
！Exploiting the GPU Power for Intensive 
Geometric and Imaging Data Computation 

Wang Jianqing 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Philosophy 

in 

Computer Science and Engineering 

©The Chinese University of Hong Kong 

Aug, 2004 

The Chinese University of Hong Kong holds the copyright of this thesis. 

Any person(s) intending to use a part or the whole of the materials in this 

thesis in a proposed publication must seek copyright release from the Dean of 

the Graduate School. 



fir ::、禽 

|j( SI M 8 Q )•) 
Vv画.縣岁妨yV 



Abstrac t 

Computer graphics, imaging and visualization nowadays requires dealing with 

and performing various analysis on large amount of data. For example, defor-

mation and skeletal animation of complex geometries in real-time, multiple-

level discrete wavelet transform on high resolution imaging data, etc. These 

operations usually are computational intensive and impose a heavy burden 

on the CPU, which are also hard to achieve real-time performance. On the 

other hand, with the recent advances in consumer-level graphics hardware, 

the current new generation of graphics accelerator now consists of a graph-

ics processing unit (GPU) which offers SIMD-based parallel processing power. 

It doesn't merely do the job of rendering texture-mapped polygons, but also 

provide us with high-precision rendering pipeline and high programmability 

nowadays. We can perform other general purpose computing on it when care-

fully designed. In this thesis, we have successfully exploited the power of GPU 

for computation and processing of both geometric data and imaging data in the 

2 applications - real-time character facial and skeletal animation; and multiple 

levels of discrete wavelet transform. We develop parallel algorithms to map 

our solutions to the GPU SIMD architecture and leverage its power to give a 

great performance gain in both applications. These approaches also offload the 

intensive computing tasks from CPU and achieve load balancing between CPU 

and GPU. At the same time, for the virtual character project, we also propose 

a simple and efficient framework for both facial and skeletal animation, as well 

as the seamless integration of them for rendering. The solutions for supporting 
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multilingual lip synchronization and integration with text-to-speech system of 

multiple languages are also developed. 
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摘要 

今天，在計算機圖形學，圖形處理與可視化的研究領域中，處理與分析大量數據 

楚必不可少的。比如複雜三維幾何體的實時變形與骨豁動畫，或是對高分辨率的 

大尺寸圖像做多重小波變換。這些處理通常需要繁重與大量的計算，並且對電腦 

屮央處理單元 ( C P U )的運作造成了大量的負擔，也很難實現實時的性能。在另一 

方面，隨著近幾年消費者級的圖形處理硬件的快速迅猛發展，新一代的圖形加速 

卡己經配備了一顆具有並行向量處理與多重流水綫的圖形處理單元 (GPU)，由於 

提供了高精度的圖形流水錢與易于使用的圖形編程接口，它不僅僅只適用於圖形 

渲染的功能，只要經過適當的算法設計，我們可用它來實行其他更多非圖形或一 

般化的計算任務。我們成功探索了圖形處理單元對於大量幾何與圖像數據的潛在 

計算處理能力，並提供了對於兩個此類問題的解決方案一實時虚擬角色的臉部 

與骨豁動畫，以及對高分辨率圖像進行快速多重小波變換。我們設計的並行算法 

成功將這些問題映射到G P U的並行架構之上並最大限度發掘它對這兩個問題的 

性能加速，減輕C P U的計算負荷與達到負載平衡。同時在虚擬角色的研究中，我 

們也推出了一個簡單而有效且可以同時支持臉部與骨豁動畫的系統架構對於多 

語言進行唇形同步，以及與文本到語音合成系統的整合問題我們也提出了很好的 

解決方案。 
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Chapter 1 

In t roduct ion 

1.1 Overview 

Nowadays, various applications in computer graphics, visualization and image 

processing require dealing with large amount of data. The data can be gen-

erally categorized into 2 types: geometric data and imaging data. Geometric 

data is usually in the form of polygonal meshes or spline patches; and imaging 

data is usually 2D grid data with several channels. High resolution polygonal 

mesh and large texture images are now frequently used for rendering in game, 

movie industry and TV commercials. Volume Data in medical imaging like 

CT or MRI images are handled and processed for visualization in many appli-

cations. All the facts show that in the area of computer graphics and imaging, 

we are facing an increasing need for processing more and more large data sets 

with the computing power of our PC. In many applications that require high 

performance or quick response, the need for processing and performing inten-

sive computation on large data sets as quick as possible or even in real-time 

continuously grows. 

In applications of geometric computing, a typical example of intensive com-

putation on large geometric data set is real-time 3D facial deformation and 
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Chapter 1 Introduction 2 

kinematics calculation in virtual character animation, which requires fast de-

formation calculation of the 3D human face mesh and weighted skeletal trans-

formation of all of the vertices. It remains a challenge for achieving real-time 

and high-quality rendering at the same time. In many previous applications, 

people trade performance with low quality model of less data, or have to wait 

for a long time to do off-line rendering of high quality animations. 

When dealing with imaging data, one typical example of computational in-

tensive task will be the discrete wavelet transform on large images or data set. 

The intensive computation of DWT due to multilevel filtering/downsampling 

does not cause a serious problem when the data scale is small, but this will 

become a significant bottleneck in real-time applications with large data set. 

Like using the new JPEG2000 standard to encode/decode high resolution im-

ages from the digital cameras today, the waiting time may be unendurably 

long from tens of seconds to minutes per image according to its size. 

On the other hand, the recent rapid increase in the processing speed and 

programmability of consumer graphics hardware cast lights on our problems. 

With the powerful SIMD architecture and parallel pipelines of the graphics 

processing unit (GPU), it is possible to exploit the graphics rendering pipeline 

and design GPU algorithms for more general computational tasks besides just 

rendering. 

In this thesis, we focus on exploiting the computational power of two en-

gines inside GPU at different stages of the pipeline - the vertex processor 

and fragment processor for their potential applications in large geometric and 

imaging data processing. We achieve this goal by providing efficient solutions 

to the two typical problems described above - real-time high quality virtual 

character animation and fast discrete wavelet transform. 
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1.2 Thesis 

Central to our research, the goal in this thesis is to perform intensive geomet-

ric and imaging data computation on the GPU using the vertex and fragment 

shaclers, which are programs being executed by the vertex and fragment pro-

cessor, respectively. The rendering pipeline is exploited to perform geometric 

and imaging computation taaks that are offloaded from CPU, and at the same 

time, to increase performance with the SIMD and parallel processing power of 

GPU. 

We illustrate how to perform large amount of geometric computation on 

GPU by providing solutions for the virtual character animation problem. This 

is a joint project between Department of Computer Science and Engineering 

(CSE) and Department of System Engineering and Engineering Management 

(SEEiVI). We cooperate with Dr. Helen Meng from Human Computer Com-

munication Laboratory (HCCL). An efficient framework for virtual character 

animation suitable for GPU computation is developed. This enables us to 

perform facial and skeletal animation computation totally on the GPU, thus 

achieve high quality rendering as well as maintain real-time performance with 

the help of mapping the large amount of geometric data computation onto the 

vertex processor of GPU. Besides the performance issue, the language capabil-

ity of the virtual character for lip synchronization is also explored. In order for 

the character to be multilingual and speak or sing in different languages, an 

International Phonetic Alphabet (IPA)-basecl mapping technique is developed 

and could be used to extend the language capability of the virtual character 

to many different languages like Mandarin, Cantonese, English, Japanese, and 

much more. The home-brew cantonese text-to-speech system - CU Vocal de-

veloped by the HCCL of SEEM department is also integrated into our system, 

that enables us to generate cantonese lip-synced cantonese speech animation 

in real-time just from Chinese texts. 
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Fast processing of large imaging data set on GPU is also possible. We illus-

trate this by providing solution to accelerate the slow multi-level DWT process. 

We successfully map the whole transform onto the GPU using the fragment 

shader engine. Indirect addressing / dependent texture read technique is em-

ployed to effectively implement the DWT on GPU. Although the forward and 

inverse wavelet transforms are mathematically different, our proposed algo-

rithm unifies them to an almost identical process that can be efficiently imple-

mented on GPU. Different wavelets kernels and boundary extension schemes 

can be easily incorporated by simply modifying input parameters. To demon-

strate its applicability and performance, we apply it to wavelet-based geo-

metric design, stylish image processing, texture-illuminance decoupling, and 

JPEG2000 image coding. 

1.3 Contributions 

The major contribution of this thesis is the techniques and approaches devel-

oped by us to map intensive geometric and imaging data computation to the 

vertex and fragment engines of the GPU, and how to make use of its SIMD 

and parallel pipeline power to achieve high system performance. 

The virtual character system provides a good solution for performing ge-

ometric deformation for animation computing on GPU. At the same time, 

it also presents a simple and efficient framework for both facial and skeletal 

animation. The multilingual lip synchronization capabilities, as well as the 

support for real-time generation of lip-synchronized animation with text-to-

speech systems are also developed. 

And for imaging data processing on the GPU, we accelerate the discrete 

wavelet transform with the fragment processor using indirect addressing or 

dependent texture techniques. Our approach not only unifies both forward 

and inverse transform into an almost same process, different wavelets kernels 
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and boundary extension schemes can be also be easily incorporated. 

Our research work on geometric and imaging computation on GPU have 

also been highly evaluated by experts from different research areas. We achieved 

publications in international conferences, as well as various awards and pub-

licity. These have been the forces to drive us for better research in the GPU 

area. 

Publications 

• Jianqing Wang, Ka-Ho Wong, Pheng-Ann Heng, Helen M. Meng and 

Tien-Tsin Wong, A Real- Time Cantonese Text- To-Audiovisual Speech 

Synthesizer, in Proceedings of IEEE International Conference on Acous-

tics, Speech, and Signal Processing (ICASSP 2004), Vol. I，Montreal, 

Quebec, Canada, May 2004, pp. 653-656. 

• Jianqing Wang, Tien-Tsin Wong, Pheng-Ann Heng and Chi-Sing Leung, 

Discrete Wavelet Transform on GPU, in Proceedings of ACM Workshop 

on General Purpose Computing on Graphics Processors, Los Angeles, 

USA, August 2004，to appear 

• Jianqing Wang, Tien-Tsin Wong, Pheng-Ann Heng and Chi-Sing Le-

ung, Discrete Wavelet Transform on Consumer Level Graphics Hard-

ware, submitted to IEEE Transaction of Circuit and Systems for Video 

Technology. 

Awards 

• Multilingual virtual performer won the second prize in the 8th China 

Challenge Cup Contest in Guangzhou, November, 2003. 

Publicity 

• Multilingual virtual performer is reported in E-Zone magazine, No. 268, 

30 September 2003. 
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• The research on "Discrete Wavelet Transform on GPU" is reported by 

www.gpgpu.org (general purpose computation on graphics processing 

unit), a popular GPU research information web site. 

• Our open source implementation of DWTGPU module and extension of 

JPEG2000 codec-JasPer recieved over 300 downloads within 4 months 

(http://wwwxse.cuhk.edii.hk/~ttwong/software/dwtgpu/dwtgpu.html). 

• The virtual character system is used in Hong Kong national I.T gala 

dinner 18 September, 2003 • 

It is also hoped that by studying these 2 research topics, more and more 

techniques for geometric and imaging computation on GPU will be explored 

and shared in the research community, and the vertex and fragment processers 

can be leveraged for more parallel processing power in different graphics, scien-

tific, or engineering computational intensive tasks. As said above, besides the 

geometric and imaging computation on GPU, our research work also explore 

the animation framework for virtual character system, as well as the multilin-

gual language capabilities for it. We hope this GPU-based virtual character 

animation framework will provide a good solution to be used in different niul-

tirnedia areas. 

1.4 Organization 

The thesis is organized as follows. The next chapter provides a brief intro-

duction to the evolution history and the architecture of the programmable 

graphics hardware, as well as how it can be used for other general purpose 

computation. Chapter 3 describes geometric computing on GPU 一 the vir-

tual character framework on vertex processor and the detail of multilingual 

lip synchronization as well as skeletal animation with motion capture data. 

In chapter 4, we presents our techniques of imaging computing on GPU, with 

http://www.gpgpu.org
http://wwwxse.cuhk.edii.hk/~ttwong/software/dwtgpu/dwtgpu.html
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our unified algorithm for execute both forward and inverse DWT totally on 

fragment processor. In the last chapter, we concludes and discuss the future 

directions for GPU computing. 



Chapter 2 

Programmable Graphics 

Hardware 

2.1 Introduction 

Computer graphics hardware is advancing at incredible rates.When IBM in-

troduced Video Graphics Array (VGA) hardware in 1987, the VGA controller 

was what we now call a “ dumb" frame buffer. This meant that the CPU was 

responsible for updating all the pixels. 

Prior to the introduction of GPUs, companies such as Silicon Graphics 

(SGI) and Evans & Sutherland designed specialized and expensive graphics 

hardware. The graphics systems developed by these companies introduced 

many of the concepts, such as vertex transformation and texture mapping, that 

we take for granted today. These systems were very important to the historical 

development of computer graphics, but because they were so expensive, and 

they are not used by many developers. 

