
！Exploiting the GPU Power for Intensive
Geometric and Imaging Data Computation

Wang Jianqing

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

Aug, 2004

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

fir ::、禽

|j(SI M 8 Q)•)
Vv画.縣岁妨yV

Abstrac t

Computer graphics, imaging and visualization nowadays requires dealing with

and performing various analysis on large amount of data. For example, defor-

mation and skeletal animation of complex geometries in real-time, multiple-

level discrete wavelet transform on high resolution imaging data, etc. These

operations usually are computational intensive and impose a heavy burden

on the CPU, which are also hard to achieve real-time performance. On the

other hand, with the recent advances in consumer-level graphics hardware,

the current new generation of graphics accelerator now consists of a graph-

ics processing unit (GPU) which offers SIMD-based parallel processing power.

It doesn't merely do the job of rendering texture-mapped polygons, but also

provide us with high-precision rendering pipeline and high programmability

nowadays. We can perform other general purpose computing on it when care-

fully designed. In this thesis, we have successfully exploited the power of GPU

for computation and processing of both geometric data and imaging data in the

2 applications - real-time character facial and skeletal animation; and multiple

levels of discrete wavelet transform. We develop parallel algorithms to map

our solutions to the GPU SIMD architecture and leverage its power to give a

great performance gain in both applications. These approaches also offload the

intensive computing tasks from CPU and achieve load balancing between CPU

and GPU. At the same time, for the virtual character project, we also propose

a simple and efficient framework for both facial and skeletal animation, as well

as the seamless integration of them for rendering. The solutions for supporting

i

multilingual lip synchronization and integration with text-to-speech system of

multiple languages are also developed.

ii

摘要

今天，在計算機圖形學，圖形處理與可視化的研究領域中，處理與分析大量數據

楚必不可少的。比如複雜三維幾何體的實時變形與骨豁動畫，或是對高分辨率的

大尺寸圖像做多重小波變換。這些處理通常需要繁重與大量的計算，並且對電腦

屮央處理單元 (C P U)的運作造成了大量的負擔，也很難實現實時的性能。在另一

方面，隨著近幾年消費者級的圖形處理硬件的快速迅猛發展，新一代的圖形加速

卡己經配備了一顆具有並行向量處理與多重流水綫的圖形處理單元 (GPU)，由於

提供了高精度的圖形流水錢與易于使用的圖形編程接口，它不僅僅只適用於圖形

渲染的功能，只要經過適當的算法設計，我們可用它來實行其他更多非圖形或一

般化的計算任務。我們成功探索了圖形處理單元對於大量幾何與圖像數據的潛在

計算處理能力，並提供了對於兩個此類問題的解決方案一實時虚擬角色的臉部

與骨豁動畫，以及對高分辨率圖像進行快速多重小波變換。我們設計的並行算法

成功將這些問題映射到G P U的並行架構之上並最大限度發掘它對這兩個問題的

性能加速，減輕C P U的計算負荷與達到負載平衡。同時在虚擬角色的研究中，我

們也推出了一個簡單而有效且可以同時支持臉部與骨豁動畫的系統架構對於多

語言進行唇形同步，以及與文本到語音合成系統的整合問題我們也提出了很好的

解決方案。

i i i

Acknowledgments

I would like to thank my supervisors professor Pheng-Ann Heng and professor

Tien-Tsin Wong, who have patiently guided me through the steps of my MPhil

study. I thank them for being great advisors, teachers, and friends. They

convinced me that my work of GPU computation for virtual character system

and discrete wavelet transform was a good topic to devote my time for research.

Without their encouragement and guidance I couldn't have achieved any of the

awards or publications now. I want to express my gratitude to professor Helen

Meng, her guidance in the virtual performer project, as well as her advices and

encouragement are of great help to me. I would also like to thank my thesis

committee, professor Hanqiii Sun and professor Kin-Hong Wong. Professor

Hanqiu Sun has also been my marker for 2 times and given me many useful

advices on my research work, many thanks for that.

I would like to express my gratitude to Mr. K. Yamato, the famous CG

artist from Japan, for providing the beautiful character model to me for use in

my project without any fee. I want to thank my great partner Simon Wong,

we are a great team and had a good time working together for the virtual

performer project. I am very grateful to Mark Harris and Tristan Lorach

from NVIDIA as well as Cliff Wolley from University of Virginia for their

great support and help in endless technical issues of GPU. I would also like to

thank all the people that contribute to the GPU community at www.gpgpu.org

and www.cgshaders.org, the passionate discussions and enlightening ideas are

always my valuable resources and forces for research. I'm very thankful to

iv

http://www.gpgpu.org
http://www.cgshaders.org

my colleagues here in our graphics research group in Department of Computer

Science and Engineering of CUHK, we have spent 2 years of wonderful time

together doing graphics research and all of you have helped me a lot. I would

like to express my great gratitude to my parents and family and my girlfriend.

Without your love and help, I could not have gone this far.

At last, I would like to thank all the graphics cards I've worked with, in my

heart you are not just circuit boards with silicon chips, you are my friends at

all times. Without you, none of my programs would run and give me beautiful

graphics on the screen, which are always my greatest rewards.

V

Contents

1 Introduction 1

1.1 Overview 1

1.2 Thesis 3

1.3 Contributions 4

1.4 Organization 6

2 Programmable Graphics Hardware 8

2.1 Introduction 8

2.2 Why Use GPU? 9

2.3 Programmable Graphics Hardware Architecture 11

2.4 Previous Work on GPU Computation 15

3 Multilingual Virtual Performer 17

3.1 Overview 17

3.2 Previous Work 18

3.3 System Overview 20

3.4 Facial Animation 22

3.4.1 Facial Animation using Face Space 23

3.4.2 Face Set Selection for Lip Synchronization 27

3.4.3 The Blending Weight Function Generation and Coartic-

ulation 33

3.4.4 Expression Overlay 38

vi

3.4.5 GPU Algorithm 39

3.5 Character Animation 44

3.5.1 Skeletal Animation Primer 44

3.5.2 Mathematics of Kinematics 46

3.5.3 Animating with Motion Capture Data 48

3.5.4 Skeletal Subspace Deformation 49

3.5.5 GPU Algorithm 50

3.6 Integration of Skeletal and Facial Animation 52

3.7 Result 53

3.7.1 Summary 58

4 Discrete Wavelet Transform On G P U 60

4.1 Introduction 60

4.1.1 Previous Works 61

4.1.2 Our Solution 61

4.2 Miiltiresolution Analysis with Wavelets 62

4.3 Fragment Processor for Pixel Processing 64

4.4 DWT Pipeline 65

4.4.1 Convolution Versus Lifting 65

4.4.2 DWT Pipeline 67

4.5 Forward DWT 68

4.6 Inverse DWT 71

4.7 Results and Applications 73

4.7.1 Geometric Deformation in Wavelet Domain 73

4.7.2 Stylish Image Processing and Texture-illuminance De-

coupling 73

4.7.3 Hardware-Accelerated JPEG2000 Encoding 75

4.8 Web Information 78

5 Conclusion 79

vii

Bibliography 81

viii

>

List of Figures

2.1 The graphics hardware pipeline 12

2.2 The vertex processor 13

2.3 The fragment processor 14

3.1 Virtual character system architecture 20

3.2 Face set in the high dimensional face space 24

3.3 Using deformation vector as basis to span a high dimensional

face space 26

3.4 Sample input and output of CU Vocal 28

3.5 IPA visemes 31

3.6 Japanese characters with phonetic representation 32

3.7 The coarticulation between 2 adjacent phonemes 35

3.8 Variation of blending weights over time for animation 37

3.9 Live news report animation using weight function generated au-

tomatically by CU Vocal TTS system 38

3.10 Manual weight function generation using waveform analyze soft-

ware 39

3.11 Facial expressions 40

3.12 Vertex shacler structure for facial animation 41

3.13 Using video ram as stream data buffer 42

3.14 Skeleton hierarchy and the corresponding mesh 45

3.15 A simple 2 bone skeletal structure 47

ix

3.16 Motion capture animation using BVH data 49

3.17 Skeletal subspace deformation 50

3.18 Pseudocode for skeletal subspace deformation on GPU 51

3.19 Skeletal subspace deformation on GPU 51

3.20 Integration of skeletal and facial animation 53

3.21 The color and alpha channel for hair 54

3.22 Cubemap for rendering the environment 55

3.23 Environment and effect rendering 56

3.24 Cartoon style rendering 57

4.1 One dimensional DWT: filtering and downsampling 63

4.2 The 3D rendering pipeline 65

4.3 The lifting scheme 66

4.4 Separable 2D DWT 68

4.5 The indirect address table for boundary extension 70

4.6 Mapping to the base positions and decomposition 70

4.7 Virtual upsampling and interleaving for precomputing indirect

addresses 72

4.8 Reconstruction filtering in inverse DWT 72

4.9 Three different wavelet-based geometric designs 73

4.10 Fast imago stylishing by combining coefficients in wavelet domain. 74

4.11 Fast texture-illuminance decoupling 75

4.12 JPEG2000 encoding flow 76

4.13 Timing Comparison: software versus GPU DWT 77

V

(

List of Tables

2.1 Features "and performance of selected NVIDIA GPUs 11

2.2 Vertex engine features 12

2.3 Fragment engine features 15

3.1 Cantonese onsets mapping 30

3.2 Cantonese nuclei mappings 30

3.3 Cantonese codas mapping 31

3.4 Cantonese nasals mapping 31

3.5 Japanese mapping table 33

3.6 Mandarin mapping 34

3.7 Results of the user perception experiments 56

3.8 Geometric and texture data statistics 57

3.9 Performance on different systems 58

4.1 Breakdown of computational time (sec) 78

4.2 Encoding quality comparison for lossy coding 78

xi

Chapter 1

In t roduct ion

1.1 Overview

Nowadays, various applications in computer graphics, visualization and image

processing require dealing with large amount of data. The data can be gen-

erally categorized into 2 types: geometric data and imaging data. Geometric

data is usually in the form of polygonal meshes or spline patches; and imaging

data is usually 2D grid data with several channels. High resolution polygonal

mesh and large texture images are now frequently used for rendering in game,

movie industry and TV commercials. Volume Data in medical imaging like

CT or MRI images are handled and processed for visualization in many appli-

cations. All the facts show that in the area of computer graphics and imaging,

we are facing an increasing need for processing more and more large data sets

with the computing power of our PC. In many applications that require high

performance or quick response, the need for processing and performing inten-

sive computation on large data sets as quick as possible or even in real-time

continuously grows.

In applications of geometric computing, a typical example of intensive com-

putation on large geometric data set is real-time 3D facial deformation and

1

Chapter 1 Introduction 2

kinematics calculation in virtual character animation, which requires fast de-

formation calculation of the 3D human face mesh and weighted skeletal trans-

formation of all of the vertices. It remains a challenge for achieving real-time

and high-quality rendering at the same time. In many previous applications,

people trade performance with low quality model of less data, or have to wait

for a long time to do off-line rendering of high quality animations.

When dealing with imaging data, one typical example of computational in-

tensive task will be the discrete wavelet transform on large images or data set.

The intensive computation of DWT due to multilevel filtering/downsampling

does not cause a serious problem when the data scale is small, but this will

become a significant bottleneck in real-time applications with large data set.

Like using the new JPEG2000 standard to encode/decode high resolution im-

ages from the digital cameras today, the waiting time may be unendurably

long from tens of seconds to minutes per image according to its size.

On the other hand, the recent rapid increase in the processing speed and

programmability of consumer graphics hardware cast lights on our problems.

With the powerful SIMD architecture and parallel pipelines of the graphics

processing unit (GPU), it is possible to exploit the graphics rendering pipeline

and design GPU algorithms for more general computational tasks besides just

rendering.

In this thesis, we focus on exploiting the computational power of two en-

gines inside GPU at different stages of the pipeline - the vertex processor

and fragment processor for their potential applications in large geometric and

imaging data processing. We achieve this goal by providing efficient solutions

to the two typical problems described above - real-time high quality virtual

character animation and fast discrete wavelet transform.

Chapter 1 Introduction 3

1.2 Thesis

Central to our research, the goal in this thesis is to perform intensive geomet-

ric and imaging data computation on the GPU using the vertex and fragment

shaclers, which are programs being executed by the vertex and fragment pro-

cessor, respectively. The rendering pipeline is exploited to perform geometric

and imaging computation taaks that are offloaded from CPU, and at the same

time, to increase performance with the SIMD and parallel processing power of

GPU.

We illustrate how to perform large amount of geometric computation on

GPU by providing solutions for the virtual character animation problem. This

is a joint project between Department of Computer Science and Engineering

(CSE) and Department of System Engineering and Engineering Management

(SEEiVI). We cooperate with Dr. Helen Meng from Human Computer Com-

munication Laboratory (HCCL). An efficient framework for virtual character

animation suitable for GPU computation is developed. This enables us to

perform facial and skeletal animation computation totally on the GPU, thus

achieve high quality rendering as well as maintain real-time performance with

the help of mapping the large amount of geometric data computation onto the

vertex processor of GPU. Besides the performance issue, the language capabil-

ity of the virtual character for lip synchronization is also explored. In order for

the character to be multilingual and speak or sing in different languages, an

International Phonetic Alphabet (IPA)-basecl mapping technique is developed

and could be used to extend the language capability of the virtual character

to many different languages like Mandarin, Cantonese, English, Japanese, and

much more. The home-brew cantonese text-to-speech system - CU Vocal de-

veloped by the HCCL of SEEM department is also integrated into our system,

that enables us to generate cantonese lip-synced cantonese speech animation

in real-time just from Chinese texts.

Chapter 1 Introduction 4

Fast processing of large imaging data set on GPU is also possible. We illus-

trate this by providing solution to accelerate the slow multi-level DWT process.

We successfully map the whole transform onto the GPU using the fragment

shader engine. Indirect addressing / dependent texture read technique is em-

ployed to effectively implement the DWT on GPU. Although the forward and

inverse wavelet transforms are mathematically different, our proposed algo-

rithm unifies them to an almost identical process that can be efficiently imple-

mented on GPU. Different wavelets kernels and boundary extension schemes

can be easily incorporated by simply modifying input parameters. To demon-

strate its applicability and performance, we apply it to wavelet-based geo-

metric design, stylish image processing, texture-illuminance decoupling, and

JPEG2000 image coding.

1.3 Contributions

The major contribution of this thesis is the techniques and approaches devel-

oped by us to map intensive geometric and imaging data computation to the

vertex and fragment engines of the GPU, and how to make use of its SIMD

and parallel pipeline power to achieve high system performance.

The virtual character system provides a good solution for performing ge-

ometric deformation for animation computing on GPU. At the same time,

it also presents a simple and efficient framework for both facial and skeletal

animation. The multilingual lip synchronization capabilities, as well as the

support for real-time generation of lip-synchronized animation with text-to-

speech systems are also developed.

And for imaging data processing on the GPU, we accelerate the discrete

wavelet transform with the fragment processor using indirect addressing or

dependent texture techniques. Our approach not only unifies both forward

and inverse transform into an almost same process, different wavelets kernels

Chapter 1 Introduction 5

and boundary extension schemes can be also be easily incorporated.

Our research work on geometric and imaging computation on GPU have

also been highly evaluated by experts from different research areas. We achieved

publications in international conferences, as well as various awards and pub-

licity. These have been the forces to drive us for better research in the GPU

area.

Publications

• Jianqing Wang, Ka-Ho Wong, Pheng-Ann Heng, Helen M. Meng and

Tien-Tsin Wong, A Real- Time Cantonese Text- To-Audiovisual Speech

Synthesizer, in Proceedings of IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP 2004), Vol. I，Montreal,

Quebec, Canada, May 2004, pp. 653-656.

