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Abstract. In object oriented languages, dynamic memory allocation is
a fundamental concept. When using such a language in hard real-time
systems, it becomes important to bound both the worst-case execution
time and the worst-case memory consumption. In this paper, we present
an analysis to determine the worst-case heap allocations of tasks. The
analysis builds upon techniques that are well established for worst-case
execution time analysis. The difference is that the cost function is not
the execution time of instructions in clock cycles, but the allocation in
bytes. In contrast to worst-case execution time analysis, worst-case heap
allocation analysis is not processor dependent. However, the cost function
depends on the object layout of the runtime system. The analysis is
evaluated with several real-time benchmarks to establish the usefulness
of the analysis, and to compare the memory consumption of different
object layouts.

1 Introduction

In hard real-time systems, failing to deliver results in time may lead to catas-
trophic consequences. Deadlines must be met even in worst-case scenarios. As
such situations cannot be reliably provoked through measurements, hard real-
time systems must be statically analyzed to ensure that all deadlines will be
met. Scheduling analysis determines whether all tasks can meet their deadlines.
The input for this analysis are the worst-case execution times (WCETs) of the
individual tasks and their respective deadlines. However, it is not only important
to consider the tasks’ timing. An application that runs out of memory cannot
deliver its result on time either. Therefore, it is important to bound not only the
worst-case execution time, but also the worst-case heap allocations (WCHAs).
With the known WCHAs, the memory management system, be it scoped mem-
ory or a real-time garbage collector (GC), can be correctly dimensioned.

Allocations are often “hidden” behind syntactic features or in libraries. Even
innocent-looking expressions such as println(”info: ”+i) allocate several objects.

? The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
number 216682 (JEOPARD).



The expression ”info: ”+i is processed as follows: a StringBuilder object is al-
located, which contains an array to store the actual characters. Then, ”info: ”
is appended to that object, potentially allocating a larger character array. The
integer i is also appended to that object; converting a number to its decimal
representation requires another character array. Finally, the StringBuilder is con-
verted to a String, allocating yet another object. In total, two objects and two
to four arrays are allocated. Considering the simplicity of the above expression,
manual analysis of realistic programs is clearly not an option.

Manual analysis is also complicated by the fact that the requested amount
of memory is not always the same as the allocated amount. In object-oriented
languages, objects include some meta-information about the type of an object to
allow dynamic method calls. Some real-time GCs (RTGCs) split objects, either
to avoid [20] or to overcome [5] fragmentation issues. Programmers must have
intimate knowledge about the runtime-system to find out how much memory is
actually allocated.

Knowledge about heap allocations is useful both when using a RTGC and
when using scoped memory. Scoped memory was introduced in the real-time
specification for Java RTSJ [3] to eliminate the need for garbage collection. As
the size of the scoped memory area has to be provided when the area is created,
it is important to know how much memory will be allocated in that scoped
memory. The analysis helps to size the scoped memory area such that allocation
demands can be met even in worst-case scenarios.

Real-time garbage collection has gained more acceptance since the RTSJ was
formulated, and the use of scoped memory often can be avoided. Unlike a GC
for general purpose systems, hard RTGCs require some knowledge about the
application for correct operation. A RTGC must be paced correctly—otherwise
it cannot keep up with the allocations from the application. In such a case
the system would fail, either because it runs out of memory or because tasks
are delayed beyond their deadline by the GC. The allocation rate alone is not
enough to determine an upper bound for the period of the GC thread [14, 15].
However, the allocation rate is a necessary prerequisite for pacing the RTGC.

We propose to use the existing technologies for WCET analysis for the anal-
ysis of heap allocations and provide cost formulas for several object layouts.
We evaluate the tighness of our approach by comparing the analysis results to
measurements, and identify programming idioms that introduce pessimism.

The following section provides an overview of work related to this paper.
Background on WCET analysis, on which the WCHA analysis builds upon, is
given in Sec. 3. In Sec. 4, we present the analysis to automatically determine
the WCHAs of tasks, which is evaluated in Sec. 5. Section 6 concludes the paper
and provides an outlook on future work.

2 Related Work

An early attempt at automated computation of upper bounds for different per-
formance measures was presented by Wegbreit [22]. The analyses are formulated



for Lisp and computation takes place on a symbolic level. Recursion (which is
also used to implement loops) leads to recurrence equations that are solved to
derive results in a closed form. When aggregating worst-case results, the anal-
ysis must be conservative, and assume that all program fragments exhibit their
worst-case behavior at the same time. This leads to results that are similar to
the timing schema [18]. In contrast, our analysis uses a more powerful approach
based on integer linear programming, which allows expressing cases where the
execution of program fragments is not independent.