NVIDIA introduced the term "GPU" in the late of 1990s when the legacy 

term "VGA controller" was no longer an accurate description of the graphics 

hardware in a PC. Today the CPU rarely manipulates pixels directly. Instead, 

graphics hardware designers build the "smarts" of pixel updates into the GPU. 

Basically we can categorize the evolution of GPU as 4 Generations. 
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Chapter 2 Programmable Graphics Hardware 9 

The first generations of CPUs (up to 1998) includes NVIDIA's TNT2, 

ATI's Rage, and Sdfx's VooclooS. These GPUs are capable of rasterizing pre-

transforrned triangles and applying one or two texture. This generation GPUs 

relievo the CPU from updating individual pixels. However, they suffer from 

2 limitations. First, vertex transformations happen totally in the CPU, 1st 

generation GPU do not have the ability to do vertex transformations. Second, 

only a small limited set of mathematical operations for combining textures are 

supported to compute the color of pixels. 

The second generation of GPUs (1999-2000) includes NVIDIA's Geforce 

256 and Geforce2. ATI's Radeon 7500, and Savage 3D. These GPUs are ca-

pable of doing vertexing transformation and lighting in hardware. While be-

fore this generation, fast vertex transformations are only available in high-end 

workstations. But for the set of mathematical operations supported in the 

texture blending stage is still limited. It's more configurable, but still not 

programmable. 

The third generation of GPUs includes NVIDIA's GeforceS and Geforce4 

Ti, Microsoft's Xbox, and ATI's Radeon 8500. This generation provides good 

vertex prograrnmability than the second generation, and more pixel-level con-

figurability is available. But these modes are not powerful enough to be con-

sidered truly programmable. 

The fourth and current generation of GPUs includes NVIDIA's GeforceFX 

family with the CineFX architecture and ATI's Radeon 9700. These GPUs 

provide both vertex-level and pixel level prograrnmability. This is the genera-

tion that 's really powerful enough to offload, complex tasks from the CPU. 

2.2 Why Use GPU? 

GPUs are designed to be efficient coprocessors for rendering and shading. But 

the prograrnmability now available in GPUs such as the NVIDIA GeForce FX 
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and the ATI Radeon 9800 makes them useful coprocessors for more applica-

tions. We can see the fact that the time between new generations of GPUs 

is currently much less than for CPUs, which mean faster coprocessors are 

available more often than faster central processors. GPU performance tracks 

rapid improvements in semiconductor technology more closely than CPU per-

formance. This is because CPUs are designed for low latency computations, 

while GPUs are optimized for high throughput of vertices and fragments [1]. 

Low latency on memory-intensive applications typically requires large caches, 

which use a lot of silicon area. Additional transistors are used to greater effect 

in GPU architectures because they are applied to additional processors and 

functional units that increase throughput. In addition, programmable GPUs 

are inexpensive and compatible with many operating systems and hardware 

architectures. 

More importantly, in many graphics and visualization applications great 

processing power is needed for real-time performance. Since in most applica-

tions the ultimate result is rendered on the screen, so moving more simulation 

computation onto the GPU that renders the result not only reduces com-

putational load on the main CPU, but also avoids the substantial bus traffic 

required to transmit the results of a CPU simulation to the GPU for rendering. 

In this way, GPU computation provide an additional tool for load balancing 

in complex interactive applications. 

The general problems with the graphics hardware were the difficulty of pro-

gramming and the lack of high precision fragment operations and storage. But 

these issues were mostly resolved by the latest GPUs and software. Following 

a research trend in the use of high-level shading language to program graphics 

hardware [2] [3], NVIDIA released its Cg shading language [4]. Also the new 

generations of GPUs, the NVIDIA Geforce FX series and the ATI Radeon 

9700/9800, provide us IEEE 32-bit single precision floating point precision 

throughout the graphics pipeline. This enables GPU computation to apply to 
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Generation Year Product Name Transisters Antialiasing Fill Rate Polygon Rate 
i r ^ Riva TNT 7M ^ m 
1 1999 Riva TNT2 9M 75M 9M 
2 1999 Geforce 256 23M 120M 15M 
2 2000 Geforce 2 25M 200M 25M 
3 2001 Geforce 3 57M 800M 30M 
3 2002 Geforce 4 63M 1200M 60M 
4 2003 GeforceFX 125M 2000M 200M 

Table 2.1: Features and performance of selected NVIDIA GPUs 

those applications that require high dynamic range data. Further generations 

of GPUs will likely continue to improve in precision and performance. 

2.3 Programmable Graphics Hardware Archi-

tecture 

CPUs normally have only one programmable processor. In contrast, GPUs 

have at least two programmable processors, the vertex processor and the frag-

ment processor, plus other non-programmable hardware units. The processors, 

the non-programmable parts of the graphics hardware, and the application are 

all linked through data flows. The graphics rendering pipeline is illustrated in 

Figure 2.1. 

When we write programs for the vertex processor and the fragment proces-

sor, we refer the programs as vertex shaders and fragment shaders (also known 

as pixel shaders), respectively. 

Vertex Shaders 

Vertex shaders get executed for each vertex that passes through the pipeline. A 

vertex shader is a program that has exactly one vertex as input and one vertex 

as output. A vertex in this context is a structure composed a number of vertex 

attributes, of which one must be the vertex position. Other vertex attributes 
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Figure 2.1: The graphics hardware pipeline 

Parts of fixed-function pipeline replaced Parts that are not replaced 
Transformation from world space to clipping space Primitive assembly 

Normalization Frustum culling 
Lighting and materials Perspective Division 

Texture coordinates generation Viewport mapping 
Backface culling 

Table 2.2: Vertex engine features 

include normal vectors, colors, texture coordinates, or any other user-defined 

value that is required for the pre-vertex computations in the vertex shader. 

Vertex shaders can never operate on several vertices at a time. 

When a vertex shader is used, some parts of the vertex processing fixed-

pipeline is replaced and some are not, which is shown in Table 2.2 

As shown in Figure 2.2,vertex shader can read the vertex attributes from a 

relatively small number of read-only input registers. Using a usually large num-

ber of read-only constant registers and a small number of temporary registers 

the shader then performs its computations. The constant registers contain 

values that do not change per vertex, but only change once every frame or 

once every couple of frames. Example for values that are usually stored in the 
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Figure 2.2: The vertex processor 

constant registers are the combined world-view-projection matrix and other 

matrices of use, light direction, etc. A small number of address registers can 

also be used by the shader to perform indexed relative addressing into the 

array of constant registers. 

Finally, the shader writes its results to a number of write-only output 

registers. These output registers have a pre-defined semantic meaning such as 

the transformed, homogenous vertex position, texture coordinates, and vertex 

colors. These results are then passed on to the next stage of the fixed-function 

pipeline, and might eventually be used by a possibly activated fragment shader 

at a later stage in the pipeline. 

Fragment Shaders 

Fragment shaders get executed per fragment during the rasterization phase in 

the graphics pipeline. A fragment is a point in window coordinates produced 

by the rasterizer with associated attributes, such as interpolated color values, 

a depth value, and possibly one or more texture coordinates. A fragment mod-

ifies the pixel in the frame buffer at the same window space location based on 

a number of parameters and conditions defined by the pipeline stages following 
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the rasterizer, such as the depth test, the stencil test, or a fragment shader. 

Sometimes the notion of fragment is mistaken for the notion of pixel. How-

ever, a pixel is only the final color value written to the frame buffer, and each 

pixel in the frame buffer usually corresponding to multiple fragments. Some 

of these fragments get discarded because of e.g the depth test; others might 

get combined to form the final pixel color. 

Fragment Input _ 
Registers _ 

丨丨..,,I  

一 一 

1 f \ ' - ‘ ~ ~ N Temporary 
Shader Code M ~ ~ l / Registers 

Fragment Output | 
Registers | 

Figure 2.3: The fragment processor 

Fragment shaders operate on fragments just before they reach the final 

stages of the rendering pipeline such as the alpha, depth and stencil tests. 

The fragment shader receives the vertex shader outputs interpolated across a 

primitive as input and delivers a single color value and a depth value that gets 

passed on to the final stages of the pipeline as output. 

When a fragment shader is used, some parts of the fixed-function pipeline 

is replaced, while some are not: 

Just like vertex shaders, fragment shaders have access to a number of regis-

ter files, the input registers contain the interpolated vertex shader results, such 

as the fragment's color values or texture coordinates. Additionally the frag-

ment shader can look up filtered texture values using texture sampler stages 

as in Figure.2.3. The fragment shader can either use the interpolated texture 
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Parts of fixed-function pipeline replaced Parts that are not replaced 
Texture access Alpha test 

Texture application and blending Depth test 
Fog and color sum Stencil test 

Frame buffer blending 

Table 2.3: Fragment engine features 

coordinates passed in or texture coordinates computed directly in the shader 

to sample the texture. Dependent texture reads are also possible, allowing for 

more advanced effects. Using the input register values and looked up texture 

values the shader then computes its results and stores them in the write-only 

output registers. These output registers have a pre-determined semantic mean-

ing, such as the fragment color or fragment depth. Current fragment shaders 

does not support address registers. 

2.4 Previous Work on GPU Computation 

The use of computer graphics hardware for general-purpose computation has 

been an active research for some years. The wide deployment of GPUs in 

the last several years has resulted in an increase in research with graphics 

hardware. Trendall and Steward [5] give a detailed summary of the types of 

computation on GPUs. 

For graphics application, programmable graphics hardware has been used 

for procedural texturing and shading [6] [7] [2] [3]. Graphics hardware has 

also been used for volume visualization [8] [9], global illumination like ray-

tracing [10] [11], photon mapping [12], and radiosity [13j. 

Other general purpose use of the GPU includes level set segmentation of 

images and volume data [14] [15], collision detection [16] [17], and computa-

tional geometry [18] [19]. 

The wide variety of applications demonstrated that the GPU has become 
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an extremely powerful co-processor on our PC. The vector and matrix pro-

cessing ability as well as the SIMD architecture and parallel pipelines makes 

it especially useful for various graphics and imaging data processing or other 

scientific and engineering computations. 



Chapter 3 

Multi l ingual Vir tual Per former 

3.1 Overview 

The vertex processor in today's GPU is an ideal platform for performing ge-

ometric computations. Provided its matrix and vector processing power and 

multiple vertex pipelines, when carefully designed we can make use of its par-

allel processing power and map intensive geometric computation to the GPU 

and achieve load balancing with CPU at the same time. 

A typical example of intensive geometric computation is the facial deforma-

tion and skeletal animation for virtual character system.Nowadays 3D virtual 

characters are widely used in computer games, movies, as well as various mul-

timedia productions. However the development of a real-time 3D virtual char-

acter with cinematic high quality rendering and real-time lip-synchronization 

to speech waveforms remains a challenge in the multimedia industry. This is 

mainly due to the large data involved, the intensive computation for high qual-

ity animation as well as the cost for synchronization with the speech. Even now 

the computational power of CPU continuously grows, this still puts a heavy 

burden on the CPU and is very difficult to achieve real-time performance if 

high quality animation is required. 

Also on the speech and lip synchronization aspect of the virtual character, 

currently most of them are usually designed to be tailored for one specific 

17 
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language and is hard to be extended to be multilingual, which imposed a 

limitation for international usage for lip synchronized animation of the virtual 

character. 

Here we propose an approach to develop a real-time multilingual 3D virtual 

character framework with the animation computation totally on the GPU. We 

have developed GPU algorithms to effectively explore the geometric data com-

putation power of GPU and offloaded the facial animation and skeletal motion 

animation computation from CPU. The parallel algorithm greatly release CPU 

resources for other tasks like speech synthesis and audio-visual synchroniza-

tion. 

Multiple languages is supported through the use of International Phonetic 

Alphabet(IPA) for lip synchronization visemes. Phonemes, syllables or sub-

syllables of a language is mapped to the IPA through a mapping table. This 

approach not only provides an open architecture for adding new languages 

and make the virtual character capable for multinational languages, but also 

simplifies the manual geometric design work for the character. 

It is also hoped that by studying such a problem, usefulness of such an 

virtual character framework will be shown to both the graphics and speech 

community for a lot of potential applications, and the graphics processing unit 

could be leveraged for more useful features for geometric computing. 

3.2 Previous Work 

The pioneering work on facial animation was done by Frederic I. Parke in the 

1970s [20], and many researchers were interested in this topic in the mid-1980s 

included the muscle model approach to facial expression of Keith Waters [21]. 