• Jianqing Wang, Tien-Tsin Wong, Pheng-Ann Heng and Chi-Sing Leung,

Discrete Wavelet Transform on GPU, in Proceedings of ACM Workshop

on General Purpose Computing on Graphics Processors, Los Angeles,

USA, August 2004，to appear

• Jianqing Wang, Tien-Tsin Wong, Pheng-Ann Heng and Chi-Sing Le-

ung, Discrete Wavelet Transform on Consumer Level Graphics Hard-

ware, submitted to IEEE Transaction of Circuit and Systems for Video

Technology.

Awards

• Multilingual virtual performer won the second prize in the 8th China

Challenge Cup Contest in Guangzhou, November, 2003.

Publicity

• Multilingual virtual performer is reported in E-Zone magazine, No. 268,

30 September 2003.

Chapter 1 Introduction 6

• The research on "Discrete Wavelet Transform on GPU" is reported by

www.gpgpu.org (general purpose computation on graphics processing

unit), a popular GPU research information web site.

• Our open source implementation of DWTGPU module and extension of

JPEG2000 codec-JasPer recieved over 300 downloads within 4 months

(http://wwwxse.cuhk.edii.hk/~ttwong/software/dwtgpu/dwtgpu.html).

• The virtual character system is used in Hong Kong national I.T gala

dinner 18 September, 2003 •

It is also hoped that by studying these 2 research topics, more and more

techniques for geometric and imaging computation on GPU will be explored

and shared in the research community, and the vertex and fragment processers

can be leveraged for more parallel processing power in different graphics, scien-

tific, or engineering computational intensive tasks. As said above, besides the

geometric and imaging computation on GPU, our research work also explore

the animation framework for virtual character system, as well as the multilin-

gual language capabilities for it. We hope this GPU-based virtual character

animation framework will provide a good solution to be used in different niul-

tirnedia areas.

1.4 Organization

The thesis is organized as follows. The next chapter provides a brief intro-

duction to the evolution history and the architecture of the programmable

graphics hardware, as well as how it can be used for other general purpose

computation. Chapter 3 describes geometric computing on GPU 一 the vir-

tual character framework on vertex processor and the detail of multilingual

lip synchronization as well as skeletal animation with motion capture data.

In chapter 4, we presents our techniques of imaging computing on GPU, with

http://www.gpgpu.org
http://wwwxse.cuhk.edii.hk/~ttwong/software/dwtgpu/dwtgpu.html

Chapter 1 Introduction 7

our unified algorithm for execute both forward and inverse DWT totally on

fragment processor. In the last chapter, we concludes and discuss the future

directions for GPU computing.

Chapter 2

Programmable Graphics

Hardware

2.1 Introduction

Computer graphics hardware is advancing at incredible rates.When IBM in-

troduced Video Graphics Array (VGA) hardware in 1987, the VGA controller

was what we now call a “ dumb" frame buffer. This meant that the CPU was

responsible for updating all the pixels.

Prior to the introduction of GPUs, companies such as Silicon Graphics

(SGI) and Evans & Sutherland designed specialized and expensive graphics

hardware. The graphics systems developed by these companies introduced

many of the concepts, such as vertex transformation and texture mapping, that

we take for granted today. These systems were very important to the historical

development of computer graphics, but because they were so expensive, and

they are not used by many developers.

NVIDIA introduced the term "GPU" in the late of 1990s when the legacy

term "VGA controller" was no longer an accurate description of the graphics

hardware in a PC. Today the CPU rarely manipulates pixels directly. Instead,

graphics hardware designers build the "smarts" of pixel updates into the GPU.

Basically we can categorize the evolution of GPU as 4 Generations.

8

Chapter 2 Programmable Graphics Hardware 9

The first generations of CPUs (up to 1998) includes NVIDIA's TNT2,

ATI's Rage, and Sdfx's VooclooS. These GPUs are capable of rasterizing pre-

transforrned triangles and applying one or two texture. This generation GPUs

relievo the CPU from updating individual pixels. However, they suffer from

2 limitations. First, vertex transformations happen totally in the CPU, 1st

generation GPU do not have the ability to do vertex transformations. Second,

only a small limited set of mathematical operations for combining textures are

supported to compute the color of pixels.

The second generation of GPUs (1999-2000) includes NVIDIA's Geforce

256 and Geforce2. ATI's Radeon 7500, and Savage 3D. These GPUs are ca-

pable of doing vertexing transformation and lighting in hardware. While be-

fore this generation, fast vertex transformations are only available in high-end

workstations. But for the set of mathematical operations supported in the

texture blending stage is still limited. It's more configurable, but still not

programmable.

The third generation of GPUs includes NVIDIA's GeforceS and Geforce4

Ti, Microsoft's Xbox, and ATI's Radeon 8500. This generation provides good

vertex prograrnmability than the second generation, and more pixel-level con-

figurability is available. But these modes are not powerful enough to be con-

sidered truly programmable.

The fourth and current generation of GPUs includes NVIDIA's GeforceFX

family with the CineFX architecture and ATI's Radeon 9700. These GPUs

provide both vertex-level and pixel level prograrnmability. This is the genera-

tion that 's really powerful enough to offload, complex tasks from the CPU.

2.2 Why Use GPU?

GPUs are designed to be efficient coprocessors for rendering and shading. But

the prograrnmability now available in GPUs such as the NVIDIA GeForce FX

Chapter 2 Programmable Graphics Hardware 10

and the ATI Radeon 9800 makes them useful coprocessors for more applica-

tions. We can see the fact that the time between new generations of GPUs

is currently much less than for CPUs, which mean faster coprocessors are

available more often than faster central processors. GPU performance tracks

rapid improvements in semiconductor technology more closely than CPU per-

formance. This is because CPUs are designed for low latency computations,

while GPUs are optimized for high throughput of vertices and fragments [1].

Low latency on memory-intensive applications typically requires large caches,

which use a lot of silicon area. Additional transistors are used to greater effect

in GPU architectures because they are applied to additional processors and

functional units that increase throughput. In addition, programmable GPUs

are inexpensive and compatible with many operating systems and hardware

architectures.

More importantly, in many graphics and visualization applications great

processing power is needed for real-time performance. Since in most applica-

tions the ultimate result is rendered on the screen, so moving more simulation

computation onto the GPU that renders the result not only reduces com-

putational load on the main CPU, but also avoids the substantial bus traffic

required to transmit the results of a CPU simulation to the GPU for rendering.

In this way, GPU computation provide an additional tool for load balancing

in complex interactive applications.

The general problems with the graphics hardware were the difficulty of pro-

gramming and the lack of high precision fragment operations and storage. But

these issues were mostly resolved by the latest GPUs and software. Following

a research trend in the use of high-level shading language to program graphics

hardware [2] [3], NVIDIA released its Cg shading language [4]. Also the new

generations of GPUs, the NVIDIA Geforce FX series and the ATI Radeon

9700/9800, provide us IEEE 32-bit single precision floating point precision

throughout the graphics pipeline. This enables GPU computation to apply to

Chapter 2 Programmable Graphics Hardware 11

Generation Year Product Name Transisters Antialiasing Fill Rate Polygon Rate
i r ^ Riva TNT 7M ^ m
1 1999 Riva TNT2 9M 75M 9M
2 1999 Geforce 256 23M 120M 15M
2 2000 Geforce 2 25M 200M 25M
3 2001 Geforce 3 57M 800M 30M
3 2002 Geforce 4 63M 1200M 60M
4 2003 GeforceFX 125M 2000M 200M

Table 2.1: Features and performance of selected NVIDIA GPUs

those applications that require high dynamic range data. Further generations

of GPUs will likely continue to improve in precision and performance.

2.3 Programmable Graphics Hardware Archi-

tecture

CPUs normally have only one programmable processor. In contrast, GPUs

have at least two programmable processors, the vertex processor and the frag-

ment processor, plus other non-programmable hardware units. The processors,

the non-programmable parts of the graphics hardware, and the application are

all linked through data flows. The graphics rendering pipeline is illustrated in

Figure 2.1.

When we write programs for the vertex processor and the fragment proces-

sor, we refer the programs as vertex shaders and fragment shaders (also known

as pixel shaders), respectively.

Vertex Shaders

Vertex shaders get executed for each vertex that passes through the pipeline. A

vertex shader is a program that has exactly one vertex as input and one vertex

as output. A vertex in this context is a structure composed a number of vertex

attributes, of which one must be the vertex position. Other vertex attributes

Chapter 2 Programmable Graphics Hardware 12

\

3 0 A P I

O p e n G L / Dir«ct3D

\ I I " - x l
Graphics Card

�
Cofnmand & ，
Orija Slroiini Asdomblod ,

Pt>lyaons, Pixwl Loculion
I ver tex lnd«K U n o s timl Stroorn Pixel U p d a m s [

；h n n i f p H J I mmmm J hnni^^^iniJI Shhhmiv^ ^^wmmmmmrn]
I 1

Pfetri inxform RastHrized ‘
eri t iros Transforms J Pfolran&forme, I Transformed i

I Vftrlices Frugnmntfi Fragments i
I I
I I

‘ Programm«bki L ^ , Programmable • i
I ver tex F b ^ ^ C r O Ft 卯 騰 nt ‘

、一 _ _ _ /

Figure 2.1: The graphics hardware pipeline

Parts of fixed-function pipeline replaced Parts that are not replaced
Transformation from world space to clipping space Primitive assembly

Normalization Frustum culling
Lighting and materials Perspective Division

Texture coordinates generation Viewport mapping
Backface culling

Table 2.2: Vertex engine features

include normal vectors, colors, texture coordinates, or any other user-defined

value that is required for the pre-vertex computations in the vertex shader.

Vertex shaders can never operate on several vertices at a time.

When a vertex shader is used, some parts of the vertex processing fixed-

pipeline is replaced and some are not, which is shown in Table 2.2

As shown in Figure 2.2,vertex shader can read the vertex attributes from a

relatively small number of read-only input registers. Using a usually large num-

ber of read-only constant registers and a small number of temporary registers

the shader then performs its computations. The constant registers contain

values that do not change per vertex, but only change once every frame or

once every couple of frames. Example for values that are usually stored in the

Chapter 2 Programmable Graphics Hardware 13

Vertex input _
Registers H 1

Constant Registers 圓

Shader Code ^ ̂ ^ ^ ^ ^ ^ ^ Temporary i

T T v e r t e x A L U
.. q V ^ V ^ ^ i L f 1

Address Registers I

h^BMIMMBWM
Vertex Output |

Registers 1

Figure 2.2: The vertex processor

constant registers are the combined world-view-projection matrix and other

matrices of use, light direction, etc. A small number of address registers can

also be used by the shader to perform indexed relative addressing into the

array of constant registers.

Finally, the shader writes its results to a number of write-only output

registers. These output registers have a pre-defined semantic meaning such as

the transformed, homogenous vertex position, texture coordinates, and vertex

colors. These results are then passed on to the next stage of the fixed-function

pipeline, and might eventually be used by a possibly activated fragment shader

at a later stage in the pipeline.

Fragment Shaders

Fragment shaders get executed per fragment during the rasterization phase in

the graphics pipeline. A fragment is a point in window coordinates produced

by the rasterizer with associated attributes, such as interpolated color values,

a depth value, and possibly one or more texture coordinates. A fragment mod-

ifies the pixel in the frame buffer at the same window space location based on

a number of parameters and conditions defined by the pipeline stages following

Chapter 2 Programmable Graphics Hardware 14

the rasterizer, such as the depth test, the stencil test, or a fragment shader.

Sometimes the notion of fragment is mistaken for the notion of pixel. How-

ever, a pixel is only the final color value written to the frame buffer, and each

pixel in the frame buffer usually corresponding to multiple fragments. Some

of these fragments get discarded because of e.g the depth test; others might

get combined to form the final pixel color.

Fragment Input _
Registers _

丨丨..,,I

一 一

1 f \ ' - ‘ ~ ~ N Temporary
Shader Code M ~ ~ l / Registers

Fragment Output |
Registers |

Figure 2.3: The fragment processor

Fragment shaders operate on fragments just before they reach the final

stages of the rendering pipeline such as the alpha, depth and stencil tests.

The fragment shader receives the vertex shader outputs interpolated across a

primitive as input and delivers a single color value and a depth value that gets

passed on to the final stages of the pipeline as output.

When a fragment shader is used, some parts of the fixed-function pipeline

is replaced, while some are not:

Just like vertex shaders, fragment shaders have access to a number of regis-

ter files, the input registers contain the interpolated vertex shader results, such

as the fragment's color values or texture coordinates. Additionally the frag-

ment shader can look up filtered texture values using texture sampler stages

as in Figure.2.3. The fragment shader can either use the interpolated texture

Chapter 2 Programmable Graphics Hardware 15

Parts of fixed-function pipeline replaced Parts that are not replaced
Texture access Alpha test

Texture application and blending Depth test
Fog and color sum Stencil test

Frame buffer blending

Table 2.3: Fragment engine features

coordinates passed in or texture coordinates computed directly in the shader

to sample the texture. Dependent texture reads are also possible, allowing for

more advanced effects. Using the input register values and looked up texture

values the shader then computes its results and stores them in the write-only

output registers. These output registers have a pre-determined semantic mean-

ing, such as the fragment color or fragment depth. Current fragment shaders

does not support address registers.

2.4 Previous Work on GPU Computation

The use of computer graphics hardware for general-purpose computation has

been an active research for some years. The wide deployment of GPUs in

the last several years has resulted in an increase in research with graphics

hardware. Trendall and Steward [5] give a detailed summary of the types of

computation on GPUs.

For graphics application, programmable graphics hardware has been used

for procedural texturing and shading [6] [7] [2] [3]. Graphics hardware has

also been used for volume visualization [8] [9], global illumination like ray-

tracing [10] [11], photon mapping [12], and radiosity [13j.

Other general purpose use of the GPU includes level set segmentation of

images and volume data [14] [15], collision detection [16] [17], and computa-

tional geometry [18] [19].

The wide variety of applications demonstrated that the GPU has become

Chapter 2 Programmable Graphics Hardware 16

an extremely powerful co-processor on our PC. The vector and matrix pro-

cessing ability as well as the SIMD architecture and parallel pipelines makes

it especially useful for various graphics and imaging data processing or other

scientific and engineering computations.

Chapter 3

Multi l ingual Vir tual Per former

3.1 Overview

The vertex processor in today's GPU is an ideal platform for performing ge-

ometric computations. Provided its matrix and vector processing power and

multiple vertex pipelines, when carefully designed we can make use of its par-

allel processing power and map intensive geometric computation to the GPU

and achieve load balancing with CPU at the same time.

A typical example of intensive geometric computation is the facial deforma-

tion and skeletal animation for virtual character system.Nowadays 3D virtual

characters are widely used in computer games, movies, as well as various mul-

timedia productions. However the development of a real-time 3D virtual char-

acter with cinematic high quality rendering and real-time lip-synchronization

to speech waveforms remains a challenge in the multimedia industry. This is

mainly due to the large data involved, the intensive computation for high qual-

ity animation as well as the cost for synchronization with the speech. Even now

the computational power of CPU continuously grows, this still puts a heavy

burden on the CPU and is very difficult to achieve real-time performance if

high quality animation is required.

Also on the speech and lip synchronization aspect of the virtual character,

currently most of them are usually designed to be tailored for one specific

17

Chapter- 3 Multilingual Virtual Performer 18

language and is hard to be extended to be multilingual, which imposed a

limitation for international usage for lip synchronized animation of the virtual

character.