Unnikrishnan et al. presented analyses for both allocations and live memory
[21], which are to some degree similar to the analyses by Wegbreit. However,
recursion is handled implicitly rather than through explicit equations. The anal-
yses are formulated for a first-order functional language and assume that the
input programs are purely functional. It is not clear whether their findings can
be directly applied to imperative languages such as Java.

Albert et al. [1] developed an analysis framework where a sub-set of Java
bytecodes is transformed to a rule-based procedural representation. Loops are
transformed into recursions, and recurrence equations are generated to charac-
terize the program. The solution to these equations provides parametric bounds
for the memory consumption.

The analysis presented by Braberman et al. [4] computes the memory usage
of “regions” within a program. The memory consumptions of these regions are
combined to derive symbolic bounds on the minimum memory consumption and
the total amount of allocated memory.

Mann et al. [11] developed a data-flow analysis to determine worst-case allo-
cation rates. They use an instruction “window”, and determine how much data
is potentially allocated within such a window. Clustered allocations, as they are
common at the start of a task’s period, can lead to considerable pessimism when
using an instruction window. Considering the whole execution of a task, as our
analysis does, levels out such allocation spikes.

3 WCET Analysis

WCET analysis, similar to many other program analyses, is performed on a
program abstraction, the control flow graph (CFG). In a CFG the basic blocks
are represented by vertices and the directed edges represent possible control
flows. The cost of an edge is set to the maximum time needed to execute the
basic block it originates from. WCET analysis needs to find the most expensive
execution path between the program’s entry and exit node. In order to bound
the execution time of a task or method, an upper bound for the number of times
loops are executed and for recursion depths has to be known. Additionally, one
aims to exclude infeasible paths, which are never taken but are part of the CFG
abstraction.

A common technique to find the WCET is implicit path enumeration (IPET)
[13, 10]. The problem of finding the most expensive execution path is transformed
to a network flow problem. The variables of the problem correspond to the



f o r ( i n t i = 2 ; i <= 10 ; i++) // ou t e r l oop
{

f o r ( i n t j = i ; a [ j ] < a [ j − 1 ] ; j−−)
// @WCA loop <= 9
// @WCA loop <= 45 ou t e r
{

swap ( a , j , j −1);
}

}
Listing 1.1. Loop bound annotation example

execution frequency of CFG edges. Unique start and end vertices are created
with a single outgoing and a single incoming edge with execution frequency one.
For all other vertices, representing basic blocks in the CFG, the flow into the
vertex is equal to the flow out of the vertex. Furthermore, linear constraints
to bound the maximum number of loop iterations and to exclude infeasible
paths are added. Each edge is assigned a constant execution cost. The problem
of finding the WCET now amounts to finding the flow with maximal cost. The
solution to the resulting integer linear programming (ILP) problem can be found
by a standard ILP solver, such as lp solve.3

WCET analysis usually calculates a safe bound of the real WCET. Due
to simplifications of the processor model some features are modeled with con-
servative execution times. Furthermore, infeasible paths in the CFG can stay
undetected by the tool. Elaborated annotation languages have been developed
to reduce the pessimism due to infeasible paths [9].

3.1 Loop and Recursion Bounds

In order to bound the WCET, it is necessary to bound the maximum number of
loop iterations and the maximum depths of recursions. Simple loop bounds can
be automatically extracted from the program source. For this purpose, a data-
flow analysis (DFA) framework providing a loop bound analysis is integrated in
the WCET analysis tool [17].

However, if a bound cannot be determined automatically, programmers must
provide annotations. An example for such an annotation is shown in Listing 1.1.
The annotation @WCA loop<=9 tells the analysis that the loop body is executed
at most 9 times whenever the loop is entered. The annotation @WCA loop<=45
outer further restricts the number of times the loop body is executed by stating
that it is executed at most 45 times whenever the outer loop is entered. The anal-
ysis can therefore compute tight bounds for triangular and other non-rectangular
loops.

3 http://lpsolve.sourceforge.net/5.5/



3.2 Data-flow Analysis

The data flow analyses are run prior to the WCET calculation, and provide
information to deal with dynamic dispatch (receiver type analysis) and cycles
in the CFG (loop bound analysis). Both analyses are based on the techniques
described in [12], and operate directly on Java bytecode.

