9 research outputs found

    Worst-case analysis of heap allocations

    Get PDF
    Abstract. In object oriented languages, dynamic memory allocation is a fundamental concept. When using such a language in hard real-time systems, it becomes important to bound both the worst-case execution time and the worst-case memory consumption. In this paper, we present an analysis to determine the worst-case heap allocations of tasks. The analysis builds upon techniques that are well established for worst-case execution time analysis. The difference is that the cost function is not the execution time of instructions in clock cycles, but the allocation in bytes. In contrast to worst-case execution time analysis, worst-case heap allocation analysis is not processor dependent. However, the cost function depends on the object layout of the runtime system. The analysis is evaluated with several real-time benchmarks to establish the usefulness of the analysis, and to compare the memory consumption of different object layouts.

    Model-Based Schedulability Analysis of Real-Time Systems

    Get PDF

    Efficient system auditing for real-time systems

    Get PDF
    Auditing is a powerful tool that provides machine operators with the mechanisms to observe, and glean insights from, generic computing systems. The information obtained by auditing systems can be used to detect and explain suspicious activity, from fault/error diagnosis to intrusion detection and forensics after security incidents. While such mechanisms would be beneficial for Real-Time Systems (RTS), existing audit frameworks are rarely designed for this domain. If audit mechanisms are not carefully integrated into real-time operating systems, they can negatively impact the temporal constraints of RTS. In this paper, we demonstrate how to apply commodity audit frameworks to real-time systems. We design novel kernel-based reduction techniques that leverage the periodic, repetitive, nature of real-time (RT) applications to aggressively reduce the costs/overheads of a system-level auditing, viz. Linux Audit (a popular open source audit framework). This is coupled with a rigorous analysis to understand the conflicts between the temporal requirements of RT applications and the audit subsystem. Our approach, Ellipsis, generates succinct behaviors of RT application and retains a lossless record of process activity, enabling analysis/detection of unexpected activity while meeting temporal constraints. Our evaluation of Ellipsis, using ArduPilot (an open-source autopilot application suite) and synthetically generated tasksets, demonstrates up to 93% reduction in audit event generation

    Java for Cost Effective Embedded Real-Time Software

    Get PDF

    Safety-Critical Java Level 2: Applications, Modelling, and Verification

    Get PDF
    Safety-Critical Java (SCJ) introduces a new programming paradigm for applications that must be certified. To aid certification, SCJ is organised into three compliance levels, which increase in complexity from Level 0 to Level 2. The SCJ language specification (JSR 302) is an Open Group Standard, but it does not include verification techniques. Previous work has addressed verification for Level 0 and Level 1 programs. This thesis supports the much more complex SCJ Level 2 programs, which allow for the programming of highly concurrent multi-processor applications with Java threads, and wait and notify mechanisms. The SCJ language specification is clear on what constitutes a Level 2 program but not why it should be used. The utility of Levels 0 and 1 are clear from their features. The scheduling behaviour required by a program is a primary indicator of whether or not Level 0 should be used. However, both Levels 1 and 2 use concurrency and fixed-priority scheduling, so this cannot be used as an indicator to choose between them. This thesis presents the first examination of utility of the unique features of Level 2 and presents use cases that justify the availability of these features. This thesis presents a technique for modelling SCJ Level 2 programs using the state-rich process algebra Circus. The model abstracts away from resources (for example, memory) and scheduling. An SCJ Level 2 program is represented by a combination of a generic model of the SCJ API (the framework model) and an application-specific model (the application model) of that program. The framework model is reused for each modelled program, whereas the application model is generated afresh. This is the first formal semantics of the SCJ Level 2 paradigm and it provides both top-down and bottom-up benefits. Top-down, it is an essential ingredient in the development of refinement-based reasoning techniques for SCJ Level 2 programs. These can be used to develop Level 2 programs that are correct-by-construction. Bottom-up, the technique can be used as a verification tool for Level 2 programs. This is achieved with the Failures Divergences Refinement checker version 3 (FDR3), after translating the model from Circus to the machine readable version of CSP (CSPM). FDR3 allows animation and model checking, which can reveal sources of deadlock, livelock, and divergence. The CSPM version of the model fits the same pattern, with a generic model of the API being combined with an application-specific model of the program. Because the model ignores scheduling, these checks are a worst-case analysis and can give false-negatives

    Ahead-of-Time Algebraic Compilation for Safety-Critical Java

    Get PDF
    In recent years Java has been increasingly considered as a language for safety-critical embedded systems. However, some features of Java are unsuitable for such systems. This has resulted in the creation of Safety-Critical Java (SCJ), which facilitates the development of certifiable real-time and embedded Java programs. SCJ uses different scheduling and memory management models to standard Java, so it requires a specialised virtual machine (SCJVM). A common approach is to compile Java bytecode program to a native language, usually C, ahead-of-time for greater performance on low-resource embedded systems. Given the safety-critical nature of the applications, it must be ensured that the virtual machine is correct. However, so far, formal verification has not been applied to any SCJVM. This thesis contributes to the formal verification of SCJVMs that utilise ahead-of-time compilation by presenting a verification of compilation from Java bytecode to C. The approach we adopt is an adaptation of the algebraic approach developed by Sampaio and Hoare. We start with a formal specification of an SCJVM executing the bytecodes of a program, and transform it, through the application of proven compilation rules, to a representation of the target C code. Thus, our contributions are a formal specification of an SCJVM, a set of compilation rules with proofs, and a strategy for applying those compilation rules. Our compilation strategy can be used as the basis for an implementation of an ahead-of-time compiling SCJVM, or verification of an existing implementation. Additionally, our formal model of an SCJVM may be used as a specification for creating an interpreting SCJVM. To ensure the applicability of our results, we base our work on icecap, the only currently available SCJVM that is open source and up-to-date with the SCJ standard
    corecore