Here we propose an approach to develop a real-time multilingual 3D virtual

character framework with the animation computation totally on the GPU. We

have developed GPU algorithms to effectively explore the geometric data com-

putation power of GPU and offloaded the facial animation and skeletal motion

animation computation from CPU. The parallel algorithm greatly release CPU

resources for other tasks like speech synthesis and audio-visual synchroniza-

tion.

Multiple languages is supported through the use of International Phonetic

Alphabet(IPA) for lip synchronization visemes. Phonemes, syllables or sub-

syllables of a language is mapped to the IPA through a mapping table. This

approach not only provides an open architecture for adding new languages

and make the virtual character capable for multinational languages, but also

simplifies the manual geometric design work for the character.

It is also hoped that by studying such a problem, usefulness of such an

virtual character framework will be shown to both the graphics and speech

community for a lot of potential applications, and the graphics processing unit

could be leveraged for more useful features for geometric computing.

3.2 Previous Work

The pioneering work on facial animation was done by Frederic I. Parke in the

1970s [20], and many researchers were interested in this topic in the mid-1980s

included the muscle model approach to facial expression of Keith Waters [21].

Development of virtual character with lip synchronization feature with

speech lias been ongoing for a long time. Such a system offers a rriulti-

niedia/multimodal presentation of dynamic information, e.g. for news and

Chapter- 3 Multilingual Virtual Performer 19

weather information reporting, for applications in entertainment, for personi-

fied dialog systems, or as an aid for the hearing-impaired [22] where the sim-

ulated lip movements can help the user decipher the spoken message. The

talking face can also convey non-verbal communicative signals, such as emo-

tions. The late 1980s also saw the first attempts at this, including the work of

Dominic Massaro and Michael Cohen, and number of other researchers. Pre-

vious approaches include an image-based synthesizer as in [23] that concate-

nates viseme images. A viseme is a facial image treated as a unit in video that

corresponds to a phoneme unit in speech. An alternative approach involves pa-

rameterized lip shapes, such as the facial animation parameters (FAPs) in the

MPEG-4 standard. This has been applied to three-dimensional facial anima-

tion. Additionally, there has been previous work in lip-synced virtual character

for languages aside from English, such as the Italian talking head described in

[241.

Significant work has also occurred in graphics for deforming articulated

characters using geometric methods [25] [26] [27] and physically-based meth-

ods [28] [29] [30]. Despite this, most character animation in interactive applica-

tions, such as video games, is based on a geometric skeletal deformation tech-

nique commonly referee! to as skeletal subspace deformation, in which vertex

locations are weighted averages of points in several coordinate frames [25] [31].

Our Contribution

Our approach mainly focus on attacking and give efficient solution to the

following problems:

• Develop an efficient and easy framework for facial animation, lip syn-

chronization, and seamlessly integrate the facial and skeletal character

animation.

• High quality rendering but in real-time performance and consumes as

Chapter- 3 Multilingual Virtual Performer 20

little CPU resources as possible, by means of performing intensive geo-

metric computation on GPU.

• Multilingual support for lip-synchronized facial animation

3.3 System Overview

Our achievement in this project is the development of a simple and efficient

virtual character framework, with GPU acceleration on animation for real-time

performance，and multilingual support for lip synchronization with speech. An

multilingual Text-To-Speech system interface module for real-time generation

of speech wave form and timing curves is also designed, which enable us to

incorporate more text-to-speech system in different languages in the, future.

The overall structure of our multilingual virtual performer system is shown

ill Figure 3.1. Basically it can be divided into 3 big modules, the animation

system , the audio system and the multilingual texture-to-speech system.

! Ariniauon Syslcni S
I I
‘ K ； K I
‘ Facial An<iT»tlorSobsy«l«m S t o t o i l Anin«llo<i ‘
I Subsyaom I . „ , — — ^
I 1 ' \

j Exltwnai 7 . I i i w L £ ^ L Fotvwrii L I SkoMal _ ‘ j GiapHici Card I

/ — I I - � ' — 却 IN ；

1 j ^ w. , n i 醒 1 — p I • ‘ K̂ L
1 1 I An\mgik>n Dmo � Pacin) »nd Sketelnl • ,

• � ^ N PI/ Aiiimution ShitOMs • ‘
‘ 5 ~ 7 / — E j f c i 7 • [圓 酬 圓 顧 I ‘
1 i / ， / / / ‘ N \ •

I 1 L / D: / 丨 I ^ kV ,

V jg _ _ _ • Audiovisual

U � ——

！ Phor膽 I , ‘ " N I

丨 ™ f ^ ^ ——‘
I CUVOCAL 丨 n 1 一
！ Con:on«R® rrs
I Synth^Atwr
I L [‘ j E x i l U “ " " 7

\ Mul*.iMn̂«n*w.To~SptHjcl、！5>iihwm̂ 一* / 【切丨相 /

Figure 3.1: Virtual character system architecture

Chapter- 3 Multilingual Virtual Performer 21

The animation system is composed of facial animation control subsystem

and skeletal character animation control subsystem. Inside the facial anima-

tion system, the multilingual lip-sync and expression overlay submodules are

responsible for providing a multilingual lip synchronization interface and facial

expression control, respectively. Lip synchronization data (to be discussed in

section 3.4) can be input in the form of external weigh function sample points

data generated manually, or from our real-time cantonese text-to-speech syn-

thesis system - CU Vocal directly. The facial expression overlay provides an

interface as a real-time user control as well as random generation of expression

parameters for increased realism.

We have implemented the forward kinematics control for the skeletal char-

acter animation system totally on the GPU, with the interface for input mo-

tion capture data. The skeletons or bones of the character is animated by the

motion capture data and at the same time a skeletal subspace deformation

algorithm is used to further deform the polygonal mesh that is attached to the

skeleton hierarchy (to be discussed in section 3.5).

The audio module of this multimedia system provides interfaces for input

external wave files as well as synthesized cantonese speech audio wave from the

CU Vocal text-to-speech synthesizer. With the help of the central audio-visual

synchronization module, the sound or speech is synchronized with the graphics

stream that is sent to graphics card for rendering to the frame buffer.

The whole system does not need any special graphics workstation to oper-

ate, with the help of GPU acceleration on the animation computation, the CPU

can be responsible for audio and synchronization task and produce smooth lip-

synchronized animation on a normal PC that is equipped with a programmable

GPU-based graphics card.

Chapter- 3 Multilingual Virtual Performer 22

3.4 Facial Animation

There have been many approaches developed for facial animation, mainly they

can be characterized into 2 categories - physically correct muscle-skin simula-

tion and free form deformation, which only gives the approximation.

The muscle-skin simulation methods give a more accurate result for facial

clefonnation. They usually need further processing on the polygonal mesh to

make it in a multi-layered tissue structure for simulation instead of the polygon

surface. Finite element methods are commonly used to simulate the movements

of discrete nodes in the tissue layers, which are connected by virtual springs.

So generally it is a discrete deformable model (DDM) with node-spring-node

structure. Although different spring model can be used in simulation, such

as Voight viscoelastic model or Hill's Model, it is usually very computational

intensive to solve the whole system.

The free form deformation methods do not simulate the physical process

of skin-muscle deformation, but only deform the face freely using different

approaches like feature points, control points, or morphing. Usually the motion

of a set of predefined points are recorded first, they are used to smoothly

influence different regions of the face to create facial animation. The morphing

technique is to gradually displace and move all the vertices of 1 face model to

the corresponding coordinates of another. The free form deformation methods

only give us an approximation of the facial animation, but generally are more

efficient and simple.

Facial animation can be synchronized to speech in several ways. The em-

ployed method depends mainly on the kind of speech data which is available

for synchronization, e.g. whether the audio signal, the phonemes and timing

of an utterance is available or only a text representation.

The text-driven approach received a text as input which is transcribed

into its phonetic representation. This information is used to generate both

Chapter- 3 Multilingual Virtual Performer 23

synthetic audible speech and synchronized facial animation.

The speech-driven method takes pre-recorded speech as input. The audio

file is analyzed for phonemes and timing information. This data is used to

create the facial animation which is performed synchronously to the audio file

play-back.

Although there are currently various facial animation methods for differ-

ent facial models, they are either complex, computational intensive or on the

other hand difficult to be accelerated using GPU computing. At the same

time, most methods did not address the problem of multilingual support for

lip synchronization. So we take an approach to extend the face space theory

from Steve DiPaola [32], apply the high dimensional face space concept to the

polygonal face models, while at the same combine the simplicity of morphing

in free form deformation. On the other hand, the multilingual lip synchroniza-

tion feature is also carefully considered and handled when designing the facial

animation algorithm. For the lip synchronization part, we make use of both

text and speech driven approaches to provide interface for the multilingual

text-to-speech system as well as external sound data.

3.4.1 Facial Animation using Face Space

Imagine an n-dimensional space describing every conceivable humanoid face,

where each dimension represents a different facial characteristic. Within this

continuous space, it would be possible to traverse a path from any face to any

other face, moiphing through locally similar faces along that path. A multi-

dimensional space is a convenient way to generate a universe of faces and for

making facial animations.

Here we further extend the concept to polygonal face models, which can

be represented as a point in the high dimensional face space using all of the

vertices. Denote a face f in the vector form

Chapter- 3 Multilingual Virtual Performer 24

f = I.狗’队)’ 2；0，……Xn, Vn, Zn] (3.1)

If we can predefined a set of faces with the same topology in this high

dimensional space. Denote this as a face set 少

^ = {fi\f> C 7： l..k} (3 .2)

Figure 3.2: Face set in the high dimensional face space

Similar to vector space in mathematics, a new face in the face space can

be generated by linearly combining the faces in the face set.

k

J=i

The advantage of this representation is that , now each new face can be

represented only by the set of weight coefficients { a j } for the basis faces, which

reduce the dimension of the space to the number of basis faces k. In order to

Chapter- 3 Multilingual Virtual Performer 25

create facial animation, we can simply animate the weights by making them a

set of functions that change with respect to time, in the form of {a)•(力)}•

And now facial animation can be viewed as a timed path from one point in

the face subspace to another, this process can also be represented as a timed

weighted blending of the faces in the face space.

k

m = Y M t) f j (3-4)
3 = 1

Here the size of the face set will affect the degree of freedom in the facial

animation, and the face set should belong to the same person in order to

animate one particular face.

However, this approach is not so intuitive to be used for animation purpose,

it is rather difficult to determine the function of blending weights with respect

to time for every face in the face set. Therefore, in our approach, we incor-

porate some modifications of the above method. Animation is achieved by

the use of deformation vectors (DV) derived from the target viseme/emotion

models. We define a neutral face fneutrai in the face set which represents a

closed mouth model with no facial expression, which can also be considered

as the origin of our defined face space. Then the DV for smile, for example, is

defined as

DVsmile — fsmile — fneutrai (3.5)

Different DVs can be then linearly combined with the neutral face model

{fneutrai) to form a new face model (fnew), then further form facial animation

by varying the blending weights as illustrated in the equation.

f'(t) = fneutrai + ^ i W ^ K (3.6)
i

where DVi is the DV for the zth face model in the face set and ai is the blending

weight for the zth DV.

Chapter- 3 Multilingual Virtual Performer 26

Although the concept of DV is simple, it provides us with a. clear mean-

ing for the weights for each DV. They serve as the basis for spanning a face

subspace, and the neutral face is the origin of this siibspa.ce. A weight with

value 0 means no deformation/action for this DV, and a weight value 1 means

deforming the face with the deform meaning of the DV to its maximum state.

Like a weight 1 for a smile DV means to deform the face to smile expression .

to the largest extent.

Figure 3.3: Using deformation vector as basis to span a high dimensional face
space

And now the facial animation problem can be seen as to

1. determine an appropriate set of predefined faces/DVs 屯 in the face space,

which are adequate for performing both speech and facial expressions.

2. determine a set of blending functions a'j(/;), j 二 l..k that actually per-

forms the blending animation that changes with time

Chapter- 3 Multilingual Virtual Performer 27

3.4.2 Face Set Selection for Lip Synchronization

In this section we mainly focus on how to solve the problem of selecting an

appropriate set of predefined faces/DVs that is suitable for multi-language

lip-synchronization and facial expression animation.

Since this system is mainly for being used with a real-time cantonese text-

to-speech synthesizer - CU Vocal, which is developed by the human-computer

communications laboratory of department of systems engineering and engi-

neering management. We will begin by introducing the CU Vocal system

and the phonemes and visemes (the corresponding visual lip shape for the

phoneme) related to cantonese, then further discuss the details of extending

the framework to multi-language using IPA.

C U V O C A L Sys tem

CU VOCAL is a syllable-based concatenative text-to-speech (TTS) synthesizer

for Cantonese. Cantonese is monosyllabic in nature (like Chinese) and the

dialect has a rich tonal structure with between six to nine tones. Coarticulatory

effects in CU VOCAL are captured in terms of distinctive features. The TTS

engine also uses right tonal context for unit selection. Figure 3.4 illustrates

typical input and output for CU VOCAL. Chinese does not have explicit word

delimiters and a word may contain one or more characters. Hence the input

Chinese character string is tokenized into Chinese words by a greedy algorithm

with reference to a lexicon and the word pronunciations are looked up from

a dictionary. For example, in Figure 3.4, the first character in the input

text string (meaning: you), is pronounced as /nei5/ (i.e. the syllable is /nei /

with tone 5. The syllable inventory adopted in CU VOCAL follows the LSHK

convention. CU VOCAL generates the synthetic speech output in windows

PCM waveform format. The TTS engine has also been extended to explicitly

generate the syllable sequence with timing information, which are also very

Chapter- 3 Multilingual Virtual Performer 28

important for blending weights generation (to be discussed in section 3.4.3),

e.g. the first syllable unit /nei5/ has a duration of 0.39 second, the fourth

unit LP indicates a pause (silence) for 0.504 second and the last two syllables

are / lam4/ of duration 0.32 second each. The syllable unit can be further

subdivided into an optional onset (i.e. the consonant that starts the syllable),

a nucleus (i.e. the core vowel/diphthong) and an optional coda (i.e. the

consonant that ends the syllable). The Chinese syllable unit is often subdivided

into an initial (i.e. the onset) and the final (i.e. the nucleus and coda). For

example, the syllable /nei / has initial / n / and final /e i / (or onset / n / and

nucleus /e i /) . The syllable / l am/ has initial / I / and final / a m / (or onset / I / ,

nucleus / a / and final / m /) .

/ “你 J f f l男？我叫BPT / Ch^iese
/ , . „ / character mpt i t
/ (m e a i u i i g : H o w are /

/ y o u ? I a m L i i i L i i i .) /

/ ' ^ C i r ^ o ^ ^ SJyl l f lb l” a n d t i m e
i i i f o m i a t i o i i ou tput

(t i m e lu i i t is second)

iiciS 0 . 3 9 0
飞 h o i i 2 0 . 3 5 0

/ R e s u l t . w a v / I m a a l 0 . 3 2 0
L — ~ ‘ L P 0 . 5 0 4

— c h f i l e 摩 5 0.297
o i _ t giu3 0 . 3 5 7

l a m 4 0 . 3 2 0
l a m 4 0 . 3 2 0 /

I
Figure 3.4: Sample input and output of CU Vocal

Chapter- 3 Multilingual Virtual Performer 29

Multi l ingual Support Using IPA

Since much previous work defined visemes in relation to phonemes, our ap-

proach involves decomposing a syllable into its onset, nucleus and coda and

mapping these to their closest phonetic symbol.

Up to this point, it might be natural to come up with a solution for the

Cantonese lip-synchronization problem that we choose the face set that cor-

responds to every LSHK cantonese symbol. However, this solution can not

support for future extension of the system. Whenever we want to add in a

new language, we have to make another face set for the particular phonemes

of that language. This is a tremendous waste of time and system resources.