Receiver Types. A receiver type analysis computes which types an object may
actually have. This is useful to reduce the pessimism that is introduced to the
WCET/WCHA analysis by virtual method calls. The term receiver refers to the
object which receives a message through the method call.

Our receiver type analysis take call strings into account and is similar to k-
CFA (“kth-order control-flow analysis”) [19]; a detailed description of the analy-
sis can be found in [17]. We acknowledge that techniques like the ones described
in [2] are more efficient than our approach. However, these techniques trade
precision for analysis time; the amount of pessimism introduced by this loss in
precision remains to be evaluated.

Loop Bounds. The loop bound analysis is based on an interval analysis that
computes an upper bound for the values integer variables may hold. It is aug-
mented with information whether a variable is only incremented or decremented.
From the value range of a loop variable and its possible increments/decrements,
it can be deduced how often a loop may be executed. As this analysis is not the
focus of this paper, please refer to [17] for details of the analysis.

A by-product of the loop bound analysis is that it also computes ranges
for array sizes. As the analysis computes ranges for all integer variables, it also
computes ranges for the values that are passed to newarray, anewarray, and mul-
tianewarray. The only necessary change in the analysis was to keep those ranges
available for further processing.

3.3 Execution Time Calculation

In addition to the high-level program analysis described above, the construc-
tion of a low-level timing model is necessary before calculating the WCET. The
low-level analysis provides a bound on the execution time of basic blocks, and
depends on the particular target platform. As the state of the instruction cache,
the pipeline and other hardware components might influences the timing, non-
local analyses of these components are necessary to obtain tight bounds.

Given the results of the low-level and high-level program analysis, a system
of linear constraints is generated for each CFG. The objective function for the
ILP problem is obtained by summing up the cost of all edges. The cost of an
edge is the product of the edge’s frequency (a variable) and the cost of executing
the basic block the edge originates from. The latter is a constant obtained by the
low-level timing analysis. Finally, the model is passed to an ILP solver, which
calculates the edge’s execution frequency on the worst-case path, as well as the
WCET itself.



4 Heap Allocation Analysis

The WCHA analysis we propose is based on the WCET analysis described in
Sec. 3. Instead of using the execution time as cost function for the analysis, we use
the amount of memory a bytecode allocates. This implies that the infrastructure
for calculating the WCET can be reused for calculating the WCHA. All path
information obtained from value and loop bound analysis and the information
extracted from annotations, is available to the allocation analysis as well.

Obviously, most bytecodes do not allocate any memory. The amount of mem-
ory a new bytecode allocates is determined by the type it allocates. The size of
instances of that type are known at compile time, and can be obtained by adding
the sizes of all fields for a given class and its superclasses. When allocating arrays,
the allocation size is determined at runtime.

4.1 Array Size Bounds

To bound the maximum size of allocated arrays, the DFA has been extended to
provide array sizes at the allocation site. During the loop bound analysis, ranges
for all integer values have to be computed. As this also includes values on the
stack, the analysis has been extended to record bounds for array allocations.
When encountering a newarray or anewarray instruction, a mapping between the
allocation site and the range of the appropriate stack location is added to an
allocation bound table. For multianewarray instructions, the analysis must record
multiple stack locations, to bound every level of the multidimensional array.
When computing the cost of an array allocation, the appropriate mapping is
retrieved from the allocation bound table.

If the analysis does not succeed in computing a bound, annotations have to
be provided by the programmer. An example for an array size annotation would
be arr = new int[n]; // @WCA size<=100, where the array is annotated to occupy
no more than 100 elements.

4.2 Object Layouts

When analyzing the WCET it is also necessary to include low-level details of
the processor in the analysis. Some of the low-level architecture details, such as
caches and branch predictors, are irrelevant for the WCHA analyis. However,
the analysis must take into account the object layout of the underlying JVM.

Figure 1 shows object layout variants that are used in JVMs with RTGCs.
White cells contain user data, while gray cells contain meta-information required
by the runtime system. Black cells denote memory which cannot be used due to
the object layout. The black cells are the result of internal fragmentation.

In a RTGC, it is necessary to either defragment memory (by relocating ob-
jects) or to avoid unbounded fragmentation. In a handle-based layout (Fig. 1(a)),
a handle in a separate handle area points to the actual object. The handle area
does not need compaction, because the fixed length of the handles eliminates
fragmentation. Object relocation is simple, because only the indirection pointer
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Fig. 1. Comparison of object layouts

in the handle has to be updated. While the cost for an object is similar to a
header-based layout, it has to be taken into account that also the number of
allocated objects has to be bounded in order to fit the handle area.