Development of virtual character with lip synchronization feature with 

speech lias been ongoing for a long time. Such a system offers a rriulti-

niedia/multimodal presentation of dynamic information, e.g. for news and 
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weather information reporting, for applications in entertainment, for personi-

fied dialog systems, or as an aid for the hearing-impaired [22] where the sim-

ulated lip movements can help the user decipher the spoken message. The 

talking face can also convey non-verbal communicative signals, such as emo-

tions. The late 1980s also saw the first attempts at this, including the work of 

Dominic Massaro and Michael Cohen, and number of other researchers. Pre-

vious approaches include an image-based synthesizer as in [23] that concate-

nates viseme images. A viseme is a facial image treated as a unit in video that 

corresponds to a phoneme unit in speech. An alternative approach involves pa-

rameterized lip shapes, such as the facial animation parameters (FAPs) in the 

MPEG-4 standard. This has been applied to three-dimensional facial anima-

tion. Additionally, there has been previous work in lip-synced virtual character 

for languages aside from English, such as the Italian talking head described in 

[241. 

Significant work has also occurred in graphics for deforming articulated 

characters using geometric methods [25] [26] [27] and physically-based meth-

ods [28] [29] [30]. Despite this, most character animation in interactive applica-

tions, such as video games, is based on a geometric skeletal deformation tech-

nique commonly referee! to as skeletal subspace deformation, in which vertex 

locations are weighted averages of points in several coordinate frames [25] [31]. 

Our Contribution 

Our approach mainly focus on attacking and give efficient solution to the 

following problems: 

• Develop an efficient and easy framework for facial animation, lip syn-

chronization, and seamlessly integrate the facial and skeletal character 

animation. 

• High quality rendering but in real-time performance and consumes as 
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little CPU resources as possible, by means of performing intensive geo-

metric computation on GPU. 

• Multilingual support for lip-synchronized facial animation 

3.3 System Overview 

Our achievement in this project is the development of a simple and efficient 

virtual character framework, with GPU acceleration on animation for real-time 

performance，and multilingual support for lip synchronization with speech. An 

multilingual Text-To-Speech system interface module for real-time generation 

of speech wave form and timing curves is also designed, which enable us to 

incorporate more text-to-speech system in different languages in the, future. 

The overall structure of our multilingual virtual performer system is shown 

ill Figure 3.1. Basically it can be divided into 3 big modules, the animation 

system , the audio system and the multilingual texture-to-speech system. 
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Figure 3.1: Virtual character system architecture 
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The animation system is composed of facial animation control subsystem 

and skeletal character animation control subsystem. Inside the facial anima-

tion system, the multilingual lip-sync and expression overlay submodules are 

responsible for providing a multilingual lip synchronization interface and facial 

expression control, respectively. Lip synchronization data (to be discussed in 

section 3.4) can be input in the form of external weigh function sample points 

data generated manually, or from our real-time cantonese text-to-speech syn-

thesis system - CU Vocal directly. The facial expression overlay provides an 

interface as a real-time user control as well as random generation of expression 

parameters for increased realism. 

We have implemented the forward kinematics control for the skeletal char-

acter animation system totally on the GPU, with the interface for input mo-

tion capture data. The skeletons or bones of the character is animated by the 

motion capture data and at the same time a skeletal subspace deformation 

algorithm is used to further deform the polygonal mesh that is attached to the 

skeleton hierarchy (to be discussed in section 3.5). 

The audio module of this multimedia system provides interfaces for input 

external wave files as well as synthesized cantonese speech audio wave from the 

CU Vocal text-to-speech synthesizer. With the help of the central audio-visual 

synchronization module, the sound or speech is synchronized with the graphics 

stream that is sent to graphics card for rendering to the frame buffer. 

The whole system does not need any special graphics workstation to oper-

ate, with the help of GPU acceleration on the animation computation, the CPU 

can be responsible for audio and synchronization task and produce smooth lip-

synchronized animation on a normal PC that is equipped with a programmable 

GPU-based graphics card. 
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3.4 Facial Animation 

There have been many approaches developed for facial animation, mainly they 

can be characterized into 2 categories - physically correct muscle-skin simula-

tion and free form deformation, which only gives the approximation. 

The muscle-skin simulation methods give a more accurate result for facial 

clefonnation. They usually need further processing on the polygonal mesh to 

make it in a multi-layered tissue structure for simulation instead of the polygon 

surface. Finite element methods are commonly used to simulate the movements 

of discrete nodes in the tissue layers, which are connected by virtual springs. 

So generally it is a discrete deformable model (DDM) with node-spring-node 

structure. Although different spring model can be used in simulation, such 

as Voight viscoelastic model or Hill's Model, it is usually very computational 

intensive to solve the whole system. 

The free form deformation methods do not simulate the physical process 

of skin-muscle deformation, but only deform the face freely using different 

approaches like feature points, control points, or morphing. Usually the motion 

of a set of predefined points are recorded first, they are used to smoothly 

influence different regions of the face to create facial animation. The morphing 

technique is to gradually displace and move all the vertices of 1 face model to 

the corresponding coordinates of another. The free form deformation methods 

only give us an approximation of the facial animation, but generally are more 

efficient and simple. 

Facial animation can be synchronized to speech in several ways. The em-

ployed method depends mainly on the kind of speech data which is available 

for synchronization, e.g. whether the audio signal, the phonemes and timing 

of an utterance is available or only a text representation. 

The text-driven approach received a text as input which is transcribed 

into its phonetic representation. This information is used to generate both 
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synthetic audible speech and synchronized facial animation. 

The speech-driven method takes pre-recorded speech as input. The audio 

file is analyzed for phonemes and timing information. This data is used to 

create the facial animation which is performed synchronously to the audio file 

play-back. 

Although there are currently various facial animation methods for differ-

ent facial models, they are either complex, computational intensive or on the 

other hand difficult to be accelerated using GPU computing. At the same 

time, most methods did not address the problem of multilingual support for 

lip synchronization. So we take an approach to extend the face space theory 

from Steve DiPaola [32], apply the high dimensional face space concept to the 

polygonal face models, while at the same combine the simplicity of morphing 

in free form deformation. On the other hand, the multilingual lip synchroniza-

tion feature is also carefully considered and handled when designing the facial 

animation algorithm. For the lip synchronization part, we make use of both 

text and speech driven approaches to provide interface for the multilingual 

text-to-speech system as well as external sound data. 

3.4.1 Facial Animation using Face Space 

Imagine an n-dimensional space describing every conceivable humanoid face, 

where each dimension represents a different facial characteristic. Within this 

continuous space, it would be possible to traverse a path from any face to any 

other face, moiphing through locally similar faces along that path. A multi-

dimensional space is a convenient way to generate a universe of faces and for 

making facial animations. 

Here we further extend the concept to polygonal face models, which can 

be represented as a point in the high dimensional face space using all of the 

vertices. Denote a face f in the vector form 
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f = I.狗’队)’ 2；0，……Xn, Vn, Zn] (3.1) 

If we can predefined a set of faces with the same topology in this high 

dimensional space. Denote this as a face set 少 

^ = {fi\f> C 7： l..k} (3 .2) 

Figure 3.2: Face set in the high dimensional face space 

Similar to vector space in mathematics, a new face in the face space can 

be generated by linearly combining the faces in the face set. 

k 

J=i 

The advantage of this representation is that , now each new face can be 

represented only by the set of weight coefficients { a j } for the basis faces, which 

reduce the dimension of the space to the number of basis faces k. In order to 
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create facial animation, we can simply animate the weights by making them a 

set of functions that change with respect to time, in the form of {a)•(力)}• 

And now facial animation can be viewed as a timed path from one point in 

the face subspace to another, this process can also be represented as a timed 

weighted blending of the faces in the face space. 

k 

m = Y M t ) f j (3-4) 
3 = 1 

Here the size of the face set will affect the degree of freedom in the facial 

animation, and the face set should belong to the same person in order to 

animate one particular face. 

However, this approach is not so intuitive to be used for animation purpose, 

it is rather difficult to determine the function of blending weights with respect 

to time for every face in the face set. Therefore, in our approach, we incor-

porate some modifications of the above method. Animation is achieved by 

the use of deformation vectors (DV) derived from the target viseme/emotion 

models. We define a neutral face fneutrai in the face set which represents a 

closed mouth model with no facial expression, which can also be considered 

as the origin of our defined face space. Then the DV for smile, for example, is 

defined as 

DVsmile — fsmile — fneutrai (3.5) 

Different DVs can be then linearly combined with the neutral face model 

{fneutrai) to form a new face model (fnew), then further form facial animation 

by varying the blending weights as illustrated in the equation. 

f'(t) = fneutrai + ^ i W ^ K (3.6) 
i 

where DVi is the DV for the zth face model in the face set and ai is the blending 

weight for the zth DV. 
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Although the concept of DV is simple, it provides us with a. clear mean-

ing for the weights for each DV. They serve as the basis for spanning a face 

subspace, and the neutral face is the origin of this siibspa.ce. A weight with 

value 0 means no deformation/action for this DV, and a weight value 1 means 

deforming the face with the deform meaning of the DV to its maximum state. 

Like a weight 1 for a smile DV means to deform the face to smile expression . 

to the largest extent. 

Figure 3.3: Using deformation vector as basis to span a high dimensional face 
space 

And now the facial animation problem can be seen as to 

1. determine an appropriate set of predefined faces/DVs 屯 in the face space, 

which are adequate for performing both speech and facial expressions. 

2. determine a set of blending functions a'j(/;), j 二 l..k that actually per-

forms the blending animation that changes with time 
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3.4.2 Face Set Selection for Lip Synchronization 

In this section we mainly focus on how to solve the problem of selecting an 

appropriate set of predefined faces/DVs that is suitable for multi-language 

lip-synchronization and facial expression animation. 

Since this system is mainly for being used with a real-time cantonese text-

to-speech synthesizer - CU Vocal, which is developed by the human-computer 

communications laboratory of department of systems engineering and engi-

neering management. We will begin by introducing the CU Vocal system 

and the phonemes and visemes (the corresponding visual lip shape for the 

phoneme) related to cantonese, then further discuss the details of extending 

the framework to multi-language using IPA. 

C U V O C A L Sys tem 

CU VOCAL is a syllable-based concatenative text-to-speech (TTS) synthesizer 

for Cantonese. Cantonese is monosyllabic in nature (like Chinese) and the 

dialect has a rich tonal structure with between six to nine tones. Coarticulatory 

effects in CU VOCAL are captured in terms of distinctive features. The TTS 

engine also uses right tonal context for unit selection. Figure 3.4 illustrates 

typical input and output for CU VOCAL. Chinese does not have explicit word 

delimiters and a word may contain one or more characters. Hence the input 

Chinese character string is tokenized into Chinese words by a greedy algorithm 

with reference to a lexicon and the word pronunciations are looked up from 

a dictionary. For example, in Figure 3.4, the first character in the input 

text string (meaning: you), is pronounced as /nei5/ (i.e. the syllable is /nei / 

with tone 5. The syllable inventory adopted in CU VOCAL follows the LSHK 

convention. CU VOCAL generates the synthetic speech output in windows 

PCM waveform format. The TTS engine has also been extended to explicitly 

generate the syllable sequence with timing information, which are also very 
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important for blending weights generation (to be discussed in section 3.4.3), 

e.g. the first syllable unit /nei5/ has a duration of 0.39 second, the fourth 

unit LP indicates a pause (silence) for 0.504 second and the last two syllables 

are / lam4/ of duration 0.32 second each. The syllable unit can be further 

subdivided into an optional onset (i.e. the consonant that starts the syllable), 

a nucleus (i.e. the core vowel/diphthong) and an optional coda (i.e. the 

consonant that ends the syllable). The Chinese syllable unit is often subdivided 

into an initial (i.e. the onset) and the final (i.e. the nucleus and coda). For 

example, the syllable /nei / has initial / n / and final /e i / (or onset / n / and 

nucleus /e i / ) . The syllable / l am/ has initial / I / and final / a m / (or onset / I / , 

nucleus / a / and final / m / ) . 

/ “你 J f f l男？我叫BPT / Ch^iese 
/ , . „ / character mpt i t 
/ ( m e a i u i i g : H o w are / 

/ y o u ? I a m L i i i L i i i . ) / 

/ ' ^ C i r ^ o ^ ^ SJyl l f lb l” a n d t i m e 
i i i f o m i a t i o i i ou tput 

( t i m e lu i i t is second) 

iiciS 0 . 3 9 0 
飞 h o i i 2 0 . 3 5 0 

/ R e s u l t . w a v / I m a a l 0 . 3 2 0 
L — ~ ‘ L P 0 . 5 0 4 

— c h f i l e 摩 5 0.297 
o i _ t giu3 0 . 3 5 7 

l a m 4 0 . 3 2 0 
l a m 4 0 . 3 2 0 / 

I 
Figure 3.4: Sample input and output of CU Vocal 
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Multi l ingual Support Using IPA 

Since much previous work defined visemes in relation to phonemes, our ap-

proach involves decomposing a syllable into its onset, nucleus and coda and 

mapping these to their closest phonetic symbol. 