However, from the speech point of view, an obvious fact we can see is that the

phonetics symbols from many languages may share the same pronunciation,

and the International Phonetic Alphabet (IPA) can provide a good solution

for us to combine the phonemes of different languages into 1 set of symbols.

We use a mapping table for each language to achieve this purpose and a total

of 28 IPA symbols is used. Since in human speech, different phonetic symbols

may correspond to the same lip shape, the 28 symbols are further reduced to

only 15 visemes in total.

The face set for the 15 Visemes of IPA is shown in Figure 3.5

We will now show how the phonemes of each language can be mapped to

the IPA to share pronunciation and visemes. �

Cantonese

The mapping table from LSHK to IPA syllable is proved below in 4 different

parts, onsets, nuclei, codas and nasals which are shown in Tables 3.1，3.2, 3.3

and 3.4.

Japanese

Chapter- 3 Multilingual Virtual Performer 30

Phoneme ID Phoneme Symbol IPA ID IPA Symbol
0 closed 0 closed
1 b 8 M
2 p 8 M
3 m 8 M
4 f 11 F
5 d 7 L
6 t 7 L
7 n 9 N
8 1 7 L
9 g 15 K
10 k 15 K
11 ng 10 NG
12 h 2 EH
13 gw 5 UH
14 kw 5 UH
15 w 5 UH
16 z 13 S
17 c 13 S
18 s 13 S
19 j I 14 I SH

Table 3.1: Cantonese onsets mapping

Phoneme ID Phoneme Symbol IPA ID IPA Symbol
W ^ 3 AA
21 i 1 lY
22 u 4 0
23 e 2 EH
24 o 4 0
25 yii 14 SH
26 oe 2 EH
27 a 3 AA
28 ^ I 2 I EH

Table 3.2: Cantonese nuclei mappings

Chapter- 3 Multilingual Virtual Performer 31

AA EH F

lY K L M N NG

. M M . U U i U ^ d
O S SH TH UH Y

Figure 3.5: IPA visemes

Phoneme ID Phoneme Symbol IPA ID IPA Symbol
^ p 8 M
30 t 7 L
31 k 15 K
32 m 8 M
33 11 9 N
34 ng 10 NG
35 i 1 lY
36 u I 5 I UH

Table 3.3: Cantonese codas mapping

As we all know that the basic phonetic symbols for Japanese language is

called the Hiragana and Katakana with a, total of 54 symbols (Figure 3.6), and

we further decompose them into phoneme elements and mapped to the IPA

symbols. For example, "ka" maybe further decomposed to phonemes "k" and

"a", and then mapped to the most similar IPA symbol.

Mandarin

Phoneme ID Phoneme Symbol IPA ID IPA Symbol
^ m 8 M
38 ^ I 10 I NG

Table 3.4: Cantonese nasals mapping

Chapter- 3 Multilingual Virtual Performer 32

N w r y i n h n t s k _

3 囝 回 [1] 固 [1] 0 [^ 已

U 因 回 因

1] 因 0 [1] 回 回 IZISE]因。
N w r y m h n t s k _

]T] EDDII 回 EESfllHi
Z] 回 囚 0 因 0 因

_ L 人,、、冬 T 七 - T J - e

3回回固囷 [Z I E E Z]回 0 0

Figure 3.6: Japanese characters with phonetic representation

For the Mandarin "Pin Yin" phonetic symbols, it may be further decom-

posed into "sheng mu" and “yun mu", each of them could be successfully

mapped to I PA.

English

Since the international phonetic alphabet is derived and extended from

English phonetic symbols, so the IPA symbols has a natural corresponding

with those in English. Thus, the mapping table is not listed here.

Overall, no matter for any specific language, using our approach can always

simplify the lip-sync animation problem to:

f i t) = fneutrai + [� (3 . 7)
i

Chapter- 3 Multilingual Virtual Performer 33

Phoneme ID Phoneme Symbol IPA ID IPA Symbol
0 closed 0 closed
1 a 3 AA
2 i 1 lY
3 u 5 UH
4 e 2 EH
5 o 4 0
6 k 15 K
7 s 13 S
8 t 7 L
9 n 9 N
10 h 2 EH
11 m 8 M
12 y 6 Y
13 r 7 L
14 w 5 UH
15 g 15 K
1 6 p 8 M

17 b I 8 I M

Table 3.5: Japanese mapping table

All we need to do now is to define the blending weights functions { a i �)

3.4.3 The Blending Weight Function Generation and

Coarticulation

Based on our IPA lip-sync approach, the lip-sync animation can be gener-

ated when the blending weights function for the DVs are determined by the

speech. A critical aspect for realistic lip synchronization is the simulation for

the coarticulation effect. Coarticulation can be defined as the smooth blend-

ing between adjacent phonemes. Because adjacent phonemes can influence

each other, the dominance of a phoneme does not automatically cease at the

phoneme boundary but can well reach into other phonemes. Thus the weight

function of neighboring phonemes may overlap.

In our system, the coarticulation effect is achieved in the generation of

blending weight function. First, the time and duration that each phoneme

Chapter- 3 Multilingual Virtual Performer 34

Phoneme ID Phoneme Symbol IPA ID IPA Symbol
0 closed 0 closed
1 a 3 AA
2 o 4 0
3 e 2 EH
4 i 1 lY
5 u 5 UH
6 V 5 UH
7 b 8 M
8 p 8 M
9 m 8 M
10 f 11 F
11 d 7 L
12 t 7 L
13 n 9 N
14 1 7 L
15 g 15 K
16 k 15 K
17 h 2 EH
18 j 2 EH
19 q 2 EH
20 X 2 EH
21 z 13 S
22 c 13 S
23 s 13 S
24 r 14 SH
25 zh 14 SH
26 ch 14 SH
27 sh 14 SH
28 y 6 Y
29 w 5 UH
30 ^ I 10 I NG

Table 3.6: Mandarin mapping

Chapter- 3 Multilingual Virtual Performer 35

appeared in the speech are determined, so that outside this time range the

weighting for the corresponding DV will be set to 0，then, in order to generate

the transition between the 2 phonemes for smooth animation, smoothing and

interpolation is applied and the duration of each phoneme DV weighting that is

nonzero can be generally categorized into 2 phases, a increasing and decreasing

phase. This can be explained using a simple example that transits from one

phoneme to another (Figure 3.7). The transition time is actually the increasing

phase for the second phoneme but the decreasing phase for the first phoneme,

we gradually decrease the weight of the first phoneme DV from 1 to 0，while

for the second one, we gradually increase its weighting from 0 to 1.

• P h o n e m e 1

I I
f ！

“ I f • P h o n e m e 2

i z , ! A 、 ；

！ I
I I
I Transition i
) I

Figure 3.7: The coarticulation between 2 adjacent phonemes

For smooth coarticulation, we can use different interpolation technique for

the increasing or decreasing phase. Like the negative exponential function

(Figure 3.7):

a(t) = Ae-丨卜“ (3.8)

where tstart is the starting time of the phoneme and tdur is the duration of

it. Due to the reason that each phoneme usually takes very little time so

that accurate interpolation that based on physical simulation is not needed

Chapter- 3 Multilingual Virtual Performer 36

here. In our system, we choose to use linear interpolation for its simplicity

and efficiency. The difference between 2 interpolation techniques is negligible

through the results of experiment.

There are 2 methods to generate the blending weights function - by using

extra information from TTS systems and also by manual processing.

Automat i c Blending Weights Function Generation Using T T S sys-

t e m

By using a text-to-speech system and making good use of its output timing

information for phonemes, we can achieve automatic blending weights function

generation without manual processing. Without loss of generality, we describe

our weighting function generation for the multilingual lip-sync interface with

the Cantonese TTS . Other languages are handled in a similar way if we have

a text-to-speech system for that language integrated in.

Here we discuss the blending weights function in more detail for Cantonese

as we make use of the information from the cantonese text-to-speech system

CU Vocal for generating the weighting functions in real-time. The transition

between two phonemes in synthesized speech corresponds to the transition

between two visemes in facial animation. Smooth transition is achieved by

controlling the weights in the blending technique. We will elaborate on this

point by means of an example.

Consider for a Chinese word meaning "center" pronounced as /zung/ /gan /

in LSHK syllables. For a given syllable, we reference the CU VOCAL syllable

corpus to get the average duration among the occurring instances. For exam-

ple, the syllable /zung/ averages 0.33 second in duration. We also reference

the corpus to get the average fraction of the syllable's duration that is occu-

pied by its initial and final respectively. For example, the syllable /zung/ has

the initial / z / and final /ung / . The initial / z / takes up about a quarter of

the syllable's duration on average, while the remaining three quarters is taken

Chapter- 3 Multilingual Virtual Performer 37

0 0 0 1 2 0 18 0 2J 0 3 0 36 0 i j 0 48 0.5 4 0.6

Time

Stall (iu> svcech) ^ ^ ^ ^ iiR EmI (ao Jpctch)

Figure 3.8: Variation of blending weights over time for animation

lip by the final /ung / . The final can be further subdivided into the nucleus

/ u / and coda /ng / . For the sake of simplicity, we assume the nucleus and

coda for the final /ung / have equal average durations. Hence about 0.25 of

the average duration of /zung/ is occupied by the syllable onset / z / , about

0.375 by the syllable nucleus / u / and the remaining fraction of 0.375 by the

syllable coda /ng / . In order to use this information for facial animation, we

locate the visemes that correspond to the I PA symbols /z/，/u/ and /ng /

respectively. Since these are static viseme models, we need to determine the

blending weights that correspond to these visemes for 3D animation A linear

interpolation is used as shown in Figure 3.8. Each viseme starts with a unity

weight at its start instant, and linearly decreases to zero weight at its end

point. This defines the variation of the blending weights over time and our

system demonstrates that this achieves a realistic and smooth facial animation

cffoct.

By using this weight function generation technique through the CU Vocal

text-to-speech system, real-time lip synchronized animation can be generated

quickly from texts. An example of rendering of a live news report using this

approach is shown in Figure 3.9.

Chapter- 3 Multilingual Virtual Performer 38

s ^ ^ f l ^ ^ V E ? Q W j j ^ ^ ^ e S ^ B ^ g i p ^ ^ ^

W f ^ I f f l f c i P m ^ S W g

Figure 3.9: Live news report animation using weight function generated auto-
matically by CU Vocal TTS system

Manual Weight Function Generat ion

The blending weight function can also be generated manually with the help

of some software that can analyze the waveforms of a sound file, for example,

GoldWave (Figure 3.10). It is used as a tool for examining the sound file

and marking the starting time and duration of each phoneme manually. Thus,

the scattered data points for weighting function or we can also call them the

“keyframes" of the phonemes can be obtained this way and a system module for

loading the lip-sync data and do further processing for smooth coarticiilation

is also implemented.

3.4.4 Expression Overlay

The expression is generally overlayed onto the lip synchronized face with the

same approach, i.e, using the DV to further deform the lip synchronized face

into emotional state, this involves emotion DVs like smile, worry and so on.

Now, together with the lip synchronized animation, we can produce lively

facial animation using the following equation:

m = fneutral + J] + ^ Pj{i)DVj,exp (3 . 9)
i j

111 our system, the variation of blending weights for emotion face models

(Figure 3.11) can be defined manually by the user by means of a slider rule

Chapter- 3 Multilingual Virtual Performer 39

n a Z g M l M M l l i l M M I l l M l l l l M — I j W I l i i l i l h i i M M i l R
EJe Effe£) ^ iew l o o l Qp»ion? tfindow Holp

...Q.:叛鼠議！, jjiiBlil 戲 II 劇宏键 simU 法丛涵 atî 说 M
.^；：：;二4 •柰丨5 B蹈 與•免龙I汚叛!ĝ f̂ i 热 麓 穷 为 I I I I I I

J x] i P ! ^
I ^ S m p — p — ^ J K k ^ S I ^ 滅：：；！ ^！臓圓

_ HHP®!關醒攀醒嘱懸

羅 I H S E B i m i m M i B ^ B B S
10:00 P ^ I ^ ^ P P ^ ^ P ^ I ^ I P ! • 丨 丨 " i p p i • 丨 ^ ^ 丨 .
F ^ • '�:5� 0-55 l!00 1；05 lilO '1:15 '1:20 1:25 l!3Q 1:35 ll-JQ 1:45 1:50

m u m � ’' " I " " i 丨 ' ' " " t i i i j i i w
H K ^ i r S ^ m H

u 1 ^
I W H m m m m m m i B l l i m i K S I I I I I I I I h i i i w — W M W B w m i i i W M W W W i w w i w i w w w w w W H i t i i i i i w w u w i w i i i i h i w w w H w i i i — M i s a i r ^

rsereo B| _3:37：245 ""”i| ~IM]364̂ 30.647(26T2B3) BSpjj^^toj^rs'-"' .. ~ " 彻
I s s i T z j o o l K , … " " " ~ • … " “ “

Figure 3.10: Manual weight function generation using waveform analyze soft-
ware

in our system's interface. These weights are used in a similar way for 3D face

rendering weights. Our system is capable of change and blending more than 1

facial expressions simultaneously.
3.4.5 GPU Algorithm

Due to the large computation burden involved for blending and animating our

virtual character in high resolution, we explore the powerful SIMD processing

feature of the GPU and employ the vertex shader engine to perform the facial

animation calculation.

Face Deformat ion

Since basically the vertex engine can be viewed as a stream processor, the first

step to map the equation

Chapter- 3 Multilingual Virtual Performer 40

mmlkm
Figure 3.11: Facial expressions

m = /neutral + ^ ^ + J] 邵 (3.10)
i 3

to the GPU is to streainlize our data. Taken into account that normally

there can not be more than 2 phonemes and 2 expressions for the human

face siniiiltaneously. In order to add in more realism, we add 1 more channel

for eye action. We categorized the input data for blending into 6 channels

of streams — neutral face, IPA phoneme DVl, IPA phoneme DV2, expression

DVl , expression DV2, eye action. These streams are also called varying data,

parameters because they vary with different vertex in the vertex shader. The

blending weights for the IPA and expression DV remains constant for all the

vertices in every frame rendered, thus we store them into the constant memory

or registers. The structure for the vertex shader is illustrated in Figure 3.12.

As shown above, the stream data are in 6 channels. Besides the vertex,

normal, and texture coordinate data for the neutral face, which are stored in

the corresponding registers. We put other stream data, like the IPA phoneme

DVs and the expression DVs into other registers like the high precision texture

coordinate registers and color registers. The constant memory also contains

4-floats vector registers that we can put in the blending weights and other

Chapter- 3 Multilingual Virtual Performer 41

3D API: OirccO D / OpcnGL
(Neutral Facc, PhollSfnê i'1 wfncme DV2, ExftrewQo DVl, Expregslon DV2, Eye Action DV)

i i K
r, ^ I

Vertex Attribute Regjslers |
Graphics Card Ncutmi facc： pos, nrml, tcxo I; Phortcinca : TEXl • TEX2 ？ |~CofiM如t Hcmory/flegiaKifS“h | Phon«niel; TEX3. TEX4 ctO�,.••，4nj I

E x p f e $ $ i O r d : T E X 5 , T E X $ | ExproMlorti:TEX7,COLO Veclort Bionaing Weights i Eye Actlott COU, COU 丨 MCitr,«: ModelViONVh'J |
L) , … . . . u丄 - . � . �. . j i …•̂ •.JJ Ufihting rtixi Matcn. i l ！nfc | i

Ver tex Shachpr Prooraa 丨 ；二二；二::‘.二：二：̂ "̂.”〒.,碎
I // Face Ocformation J f̂ Addmss Registers I

/ / N o r m a l G e n e r a t i o n i ^ ^ ； 树�!.•…树 n j | // TrHn»rforrTWtk>n.. ^Hni^^v t "LKjmrnci... H
Temporary Registers ||

K A …..rlnJ I I
Vertex Rftwilt Regifst̂rs _ |

IHPÔCOIO.TEXDj i I

“ i
Figure 3.12: Vertex shader structure for facial animation

standard matrixes for transformation like the model-view-pro j ection matrix

and as well as the relevant lighting data. Then the vertex shader program for

computing the face deformation equation and perform normal generation (to

be discussed in next section) is executed. After this, the deformed vertex is

transformed and lighting is calculated, that are passed to the output registers

for the next stage in the pipeline.