A layout that incorporates header data (Fig. 1(b)) into the object eliminates
the indirection. However, when relocating objects, forwarding pointers have to
be followed. On average, such a layout speeds up object accesses, but in the
worst case, access times are similar to a handle-based layout due to the indirec-
tion through the forwarding pointer during object relocation. Such a layout also
complicates defragmentation, because all references in the objects and on the
thread stacks have to be updated to point to the new object location.

When using fixed block sizes for all allocations, external fragmentation can
be eliminated, albeit at the expense of internal fragmentation. Such a layout
is shown in Fig. 1(c). Objects that are too large to fit into a single block are
organized as linked list. Arrays are organized as a tree to achieve logarithmic
costs for accesses. Individual accesses may be more expensive than with the other
object layouts. However, when considering the whole system, this is alleviated
by the fact that no defragmentation is necessary.

4.3 Cost Functions

Different object layouts lead to different cost functions for the heap allocation
analysis. Object fields can be allocated packed or at word boundaries. Object
meta-data (e.g., object type, array size, object locks,...) can be organized differ-
ently to optimize for size or for speed. Furthermore, large objects can be split
into constant sized blocks to avoid heap compaction or to make object relocation
interruptible.

In the following, F(o) are the fields of an object o, and Fk(o) is the k-th field
of object o (with indices starting at 1). With s(f) we denote the size of a field
f in bytes, and with a(f) the required alignment for the field f . For the total
memory usage of an object o we write mu(o).



To handle alignment requirements, we define P (n,m) such that it pads the
address n to a multiple of m.

P (n,m) =
⌈ n
m

⌉
m

S(n, f) returns the memory usage of an object after adding a field f to that
object at relative address n. For example, S(3, f) would evaluate to 8 for a 4-byte
field f that requires alignment to 4-byte boundaries.

S(n, f) = P (n, a(f)) + s(f)

Handle-based Layout. In a handle-based layout, header data is stored at the
handle site, while the payload is located in the remaining heap space. Together,
the handle and the payload must fit the total available memory. Furthermore,
it is necessary that the handle area is large enough for the handles, and the rest
of the heap is large enough for the object data.

The memory usage of an object can be computed with the following formulas:

muh(o) = s(handle)

mu0
f (o) = 0

muk
f (o) = S(muk−1

f (o),Fk(o)) k > 0

muf (o) = P (mu
|F(o)|
f (o), Afield)

mu(o) = mh(o) + muf (o)

We assume that handles are always aligned, and that any required padding
or unused fields are part of s(handle). Furthermore, the formulas assume that
object fields start at an address that never requires padding. The maximum
alignment for object fields is denoted by Afield. By padding the end of the user
data to such an alignment boundary, we ensure that the next object starts at
this boundary and its first field indeed does not require padding.

The equations for arrays are the same as for objects, except that arrays use
an array handle instead of a handle. The handle types can differ, because the
array handle must accomodate the size of the array and type information may
be treated differently.

When being interested in the overall memory consumption, mu(o) is the
appropriate cost function. When considering the handle area and the remaining
heap space separately, muh(o) and muf (o) provide the respective cost functions.

Layout with Header Data. Header data is located in the same place as the
payload. The memory usage can be computed as follows:

mu0(o) = s(header)

muk(o) = S(muk−1(o),Fk(o)) k > 0

mu(o) = P (mu|F(o)|(o), Aheader)



Again, we assume that objects start appropriately aligned and add padding
at the end of the object as required. The equations for arrays are the same,
except that an array header is used instead of header.

Fixed-Block Layout. In the fixed-block object layout, the header data and
the start of the object are in the same block. If the header data and the payload
exceed the size of a single block, the object is split across several blocks. The
link to the next block may be located at the start or the end of a block, which
leads to slightly different equations for the memory usage computation. With B
we denote the size of a block; we assume that fields never require padding at the
beginning of a block.

Next Pointer at End of Block If the pointer to the next block is located at the
end of a block, it must be checked whether the field and the next pointer fit the
current block when adding a field to an oject. The function Snext returns a value
greater than B if these two fields do not fit the current block.

Snext(n, f) = S(S(n mod B, f), next)

The function Sblock uses Snext to determine the actual memory usage when
adding field f at position n.

