value_fromnet
 eventOut SFVec3f value_tonet
 exposedField SFString tag ""
 exposedField SFBool pilotOnly TRUE
 field SFBool localCopy TRUE
 exposedField SFBool echo TRUE
 exposedField SFBool cont FALSE
]
{
 Script {
 eventIn SFVec3f InSc IS set_value
 eventOut SFVec3f OutSc IS value_changed
 eventIn SFVec3f netInSc IS value_fromnet
 eventOut SFVec3f netOutSc IS value_tonet
 field SFBool local IS localCopy

191

 directOutput TRUE
 mustEvaluate TRUE

 url "javascript:
 function InSc(value) {
 netOutSc = value;
 if(local == true)
 OutSc = value;
 }
 function netInSc(value) {
 OutSc = value;
 }
 "
 }
}
.
.
.

DEF Side_view1 Viewpoint {
 position 250 40 0
 orientation 0 1 0 1.5708
 fieldOfView 0.7
 description "Side_view1"
 }
]
}

#ende Matrix things

#VRML V2.0 utf8

PROTO My_P [

 exposedField SFFloat phongN 100
 exposedField SFFloat transparency 0.3
 exposedField SFColor Ka 0.8 0.6 0.4

]
{
Shape {
 appearance ShaderAppearance {
 transparent TRUE
 vertexShader VertexShader {
 url ["phong_shader/phong_vert.cg"]
 }
 fragmentShader DEF Hydrogen_Frag FragmentShader {

 exposedField SFColor Ka IS Ka
 field SFColor Kd 0.8 0.6 0.4
 field SFColor Ks 0.7 0.7 0.7
 field SFColor ambientLight 0.2 0.2 0.2
 exposedField SFFloat phongN IS phongN
 field SFColor lightColor 1.0 1.0 1.0
 field SFVec3f lightPosition 0 0 15
 exposedField SFFloat transparency IS transparency

 url ["phong_shader/phong_frag.cg"]

 }
 }
 geometry Sphere { radius .20 }
 }
}
Transform { scale .5 0.5 0.5
children[

192

 transparent TRUE
vertexShader DEF VertexShader1 VertexShader
{
 url "BumpPlastic.fx"
 exposedField SFVec4f LightPos 1 0.5 2 0
 exposedField SFFloat Bumpy 5
 exposedField SFNode diffuseMap ImageTexture { url "dna_1-1.jpg" }
 exposedField SFNode normalMap ImageTexture { url "dna_1-1_hf.jpg" }
}

}
geometry DEF _IndexedFaceSet IndexedFaceSet {
 coord Coordinate {point [

3.82137e-015 -1 8
.
.
.

DEF fractionscript Script {
eventIn SFVec3f set_translation
eventOut SFFloat oneDFloat
eventOut SFColor threeDFloat

url "vrmlscript:
function set_translation(value) {
oneDFloat = ((value[0])*10000/100);
threeDFloat [0]= value[0];
//threeDFloat [1]= value[1];
}"

}

ROUTE BKmover.translation_changed TO BKnet.set_value
ROUTE BKnet.value_changed TO blackking.translation

ROUTE slidesensor.translation_changed TO regler.set_translation
ROUTE slidesensor.translation_changed TO fractionscript.set_translation
ROUTE fractionscript.oneDFloat TO VertexShader1.Bumpy
ROUTE fractionscript.oneDFloatTO BKnet.set_value
ROUTE BKnet.value_changed TO VertexShader1.translation

Appendix D – Image Credits

Figure 2 - 1 Plastic shader on the spherical surface

Figure 2 - 2 Graphics Pipeline

Figure 2 - 3 GPU – CPU Interface in modern Graphics Pipeline

Figure 2 - 4 Cg Shaders loading process

Figure 2 - 5 GLSL Shaders loading process

Figure 2 - 6 Google Hit of 3D web websites

Figure 2 - 7 X3D / VRML Growing history

Figure 2 - 8 Shaders in VRML/X3D web browser on single machine

Figure 3 - 9 Coordinate System and Transformation for Vertex Processing

Figure 4 - 0 Beauty of life – Picture from Heaven & Earth by Phaidon

Figure 4 - 1 Protein example

193

Figure 4 - 2 Size of molecular

Figure 4 - 3 HIV protease structure

Figure 4 - 4 HIV protease cell

Figure 4 - 7 ShaderAppearence Prototype in VRML

Figure 4 - 8 VertexShader Prototype in VRML

Figure 4 - 9 FragmentShader Prototype in VRML

Appendix E – code Credits
Example 2.1 Renderman plastic shader code fragment from Pixar’s The RenderMan Interface

Example 2.3 vertex shader of brick in GLSL from Rost’s The OpenGL Shading Language

Example 2.4 vertex shader of wood in high level shading language from [Peeper and Mitchell 2002].

Example 3.3 Cg vp 20 binding example from nVidia Cg Tutorial 1.0

Example 4.2 an example of caffeine CML structure from [Polys 2003]

Example 4.4 A touch sensor example in X3D from [Krone 2003]

Appendix F – SLC source code (Available with requirement)

	Georgia State University
	ScholarWorks @ Georgia State University
	1-12-2007

	Platform Independent Real-Time X3D Shaders and their Applications in Bioinformatics Visualization
	Feng Liu
	Recommended Citation

	Microsoft Word - Dissertation_format_Al_without_sourcel2_Nov27.doc