We also explored the data transmission efficiency in our system. Most

graphics card today use the AGP bus as the major channel for transmitting

data with main memory. The AGP bus is 32 bits wide, just the same as

PCI is, but instead of running at half of the system (memory) bus speed

the way PCI does, it runs at full bus speed. AGP in its lowest speed mode

has a bandwidth of 254.3 MB/s. In addition to doubling the speed of the

bus, AGP has also defined a 2X ,4X and 8X mode, which perform two, four,

Chapter- 3 Multilingual Virtual Performer 42

eight transfers per clock cycle. Although AGP provides a large bandwidth

channel for transmitting data between the main memory and graphics card.

The transmission of large amount of data in the stream format above will

definitely cause a performance down with it. To use the bandwidth more

efficiently and increase the whole system speed, we employed a method that

directly allocate buffers inside the video ram for storing the neutral face data

and other DVs, as in Figure 3.13. So that whenever we pass the data to

GPU for processing , the entire transmission happens inside the graphics card

and what we need to pass from main memory is only 5 indices of DV to be

blended as well as the blending weights for them. This greatly reduced data

transmission volume at the AGP bus and has a positive effect on the whole

system performance.

Indices of DV
Blending VVeighJs

-V

Graphics Card

^ / X

Video Ram

1 / Noutral 7
/ Face Duffer /
/ DVB—" /

Texture Maps

\ J
\ \

Figure 3.13: Using video ram as stream data buffer

Chapter- 3 Multilingual Virtual Performer 43

Normal Vector Blending

111 our facial animation, when we deform the neutral face using a set of DVs,

the normal vectors on the face actually changes with the geometry as well. For

realistic rendering of the facial animation, the normal vectors are an important

part for lighting calculation. So it is needed for us to obtain the new normals

after deformation for rendering.

However, recalculation of the face normal based on the new geometry is

tedious and will consume even more computing resources than the face defor-

mation process. In a traditional way, for a polygonal face mesh in our system,

it will involve computing the plane normal for each triangle and then averaging

the triangle plane normals at the vertex that is shared by more than 1 triangle

polygons, in order to get the new vertex normal.

While our main focus is on achieving high quality rendering in real-time

performance, we can actually trade other resources like storage for performance

arid also maintain the high quality at the same time. Thus, we take the same

approach as for facial deformation, we store a copy of all the normals for the

neutral face, and a set of normal DVs that stores the difference between the

normal of the I PA phoneme face and the neutral face. Thus

rinew = normalize(jlneutral + ^ DVnormal,i) (3-11)
i

This is not a physically-correct solution. We are actually doing linear

interpolation between 2 normal vectors by using the equation above. However,

our solution provides a very close approximation to the physically-correct one

judging by the visual quality. It can be easily mapped to the GPU using vertex

shader similarly to the facial deformation case without increasing complexity.

Chapter- 3 Multilingual Virtual Performer 44

3.5 Character Animation

Many approaches have been devised for character animation through the years.

Generally, we will be able to choose between explicit and implicit methods.

Explicit methods store the sequence of animated vertices from our geometry

every few frames, like snapshots from a movie. They are easy to code and

involve simple math. But on the other hand, storing animated vertices is

memory intensive, so they are also called memory-hungry methods.

Implicit methods do not store the animation data, but instead store a higher

level description of the motion. Skeletal animation system, for example, store

the configuration (in terms of rotation angles) for each joint, like the elbow,

knee and so on in our virtual character. Then, in real time, this description is

mapped to an unanimated character mesh, so the animation is computed. This

computation usually involves complex math with trigonometry and matrices.

Thus these methods are all fairly intensive for the CPU, but they only need

small data structures to convey the description of the motion.

In our project, we choose to use the implicit method — the skeletal anima-

tion system for character animation. It is more powerful and offer sophisticated

controls with very low memory consumption. We free the CPU from the in-

tensive computation by making use of the parallel vertex processing capability

of GPU. By mapping the skeletal animation algorithm to the GPU, the ani-

mation efficiency is improved and CPU computing resources can be used for

other tasks like sound processing, audio-visual synchronization, etc.

3.5.1 Skeletal Animation Primer

Skeletal animation is a implicit technique used to pose character models. A

skeleton is embedded in, and attached to, a character model. Once the skeleton

is attached, the character model becomes the skin. Posing the skeleton causes

the skill to be deformed to match the position of the underlying bones (Figure

Chapter- 3 Multilingual Virtual Performer 45

3.14).

The skeletal structure, as you can imagine, is a series of connected bones

that form a bone hierarchy. The bones are connected through joints. One bone,

called the root bone, forms the pivotal point for the entire skeletal structure.

All other bones are attached to the root bone, either as child or sibling bones.

I ®

I \ \ . ；

\ I

一 ^..…^^^^^^^ 歡……
Figure 3.14： Skeleton hierarchy and the corresponding mesh

III order to animate the skeletal structure, two general api^roaches exist:

forward kinematics (FK) and inverse kinematics (IK).

In forward kinematics, we will start from the a root node and propagate the

skeleton downward, inheriting motions as we advance. The upper arm should

inherit the chest, the lower arm both the upper arm and chest, and finally

the hand. Forward kinematics is coded by stacking series of transformation

matrices as we enter each body part. It is the method of choice for motion-

capture data. Inverse kinematics works the other way around: It starts at the

terminal element and computes the joints as it moves higher in the animation

skeleton. Thus, inverse kinematics allows us to locate an element in space,

and then calculate the needed configuration of its ancestor joints. Inverse

kinematics is useful for adaptive animat.ion.

After animating the skeleton structure, for the character model to move

Chapter- 3 Multilingual Virtual Performer 46

and deform with it, we need to perform skeletal subspace deformation (SSD)

to the mesh vertices. For this we need to assign each vertex of the mesh to 1 or

more bones in the hierarchy with appropriate weights. As the bones moves, so

do the vertices that are attached to it, and how much the vertex is influenced

by each bone is determined by the corresponding weight.

3.5.2 Mathematics of Kinematics

Forward kinematics can be expressed in the form of

X = J{Q) (3.12)

where the motion of all joints is specified explicitly. The motion of the hands

and feet is determined indirectly as the accumulation of all transformations

that lead to them. This, for example, in the case of the character's foot, would

be the combined effect of the transformations at the hip, knee and ankle. That

is, given B, derive X.

Inverse kinematics is usually called 'goal-directed motion' and can be de-

fined in the form:

没 二 (3 . 1 3)

The animator defines the position of the end effectors like hand or foot

only. Inverse kinematics solves for the position and the orientation of all joints

in the link hierarchy that lead to the end effector. Given X,6 is derived.

We can illustrate the difference between the two approaches using a simple

two-link structure shown in Figure 3.15. One end is fixed and both links move

in the plane of the paper. The forward kinematics solution X 二（a:, y) is given

by:

X = (/icos^i + /2 cos(0i + +/2sin(0i + 02)) (3.14)

Chapter- 3 Multilingual Virtual Performer 47

(h /

Figure 3.15: A simple 2 bone skeletal structure

The inverse kinematics solution can be obtained by applying some elemen-

tary trigonometry:

— - { k sin 6̂ 2).T + (!i + k cos (h h (3 15)

O2 = COS — (<3.15}
^bih

We can see that both techniques become harder to use as the complexity

of the articulation increases. But the inverse kinematics will be much more

complicated than forward kinematics in a large hierarchical system, and for

the computation, we can find that the computation forward kinematics can be

easily formed into matrix-vector multiplication, which is especially good for

GPU implementation. In this project we aimed to adapting motion capture

data to our virtual character, and forward kinematics technique is used as the

motion data is also in the FK format.

Chapter- 3 Multilingual Virtual Performer 48

3.5.3 Animating with Motion Capture Data

Motion capture has become a premiere technique for animation of virtual char-

acters today. It is defined as "The creation of a 3D representation of a live per-

formance." This is in contrast to animation that is created 'by hand' through

a process known as keyframing.

Motion capture data is used in our system to drive our virtual character,

the data is obtained from free online motion library in the format of BVH

files. The BVH file format was originally developed by Biovision. This format

provides skeleton hierarchy information in addition to the motion data.

A BVH file has two parts, a header section which describes the hierarchy

and initial pose of the skeleton; and a data section which contains the motion

data.

To calculate the position of a joint we first create a transformation matrix

from the local translation and rotation information for that joint. For any-

joint the translation information will simply be the offset as defined in the

hierarchy section. The rotation data comes from the motion section. Adding

the offset information is simple, just put the X’Y and Z translation data into

the proper locations of the matrix. Once the local transformation is created

then concatenate it with the local transformation of its parent, then its grand

parent, and so on. A typical example is

Mneck = Mneck

Mshoulder = Mshoulder Mneck

Melbow = ^^Ulbow ̂ shoulder ^^Ueck

Mhand = MhandMelbow Mshoulder Mneck

Chapter- 3 Multilingual Virtual Performer 49

OrrSiT
CaWKlS 3 Xco«t:oj Trotitloa
Isj Sit«
！

(.mi： D.ooooco
1

！

！

)
1

^ S T i a i
'CSKJ：

•tiK T :̂ C.C33335
!._0 il.mm O.ODDMO 4.52SJS0 3.JS24a3 -I2.72eSDD -li.liim -D
•M63561 U.K?53? C.SiHSJ S.27裕0 2.i:SS祐-U,拟鄉-13.极:'5(5 •
•umn n.833935 l.nm S.«2脚 J.OJSSSO -IO.̂JHDD -12.3CS3C0 •
•S.4325C2 :1.80-5« S.302S!D 2.S75540 •S.SWM -lUSifSO -I
•;.6934io iiJiWi i.mm 5.977570 i.oissco -s.esnso -n.ssicso
•2.D$2ii05 S.O?T2S9 i.SSJSiO O.S•？JS幼-J2.HH® •>

t X-, HiipTi.i “ ― 4 - 41.S飾 «.$«$» uwm -u.4賺-i

• _ _ „ i i i . n c Q ^ { . s s ^ s i o uim -imm -imm) -i

Figure 3.16: Motion capture animation using BVH data

3.5.4 Skeletal Subspace Deformation

Let fi be the set of iiidiccs for all the bones, and denote the bones affecting

vertex i by the subset of indices Bi C (3. For a given skeletal configuration, with

bone transformation the position of the vertex after the skeletal

subspace deformation is

� =̂ 伤 Tb)Vi (3.17)
beB,

where Vi is the position of vertex i in the neutral pose, and wib is the weight

which indicates how much the vertex is affected by this bone, it gives us the

afRne combination of bone transformations for this vertex. In the character's

neutral pose we assume that % = /, V6 G (3.

Starting with a reasonable set of bone weights is important. We compute

our SSD bone weights that is inverse proportional to the vertex bone distances

in the neutral pose. The following function is used for calculating the weights.

= /(^ , �n (3.18)

Chapter- 3 Multilingual Virtual Performer 50

where is the position of the joint of the bone with index 6, k determines the

scale of the function, and n controls the falloff speed.

歡 、 ： . . ： . . I

^ ^ ^ ^ . . . 省

Figure 3.17: Skeletal subspace deformation

The nonnals are transformed almost the same way as the vertices, by the

traiisfonnatioii matrix and using the same weights. The only different differ-

ence is that the we only use the 3 x 3 rotational part of the matrices.

n, WihT3:,3j,)ni (3.19)
beBi

where ni is the iiornial vector to be transformed and are the upper left

rotational part of the bone transformation matrix.

3.5.5 G P U Algorithm

Since the iiature of skeletal animation algorithm is the computation for each

vertex, we caii also map the skeletal subspace defoniiation to the GPU using

the vertex sliader engine. The pseudocode of the algorithm is as follows:

Chapter- 3 Multilingual Virtual Performer 51

Skeletal Subspace Deformation

for each vertex in the mesh

for each bone affecting the vertex

transform the vertex using the bone transformation matrices
(weighted by the corresponding bone weight)

transform the normal vector using the bone rotation matrices
(weighted by the corresponding bone weight)

end

calculate lighting
perform the world， view,projection transformation to the vertex
output to the next pipeline stage for rendering

end

Figure 3.18: Pseudocode for skeletal subspace deformation on GPU

Vwlex Posilkx). Normal. Texcoord, m
Bono Matrix indices: TeXCOORDI 國
B(cn0ing Woiytits: rEXC00RD2 M | L
t^i：^嫩谨竭 m^m^mmrn fio湘 rranstomwtion Mathers 1

y Z VVortdViewPrpj Matrix.
V Litjhling Info...

Ske le ta l S u b s p a c e ^
De format ion " " " 1 / � ” — ^ � T e m p o r a r y Registers

I V e r t e x A L U ——K

^ V
Address Registers g

Ver tex Output ？

Registers

i''： .：二；“二““：‘‘：；；̂̂̂！-̂“‘：猫̂

Figure 3.19: Skeletal subspace deformation on GPU

As shown in Figure 3.19, using the GPU for performing the skeletal sub-

space deformation is fairly efficient since the algorithm can be naturally ar-

ranged as a per vertex computation. The vertex, normal, texture coordinate

data can be passed to the engine in a vertex stream format. By making use

of the unused texture coordinate registers, we can pass bone index and bone

weights as 2 additional texture coordinates for each vertex. For the invari-

ant parameters that are shared among vertices like the "bone transformation

matrix array", the model view projection matrix, lighting parameters can be

Chapter- 3 Multilingual Virtual Performer 52

easily stored in the constant memory of the GPU for access by vertex shaders.

3.6 Integration of Skeletal and Facial Anima-

tion

Because of our different algorithms for the facial animation and skeletal anima-

tion computation, a solution to seamlessly integrate them must be provided.

In general, our virtual character should be able to talk, sing, which are merely

deformation happened to her face, and rotate its head from side to side or

around, which are the skeletal motion that are controlled by the bone inside.

After analyzing this 2 kinds of motion happened to the head of virtual

character, it is found that they are not coherent, or we can say that they are

almost orthogonal motions. This means that any rotation of the head nearly

does not cause any deformation to the face (except part of the neck), and at

the same time the deformation operation does not make any rotation of the

head either. So we can actually perform the operations one after another in

order, and achieve seamless blending. In our system, we choose to perform the

facial deformation first and then perform the skeletal subspace deformation

afterwards, this is because that the DV vectors stored are in untransformed

neutral directions. So the integrated facial animation algorithm is in the form

of:

Vfacejc = (^WbTb)(Vneutral,k + ^ Oii(t) DVi^ipa,k + Y , m D V j , e . p , k) (3.20)

b€B i j

where Vface,k is the position of vertex k in the new face, similarly, ‘t)neutrai,k

is the kth vertex in the neutral face .Wb is the weight which indicates how

much the vertex is affected b}̂ this particular bone. The set of bone indexes

that afFcct the vertex is denoted by B and the corresponding transformation

matrices Tl.

Chapter- 3 Multilingual Virtual Performer 53

I ^ I H H h I H I

• • • • r ^ i B r i i i H i mm
Figure 3.20: Integration of skeletal and facial animation

3.7 Result

The final rendering is composed of several layers or components - the character,

the enviroiiiiient, and the effects.