Up to this point, it might be natural to come up with a solution for the 

Cantonese lip-synchronization problem that we choose the face set that cor-

responds to every LSHK cantonese symbol. However, this solution can not 

support for future extension of the system. Whenever we want to add in a 

new language, we have to make another face set for the particular phonemes 

of that language. This is a tremendous waste of time and system resources. 

However, from the speech point of view, an obvious fact we can see is that the 

phonetics symbols from many languages may share the same pronunciation, 

and the International Phonetic Alphabet (IPA) can provide a good solution 

for us to combine the phonemes of different languages into 1 set of symbols. 

We use a mapping table for each language to achieve this purpose and a total 

of 28 IPA symbols is used. Since in human speech, different phonetic symbols 

may correspond to the same lip shape, the 28 symbols are further reduced to 

only 15 visemes in total. 

The face set for the 15 Visemes of IPA is shown in Figure 3.5 

We will now show how the phonemes of each language can be mapped to 

the IPA to share pronunciation and visemes. � 

Cantonese 

The mapping table from LSHK to IPA syllable is proved below in 4 different 

parts, onsets, nuclei, codas and nasals which are shown in Tables 3.1，3.2, 3.3 

and 3.4. 

Japanese 
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Phoneme ID Phoneme Symbol IPA ID IPA Symbol 
0 closed 0 closed 
1 b 8 M 
2 p 8 M 
3 m 8 M 
4 f 11 F 
5 d 7 L 
6 t 7 L 
7 n 9 N 
8 1 7 L 
9 g 15 K 
10 k 15 K 
11 ng 10 NG 
12 h 2 EH 
13 gw 5 UH 
14 kw 5 UH 
15 w 5 UH 
16 z 13 S 
17 c 13 S 
18 s 13 S 
19 j I 14 I SH 

Table 3.1: Cantonese onsets mapping 

Phoneme ID Phoneme Symbol IPA ID IPA Symbol 
W ^ 3 AA 
21 i 1 lY 
22 u 4 0 
23 e 2 EH 
24 o 4 0 
25 yii 14 SH 
26 oe 2 EH 
27 a 3 AA 
28 ^ I 2 I EH 

Table 3.2: Cantonese nuclei mappings 
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AA EH F 

lY K L M N NG 

. M M . U U i U ^ d 
O S SH TH UH Y 

Figure 3.5: IPA visemes 

Phoneme ID Phoneme Symbol IPA ID IPA Symbol 
^ p 8 M 
30 t 7 L 
31 k 15 K 
32 m 8 M 
33 11 9 N 
34 ng 10 NG 
35 i 1 lY 
36 u I 5 I UH 

Table 3.3: Cantonese codas mapping 

As we all know that the basic phonetic symbols for Japanese language is 

called the Hiragana and Katakana with a, total of 54 symbols (Figure 3.6), and 

we further decompose them into phoneme elements and mapped to the IPA 

symbols. For example, "ka" maybe further decomposed to phonemes "k" and 

"a", and then mapped to the most similar IPA symbol. 

Mandarin 

Phoneme ID Phoneme Symbol IPA ID IPA Symbol 
^ m 8 M 
38 ^ I 10 I NG 

Table 3.4: Cantonese nasals mapping 
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N w r y i n h n t s k _ 

3 囝 回 [ 1 ] 固 [ 1 ] 0 [ ^ 已 

U 因 回 因 

1 ] 因 0 [ 1 ] 回 回 IZISE]因。 
N w r y m h n t s k _ 

]T] EDDII 回 EESfllHi 
Z ] 回 囚 0 因 0 因 

_ L 人,、、冬 T 七 - T J - e 

3回回固囷 [ Z I E E Z ]回 0 0 

Figure 3.6: Japanese characters with phonetic representation 

For the Mandarin "Pin Yin" phonetic symbols, it may be further decom-

posed into "sheng mu" and “yun mu", each of them could be successfully 

mapped to I PA. 

English 

Since the international phonetic alphabet is derived and extended from 

English phonetic symbols, so the IPA symbols has a natural corresponding 

with those in English. Thus, the mapping table is not listed here. 

Overall, no matter for any specific language, using our approach can always 

simplify the lip-sync animation problem to: 

f i t ) = fneutrai + [ � ( 3 . 7 ) 
i 
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Phoneme ID Phoneme Symbol IPA ID IPA Symbol 
0 closed 0 closed 
1 a 3 AA 
2 i 1 lY 
3 u 5 UH 
4 e 2 EH 
5 o 4 0 
6 k 15 K 
7 s 13 S 
8 t 7 L 
9 n 9 N 
10 h 2 EH 
11 m 8 M 
12 y 6 Y 
13 r 7 L 
14 w 5 UH 
15 g 15 K 
1 6 p 8 M 

17 b I 8 I M 

Table 3.5: Japanese mapping table 

All we need to do now is to define the blending weights functions { a i � ) 

3.4.3 The Blending Weight Function Generation and 

Coarticulation 

Based on our IPA lip-sync approach, the lip-sync animation can be gener-

ated when the blending weights function for the DVs are determined by the 

speech. A critical aspect for realistic lip synchronization is the simulation for 

the coarticulation effect. Coarticulation can be defined as the smooth blend-

ing between adjacent phonemes. Because adjacent phonemes can influence 

each other, the dominance of a phoneme does not automatically cease at the 

phoneme boundary but can well reach into other phonemes. Thus the weight 

function of neighboring phonemes may overlap. 

In our system, the coarticulation effect is achieved in the generation of 

blending weight function. First, the time and duration that each phoneme 
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Phoneme ID Phoneme Symbol IPA ID IPA Symbol 
0 closed 0 closed 
1 a 3 AA 
2 o 4 0 
3 e 2 EH 
4 i 1 lY 
5 u 5 UH 
6 V 5 UH 
7 b 8 M 
8 p 8 M 
9 m 8 M 
10 f 11 F 
11 d 7 L 
12 t 7 L 
13 n 9 N 
14 1 7 L 
15 g 15 K 
16 k 15 K 
17 h 2 EH 
18 j 2 EH 
19 q 2 EH 
20 X 2 EH 
21 z 13 S 
22 c 13 S 
23 s 13 S 
24 r 14 SH 
25 zh 14 SH 
26 ch 14 SH 
27 sh 14 SH 
28 y 6 Y 
29 w 5 UH 
30 ^ I 10 I NG 

Table 3.6: Mandarin mapping 
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appeared in the speech are determined, so that outside this time range the 

weighting for the corresponding DV will be set to 0，then, in order to generate 

the transition between the 2 phonemes for smooth animation, smoothing and 

interpolation is applied and the duration of each phoneme DV weighting that is 

nonzero can be generally categorized into 2 phases, a increasing and decreasing 

phase. This can be explained using a simple example that transits from one 

phoneme to another (Figure 3.7). The transition time is actually the increasing 

phase for the second phoneme but the decreasing phase for the first phoneme, 

we gradually decrease the weight of the first phoneme DV from 1 to 0，while 

for the second one, we gradually increase its weighting from 0 to 1. 

• P h o n e m e 1 

I I 
f ！ 

“ I f • P h o n e m e 2 

i z , ! A 、 ；   

！ I 
I I 
I Transition i 
) I 

Figure 3.7: The coarticulation between 2 adjacent phonemes 

For smooth coarticulation, we can use different interpolation technique for 

the increasing or decreasing phase. Like the negative exponential function 

(Figure 3.7): 

a(t) = Ae-丨卜“ (3.8) 

where tstart is the starting time of the phoneme and tdur is the duration of 

it. Due to the reason that each phoneme usually takes very little time so 

that accurate interpolation that based on physical simulation is not needed 
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here. In our system, we choose to use linear interpolation for its simplicity 

and efficiency. The difference between 2 interpolation techniques is negligible 

through the results of experiment. 

There are 2 methods to generate the blending weights function - by using 

extra information from TTS systems and also by manual processing. 

Automat i c Blending Weights Function Generation Using T T S sys-

t e m 

By using a text-to-speech system and making good use of its output timing 

information for phonemes, we can achieve automatic blending weights function 

generation without manual processing. Without loss of generality, we describe 

our weighting function generation for the multilingual lip-sync interface with 

the Cantonese TTS . Other languages are handled in a similar way if we have 

a text-to-speech system for that language integrated in. 

Here we discuss the blending weights function in more detail for Cantonese 

as we make use of the information from the cantonese text-to-speech system 

CU Vocal for generating the weighting functions in real-time. The transition 

between two phonemes in synthesized speech corresponds to the transition 

between two visemes in facial animation. Smooth transition is achieved by 

controlling the weights in the blending technique. We will elaborate on this 

point by means of an example. 

Consider for a Chinese word meaning "center" pronounced as /zung/ /gan / 

in LSHK syllables. For a given syllable, we reference the CU VOCAL syllable 

corpus to get the average duration among the occurring instances. For exam-

ple, the syllable /zung/ averages 0.33 second in duration. We also reference 

the corpus to get the average fraction of the syllable's duration that is occu-

pied by its initial and final respectively. For example, the syllable /zung/ has 

the initial / z / and final /ung / . The initial / z / takes up about a quarter of 

the syllable's duration on average, while the remaining three quarters is taken 
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Figure 3.8: Variation of blending weights over time for animation 

lip by the final /ung / . The final can be further subdivided into the nucleus 

/ u / and coda /ng / . For the sake of simplicity, we assume the nucleus and 

coda for the final /ung / have equal average durations. Hence about 0.25 of 

the average duration of /zung/ is occupied by the syllable onset / z / , about 

0.375 by the syllable nucleus / u / and the remaining fraction of 0.375 by the 

syllable coda /ng / . In order to use this information for facial animation, we 

locate the visemes that correspond to the I PA symbols /z/，/u/ and /ng / 

respectively. Since these are static viseme models, we need to determine the 

blending weights that correspond to these visemes for 3D animation A linear 

interpolation is used as shown in Figure 3.8. Each viseme starts with a unity 

weight at its start instant, and linearly decreases to zero weight at its end 

point. This defines the variation of the blending weights over time and our 

system demonstrates that this achieves a realistic and smooth facial animation 

cffoct. 

By using this weight function generation technique through the CU Vocal 

text-to-speech system, real-time lip synchronized animation can be generated 

quickly from texts. An example of rendering of a live news report using this 

approach is shown in Figure 3.9. 
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Figure 3.9: Live news report animation using weight function generated auto-
matically by CU Vocal TTS system 

Manual Weight Function Generat ion 

The blending weight function can also be generated manually with the help 

of some software that can analyze the waveforms of a sound file, for example, 

GoldWave (Figure 3.10). It is used as a tool for examining the sound file 

and marking the starting time and duration of each phoneme manually. Thus, 

the scattered data points for weighting function or we can also call them the 

“keyframes" of the phonemes can be obtained this way and a system module for 

loading the lip-sync data and do further processing for smooth coarticiilation 

is also implemented. 

3.4.4 Expression Overlay 

The expression is generally overlayed onto the lip synchronized face with the 

same approach, i.e, using the DV to further deform the lip synchronized face 

into emotional state, this involves emotion DVs like smile, worry and so on. 

Now, together with the lip synchronized animation, we can produce lively 

facial animation using the following equation: 

m = fneutral + J ] + ^ Pj{i)DVj,exp ( 3 . 9 ) 
i j 

111 our system, the variation of blending weights for emotion face models 

(Figure 3.11) can be defined manually by the user by means of a slider rule 



Chapter- 3 Multilingual Virtual Performer 39 

n a Z g M l M M l l i l M M I l l M l l l l M — I j W I l i i l i l h i i M M i l R 
EJe Effe£) ^ iew l o o l Qp»ion? tfindow Holp 

...Q.:叛鼠議！, jjiiBlil 戲 II 劇宏键 simU 法丛涵 atî  说 M 
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Figure 3.10: Manual weight function generation using waveform analyze soft-
ware 

in our system's interface. These weights are used in a similar way for 3D face 

rendering weights. Our system is capable of change and blending more than 1 

facial expressions simultaneously. 
3.4.5 GPU Algorithm 

Due to the large computation burden involved for blending and animating our 

virtual character in high resolution, we explore the powerful SIMD processing 

feature of the GPU and employ the vertex shader engine to perform the facial 

animation calculation. 

Face Deformat ion 

Since basically the vertex engine can be viewed as a stream processor, the first 

step to map the equation 
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mmlkm 
Figure 3.11: Facial expressions 

m = /neutral + ^ ^ + J ] 邵 (3.10) 
i 3 

to the GPU is to streainlize our data. Taken into account that normally 

there can not be more than 2 phonemes and 2 expressions for the human 

face siniiiltaneously. In order to add in more realism, we add 1 more channel 

for eye action. We categorized the input data for blending into 6 channels 

of streams — neutral face, IPA phoneme DVl, IPA phoneme DV2, expression 

DVl , expression DV2, eye action. These streams are also called varying data, 

parameters because they vary with different vertex in the vertex shader. The 

blending weights for the IPA and expression DV remains constant for all the 

vertices in every frame rendered, thus we store them into the constant memory 

or registers. The structure for the vertex shader is illustrated in Figure 3.12. 