Sblock(n, f) =

{
S(n, f) if Snext(n, f) ≤ B

P (n,B) + S(0, f) if Snext(n, f) > B

Next Pointer at Beginning of Block If the next pointer is located at the beginning
of a block, Snext and Sblock have a slightly different definition:

Snext(n, f) = S(n mod B, f)

Sblock(n, f) =

{
S(n, f) if Snext(n, f) ≤ B

P (n,B) + S(s(next), f) if Snext(n, f) > B

In this flavor of the fixed-block object layout, the next pointer must taken into
account for all blocks. This is especially true for the first block; the next pointer
for this block is considered as part of the object header.

Memory Usage of Objects The memory usage for objects can be computed with
the following formulas:

mu0(o) = s(header)

muk(o) = Sblock(muk−1(o),Fk(o)) k > 0

mu(o) = P (mu|F(o)|(o), B)

The formulas are the same for both flavors of the fixed-block object layout; the
placement of the next pointer is already taken into account by Sblock.



Memory Usage of Arrays Arrays have a special header, that includes the size
of the array and depth of the tree representation. As all fields are the same size
and have the same padding requirements, we do not need to use a recursive
definition for the memory consumption. L(a) captures how many array fields fit
into a single block. N(a) is the number of blocks the array elements occupy. M
is the number of next pointers within an inner node of the tree representation.

L(a) =

⌊
B

s(F1(a))

⌋
N(a) =

⌈
|F(a)|
L(a)

⌉
M =

⌊
B

s(next)

⌋

depth(a) = dlogM (N(a))e
mu0(a) = s(array header)

mu(a) =

{
P (mu0(a), B) if |F(a)| = 0

P (mu0(a), B) +
∑depth(a)

i=0 B
⌈
N(a)
Mi

⌉
if |f(a)| > 0

5 Evaluation

To evaluate the heap allocation analysis, three benchmarks and two applications
are analyzed and the memory consumption is compared to measurements of the
five applications on the target JVM.Measurements cannot reliably capture the
the worst-case behavior; comparing the analysis results with measurements only
hints at bounds that might be overly pessimistic.

In order to compare our work with existing memory allocation analyses, we
use the JOlden benchmark suite [6], which was also used in [4, 1]. We use the
subset of the benchmarks that does not require recursion and hence can be
analysed by our tool. The benchmarks were modified such that they do not
get their parameters via the command line arguments. We cannot compute a
worst-case bound for unknown input values and hence initialize the appropriate
variables internally. Where the DFA could not find loop bounds, we provided
manual annotations.

The first application we evaluate is based on the demo application presented
in [5].4 It emulates a multi-threaded financial transaction system, which must
react to market changes within a bounded amount of time. For the evaluation, we
chose the methods MarketManager.onMessage() and OrderManager.checkForTrade(),
both of which perform core functionality of the respective thread.

The application was adapted in three ways: First, the execution model of
our execution platform is closer to the thread model of safety-critical Java [7],
than the thread model of the RTSJ. The thread management therefore had to
be reorganized. Second, our platform does not support the libraries for receiving
and transmitting messages. This part had to be rewritten such that messages
are read from and sent to standard in- and output. Third, we used string buffers

4 We thank Eric Bruno and Greg Bollella for open-sourcing this demo application. It
is available at http://www.ericbruno.com.



Table 1. Analysis and measurement results

Allocated Objects Allocated Words

Benchmark Method Analysed Measured Analysed Measured

MST MST.main() 242 221 501 459
Em3d Em3d.main() 814 805 11627 7298
BH Tree.createTestData() 464 464 1954 1954
Trading MarketManager.onMessage() 8 8 4104 2004
Trading OrderManager.checkForTrade() 35 29 7876 741
CDx Main.run() 197936 22907 590150 73841

without automatic resizing where suitable. The reasoning behind this is discussed
in Sec. 5.3.

The second application used for evaluation was extracted from the CDx

benchmark for RTSJ [8]. The source code of the original benchmark is freely
available.5 We analyze the real-time thread responsible for collision detection of
airplanes.The benchmark in its original form is unsuitable for WCET analysis, as
it makes heavy use of hash tables, which have poor worst-case performance. For
heap allocation analysis on the other hand, the benchmark is both challenging
and, with a few modifications, within the capabilities of our tool.

We first adopted the benchmark to meet the requirements of our target plat-
form. The recursive voxel intersection procedure, which needs large amounts of
stack space, was replaced by an efficient iterative version. The number of planes
and other constants were reduced to meet the memory restrictions of our embed-
ded system. For the analysis it was necessary to annotate some loops that use
iterator objects, as these are beyond the capabilities of our data flow analysis.