Since the facial animation and skeletal animation vertex data stream is

passed down the pipeline after the animation calculation in the vertex proces-

sor, it is easy for us to further process them in the fragment processor. The

fragment shader will involve per-pixel lighting calculation or texturing or both

of them, then the final fragment color is passed down for further tests before

put into the frame buffer. To render the transparent objects like the hair, one

more alpha cliaiiiiel for the texture is added for alpha, blending (Figure 3.21).

The environment is simply rendered with a. polygonal sphere. A fragment

shader that calculate and retrieve the color from a ciibemap based on the

world space viewing vector is used here for environment rendering. This is a

per-pixel process that performed on every rasterized pixel so as to maintain

high quality rendering.

The cubeniap texture is composed of 6 prerendered images, which make

Chapter- 3 Multilingual Virtual Performer 54

Figure 3.21: The color and alpha channel for hair

up of 6 faces of a cube (Figure 3.22). Thus it can be created by designing

a scene and then render 6 images with the camera positioned at the scene

center and pointing to 6 directions of the face normals of the cube, or it can

be from 6 real photographs. The cubemap gives a good representation of the

environment information in colors. It can be denoted as a function which

returns color whenever you give the viewing direction from the scene center.

In order to render the environment correctly, we designed a vertex shader

that calculated the view vector based on its world coordinate and eye coordi-

nate. Then for per-pixel rendering using the view vector, we passed it down

to the pipeline using the texture coordinate register that is not only in 32-bit

high precision format, but will also enable the value to be interpolated be-

tween every pixel of the sphere that is rasterized. This allows us to render the

environment correctly.

Chapter- 3 Multilingual Virtual Performer 55

i P i H M

r
Figure 3.22: Ciibemap for rendering the environment

Snow effect in the system is rendered using particle system simulation

and billboard technique. Physical simulation of the particles using newto-

iiia.li physics is performed first, with the position and velocity of every particle

recalculated every frame, which is also known as the euler integration. The

particles are then rendered using the billboard, that are polygons that always

face the viewer so as to fool the eyes to treat it as a 3D object instead of a 2D

plane. As the viewpoint changes, a rotation matrix is generated to rotate the

particle billboards so that they face the new viewpoint. The result rendering

can be seen in Figure 3.23.

We can also perform different style renderings like cartoon rendering by

using the vertex and fragment shader engine.

Ill order to test the lip-synchronization feature of our system, We rail user

perception experiments with 12 randomly generated seven-digit strings. For

each digit string we generate either an audio recording of the synthesized speech

ill a noisy (cafeteria) environment; or a video file that augments the noisy

synthesized audio with a talking face. Our tests involve 16 Cantonese-speaking

Chapter- 3 Multilingual Virtual Performer 56

Figure 3.23: Environment and effect rendering

Substitution Deletion Insertion Accuracy
Speech Only 0 % 14.7% TWo 80.6%

Speech With Animation 4.8% 3.4% 2.8% 89.0%

Table 3.7: Results of the user perception experiments.

subjects. Each subject is presented with the 12 audio/video files and asked to

write clown tlie digit string that was spoken. Subjects have no prior knowledge

of the lengths of the digit strings. Table 3 shows the experimental results in

terms of substitution (S), deletion (D) and insertion (I) errors, Acciira.cy(%)=l

- t o t a l error rates(%).

The digits '5' and '2' are pronounced in Cantonese as /ng3/ and /yi6/

respectively. These are often misrecognized due to their low energies. Further-

more, their visemes look similar - both have a slightly open lip shape. When

the synthetic face is included, we observe a, slight increase in substitution er-

rors. This is caused by substitutions between "2' and '5'. The significant

decrease in deletion errors is predominantly due to better perception of '5'

when the viseme is iiichided. The slight increase in substitution errors is due

to the insertion of ‘2’ at the end of the digit string - a. slight smile in the talking

face at the end of the utterance misled the subjects to believe that the viseme

Chapter- 3 Multilingual Virtual Performer 57

t 总
f J

, m
Figure 3.24: Cartoon style rendering

Vertex Normals Texture Coordinates Polygons Texture Map
Head ^ 4 0 ^ S m 2000x2000
Body 6442 6442 6442 12732 2000x2000
Legs 4850 4850 4850 9580 2000x2000

Environment 1986 (no need) (generated in shader) 2048 512x512x6
Particles 400 (no need; ^ 100 128x128

Table 3.8: Geometric and texture data statistics

for ‘2’ was realized.

The model we used is a high resolution model with high quality textures.

The data amount is shown below in Table 3.8. The textures for the virtual char-

acter are all in 2000x2000 high resolution, and the total vertices and polygons

for the character model is 15390 and 30432, respectively. The texture coor-

dinates for environment rendering is generated in the fragment shader, which

will be used to fetch color form a cubemap composed 6 images of 512x512 in

resolution.

To test the performance of our system, we have tested it on computer

systems with different configurations and graphics cards, as shown in Table 3.9.

We can see that on the 3 computer systems we have tested, all of them

achieve real-time performance, i.e, the frame rate is higher than 30 frames per

Chapter- 3 Multilingual Virtual Performer 58

CPU Ram Graphics Card Video Ram Frame Rate
L a p t o p P H I l . lGhz 1 2 8 N V I D I A Geforce4 Go 440 (Mobile) 32MB ^
Desktop PIV 2.0Ghz 256 ATI Raedeon 8500 64MB 61
Desktop PIV 2.0Ghz 256 NVIDIA GeforceFX 5900 Ultra 256MB 98

Table 3.9: Performance on different systems

second. Even on a PHI laptop equipped with a NVIDIA Geforce4 440 Go

graphics chip, which is only a mobile graphics chip, we can achieve 33 frames

per second of high quality rendering. The 2 desktop PC tests are performed on

the same computer only with different graphics card. The difference in GPU

performance of the 2 cards from NVIDIA and ATI can be seen in the difference

of 37 in frame rate. The available video memory also plays an important role

for the system performance, since we try to put as many data into the video

ram for fast access by the GPU, like the neutral face vertex, normal ,texture

coordinates, phoneme and expression DVs, etc, if the video ram is small that

we are unable to allocate enough buffers for all the data, the rest of them

will still reside in the main memory and consume considerable amount of AGP

bandwidth for rendering. That can also explain part of the reason why graphics

card with small video ram will suffer in performance. But due to the nature

of GPU programs and shared usage of the graphics card with the operating

system and other applications, it is generally hard to measure how much effect

the GPU clock and the video ram has on the system performance.

3.7.1 Summary

The virtual character system we developed not only provides an integrated

framework for multilingual lip synchronized facial animation and skeletal an-

imation, but also presents a good solution for performing intensive geometric

data computation on GPU using vertex processor. The facial deformation

can be integrated with skeletal animation seamlessly in the vertex shader pro-

gram, and text-to-speech systems of different languages can also be integrated

Chapter- 3 Multilingual Virtual Performer 59

by means of the IPA-based mapping.

For the geometric computation on GPU, the organization of input data

into several streams is an important aspect. This ensures that we can map

different data streams to the input vertex registers, and put other data or

parameters that are constant for all the different stream elements within one

frame to the constant memory or registers. Take the facial animation as ex-

ample, Equation 3.9 is a good formulation of the problem in a format that

can be streamlized, the IPA and expression DVs as well as the neutral face

data can be easily separated to streams, and the value of the blending weight

functions is stored into constant memory since they do not vary between dif-

ferent stream elements. This principle can be applied to other applications

that require intensive geometric computation but can be parallelized.

Besides geometric data, many graphics and scientific applications also deal

with large amount of imaging data set, i.e, data that is organized into 2D

grid structure with several channels. Thus our next step in GPU computation

is the exploration of imaging computing capabilities of fragment processor,

which can perform operations on each rasterized pixel, and also have access

to the large amount of texture memory. This is a nice feature of the fragment

processor as the imaging data can be easily stored into the texture memory for

fetch and use in pixel computation. One typical intensive pixel computation

task is the multi-level discrete wavelet transform on large data or images. The

succuss of applying intensive geometric computation on GPU motivates us to

further explore the area of imaging computing using fragment processor. Our

research on discrete wavelet transform on GPU will be described in detail in

the next chapter.

Chapter 4

Discrete Wavelet Transform On

G P U

4.1 Introduction

In this chaptcr wc focus on how to efficiently design the imaging computa-

tion algorithm on GPU for multi-level discrete wavelet transform. Among

those mathematical tools for multiresolution analysis, discrete wavelet trans-

form (DWT) hfus been proved to be elegant and efficient. With the DWT, we

can represent data by a set of coarse and detail values in different scales. Its

locality nature facilitates the representation of high-frequency signals. With

its coarse-to-fine nature, signals can also be synthesized in a progressive man-

ner. Several wavelets applications in computer graphics have been proposed

in recent years, including BRDF representation [33], environment map [34],

global illumination [35], shadow representation [36], wavelet environment mat-

ting [37], progressive mesh [38], and even multiresolution video [39], etc. Be-

sides, wavelets have been adopted as the core engine in JPEG2000 [40], the

second generation of popular JPEG still image encoding.

The intensive computation of DWT due to multilevel filtering/clownsampling

does not cause a serious problem when the data scale is small. However, this

will become a significant bottleneck in real-time applications with large data

60

Chapter 4 Discrete Wavelet Transform. On GPU 61

aet. Swcldeiis proposed an efficient iiiipleiiieiitatioii of DWT, known as the

lifting scheme [41]. By reusing the intermediate values from previous steps,

lifting achieves a high performance. Unfortunately, pure software DWT on

large-scale data still cannot achieve real-time performance. This is evidenced

by the software JPEG2000 implementations. The need of real-time perfor-

mance has already driven several hardware implementations of DWT [42’ 43].

4.1.1 Previous Works

Although hardware implementation (such as FPGA) offers real-time DWT

solution, extra cost is needed for installing extra hardware. As these special-

ized hardware are preliminary, they are still expensive and not cost-effective.

On the other hand, current generation of consumer-level graphics hardware,

GPU, has already evolved to a stage that supports parallel processing, high

programmability, and high-precision computation [4]. It performs not just

rendering of texture-mapped polygons, but also general computations, such as

sparse matrix solving [44j, linear algebra operations [45], fast Fourier trans-

form [46]’ and also non-linear optimization for image-based modelling [47].

Hopf and Ertl proposed a method that utilizes the specific OpenGL exten-

sions to perform convolution and downsampling in DWT [48]. However, these

extensions may vary with different graphics hardware. Hence it may be diffi-

cult to extend to different signal boundary extension schemes. Moreover, the

control of "exact pixel selection" in the downsampling process is tedious.

4.1.2 Our Solution

In this paper, we propose a real-time DWT shader that runs on GPU, hence

it reduces the computational burden of CPU. No tailor-made hardware nor

extension is needed. Providing the shader programmability, our generic DWT

solution can be trivially adapted to different wavelet transform and different

Chapter 4 Discrete Wavelet Transform. On GPU 62

boundary extension schemes. The exact pixel selection during downsampling

also comes with no extra cost. Moreover, our approach unifies both the forward

and inverse DWT to an identical and simple process.

We demonstrate our real-time GPU-based DWT by first applying it to ma-

nipulate the wavelet subbands for real-time geometric deformation. Next, we

show that designer can rapidly perform stylish image processing and texture-

illuminance decoupling [49). Lastly, we have also integrated our DWT engine

into a well-known JPEG2000 codec, JasPer [40], and significantly improved

the encoding performance, especially for high-resolution images obtained from

normal digital cameras.

4.2 Multiresolution Analysis with Wavelets

Consider the Hilbert space of measurable, square-integrable functions

defined on real line 况.A multiresolution analysis [50’ 51，52] consists of a

sequence of closed subspaces {V^j > 0}, \力 C where j denotes the res-

olution level. Those subspaces are in a nested manner: V^ C V^ C • • -V^ • • •.

At each resolution level i , there exists a set of scaling functions with

i e where I<{j) is an index set at level j such that K{j) C K{j + 1).

Those scaling functions should be a Riesz basis of V^.

Let P be a function in the resolution level j , i.e.尸 G V^. It can be

expressed as a weighted sum of scaling functions

尸 = Z ‘於W ‘ (4.1)
ieK(j)

where the parameters Xj’i are defined as the scaling coefficients of the function

p . In other words, a function 尸 in V^ can be represented by the scaling

coefficients Aj� .

Let the subspace be the orthogonal complement of such that

Chapter 4 Discrete Wavelet Transform. On GPU 63

= y j . There exists a set of functions \j > 0 ,m e M (j - l) } ,

where M{j — 1) C K(J). Those functions should be a Riesz basis of In

this case, the functions define a wavelet basis. The function p can also

expressed as:

尸 = X] Y^ (4.2)

kel<{j-l) meM(j-l)

because 0 — V^. The parameters Aj-i,^ are the coarse approxima-

tions and the parameters 7j_i’m corresponds to detail subspace.

The one-step wavelet traiisforin computes the coefficients (scaling /Xj-i’/c

and detail 7j__i’m) at level j — I from the scaling coefficients Xj�i at level j:

Xj-i’k = Y ^ /ij-i.fc.iAj-i (4 .3)
i

7 j - l ’ m = ffj-l’m’i入j’i (4 .4)
i

where the parameters and gj-i,k,i are the decomposition low-pass filter

parameters and decomposition high-pass filter parameters, respectively. Those

filter parameters depend on the choice of the scaling functions and (/){) and

wavelet basis In digital signal processing representation (Figure 4.1), the

input sequence x{n) are the scaling coefficients Aj’i; and the output sequences

L and H are the scaling coefficients and the coarse coefficients 7j-i’m，

respectively.

Hz)

C 人 — 产 t - n c y

)W-pass filter downsampling

giz)

high-pass filter downsampling

Figure 4.1: One dimensional DWT: filtering and downsampling.

Chapter 4 Discrete Wavelet Transform. On GPU 64

The downsampling process can be illustrated by Figure 4.1，where low-pass

h and high-pass g filter kernels are convolved with the ID signal x{n) to pro-

duce low-frequency and high-frequency subbands. These subbands are then

downsampled. The signal x(n) is decomposed into multiple frequency sub-

bands of different scales by successively applying this filtering-and-downsampling

process to the low-frequency subbands. For 2D signal, 2D separable wavelet

transform can be used, i.e. 2D DWT can be achieved by first applying ID

DWT on the rows and then on the columns.

The one-step inverse wavelet transform computes the scaling coefficients

(入j’i) at level j from the coefficients Xj�i at level j - 1:

h i 二 + Y^ 9j-l,m,nj-hm ’ （4.5)
k rn

where the parameters /i; 一i丸i and g'卜、爪’i are the reconstruction low-pass filter

and high-pass filter parameters, respectively.

4.3 Fragment Processor for Pixel Processing

A basic texture-mapped polygon rendering process can be illustrated with a

simple example. First the user will issue 3D rendering command through 3D

API in the form of polygon vertices and texture map images, then the vertices

undergo a 3D transformation stage that positions it at the desired location.

The vertex processor is mainly responsible for this transformation. After that,

the primitive assembly and rasterization stage rasterizes the polygons into pixel

fragments which may cover part of the screen. Finally, the fragment texturing

and coloring stage will retrieve colors from the texture images according to the

2D texture coordinate (given or interpolated). The fetched color value can be

used for direct coloring each pixel or for further computation to determine the

pixel color before thoy arc output to the frame buffer. The fragment processor

is responsible for this texturing and coloring stage.