As shown above, the stream data are in 6 channels. Besides the vertex, 

normal, and texture coordinate data for the neutral face, which are stored in 

the corresponding registers. We put other stream data, like the IPA phoneme 

DVs and the expression DVs into other registers like the high precision texture 

coordinate registers and color registers. The constant memory also contains 

4-floats vector registers that we can put in the blending weights and other 
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Figure 3.12: Vertex shader structure for facial animation 

standard matrixes for transformation like the model-view-pro j ection matrix 

and as well as the relevant lighting data. Then the vertex shader program for 

computing the face deformation equation and perform normal generation (to 

be discussed in next section) is executed. After this, the deformed vertex is 

transformed and lighting is calculated, that are passed to the output registers 

for the next stage in the pipeline. 

We also explored the data transmission efficiency in our system. Most 

graphics card today use the AGP bus as the major channel for transmitting 

data with main memory. The AGP bus is 32 bits wide, just the same as 

PCI is, but instead of running at half of the system (memory) bus speed 

the way PCI does, it runs at full bus speed. AGP in its lowest speed mode 

has a bandwidth of 254.3 MB/s. In addition to doubling the speed of the 

bus, AGP has also defined a 2X ,4X and 8X mode, which perform two, four, 
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eight transfers per clock cycle. Although AGP provides a large bandwidth 

channel for transmitting data between the main memory and graphics card. 

The transmission of large amount of data in the stream format above will 

definitely cause a performance down with it. To use the bandwidth more 

efficiently and increase the whole system speed, we employed a method that 

directly allocate buffers inside the video ram for storing the neutral face data 

and other DVs, as in Figure 3.13. So that whenever we pass the data to 

GPU for processing , the entire transmission happens inside the graphics card 

and what we need to pass from main memory is only 5 indices of DV to be 

blended as well as the blending weights for them. This greatly reduced data 

transmission volume at the AGP bus and has a positive effect on the whole 

system performance. 

Indices of DV 
Blending VVeighJs 

-V 

Graphics Card 

^ / X 

Video Ram 

1 / Noutral 7 
/ Face Duffer / 
/ DVB—" / 

Texture Maps 

\ J 
\ \ 

Figure 3.13: Using video ram as stream data buffer 
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Normal Vector Blending 

111 our facial animation, when we deform the neutral face using a set of DVs, 

the normal vectors on the face actually changes with the geometry as well. For 

realistic rendering of the facial animation, the normal vectors are an important 

part for lighting calculation. So it is needed for us to obtain the new normals 

after deformation for rendering. 

However, recalculation of the face normal based on the new geometry is 

tedious and will consume even more computing resources than the face defor-

mation process. In a traditional way, for a polygonal face mesh in our system, 

it will involve computing the plane normal for each triangle and then averaging 

the triangle plane normals at the vertex that is shared by more than 1 triangle 

polygons, in order to get the new vertex normal. 

While our main focus is on achieving high quality rendering in real-time 

performance, we can actually trade other resources like storage for performance 

arid also maintain the high quality at the same time. Thus, we take the same 

approach as for facial deformation, we store a copy of all the normals for the 

neutral face, and a set of normal DVs that stores the difference between the 

normal of the I PA phoneme face and the neutral face. Thus 

rinew = normalize(jlneutral + ^ DVnormal,i) (3-11) 
i 

This is not a physically-correct solution. We are actually doing linear 

interpolation between 2 normal vectors by using the equation above. However, 

our solution provides a very close approximation to the physically-correct one 

judging by the visual quality. It can be easily mapped to the GPU using vertex 

shader similarly to the facial deformation case without increasing complexity. 
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3.5 Character Animation 

Many approaches have been devised for character animation through the years. 

Generally, we will be able to choose between explicit and implicit methods. 

Explicit methods store the sequence of animated vertices from our geometry 

every few frames, like snapshots from a movie. They are easy to code and 

involve simple math. But on the other hand, storing animated vertices is 

memory intensive, so they are also called memory-hungry methods. 

Implicit methods do not store the animation data, but instead store a higher 

level description of the motion. Skeletal animation system, for example, store 

the configuration (in terms of rotation angles) for each joint, like the elbow, 

knee and so on in our virtual character. Then, in real time, this description is 

mapped to an unanimated character mesh, so the animation is computed. This 

computation usually involves complex math with trigonometry and matrices. 

Thus these methods are all fairly intensive for the CPU, but they only need 

small data structures to convey the description of the motion. 

In our project, we choose to use the implicit method — the skeletal anima-

tion system for character animation. It is more powerful and offer sophisticated 

controls with very low memory consumption. We free the CPU from the in-

tensive computation by making use of the parallel vertex processing capability 

of GPU. By mapping the skeletal animation algorithm to the GPU, the ani-

mation efficiency is improved and CPU computing resources can be used for 

other tasks like sound processing, audio-visual synchronization, etc. 

3.5.1 Skeletal Animation Primer 

Skeletal animation is a implicit technique used to pose character models. A 

skeleton is embedded in, and attached to, a character model. Once the skeleton 

is attached, the character model becomes the skin. Posing the skeleton causes 

the skill to be deformed to match the position of the underlying bones (Figure 
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3.14). 

The skeletal structure, as you can imagine, is a series of connected bones 

that form a bone hierarchy. The bones are connected through joints. One bone, 

called the root bone, forms the pivotal point for the entire skeletal structure. 

All other bones are attached to the root bone, either as child or sibling bones. 

I ® 

I \ \ . ； 

\ I 

一 ^..…^^^^^^^ 歡…… 
Figure 3.14： Skeleton hierarchy and the corresponding mesh 

III order to animate the skeletal structure, two general api^roaches exist: 

forward kinematics (FK) and inverse kinematics (IK). 

In forward kinematics, we will start from the a root node and propagate the 

skeleton downward, inheriting motions as we advance. The upper arm should 

inherit the chest, the lower arm both the upper arm and chest, and finally 

the hand. Forward kinematics is coded by stacking series of transformation 

matrices as we enter each body part. It is the method of choice for motion-

capture data. Inverse kinematics works the other way around: It starts at the 

terminal element and computes the joints as it moves higher in the animation 

skeleton. Thus, inverse kinematics allows us to locate an element in space, 

and then calculate the needed configuration of its ancestor joints. Inverse 

kinematics is useful for adaptive animat.ion. 

After animating the skeleton structure, for the character model to move 
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and deform with it, we need to perform skeletal subspace deformation (SSD) 

to the mesh vertices. For this we need to assign each vertex of the mesh to 1 or 

more bones in the hierarchy with appropriate weights. As the bones moves, so 

do the vertices that are attached to it, and how much the vertex is influenced 

by each bone is determined by the corresponding weight. 

3.5.2 Mathematics of Kinematics 

Forward kinematics can be expressed in the form of 

X = J{Q) (3.12) 

where the motion of all joints is specified explicitly. The motion of the hands 

and feet is determined indirectly as the accumulation of all transformations 

that lead to them. This, for example, in the case of the character's foot, would 

be the combined effect of the transformations at the hip, knee and ankle. That 

is, given B, derive X. 

Inverse kinematics is usually called 'goal-directed motion' and can be de-

fined in the form: 

没 二 ( 3 . 1 3 ) 

The animator defines the position of the end effectors like hand or foot 

only. Inverse kinematics solves for the position and the orientation of all joints 

in the link hierarchy that lead to the end effector. Given X,6 is derived. 

We can illustrate the difference between the two approaches using a simple 

two-link structure shown in Figure 3.15. One end is fixed and both links move 

in the plane of the paper. The forward kinematics solution X 二（a:, y) is given 

by: 

X = (/icos^i + /2 cos(0i + +/2sin(0i + 02)) (3.14) 
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(h / 

Figure 3.15: A simple 2 bone skeletal structure 

The inverse kinematics solution can be obtained by applying some elemen-

tary trigonometry: 

— - { k sin 6̂ 2).T + (!i + k cos ( h h (3 15) 

O2 = COS — (<3.15} 
^bih 

We can see that both techniques become harder to use as the complexity 

of the articulation increases. But the inverse kinematics will be much more 

complicated than forward kinematics in a large hierarchical system, and for 

the computation, we can find that the computation forward kinematics can be 

easily formed into matrix-vector multiplication, which is especially good for 

GPU implementation. In this project we aimed to adapting motion capture 

data to our virtual character, and forward kinematics technique is used as the 

motion data is also in the FK format. 
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3.5.3 Animating with Motion Capture Data 

Motion capture has become a premiere technique for animation of virtual char-

acters today. It is defined as "The creation of a 3D representation of a live per-

formance." This is in contrast to animation that is created 'by hand' through 

a process known as keyframing. 

Motion capture data is used in our system to drive our virtual character, 

the data is obtained from free online motion library in the format of BVH 

files. The BVH file format was originally developed by Biovision. This format 

provides skeleton hierarchy information in addition to the motion data. 

A BVH file has two parts, a header section which describes the hierarchy 

and initial pose of the skeleton; and a data section which contains the motion 

data. 

To calculate the position of a joint we first create a transformation matrix 

from the local translation and rotation information for that joint. For any-

joint the translation information will simply be the offset as defined in the 

hierarchy section. The rotation data comes from the motion section. Adding 

the offset information is simple, just put the X’Y and Z translation data into 

the proper locations of the matrix. Once the local transformation is created 

then concatenate it with the local transformation of its parent, then its grand 

parent, and so on. A typical example is 

Mneck = Mneck 

Mshoulder = Mshoulder Mneck 

Melbow = ^^Ulbow ̂ shoulder ^^Ueck 

Mhand = MhandMelbow Mshoulder Mneck 
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Figure 3.16: Motion capture animation using BVH data 

3.5.4 Skeletal Subspace Deformation 

Let fi be the set of iiidiccs for all the bones, and denote the bones affecting 

vertex i by the subset of indices Bi C (3. For a given skeletal configuration, with 

bone transformation the position of the vertex after the skeletal 

subspace deformation is 

� =̂ 伤 Tb)Vi (3.17) 
beB, 

where Vi is the position of vertex i in the neutral pose, and wib is the weight 

which indicates how much the vertex is affected by this bone, it gives us the 

afRne combination of bone transformations for this vertex. In the character's 

neutral pose we assume that % = /, V6 G (3. 

Starting with a reasonable set of bone weights is important. We compute 

our SSD bone weights that is inverse proportional to the vertex bone distances 

in the neutral pose. The following function is used for calculating the weights. 

= /( ^ , �n (3.18) 
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where is the position of the joint of the bone with index 6, k determines the 

scale of the function, and n controls the falloff speed. 

歡 、 ： . . ： . . I 

^ ^ ^ ^ . . . 省 

Figure 3.17: Skeletal subspace deformation 

The nonnals are transformed almost the same way as the vertices, by the 

traiisfonnatioii matrix and using the same weights. The only different differ-

ence is that the we only use the 3 x 3 rotational part of the matrices. 

n, WihT3:,3j,)ni (3.19) 
beBi 

where ni is the iiornial vector to be transformed and are the upper left 

rotational part of the bone transformation matrix. 

3.5.5 G P U Algorithm 

Since the iiature of skeletal animation algorithm is the computation for each 

vertex, we caii also map the skeletal subspace defoniiation to the GPU using 

the vertex sliader engine. The pseudocode of the algorithm is as follows: 
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Skeletal Subspace Deformation 

for each vertex in the mesh 

for each bone affecting the vertex 

transform the vertex using the bone transformation matrices 
(weighted by the corresponding bone weight) 

transform the normal vector using the bone rotation matrices 
(weighted by the corresponding bone weight) 

end 

calculate lighting 
perform the world， view,projection transformation to the vertex 
output to the next pipeline stage for rendering 

end 

Figure 3.18: Pseudocode for skeletal subspace deformation on GPU 
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Figure 3.19: Skeletal subspace deformation on GPU 

As shown in Figure 3.19, using the GPU for performing the skeletal sub-

space deformation is fairly efficient since the algorithm can be naturally ar-

ranged as a per vertex computation. The vertex, normal, texture coordinate 

data can be passed to the engine in a vertex stream format. By making use 

of the unused texture coordinate registers, we can pass bone index and bone 

weights as 2 additional texture coordinates for each vertex. For the invari-

ant parameters that are shared among vertices like the "bone transformation 

matrix array", the model view projection matrix, lighting parameters can be 



Chapter- 3 Multilingual Virtual Performer 52 

easily stored in the constant memory of the GPU for access by vertex shaders. 

3.6 Integration of Skeletal and Facial Anima-

tion 

Because of our different algorithms for the facial animation and skeletal anima-

tion computation, a solution to seamlessly integrate them must be provided. 

In general, our virtual character should be able to talk, sing, which are merely 

deformation happened to her face, and rotate its head from side to side or 

around, which are the skeletal motion that are controlled by the bone inside. 

After analyzing this 2 kinds of motion happened to the head of virtual 

character, it is found that they are not coherent, or we can say that they are 

almost orthogonal motions. This means that any rotation of the head nearly 

does not cause any deformation to the face (except part of the neck), and at 

the same time the deformation operation does not make any rotation of the 

head either. So we can actually perform the operations one after another in 

order, and achieve seamless blending. In our system, we choose to perform the 

facial deformation first and then perform the skeletal subspace deformation 

afterwards, this is because that the DV vectors stored are in untransformed 

neutral directions. So the integrated facial animation algorithm is in the form 

of: 

Vfacejc = (^WbTb)(Vneutral,k + ^ Oii(t) DVi^ipa,k + Y , m D V j , e . p , k ) (3.20) 

b€B i j 

where Vface,k is the position of vertex k in the new face, similarly, ‘t)neutrai,k 

is the kth vertex in the neutral face .Wb is the weight which indicates how 

much the vertex is affected b}̂  this particular bone. The set of bone indexes 

that afFcct the vertex is denoted by B and the corresponding transformation 

matrices Tl. 
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Figure 3.20: Integration of skeletal and facial animation 

3.7 Result 

The final rendering is composed of several layers or components - the character, 

the enviroiiiiient, and the effects. 

Since the facial animation and skeletal animation vertex data stream is 

passed down the pipeline after the animation calculation in the vertex proces-

sor, it is easy for us to further process them in the fragment processor. The 

fragment shader will involve per-pixel lighting calculation or texturing or both 

of them, then the final fragment color is passed down for further tests before 

put into the frame buffer. To render the transparent objects like the hair, one 

more alpha cliaiiiiel for the texture is added for alpha, blending (Figure 3.21). 

The environment is simply rendered with a. polygonal sphere. A fragment 

shader that calculate and retrieve the color from a ciibemap based on the 

world space viewing vector is used here for environment rendering. This is a 

per-pixel process that performed on every rasterized pixel so as to maintain 

high quality rendering. 

The cubeniap texture is composed of 6 prerendered images, which make 
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Figure 3.21: The color and alpha channel for hair 

up of 6 faces of a cube (Figure 3.22). Thus it can be created by designing 

a scene and then render 6 images with the camera positioned at the scene 

center and pointing to 6 directions of the face normals of the cube, or it can 

be from 6 real photographs. The cubemap gives a good representation of the 

environment information in colors. It can be denoted as a function which 

returns color whenever you give the viewing direction from the scene center. 

In order to render the environment correctly, we designed a vertex shader 

that calculated the view vector based on its world coordinate and eye coordi-

nate. Then for per-pixel rendering using the view vector, we passed it down 

to the pipeline using the texture coordinate register that is not only in 32-bit 

high precision format, but will also enable the value to be interpolated be-

tween every pixel of the sphere that is rasterized. This allows us to render the 

environment correctly. 
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Figure 3.22: Ciibemap for rendering the environment 

Snow effect in the system is rendered using particle system simulation 

and billboard technique. Physical simulation of the particles using newto-

iiia.li physics is performed first, with the position and velocity of every particle 

recalculated every frame, which is also known as the euler integration. The 

particles are then rendered using the billboard, that are polygons that always 

face the viewer so as to fool the eyes to treat it as a 3D object instead of a 2D 

plane. As the viewpoint changes, a rotation matrix is generated to rotate the 

particle billboards so that they face the new viewpoint. The result rendering 

can be seen in Figure 3.23. 

We can also perform different style renderings like cartoon rendering by 

using the vertex and fragment shader engine. 

Ill order to test the lip-synchronization feature of our system, We rail user 

perception experiments with 12 randomly generated seven-digit strings. For 

each digit string we generate either an audio recording of the synthesized speech 

ill a noisy (cafeteria) environment; or a video file that augments the noisy 

synthesized audio with a talking face. Our tests involve 16 Cantonese-speaking 
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Figure 3.23: Environment and effect rendering 

Substitution Deletion Insertion Accuracy 
Speech Only 0 % 14.7% TWo 80.6% 

Speech With Animation 4.8% 3.4% 2.8% 89.0% 

Table 3.7: Results of the user perception experiments. 

subjects. Each subject is presented with the 12 audio/video files and asked to 

write clown tlie digit string that was spoken. Subjects have no prior knowledge 

of the lengths of the digit strings. Table 3 shows the experimental results in 

terms of substitution (S), deletion (D) and insertion (I) errors, Acciira.cy(%)=l 

- t o t a l error rates(%). 

The digits '5' and '2' are pronounced in Cantonese as /ng3/ and /yi6/ 

respectively. These are often misrecognized due to their low energies. Further-

more, their visemes look similar - both have a slightly open lip shape. When 

the synthetic face is included, we observe a, slight increase in substitution er-

rors. This is caused by substitutions between "2' and '5'. The significant 

decrease in deletion errors is predominantly due to better perception of '5' 

when the viseme is iiichided. The slight increase in substitution errors is due 

to the insertion of ‘2’ at the end of the digit string - a. slight smile in the talking 

face at the end of the utterance misled the subjects to believe that the viseme 
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Figure 3.24: Cartoon style rendering 

Vertex Normals Texture Coordinates Polygons Texture Map 
Head ^ 4 0 ^ S m 2000x2000 
Body 6442 6442 6442 12732 2000x2000 
Legs 4850 4850 4850 9580 2000x2000 

Environment 1986 (no need) (generated in shader) 2048 512x512x6 
Particles 400 (no need; ^ 100 128x128 

Table 3.8: Geometric and texture data statistics 

for ‘2’ was realized. 

The model we used is a high resolution model with high quality textures. 

The data amount is shown below in Table 3.8. The textures for the virtual char-

acter are all in 2000x2000 high resolution, and the total vertices and polygons 

for the character model is 15390 and 30432, respectively. The texture coor-

dinates for environment rendering is generated in the fragment shader, which 

will be used to fetch color form a cubemap composed 6 images of 512x512 in 

resolution. 

To test the performance of our system, we have tested it on computer 

systems with different configurations and graphics cards, as shown in Table 3.9. 

We can see that on the 3 computer systems we have tested, all of them 

achieve real-time performance, i.e, the frame rate is higher than 30 frames per 
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CPU Ram Graphics Card Video Ram Frame Rate 
L a p t o p P H I l . lGhz 1 2 8 N V I D I A Geforce4 Go 440 (Mobile) 32MB ^ 
Desktop PIV 2.0Ghz 256 ATI Raedeon 8500 64MB 61 
Desktop PIV 2.0Ghz 256 NVIDIA GeforceFX 5900 Ultra 256MB 98 

Table 3.9: Performance on different systems 

second. Even on a PHI laptop equipped with a NVIDIA Geforce4 440 Go 

graphics chip, which is only a mobile graphics chip, we can achieve 33 frames 

per second of high quality rendering. The 2 desktop PC tests are performed on 

the same computer only with different graphics card. The difference in GPU 

performance of the 2 cards from NVIDIA and ATI can be seen in the difference 

of 37 in frame rate. The available video memory also plays an important role 

for the system performance, since we try to put as many data into the video 

ram for fast access by the GPU, like the neutral face vertex, normal ,texture 

coordinates, phoneme and expression DVs, etc, if the video ram is small that 

we are unable to allocate enough buffers for all the data, the rest of them 

will still reside in the main memory and consume considerable amount of AGP 

bandwidth for rendering. That can also explain part of the reason why graphics 

card with small video ram will suffer in performance. But due to the nature 

of GPU programs and shared usage of the graphics card with the operating 

system and other applications, it is generally hard to measure how much effect 

the GPU clock and the video ram has on the system performance. 

3.7.1 Summary 

The virtual character system we developed not only provides an integrated 

framework for multilingual lip synchronized facial animation and skeletal an-

imation, but also presents a good solution for performing intensive geometric 

data computation on GPU using vertex processor. The facial deformation 

can be integrated with skeletal animation seamlessly in the vertex shader pro-

gram, and text-to-speech systems of different languages can also be integrated 
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by means of the IPA-based mapping. 

For the geometric computation on GPU, the organization of input data 

into several streams is an important aspect. This ensures that we can map 

different data streams to the input vertex registers, and put other data or 

parameters that are constant for all the different stream elements within one 

frame to the constant memory or registers. Take the facial animation as ex-

ample, Equation 3.9 is a good formulation of the problem in a format that 

can be streamlized, the IPA and expression DVs as well as the neutral face 

data can be easily separated to streams, and the value of the blending weight 

functions is stored into constant memory since they do not vary between dif-

ferent stream elements. This principle can be applied to other applications 

that require intensive geometric computation but can be parallelized. 

Besides geometric data, many graphics and scientific applications also deal 

with large amount of imaging data set, i.e, data that is organized into 2D 

grid structure with several channels. Thus our next step in GPU computation 

is the exploration of imaging computing capabilities of fragment processor, 

which can perform operations on each rasterized pixel, and also have access 

to the large amount of texture memory. This is a nice feature of the fragment 

processor as the imaging data can be easily stored into the texture memory for 

fetch and use in pixel computation. One typical intensive pixel computation 

task is the multi-level discrete wavelet transform on large data or images. The 

succuss of applying intensive geometric computation on GPU motivates us to 

further explore the area of imaging computing using fragment processor. Our 

research on discrete wavelet transform on GPU will be described in detail in 

the next chapter. 



Chapter 4 

Discrete Wavelet Transform On 

G P U 

4.1 Introduction 

In this chaptcr wc focus on how to efficiently design the imaging computa-

tion algorithm on GPU for multi-level discrete wavelet transform. Among 

those mathematical tools for multiresolution analysis, discrete wavelet trans-

form (DWT) hfus been proved to be elegant and efficient. With the DWT, we 

can represent data by a set of coarse and detail values in different scales. Its 

locality nature facilitates the representation of high-frequency signals. With 

its coarse-to-fine nature, signals can also be synthesized in a progressive man-

ner. Several wavelets applications in computer graphics have been proposed 

in recent years, including BRDF representation [33], environment map [34], 

global illumination [35], shadow representation [36], wavelet environment mat-

ting [37], progressive mesh [38], and even multiresolution video [39], etc. Be-

sides, wavelets have been adopted as the core engine in JPEG2000 [40], the 

second generation of popular JPEG still image encoding. 

The intensive computation of DWT due to multilevel filtering/clownsampling 

does not cause a serious problem when the data scale is small. However, this 

will become a significant bottleneck in real-time applications with large data 

60 
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aet. Swcldeiis proposed an efficient iiiipleiiieiitatioii of DWT, known as the 

lifting scheme [41]. By reusing the intermediate values from previous steps, 

lifting achieves a high performance. Unfortunately, pure software DWT on 

large-scale data still cannot achieve real-time performance. This is evidenced 

by the software JPEG2000 implementations. The need of real-time perfor-

mance has already driven several hardware implementations of DWT [42’ 43]. 

4.1.1 Previous Works 

Although hardware implementation (such as FPGA) offers real-time DWT 

solution, extra cost is needed for installing extra hardware. As these special-

ized hardware are preliminary, they are still expensive and not cost-effective. 

On the other hand, current generation of consumer-level graphics hardware, 

GPU, has already evolved to a stage that supports parallel processing, high 

programmability, and high-precision computation [4]. It performs not just 

rendering of texture-mapped polygons, but also general computations, such as 

sparse matrix solving [44j, linear algebra operations [45], fast Fourier trans-

form [46]’ and also non-linear optimization for image-based modelling [47]. 

Hopf and Ertl proposed a method that utilizes the specific OpenGL exten-

sions to perform convolution and downsampling in DWT [48]. However, these 

extensions may vary with different graphics hardware. Hence it may be diffi-

cult to extend to different signal boundary extension schemes. Moreover, the 

control of "exact pixel selection" in the downsampling process is tedious. 

4.1.2 Our Solution 

In this paper, we propose a real-time DWT shader that runs on GPU, hence 

it reduces the computational burden of CPU. No tailor-made hardware nor 

extension is needed. Providing the shader programmability, our generic DWT 

solution can be trivially adapted to different wavelet transform and different 
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boundary extension schemes. The exact pixel selection during downsampling 

also comes with no extra cost. Moreover, our approach unifies both the forward 

and inverse DWT to an identical and simple process. 

We demonstrate our real-time GPU-based DWT by first applying it to ma-

nipulate the wavelet subbands for real-time geometric deformation. Next, we 

show that designer can rapidly perform stylish image processing and texture-

illuminance decoupling [49). Lastly, we have also integrated our DWT engine 

into a well-known JPEG2000 codec, JasPer [40], and significantly improved 

the encoding performance, especially for high-resolution images obtained from 

normal digital cameras. 

4.2 Multiresolution Analysis with Wavelets 

Consider the Hilbert space of measurable, square-integrable functions 

defined on real line 况.A multiresolution analysis [50’ 51，52] consists of a 

sequence of closed subspaces {V^j > 0}, \力 C where j denotes the res-

olution level. Those subspaces are in a nested manner: V^ C V^ C • • -V^ • • •. 