Chapter 4 Discrete Wavelet Transform. On GPU 65

3D API EEEEEiEEE

Primitive
‘‘ Assembly and Texture

|i| 卿 Rasterization mapping ^

. T r a n s f o r m a t i o r • • U " l 1 .1111 l - H Li t l 11 11 ffl

Figure 4.2: The 3D rendering pipeline

We can see that the fragment processor is responsible for texturing and

coloring. With the prograrnmability, the user can develop applications for

other purposes, like here for image processing in our application, the fragment

shader can be utilized.

The GPU is SIMD in nature, which means we have a bunch of vertex

pipelines and fragment pipelines that run in parallel but on different ver-

tices/fragments. The current generation GPU already supports IEEE 32-

bit, floating point computation that facilitates high-precision discrete wavelet

trarisfonn in our application.

4.4 D W T Pipeline

4.4.1 Convolution Versus Lifting

DWT can be achieved by either the straightforward convolutional approach

or the lifting scheme. The convolutional approach directly implements the

filtering operation. It consumes more memory and requires more computation.

On the other hand, the lifting scheme [41] implements a waveform transform

by a successive simple filtering operations.

Denote the original data as {.7;n},n = l..k , to perform the wavelet trans-

form using lifting, we first apply the first stage lifting as follows:

Chapter 4 Discrete Wavelet Transform. On GPU 66

工'2n+l = + ^ X {x2n + 2;2n+2) (4.6)

where a and r^n+i is the first stage lifting parameter and outcome, respectively.

After all the odd index data points are calculated, the second stage lifting is

performed:

oo'in = + b X +) (4.7)

where we refer the second stage lifting parameter and outcome as b and

respectively. The third and fourth stage lifting can be performed in similar

ways:

H n = 工 ' 2 n + l + CX {X2n + 工Jn+2)

Ln = + d X (^ n - 1 + ^ n)

where and Ln aie the resultant high and low pass coefficients. This process

can also be shown with Figure 4.3

讓 i
介 iV 介 •

U . S l « g « 2nd Stage 广 S 叫 e
Mtgn-pas Lov;-Pass

Figure 4.3: The lifting scheme

The lifting scheme consumes small memory and less computation. For soft-

ware implementations, it is obvious the lifting scheme is preferred. However,

Chapter 4 Discrete Wavelet Transform. On GPU 67

our goal is to develop a DWT engine that executes on GPU whose major ad-

vantage is its SIMD-based parallel processing. No intermediate values sharing

among pixels is allowed. Lifting implicitly imposes an order of execution which

is not fully parallelizable. As the intermediate value sharing is the key factor

of lifting to reduce computation, it will cause too many passes and hence the

switching of rendering context in GPU implementation. Note that the ren-

dering context switching in GPU introduces large overhead on current GPU

design. All these suggest that the parallelizable convolutional approach is fa-

vorable. The large memory consumption issue may not be a serious problem

as large and extremely fast video memory is available on consumer-level GPU.

4.4.2 D W T Pipeline

We design the DWT engine as a set of fragment shaders which perform DWT

on IEEE 32-bit floating-point image. The whole multi-level transform consists

of rendering carefully aligned quadrilaterals that cover the whole or part of

the image. At each level, the 2D DWT is achieved by performing ID DWT

first horizontally and then vertically (Figure 4.4). Hence the quadrilateral is

rendered twice per level of decomposition/reconstruction. At each output pixel

(fragment), a fragment shader that performs ID DWT is executed to compute

the convolution. In the next level, number of pixels requiring fragment shader

execution is reduced (or increased in reconstruction) by 4 so as to cover the low-

passed subband. The process continues until the desired level of decomposition

/ reconstruction is achieved. We employ 2 pixel buffers to hold the input

and output images. Their input and output roles are interchanged after each

rendering pass.

Chapter 4 Discrete Wavelet Transform. On GPU 68

mmhm Horizontal Decomposition Vertical Decomposition
Figure 4.4: Separable 2D DWT

4.5 Forward D W T
Let {X'j{n)} be the boundary-extended input signal at level j. After 1-D DWT

and downsampling, the low- and high-pass sequences are given by

A,_i(n) = j y 称 (4 . 8)
k

7,-1 (n) 二 + (4.9)
A-

Let {2j_i(r?.)} be the concatenation of {Aj—i(n)} and {7j_i(n)}, We can

rewrite (4.8) and (4.9) in a more generic way for efficient SIMD implementation

on GPU

Zj一八n) = h j - A n , A;), (4.10)
k

fd,j-i{n,k) is a. position-dependent filter that selects the proper coefficient

from h{k) and (j{k) at decomposition level j-1. J\’j—i(n, k) is a function that

returns the corresponding data in the level j boundary-extended signal {入‘⑷}

for convolution. These can be easily implemented by indirect addressing /

dependent texture fetching [11] in the GPU algorithm.

The fd’j—i(ji, k) position dependent filter is achieved by a filter selector

variable q' calculated in the fragment shader to selects between h{k) and g{k),

i.e.,at each output pixel, the fragment shader has to determine whether the

current pixel belongs to the high-passed or low-passed regions after DWT. If

it is high-passed pixel, the high-pass filter kernel is used for convolution, and

vice versa. Care must be taken when handling images with odd dimension.

Chapter 4 Discrete Wavelet Transform. On GPU 69

Given the texture coordinate (a� t) for the current output pixel (fragment) in

the image of resolution W x H, we can uniquely identify whether the current

pixel belongs to high-passed or low-passed regions after DWT. Without loss

of generality, we only discuss the horizontal ID DWT. Suppose we are dealing

with ID pixel sequence of length L. The filter selector a is computed with

value 1 means high-pass and value 0 means low-pass.

‘ 1 ’ if sVl/ > L/2 , �
a = { ‘ 丨 (4.11)

I 0, otherwise

Then the corresponding kth filter coefficient is used for convolution.

Function fx,j-i{n, k) is implemented by calculating the base position (filtering

center) 0 in the fragment shader and then fetch its neighbor from input texture

as shown in Figure 4.6. The base position (3 can be computed by the following

equation.

二 2(s — a � $ l) + Q; + 0.5 (4.12)

We add 0.5 to address the pixel center in texture fetching. Figure 4.6(a) links

the computed base position in the input buffer with the corresponding output

pixel in the output buffer. With this, downsampling is automatically achieved

without wasting computation on unused samples.

The convolution takes place with the base pixel at the center and fetches

土[•I neighboring pixels. In general, low-pass and high-pass filter kernels usu-

ally have different lengths, hence different values of k. For implementation

uniformity, k should be chosen as the larger one.

If the fetching of neighbors goes beyond the image boundary of the cur-

rent level, we need to extend the boundary extension. Common extension

schemes include periodic padding, symmetric padding and zero padding, etc.

We have applied symmetrical periodic extension [53] that mirrors pixels across

the boundary, with the boundary pixel not mirrored. Figure 4.6(b) shows two

examples of convolution with fetching to extended neighbors.

Chapter 4 Discrete Wavelet Transform. On GPU 70

Instead of computing a, [5�and boundary extension within the fragment

shader using arithmetic instructions, we use a more efficient way which pre-

computes and stores all these values in a 2D texture. Most CPUs nowadays

support highly optimized texture fetching operations which are much faster

than arithmetic operations. This table-lookup approach also offers flexibil-

ity ill implementing different boundary extension schemes by replacing the

addresses in this indirect address table (texture).

CTTO | 1 | 2 | 3 | 4 | 5 | 6 171819 |1Q|11l12l13ilein “
Q n T T y y 4 5 s i m

Q n ^ I I i Z l l J B D
Figure 4.5: The indirect address table for boundary extension.

The texture is organized with each row holding boundary extension, a and

j3 values for one particular level of DWT. Inside each texel, channel R stores

the indirect address of pixel with boundary extended. Channels G and B store

rv and (3 respectively. Therefore the width of table for a data sequence with

maximum length L is L + /c - 1. Figure 4.5 shows three levels of indirect

addresses stored in the texture with data sequence of length 14 and k = b.

Color dark grey indicates the boundary-extended elements while color light

grey indicates elements within the level of data sequence, This texture is

small in size as the number of rows equals to log2(max(M,’ H)).

houndao'i — ibovindar>'

丨0丨1丨2|3丨4|5丨6丨7丨8丨 闹input

low high low high

(a) (b)

Figure 4.6: (a) Mapping to the base positions, (b) Decomposition with bound-
ary extension.

Chapter 4 Discrete Wavelet Transform. On GPU 71

4.6 Inverse DWT

The 2D inverse DWT can be achieved by applying ID inverse DWT hori-

zontally and then vertically. Although the inverse DWT is mathematically

different from the forward one, we show that, by using the same indirect ad-

dress table, the inverse DWT reduces to almost the same process as forward

DWT. Both low-frequency and high-frequency coefficients contribute to recon-

struction process.

Let {A;_i(n)} and {7;_i(n)} be the zero-padding upsampled and boundary

extended low- and high-pass signal at level j-l. The reconstruction of {Xj(n)}

is given by

Xj{n) = Yj�'�k)X'j-如,-M + � - k), (4.13)
k k

where h'{k) and g'{k) are low- and high-pass reconstruction filters, respec-
tively.

Similar to the forward DWT, (4.13) can be rewritten as

Xj{n) 二 5^/,.j-i(n，/c)/A—i(n,/c)， （4.14)
k

/2’j_i(n’ k) returns the corresponding data in the upper-sampled and boundary-

extended signal of {^(ti)} at level j 一 l.This is efficiently implemented into

fragment shader as shown in Figure 4.7. It shows that both low-frequency

and high-frequency coefficients are upsampled and interleaved virtually. Note

that we do not actually perform the upsampling nor interleaving. Instead,

we precompiite the indirect addresses and store them in the indirect address

table. Note that the boundaries have to be extended before the interleaving

as illustrated in Figure 4.7.

Once the indirect address table is ready, values in the next level can be re-

constructed by convolution (Figure 4.8). Based on the odd/even status of posi-

tion of the reconstructing pixel, we decide the reconstruction filter to convolve.

Chapter 4 Discrete Wavelet Transform. On GPU 72

upsampling (f "'即 I 2 丨 3 丨 4 | » 1 曹 邏 : • 口 u p s a m p l i n g

lol 丨1 丨 l2l l 3 m I H H H E n
boundary extension {/ � boundary extension

f l l l o l [1 1 l 2 l | 3 | | 4 | H a H i l l E l
interleaving

| 1 H O B I 1 B 1 2 H 3 0 4 D ^
indirect addresses precomputed

Figure 4.7: Virtual upsampling and interleaving for precompiiting indirect
addresses.

Note that low-frequency elements must be multiplied to the low-pass recon-

struction filter, /?', while high-frequency elements must be multiplied to high-

pass reconstruction filter, (j'. Here the position-dependent filter / , . j_i(n, A;)

is similar to the forward case which selects the proper coefficient from the

reconstruction filter bank h'{k) and g'{k). For efficiency, we reorganize the

filter kernels to form the interleaved kernels as illustrated in Figure 4.8. In .

general, h' and 厂/, are different in length. With this indirect addressing, both

the shaders for forward and inverse DWTs are basically performing the same

operations, namely indirect pixel lookup, filter selection, and convolution.

r^aoHUl f a o a i a)
^ { I h M k g M j t \ \ M E I m M E \)

\ ^ interleaved filter j interleaved filter
I —. { - ^ ____ reconstructed

rJ I I I I I____ values
Figure 4.8: Reconstruction filtering in inverse DWT.

Chapter 4 Discrete Wavelet Transform. On GPU 73

4.7 Results and Applications

4.7.1 Geometric Deformation in Wavelet Domain

We have applied our GPU-based DWT engine to geometric deformation in

which the designer ca.ii modify control points of a, NURBS 3D model in wavelet

(loniain. The designer can arbitrarily scale the wavelet coefficients in different

frequency subbands to achieve the desired effect. Note that the deformation

is (lone in real-time.

Figure 4.9 shows three deformed heads along with the scaling configurations

of wavelet subbands. The siibband with no scaling is color-coded in grey. The

sul)bands being scaled up and down are color-coded in red and blue respec-

tively. As coefficients in different siibband influence the geometry in different

scales, the designer can focus on the semantic rather than the spatial position

of control points.

• i ai __ I
Figure 4.9: Three different wavelet-based geometric designs.

4.7.2 Stylish Image Processing and Texture-illuminance

Decoupling

Our GPU-based DWT engine allows us to do real-time wavelet-based miiltires-

oliition image processing which offers various effects, even images are of high

resolution. Hence, we combine, remove, or scale the wavelet coefficients in

different subbands and in different color spaces (RGB or YUV) to achieve the

desired effects. As illustrated in Figure 4.10, the bumpy feature of the bean

Chapter 4 Discrete Wavelet Transform. On GPU 74

image (middle) is transferred to the Starry Night painting (left) by combining

the high-frequency siibbands in the Y channel of both images while removing

the lowest frequency subbaiid of the bean image. We take the maximum be-

tween two corresponding coefficients to maintain the details from both images.

The real-time ability of our wavelet transform allows the designer to rapidly

evaluate the visual results from wavelet domain processing.

4 F D W T f ‘

_ (• • ， •) — DWT
Figure 4.10: Fast image stylishing by combining coefficients in wavelet domain.

Sometimes when we acquire textures by taking photographs, the illumina-

tion condition is usually not controlled. If the illumination only introduces

slow intensity change in the acquired image {i.e. low-frequency component),

it is possible to decouple the contribution due to the uncontrolled illumina-

tion from the desired texture. Figure 4.11 illustrates such application. We

first remove high-frequency subbaiids and generate the illimiinance image us-

ing inverse DWT. By dividing the original image with this illuminance image,

we obtain an “illmiiiiiat,ion-constant，’ deca.1 map which is ready for texture

mapping.

Chapter 4 Discrete Wavelet Transform. On GPU 75

E S E S S H H H H r r k l ^ n ^ m

BSSKSSSSBRCSSBRi ^ ^ ^ ^ ^ ^ g S S g s

^ ^ m m • •

L國」
FDWT IDWT

Figure 4.11: Fast texture-illuminance decoupling.
4.7.3 Hardware-Accelerated JPEG2000 Encoding
DWT has been identified as a time-consuming part of the lossy JPEG2000

encoding [40]. Especially when the rate is small, the DWT processing time be-

comes doininaiit. By integrating our GPU-based DWT engine into the popular

JPEG2000 still image codec, JasPer [40],which is a free software-based refer-

ence iiiiplenieiitatioii of the codec specified in the JPEG-2000 Part-1 standard

(i.e., ISO/IEC 15444-1), the encoding speed has been greatly increased.

The flow of a JPEG2000 encoder can be shown in Figure 4.12. The first part

is the component and tile separation, which is used to cut the image into chunks

and to (lecorrelate the color components. For multi-component color images, a

component transform is performed to decorrelate the componeiiets.Each tile of

each component is then processed separately. The data, are first transformed

into the wavelet domain, and are then quantized. After that , the quantized

coefficients are regrouped to facilitate localized and resolution access. Each

subband of the quantized coefficients is divided into rectangular blocks. Three

spatially co-located rectangles (one from each subband at a. given resolution

level) form a packet partition. Each packet partition is further divided into

code-blocks, each of which is compressed into an embedded bitstream. They

are then assembled into packets, each of which represents a. quality increment

of one resolution level at one spatial location. By combining packets from all

the partitions of all resolution level of all the tiles and components, we form a

Chapter 4 Discrete Wavelet Transform. On GPU 76

layer. The final bitstream may contain multiple layers.