At each resolution level i , there exists a set of scaling functions with 

i e where I<{j) is an index set at level j such that K{j) C K{j + 1). 

Those scaling functions should be a Riesz basis of V^. 

Let P be a function in the resolution level j , i.e.尸 G V^. It can be 

expressed as a weighted sum of scaling functions 

尸 = Z ‘於W ‘ (4.1) 
ieK(j) 

where the parameters Xj’i are defined as the scaling coefficients of the function 

p . In other words, a function 尸 in V^ can be represented by the scaling 

coefficients Aj� . 

Let the subspace be the orthogonal complement of such that 
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= y j . There exists a set of functions \j > 0 ,m e M ( j - l ) } , 

where M{j — 1) C K(J). Those functions should be a Riesz basis of In 

this case, the functions define a wavelet basis. The function p can also 

expressed as: 

尸 = X ] Y^ (4.2) 

kel<{j-l) meM(j-l) 

because 0 — V^. The parameters Aj-i,^ are the coarse approxima-

tions and the parameters 7j_i’m corresponds to detail subspace. 

The one-step wavelet traiisforin computes the coefficients (scaling /Xj-i’/c 

and detail 7j__i’m) at level j — I from the scaling coefficients Xj�i at level j: 

Xj-i’k = Y ^ /ij-i.fc.iAj-i (4 .3) 
i 

7 j - l ’ m = ffj-l’m’i入j’i (4 .4) 
i 

where the parameters and gj-i,k,i are the decomposition low-pass filter 

parameters and decomposition high-pass filter parameters, respectively. Those 

filter parameters depend on the choice of the scaling functions and (/){) and 

wavelet basis In digital signal processing representation (Figure 4.1), the 

input sequence x{n) are the scaling coefficients Aj’i; and the output sequences 

L and H are the scaling coefficients and the coarse coefficients 7j-i’m， 

respectively. 

Hz) 

C 人 — 产 t - n c y 

)W-pass filter downsampling 

giz) 

high-pass filter downsampling 

Figure 4.1: One dimensional DWT: filtering and downsampling. 
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The downsampling process can be illustrated by Figure 4.1，where low-pass 

h and high-pass g filter kernels are convolved with the ID signal x{n) to pro-

duce low-frequency and high-frequency subbands. These subbands are then 

downsampled. The signal x(n) is decomposed into multiple frequency sub-

bands of different scales by successively applying this filtering-and-downsampling 

process to the low-frequency subbands. For 2D signal, 2D separable wavelet 

transform can be used, i.e. 2D DWT can be achieved by first applying ID 

DWT on the rows and then on the columns. 

The one-step inverse wavelet transform computes the scaling coefficients 

(入j’i) at level j from the coefficients Xj�i at level j - 1: 

h i 二 + Y^ 9j-l,m,nj-hm ’ （4.5) 
k rn 

where the parameters /i; 一i丸i and g'卜、爪’i are the reconstruction low-pass filter 

and high-pass filter parameters, respectively. 

4.3 Fragment Processor for Pixel Processing 

A basic texture-mapped polygon rendering process can be illustrated with a 

simple example. First the user will issue 3D rendering command through 3D 

API in the form of polygon vertices and texture map images, then the vertices 

undergo a 3D transformation stage that positions it at the desired location. 

The vertex processor is mainly responsible for this transformation. After that, 

the primitive assembly and rasterization stage rasterizes the polygons into pixel 

fragments which may cover part of the screen. Finally, the fragment texturing 

and coloring stage will retrieve colors from the texture images according to the 

2D texture coordinate (given or interpolated). The fetched color value can be 

used for direct coloring each pixel or for further computation to determine the 

pixel color before thoy arc output to the frame buffer. The fragment processor 

is responsible for this texturing and coloring stage. 



Chapter 4 Discrete Wavelet Transform. On GPU 65 

3D API EEEEEiEEE 

Primitive 
‘‘ Assembly and Texture 

|i| 卿 Rasterization mapping ^  

. T r a n s f o r m a t i o r • • U " l 1 .1111 l - H Li t l 11 11 ffl 

Figure 4.2: The 3D rendering pipeline 

We can see that the fragment processor is responsible for texturing and 

coloring. With the prograrnmability, the user can develop applications for 

other purposes, like here for image processing in our application, the fragment 

shader can be utilized. 

The GPU is SIMD in nature, which means we have a bunch of vertex 

pipelines and fragment pipelines that run in parallel but on different ver-

tices/fragments. The current generation GPU already supports IEEE 32-

bit, floating point computation that facilitates high-precision discrete wavelet 

trarisfonn in our application. 

4.4 D W T Pipeline 

4.4.1 Convolution Versus Lifting 

DWT can be achieved by either the straightforward convolutional approach 

or the lifting scheme. The convolutional approach directly implements the 

filtering operation. It consumes more memory and requires more computation. 

On the other hand, the lifting scheme [41] implements a waveform transform 

by a successive simple filtering operations. 

Denote the original data as {.7;n},n = l..k , to perform the wavelet trans-

form using lifting, we first apply the first stage lifting as follows: 
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工'2n+l = + ^ X {x2n + 2;2n+2) (4.6) 

where a and r^n+i is the first stage lifting parameter and outcome, respectively. 

After all the odd index data points are calculated, the second stage lifting is 

performed: 

oo'in = + b X + ) (4.7) 

where we refer the second stage lifting parameter and outcome as b and 

respectively. The third and fourth stage lifting can be performed in similar 

ways: 

H n = 工 ' 2 n + l + CX {X2n + 工Jn+2) 

Ln = + d X ( ^ n - 1 + ^ n ) 

where and Ln aie the resultant high and low pass coefficients. This process 

can also be shown with Figure 4.3 

讓 i 
介 iV 介 • 

U . S l « g « 2nd Stage 广 S 叫 e 
Mtgn-pas Lov;-Pass 

Figure 4.3: The lifting scheme 

The lifting scheme consumes small memory and less computation. For soft-

ware implementations, it is obvious the lifting scheme is preferred. However, 
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our goal is to develop a DWT engine that executes on GPU whose major ad-

vantage is its SIMD-based parallel processing. No intermediate values sharing 

among pixels is allowed. Lifting implicitly imposes an order of execution which 

is not fully parallelizable. As the intermediate value sharing is the key factor 

of lifting to reduce computation, it will cause too many passes and hence the 

switching of rendering context in GPU implementation. Note that the ren-

dering context switching in GPU introduces large overhead on current GPU 

design. All these suggest that the parallelizable convolutional approach is fa-

vorable. The large memory consumption issue may not be a serious problem 

as large and extremely fast video memory is available on consumer-level GPU. 

4.4.2 D W T Pipeline 

We design the DWT engine as a set of fragment shaders which perform DWT 

on IEEE 32-bit floating-point image. The whole multi-level transform consists 

of rendering carefully aligned quadrilaterals that cover the whole or part of 

the image. At each level, the 2D DWT is achieved by performing ID DWT 

first horizontally and then vertically (Figure 4.4). Hence the quadrilateral is 

rendered twice per level of decomposition/reconstruction. At each output pixel 

(fragment), a fragment shader that performs ID DWT is executed to compute 

the convolution. In the next level, number of pixels requiring fragment shader 

execution is reduced (or increased in reconstruction) by 4 so as to cover the low-

passed subband. The process continues until the desired level of decomposition 

/ reconstruction is achieved. We employ 2 pixel buffers to hold the input 

and output images. Their input and output roles are interchanged after each 

rendering pass. 
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mmhm Horizontal Decomposition Vertical Decomposition 
Figure 4.4: Separable 2D DWT 

4.5 Forward D W T 
Let {X'j{n)} be the boundary-extended input signal at level j. After 1-D DWT 

and downsampling, the low- and high-pass sequences are given by 

A,_i(n) = j y 称 ( 4 . 8 ) 
k 

7,-1 (n) 二 + (4.9) 
A-

Let {2j_i(r?.)} be the concatenation of {Aj—i(n)} and {7j_i(n)}, We can 

rewrite (4.8) and (4.9) in a more generic way for efficient SIMD implementation 

on GPU 

Zj一八n) = h j - A n , A;), (4.10) 
k 

fd,j-i{n,k) is a. position-dependent filter that selects the proper coefficient 

from h{k) and (j{k) at decomposition level j-1. J\’j—i(n, k) is a function that 

returns the corresponding data in the level j boundary-extended signal {入‘⑷} 

for convolution. These can be easily implemented by indirect addressing / 

dependent texture fetching [11] in the GPU algorithm. 

The fd’j—i(ji, k) position dependent filter is achieved by a filter selector 

variable q' calculated in the fragment shader to selects between h{k) and g{k), 

i.e.,at each output pixel, the fragment shader has to determine whether the 

current pixel belongs to the high-passed or low-passed regions after DWT. If 

it is high-passed pixel, the high-pass filter kernel is used for convolution, and 

vice versa. Care must be taken when handling images with odd dimension. 
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Given the texture coordinate ( a� t ) for the current output pixel (fragment) in 

the image of resolution W x H, we can uniquely identify whether the current 

pixel belongs to high-passed or low-passed regions after DWT. Without loss 

of generality, we only discuss the horizontal ID DWT. Suppose we are dealing 

with ID pixel sequence of length L. The filter selector a is computed with 

value 1 means high-pass and value 0 means low-pass. 

‘ 1 ’ if sVl/ > L/2 , � 
a = { ‘ 丨 (4.11) 

I 0, otherwise 

Then the corresponding kth filter coefficient is used for convolution. 

Function fx,j-i{n, k) is implemented by calculating the base position (filtering 

center) 0 in the fragment shader and then fetch its neighbor from input texture 

as shown in Figure 4.6. The base position (3 can be computed by the following 

equation. 

二 2(s — a � $ l ) + Q; + 0.5 (4.12) 

We add 0.5 to address the pixel center in texture fetching. Figure 4.6(a) links 

the computed base position in the input buffer with the corresponding output 

pixel in the output buffer. With this, downsampling is automatically achieved 

without wasting computation on unused samples. 

The convolution takes place with the base pixel at the center and fetches 

土[•I neighboring pixels. In general, low-pass and high-pass filter kernels usu-

ally have different lengths, hence different values of k. For implementation 

uniformity, k should be chosen as the larger one. 

If the fetching of neighbors goes beyond the image boundary of the cur-

rent level, we need to extend the boundary extension. Common extension 

schemes include periodic padding, symmetric padding and zero padding, etc. 

We have applied symmetrical periodic extension [53] that mirrors pixels across 

the boundary, with the boundary pixel not mirrored. Figure 4.6(b) shows two 

examples of convolution with fetching to extended neighbors. 
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Instead of computing a, [5�and boundary extension within the fragment 

shader using arithmetic instructions, we use a more efficient way which pre-

computes and stores all these values in a 2D texture. Most CPUs nowadays 

support highly optimized texture fetching operations which are much faster 

than arithmetic operations. This table-lookup approach also offers flexibil-

ity ill implementing different boundary extension schemes by replacing the 

addresses in this indirect address table (texture). 

CTTO | 1 | 2 | 3 | 4 | 5 | 6 171819 |1Q|11l12l13ilein “ 
Q n T T y y 4 5 s i m 

Q n ^ I I i Z l l J B D 
Figure 4.5: The indirect address table for boundary extension. 

The texture is organized with each row holding boundary extension, a and 

j3 values for one particular level of DWT. Inside each texel, channel R stores 

the indirect address of pixel with boundary extended. Channels G and B store 

rv and (3 respectively. Therefore the width of table for a data sequence with 

maximum length L is L + /c - 1. Figure 4.5 shows three levels of indirect 

addresses stored in the texture with data sequence of length 14 and k = b. 

Color dark grey indicates the boundary-extended elements while color light 

grey indicates elements within the level of data sequence, This texture is 

small in size as the number of rows equals to log2(max(M,’ H)). 

houndao'i — ibovindar>' 

丨0丨1丨2|3丨4|5丨6丨7丨8丨 闹input 

low high low high 

(a) (b) 

Figure 4.6: (a) Mapping to the base positions, (b) Decomposition with bound-
ary extension. 
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4.6 Inverse DWT 

The 2D inverse DWT can be achieved by applying ID inverse DWT hori-

zontally and then vertically. Although the inverse DWT is mathematically 

different from the forward one, we show that, by using the same indirect ad-

dress table, the inverse DWT reduces to almost the same process as forward 

DWT. Both low-frequency and high-frequency coefficients contribute to recon-

struction process. 

Let {A;_i(n)} and {7;_i(n)} be the zero-padding upsampled and boundary 

extended low- and high-pass signal at level j-l. The reconstruction of {Xj(n)} 

is given by 

Xj{n) = Yj�'�k)X'j-如,-M + � - k), (4.13) 
k k 

where h'{k) and g'{k) are low- and high-pass reconstruction filters, respec-
tively. 

Similar to the forward DWT, (4.13) can be rewritten as 

Xj{n) 二 5^/,.j-i(n，/c)/A—i(n,/c)， （4.14) 
k 

/2’j_i(n’ k) returns the corresponding data in the upper-sampled and boundary-

extended signal of {^(ti)} at level j 一 l.This is efficiently implemented into 

fragment shader as shown in Figure 4.7. It shows that both low-frequency 

and high-frequency coefficients are upsampled and interleaved virtually. Note 

that we do not actually perform the upsampling nor interleaving. Instead, 

we precompiite the indirect addresses and store them in the indirect address 

table. Note that the boundaries have to be extended before the interleaving 

as illustrated in Figure 4.7. 

Once the indirect address table is ready, values in the next level can be re-

constructed by convolution (Figure 4.8). Based on the odd/even status of posi-

tion of the reconstructing pixel, we decide the reconstruction filter to convolve. 
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upsampling ( f "'即 I 2 丨 3 丨 4 | » 1 曹 邏 : • 口 u p s a m p l i n g 

lol 丨1 丨 l2l l 3 m I H H H E n 
boundary extension {/ � boundary extension 

f l l l o l [ 1 1 l 2 l | 3 | | 4 | H a H i l l E l 
interleaving 

| 1 H O B I 1 B 1 2 H 3 0 4 D ^ 
indirect addresses precomputed 

Figure 4.7: Virtual upsampling and interleaving for precompiiting indirect 
addresses. 

Note that low-frequency elements must be multiplied to the low-pass recon-

struction filter, /?', while high-frequency elements must be multiplied to high-

pass reconstruction filter, (j'. Here the position-dependent filter / , . j_i(n, A;) 

is similar to the forward case which selects the proper coefficient from the 

reconstruction filter bank h'{k) and g'{k). For efficiency, we reorganize the 

filter kernels to form the interleaved kernels as illustrated in Figure 4.8. In . 

general, h' and 厂/, are different in length. With this indirect addressing, both 

the shaders for forward and inverse DWTs are basically performing the same 

operations, namely indirect pixel lookup, filter selection, and convolution. 

r^aoHUl f a o a i a ) 
^ { I h M k g M j t \ \ M E I m M E \ ) 

\ ^ interleaved filter j interleaved filter 
I —. { - ^ ____ reconstructed 

rJ I I I I I____ values 
Figure 4.8: Reconstruction filtering in inverse DWT. 
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4.7 Results and Applications 

4.7.1 Geometric Deformation in Wavelet Domain 

We have applied our GPU-based DWT engine to geometric deformation in 

which the designer ca.ii modify control points of a, NURBS 3D model in wavelet 

(loniain. The designer can arbitrarily scale the wavelet coefficients in different 

frequency subbands to achieve the desired effect. Note that the deformation 

is (lone in real-time. 

Figure 4.9 shows three deformed heads along with the scaling configurations 

of wavelet subbands. The siibband with no scaling is color-coded in grey. The 

sul)bands being scaled up and down are color-coded in red and blue respec-

tively. As coefficients in different siibband influence the geometry in different 

scales, the designer can focus on the semantic rather than the spatial position 

of control points. 

• i ai __ I 
Figure 4.9: Three different wavelet-based geometric designs. 

4.7.2 Stylish Image Processing and Texture-illuminance 

Decoupling 

Our GPU-based DWT engine allows us to do real-time wavelet-based miiltires-

oliition image processing which offers various effects, even images are of high 

resolution. Hence, we combine, remove, or scale the wavelet coefficients in 

different subbands and in different color spaces (RGB or YUV) to achieve the 

desired effects. As illustrated in Figure 4.10, the bumpy feature of the bean 
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image (middle) is transferred to the Starry Night painting (left) by combining 

the high-frequency siibbands in the Y channel of both images while removing 

the lowest frequency subbaiid of the bean image. We take the maximum be-

tween two corresponding coefficients to maintain the details from both images. 

The real-time ability of our wavelet transform allows the designer to rapidly 

evaluate the visual results from wavelet domain processing. 

4 F D W T f ‘ 

_ ( • • ， • ) — DWT 
Figure 4.10: Fast image stylishing by combining coefficients in wavelet domain. 

Sometimes when we acquire textures by taking photographs, the illumina-

tion condition is usually not controlled. If the illumination only introduces 

slow intensity change in the acquired image {i.e. low-frequency component), 

it is possible to decouple the contribution due to the uncontrolled illumina-

tion from the desired texture. Figure 4.11 illustrates such application. We 

first remove high-frequency subbaiids and generate the illimiinance image us-

ing inverse DWT. By dividing the original image with this illuminance image, 

we obtain an “illmiiiiiat,ion-constant，’ deca.1 map which is ready for texture 

mapping. 
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Figure 4.11: Fast texture-illuminance decoupling. 
4.7.3 Hardware-Accelerated JPEG2000 Encoding 
DWT has been identified as a time-consuming part of the lossy JPEG2000 

encoding [40]. Especially when the rate is small, the DWT processing time be-

comes doininaiit. By integrating our GPU-based DWT engine into the popular 

JPEG2000 still image codec, JasPer [40],which is a free software-based refer-

ence iiiiplenieiitatioii of the codec specified in the JPEG-2000 Part-1 standard 

(i.e., ISO/IEC 15444-1), the encoding speed has been greatly increased. 

The flow of a JPEG2000 encoder can be shown in Figure 4.12. The first part 

is the component and tile separation, which is used to cut the image into chunks 

and to (lecorrelate the color components. For multi-component color images, a 

component transform is performed to decorrelate the componeiiets.Each tile of 

each component is then processed separately. The data, are first transformed 

into the wavelet domain, and are then quantized. After that , the quantized 

coefficients are regrouped to facilitate localized and resolution access. Each 

subband of the quantized coefficients is divided into rectangular blocks. Three 

spatially co-located rectangles (one from each subband at a. given resolution 

level) form a packet partition. Each packet partition is further divided into 

code-blocks, each of which is compressed into an embedded bitstream. They 

are then assembled into packets, each of which represents a. quality increment 

of one resolution level at one spatial location. By combining packets from all 

the partitions of all resolution level of all the tiles and components, we form a 
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layer. The final bitstream may contain multiple layers. 
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Figure 4.12: JPEG2000 encoding flow 

The most important part of the codec is the DWT shown in Figure 4.12, 

ill JPEG2000, both reversible integer to integer and non-reversible real-to-real 

wavelet traiisforiiis are employed, called the 5/3 and 9/7 wavelet kernel, re-

spectively. Since the main performance issue is in the 9/7 real-to-real wavelet 

transform, and at the same time the GPU processes floating point values 

throughout the graphics pipeline, we have integrated our GPU-based DWT 

specially for the 9 /7 wavelet into the JasPer codec. 

We have evaluated the performance of the GPU-based DWT. The iinple-

iiientatioii adopts OpenGL and NVIDIA's Cg for shader development. The 

evaluation is conducted on a PC with Pentium IV 2.0 GHz CPU, 512MB 

memory, and GeforceFX 5900 Ultra, with 256MB video memory. 

We compare the execution time of GPU-based DWT with the software 

lifting-based Jasper. Seven test images ranging from 128x128 to 2048x2048 

are encoded with 1 tile, 1 layer, 9 /7 transform, 5 decomposition levels. Fig-

ure 4.13 shows the timing statistics that compares the original software codec 

with ours. Instead of measuring the image dimension, we measure the number 

of pixels ill the unit of million pixels which is commonly used in digital camera 

terminology. For low-resolution images, the speed of the GPU DWT is a bit 
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Figure 4.13: Timing Comparison: software versus GPU DWT 

poorer than the software one because of the overhead of GPU initialization 

and (lata transfer. As the image size is raised to around 0.16 million pixels 

(about 400 X 400). Our codec outperforms the software one. The speedup 

is apparent for encoding high-resolution images. This shows the advantage of 

parallel processing in SIMD-based GPU. 

For a fair comparison, we have accounted for all overheads of using GPU, 

these include data conversion, initialization and texture creation, etc. The 

breakdown of execution time is shown in Table 4.1. The computation time 

due to overheads is included in the column “GPU Total" of Table 4.1. The 

breakdown is shown and the timing for software lifting implementation of DWT 

with JasPer ("Software Total") is also presented for comparison. "OpenGL" 

shows the time for initializing OpenGL and Cg systems, which is more or less 

constant. "Texture" accounts for the time for texture and pixel buffer creation. 

Hence it increases as the data, size increases. The computation time for DWT 

occupies only a small portion of the whole execAition time due to the parallel 
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Image llSoft Total IIGPU Total llOpenGL [Texture |DWT [Others ( 
1 2 8 - ^ ^ 0 . 0 6 0 . 1 6 0 . 0 1 

2562 0.11 0.81 0.54 0.08 0.16 0.03 
5122 1.47 0.95 0.51 0.09 0.22 0.13 
10242 7.80 1.56 0.53 0.19 0.41 0.43 
12802 10.52 2.04 0.54 0.30 0.59 0.61 
20482 31.03 4.28 0.53 0.67 1.38 1.70 

Table 4.1: Breakdown of computational time (sec) 

bit rate Software based DWT GPU based DWT 
PSNR (dB) PSNR (dB) 

0.1875 30.73, 29.72, 2 8 . 7 1 3 0 . 7 5 , 29.73, 28.69 
0.75 35.68, 35.01, 32.47 35.65, 35.02, 32.46 

3 39.46, 40.30, 37.02 39.47, 40.31, 37.03 

Table 4.2: Encoding quality comparison for lossy coding 

processing nature of GPU. "Others" refers to the time for other operations as 

well as data conversion and transfer, therefore it is also dependent on the data 

sizes. 

Besides, we have also evaluated the image quality by experimenting on the 

standard test image, Lena. We encode it at different bit rates. The PSNR in 

the RGB channels are shown in Table 4.2. There is no significant difference 

between our GPU DWT and the software lifting-based Jasper, thank to the 

high-precision floating point computation in GPU. 

4.8 Web Information 

More information and demo programs are available at: 

ht tp : //www.cse .cuhk.edu.hk/�t twong/sof tware /dwtgpu/dwtgpu .h tml 

http://www.cse.cuhk.edu.hk/%e3%80%9cttwong/software/dwtgpu/dwtgpu.html


Chapter 5 

Conclusion 

In order to exploit the SIMD and parallel processing power of GPU for the 

processing of increasing amount of data in computer graphics and imaging ap-

plications. We investigate 2 computational intensive problem for developing 

efficient GPU algorithms - the virtual character system with lip synchroniza-

tion and the discrete wavelet transform, that are mainly focused on exploring 

the geometric and imaging computation capabilities of GPU, respectively. 

In order to explore techniques and solutions for performing large geometric 

data computation using vertex processor, we have designed a simple and effi-

cient framework for real-time virtual character animation. By carefully design 

the algorithm, we successfully map both the facial and skeleton animation 

computation to the GPU and achieved seamless integration of them in the 

shader program. By doing so, we have achieved good load balancing between 

the GPU and CPU, high system performance, as well as high rendering qual-

ity. The language and lip synchronization capabilities of the system is also 

explored. We proposed an I PA-based mapping technique to make our virtual 

character multilingual. Text-to-speech systems of different languages can also 

be easily integrated for real-time speech animation generation in our system. 

For the imaging data computation on GPU, we have also demonstrated a 

simple but powerful and cost-effective solution to implement discrete wavelet 

transform on the fragment processor. No tailor-made and expensive DWT 

79 
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hardware is needed to achieve such performance. It can be implemented on 

any SIMD-based GPU comes with normal configuration of PCs. The pro-

posed method unifies the mathematically-different forward and inverse DWT. 

Difforont wavelet filter kernels and boundary extension schemes can be easily 

incorporated by modifying the filter kernel values and indirect address table re-

spectively. We have demonstrated its applicability in real-time wavelet-based 

geometric deformation, stylish image processing, texture-illuminance decou-

pling, and JPEG2000 encoding. The current approach is still rectilinear in 

nature and not applicable to spherical wavelet transform [33] which is useful 

in modeling BRDF and environment map. In the future, we will investigate 

the parallelization of spherical wavelet transform on GPU. 

General purpose computing on GPUs is an area of research that I find 

very interesting, the low cost, high speed and parallel pipelines of GPUs make 

them a very useful coprocessors for intensive computation in different scientific 

and engineering fields. Further GPUs will have to remove some limitations for 

achieving more wide usage. One of them will be the support for double pre-

cision throughout the pipeline, although the IEEE 32-bit single precision is 

generally enough in many applications, still there're computations in research 

work that need double precision. Another limitation is the access of texture 

resources in the vertex processor, removing this will allow for large data ac-

cess in the vertex shader programs and also more potential applications for 

geometric computation on GPU. At last, one great potential change to the 

GPU programming paradigm will probably be the integration of vertex and 

fragment shader. Overall, with the increasing in speed and prograrnmability, I 

see a bright future for GPU computing in graphics, scientific and engineering 

areas. 
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