I » > CR 1
I I
I 1
I I
I I
I I

[- - • - CB -j
I I
I I

J Tiles I j Quo啦Bl_or - » . EnlropvC«l«g ~ ~ ^ _ ^ „

n C o m p o n e n i Hall^B^^ Bilsueam

WmlKSm �� ��

關 L J m L l :
Figure 4.12: JPEG2000 encoding flow

The most important part of the codec is the DWT shown in Figure 4.12,

ill JPEG2000, both reversible integer to integer and non-reversible real-to-real

wavelet traiisforiiis are employed, called the 5/3 and 9/7 wavelet kernel, re-

spectively. Since the main performance issue is in the 9/7 real-to-real wavelet

transform, and at the same time the GPU processes floating point values

throughout the graphics pipeline, we have integrated our GPU-based DWT

specially for the 9 /7 wavelet into the JasPer codec.

We have evaluated the performance of the GPU-based DWT. The iinple-

iiientatioii adopts OpenGL and NVIDIA's Cg for shader development. The

evaluation is conducted on a PC with Pentium IV 2.0 GHz CPU, 512MB

memory, and GeforceFX 5900 Ultra, with 256MB video memory.

We compare the execution time of GPU-based DWT with the software

lifting-based Jasper. Seven test images ranging from 128x128 to 2048x2048

are encoded with 1 tile, 1 layer, 9 /7 transform, 5 decomposition levels. Fig-

ure 4.13 shows the timing statistics that compares the original software codec

with ours. Instead of measuring the image dimension, we measure the number

of pixels ill the unit of million pixels which is commonly used in digital camera

terminology. For low-resolution images, the speed of the GPU DWT is a bit

Chapter 4 Discrete Wavelet Transform. On GPU 77

DWT Execution Time
35 1 1 1 I 1 ！ 1 1

令 Software DWT | A
30 - GPU DWT Z -

/
2 5 - . . . Z ••

广 /

I /
— 1 5 - X

1 0 - -

X
5 - Z . . . I

I I I I I I I
V 0 5 1 2 Z 5 3 4 4.5

image size (Million Pixels)

Figure 4.13: Timing Comparison: software versus GPU DWT

poorer than the software one because of the overhead of GPU initialization

and (lata transfer. As the image size is raised to around 0.16 million pixels

(about 400 X 400). Our codec outperforms the software one. The speedup

is apparent for encoding high-resolution images. This shows the advantage of

parallel processing in SIMD-based GPU.

For a fair comparison, we have accounted for all overheads of using GPU,

these include data conversion, initialization and texture creation, etc. The

breakdown of execution time is shown in Table 4.1. The computation time

due to overheads is included in the column “GPU Total" of Table 4.1. The

breakdown is shown and the timing for software lifting implementation of DWT

with JasPer ("Software Total") is also presented for comparison. "OpenGL"

shows the time for initializing OpenGL and Cg systems, which is more or less

constant. "Texture" accounts for the time for texture and pixel buffer creation.

Hence it increases as the data, size increases. The computation time for DWT

occupies only a small portion of the whole execAition time due to the parallel

Chapter 4 Discrete Wavelet Transform. On GPU 78

Image llSoft Total IIGPU Total llOpenGL [Texture |DWT [Others (
1 2 8 - ^ ^ 0 . 0 6 0 . 1 6 0 . 0 1

2562 0.11 0.81 0.54 0.08 0.16 0.03
5122 1.47 0.95 0.51 0.09 0.22 0.13
10242 7.80 1.56 0.53 0.19 0.41 0.43
12802 10.52 2.04 0.54 0.30 0.59 0.61
20482 31.03 4.28 0.53 0.67 1.38 1.70

Table 4.1: Breakdown of computational time (sec)

bit rate Software based DWT GPU based DWT
PSNR (dB) PSNR (dB)

0.1875 30.73, 29.72, 2 8 . 7 1 3 0 . 7 5 , 29.73, 28.69
0.75 35.68, 35.01, 32.47 35.65, 35.02, 32.46

3 39.46, 40.30, 37.02 39.47, 40.31, 37.03

Table 4.2: Encoding quality comparison for lossy coding

processing nature of GPU. "Others" refers to the time for other operations as

well as data conversion and transfer, therefore it is also dependent on the data

sizes.

Besides, we have also evaluated the image quality by experimenting on the

standard test image, Lena. We encode it at different bit rates. The PSNR in

the RGB channels are shown in Table 4.2. There is no significant difference

between our GPU DWT and the software lifting-based Jasper, thank to the

high-precision floating point computation in GPU.

4.8 Web Information

More information and demo programs are available at:

ht tp : //www.cse .cuhk.edu.hk/�t twong/sof tware /dwtgpu/dwtgpu .h tml

http://www.cse.cuhk.edu.hk/%e3%80%9cttwong/software/dwtgpu/dwtgpu.html

Chapter 5

Conclusion

In order to exploit the SIMD and parallel processing power of GPU for the

processing of increasing amount of data in computer graphics and imaging ap-

plications. We investigate 2 computational intensive problem for developing

efficient GPU algorithms - the virtual character system with lip synchroniza-

tion and the discrete wavelet transform, that are mainly focused on exploring

the geometric and imaging computation capabilities of GPU, respectively.

In order to explore techniques and solutions for performing large geometric

data computation using vertex processor, we have designed a simple and effi-

cient framework for real-time virtual character animation. By carefully design

the algorithm, we successfully map both the facial and skeleton animation

computation to the GPU and achieved seamless integration of them in the

shader program. By doing so, we have achieved good load balancing between

the GPU and CPU, high system performance, as well as high rendering qual-

ity. The language and lip synchronization capabilities of the system is also

explored. We proposed an I PA-based mapping technique to make our virtual

character multilingual. Text-to-speech systems of different languages can also

be easily integrated for real-time speech animation generation in our system.

For the imaging data computation on GPU, we have also demonstrated a

simple but powerful and cost-effective solution to implement discrete wavelet

transform on the fragment processor. No tailor-made and expensive DWT

79

Chapter 5 Conclusion 80

hardware is needed to achieve such performance. It can be implemented on

any SIMD-based GPU comes with normal configuration of PCs. The pro-

posed method unifies the mathematically-different forward and inverse DWT.

Difforont wavelet filter kernels and boundary extension schemes can be easily

incorporated by modifying the filter kernel values and indirect address table re-

spectively. We have demonstrated its applicability in real-time wavelet-based

geometric deformation, stylish image processing, texture-illuminance decou-

pling, and JPEG2000 encoding. The current approach is still rectilinear in

nature and not applicable to spherical wavelet transform [33] which is useful

in modeling BRDF and environment map. In the future, we will investigate

the parallelization of spherical wavelet transform on GPU.

General purpose computing on GPUs is an area of research that I find

very interesting, the low cost, high speed and parallel pipelines of GPUs make

them a very useful coprocessors for intensive computation in different scientific

and engineering fields. Further GPUs will have to remove some limitations for

achieving more wide usage. One of them will be the support for double pre-

cision throughout the pipeline, although the IEEE 32-bit single precision is

generally enough in many applications, still there're computations in research

work that need double precision. Another limitation is the access of texture

resources in the vertex processor, removing this will allow for large data ac-

cess in the vertex shader programs and also more potential applications for

geometric computation on GPU. At last, one great potential change to the

GPU programming paradigm will probably be the integration of vertex and

fragment shader. Overall, with the increasing in speed and prograrnmability, I

see a bright future for GPU computing in graphics, scientific and engineering

areas.

Bibliography

[1] E. Lindholm, M. Kilgard’ and H. Moreton, A user programmable vertex

engine, in Proceedings of SIGGRAPH, 2001.

[2] M. S. Peercy, M. Olano, J. Airey，and P. J. Ungar, Interactive 腿Iti-pass

porgammable shading, in Proceedings of SIGGRAPH, 2000.

[3] K. Proodfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan, A real-time

procedural shading system for programmable graphics hardware, in Pro-

ceedings of SIGGRAPH, 2001.

[4] w . R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, Cg: A

system for p r o g r a m m i n g graphics hardware in a c-like language, in ACM

Transactions on Graphics (TOG), 2003.

[5] C. Trendall and A. J. Steward, General calculations using graphics hard-

ware with applications to interactive caustics, in Proceedings of the Eu-

rographics Workshop on Rendering, 2000.

[6] J. Rhoades et a l , R e a l - t i m e procedural textures, in Proceedings of the

1992 Symposium on Interactive 3D Graphics, 1992.

[7] M. Olano and A. Lastra, A shading language on graphics hardware: The

pixelflow shading system, in Proceedings of SIGGRAPH, 1998.

81

[8j B. Cabral, N. Cam, and J. Foran, Accelerated volume rendering and to-

mographic r e c o n s t r u c t i o n using texture mapping hardware, i n Proceedzngs

of the 1994 Symposium on Volume Vmialuatwn, 1994.

[9] J. Kniss, S. Premoze, C. Hansen, and D. S. Ebert, Interactive translu-

cent volume rendering and procedural modeling, in Proceedmgs of IEEE

Visualization 2002, 2002.

[10] N. A. Carr, J. D. Hall, and J. C. Hart, The ray engine, in Proceedings of

仇e ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hard-

ware, 2002.

[11] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan’ Ray tracing on

programmable graphics hardware, in ACM Transactions on Graphics

(TOG)�2002.

[12] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanra-

han, Photon mapping on programmable graphics hardware, in Proceed-

饥gs of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, 2003.

[13] N. A. Carr, J. D. Hall, and J. C. Hart, GPU algorithms for ra-

diosity and subsurface scattering, in Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, 2003.

[14] R. Strzodka and M. Rumpf, Level set segmentation in graphics hardware,

in Proceedings of the International Conference on Image Processing, 2001.

[15] A. E. Lefohn, J. Kniss, C. Hanson, and R. T. Whitaker, Interactive de-

foniiation and visualization of level set surfaces using graphics hardware,

ill Proceedings of IEEE Visualization, 2003.

82

[1(3] K. E. Hoff, A. Zafcrakis, M. Lin, and D. Manocha, Fast and simple 2d

geometric proximity queries using graphics hardware, in Proceedings of

the 2001 Symposium on Interactive 3D Graphics, 2001.

[17] N. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, Cullide:

Interactive collision detection between complex models in large envi-

ronments using graphics hardware, in Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, 2003. *

[18] N. H. Mustafa, E. Koutsofios, S. Krishnan, and S. Venkatasubramanian,

Hardware assisted view dependent map simplification, in Proceedings of

the 17th Annual Symposium on Computational Geometry, 2001.

[19] S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian, Hardware-

assisted computation of depth contours, in Proceedings of the thirteenth

annual A CM-SI AM symposium on Discrete algorithms, 2002.

[20j F. Parke, Computer generated animation of faces, in Proceedings of the

ACM National Conference, 1972.

[21] F. I. Parke and K. Waters, Computer Facial Animation, A. K. Peters,

1996.

[22] I. Karlsson, A. Faulkner, and G. Salvi, SYNFACE - a talking face tele-

phone, in Proceedings of the Eurospeech, 2003.

[23] T. E. T. Poggio, International Journal of Computer Vision 38’ 45 (2000).

[24] C. Pelachaiid, E. Magno-Caldognetto, C. Zmarich, and P. Cosi, Modelling

an Italian talking head, in Proceedings of Audio-Visual Speech Processing,

2001.

83

[25] N. M a g n e n a t - T h a l m a n n , R. Laperriere, and D. Thalmann’ Joint depen-

dent local deformations for hand animation and object grasping, in Pro-

ceedings of Graphics Interface, 1988.

[26] K. Singh and E. Kokkevis, Skinning characters using surface-oriented

free-form deformations, in Proceedings of Graphics Interface 2000, 2000.

[27] J. p. Lewis, M. Cordner, and N. Fong, Pose space deformations: A uni-

fied approach to shape interpolation and skeleton-driven deformation, in

Proceedings of SIGGRAPH 2000, 2000.

[28] J. Wilhelms and A. V. Gelder, Anatomically based modeling, in Proceed-

ings of SIGGRAPH 1991�1997.

[29] F. Scheepers, R. E. Parent, W. E. Carlson, and S. F. May, Anatomy-based

modeling of the human musculature, in Proceedings of SIGGRAPH 1997,

1997.

[30] J. Gourret, N. M a g n e n a t - T h a l m a n n , and D. Thalmann, Simulation of

object and human skin deformations in a grasping task, in Proceedings of

SIGGRAPH 1989, 1989.

[3 1] N. M a g n e n a t - T h a l m a n n and D. Thalmann, Human body deformations

using joint-dependent local operators and finite element theory, in Making

Them Move: Mechanics, Control, and Animation of Articulated Figures,

1991.

32] S. Dipaola, Investigating face space, in Proceedings of SIGGRAPH 2000�

2000.

[33] p. Schroder and W. Sweldens, Spherical wavelets: Efficiently representing

functions on the sphere, in Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques, 1995.

84

[34] P. Schroder and W. Sweldens, Spherical wavelets: Texture processing, in

Rendering Techniques '95, Proceedings of the Eurographics Workshop in

Dublin, Ireland, June 12-14, 1995�pages 252—263, Springer, 1995.

[35] P. H. Christensen, E. J. Stollnitz, D. H. Salesin, and T. D. DeRose, Global

illumination of glossy environments using wavelets and importance, in

ACM Transactions on Graphics (TOG), 1996.

[36] R. Ng, R. Ramamoorthi, and P. Hanrahan, All-frequency shadows us-

ing non-linear wavelet lighting approximation, in ACM Transactions on

Graphics (TOG), 2003.

[37] P. Peers and P. Dutre, Light fields and matting: Wavelet environment

matting, in Proceedings of the 13th Eurographics workshop on Rendering,

2003.

[38] A. Khodakovsky, P. Schroder, and W. Sweldens, Progressive geome-

try compression, in Computer Graphics (SIGGRAPH 2000 Proceedings),

pages 271-278’ 2000.

[39] A. Finkelstein, C. E. Jacobs, and D. H. Salesin, Multiresolution video,

in Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques, 1996.

[40] M. D. Adams and F. Kossentini, Jasper: A software-based JPEG-2000

codec implementation, in Proceedings of IEEE ICIP, 2000.

[41j W. Sweldens, SIAM Journal on Mathematical Analysis 29, 511 (1998).

42] K. Andra, C. Chakrabarti, and T. Acharya, IEEE Transactions on Signal

Processing 50’ 966 (2002).

85

43] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, Hardware implementation

of shape-adaptive discrete wavelete transform with the JPEG defaulted

(9,7) filter bank, in Proceedings of ICIP 2003, 2003.

[44] J. Bolz, I. Farmer, E. Grinspun, and P. Schreoder, Sparse matrix solvers

on the GPU: conjugate gradients and multigrid, in ACM Transactions on

Graphics (TOG), 2003.

[45] J. Kriiger and R. Westermann, Linear algebra operators for GPU imple-

mentation of numerical algorithms, in ACM TOG, 2003.

[46] K. Moreland and E. Angel, The FFT on a GPU, in Proceedings ofHWWS,

2003.

[47] K. E. Hillesland, S. Molinov, and R. Grzeszczuk, Nonlinear optimization

framework for image-based modeling on programmable graphics hard-

ware, in ACM TOG, 2003.

[48] M. Hopf and T. Ertl, Hardware accelerated wavelet transformations, in

Proceedings of EG/IEEE TCVG Symposium on Visualization, 2000.

[49] B. M. Oh, M. Chen, J. Dorsey, and F. Durand, Image-based modeling and

photo editing, in Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 433-442, 2001.

[50] C. K. Chili, An Introduction to Wavelets, Academic Press, 1992.

[51] E. J. Stollnitz, T. D. DeRose, and D. H. Salesin, Wavelets for Computer

Graphics, Theory and Applications, Morgan Kaufmann Publishers, Inc,

1996.

[52] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

[53] G. Strang and T. Nguyen, Wavelets and Filter Banks, Wellesley-

Cambridge, Cambridge, MA, 1996.

86

F