5.1 Results

The analysis results for the six benchmark methods is shown in Tab. 1. In order
to keep the pessimism within reasonable bounds, we used a modified version
of the JDK suitable for real-time applications. It requires to pass a maximum
capacity for lists and maps in the constructor, and prohibits on-demand reallo-
cations, which cannot be handled by the analysis (see Sec. 5.3 for a discussion
of the respective issues). Furthermore, the results for the trading engine applica-
tion were obtained under the assumption that input messages are at most 1024
characters long. This is enforced by the input routines, but not a constraint that
is visible at the application level. For unbounded input messages, the memory
consumption of the trading engine would not be boundable.

Table 1 compares the results of the analysis with the results of a measure-
ment; the numbers in the last two columns of this table refer to the raw amount
of memory allocated by the application, excluding object meta-data. Results

5 http://adam.lille.inria.fr/soleil/rcd/



that take into account the overhead of the object layout are discussed in the
following section.

The figures in Tab. 1 show that the analysis yields relatively tight results for
some benchmarks, while introducing a considerable pessimism for others. One
reason for this pessimism is the fact that the measurement is not guaranteed to
actually trigger the worst case. Some of the pessimism is however introduced by
the analysis itself.

The three benchmarks from the JOlden benchmark suite are relatively simple
and their execution is independent from input data. The analysis can therefore
find reasonably tight bounds. The figures for the object count are tighter than
the figures for the memory consumption because array sizes are overestimated at
a few occasions. The pessimism for the object count is similar to the pessimism
reported in [4] for these benchmarks.

The analysis results for the MarketManager.onMessage() method are off by
a factor of around two. The method parses the input string for a name and
a price and updates the market price of a traded item accordingly. Although
the measurement was performed with a message that was designed to trigger as
much memory allocation as possible, the analysis fails to find tight bounds on
the string variables and assumes that all strings are 1024 characters long.

OrderManager.checkForTrade() shows considerably more pessimism. This is
mainly caused by conversions from numbers to strings. Within these conversions,
the analysis is not able to bound the length of the result string and assumes that
such strings are 1024 characters in size. It is notable that the number of objects
is overestimated by only about 20%, but the number of allocated words by about
an order of magnitude.

The heap allocations reported for the collision detector thread of the CDx

benchmark are relatively high. The main reason for the overestimation is that it
is difficult to find tight bounds for all collection sizes and loops in the benchmark,
and that the tool does not yet support context dependent manual annotations.
On the other hand, the benchmark showed that the analysis scales up for larger
programs, and helped us to identify many problematic language constructs which
complicate the analysis.

5.2 JVM Comparison

To compare the effects of different object layouts, we variated the cost function
for the WCHA analysis as described in Sec. 4.2. The results are shown in Tab. 2.
We assume 4 words for header data, and a blocks size of 8 words. We also include
the number of allocated objects in Tab. 2, as this number is crucial to correctly
dimension the handle area for a handle-based object layout.

As it is the case on our evaluation platform, the Java Optimized Processor
(JOP) [16], fields are always stored at word boundaries and do not require any
further padding. Due to the simple model for alignment requirements, a handle-
based layout and a header-based layout consume the same amount of memory.
The heap has to be large enough to fit the number of words given in the “Han-



Table 2. Analysis results for different object layouts

Allocated Words

Benchmark Method Objects Raw Handles/Headers Blocks

MST MST.main() 242 501 1469 2040
Em3d Em3d.main() 814 11627 14883 22776
BH Tree.createTestData() 464 1954 3810 5768
Trading MarketManager.onMessage() 8 4104 4136 4768
Trading OrderManager.checkForTrade() 35 7876 8016 9528
CDx Main.run() 197936 590150 1381894 1915336

dles/Headers” column. Similarly, the total memory consumption of a fixed-block
layout is provided in the “Blocks” column.

For the handle-based layout, not only the total amount of memory must fit
the heap, but also the handle area has to be dimensioned correctly. The number
in the “Object Count” column times the handle size has to fit the handle area,
and the rest of the heap has to be large enough to fit the number of words given
in the “Raw” column.

When relating the total amount of allocated memory to the number of allo-
cated objects, the trading engine benchmarks differ considerably from the other
benchmarks. While the former allocate a few relatively large objects (mostly
arrays), the latter allocate a many small objects. The overhead for the header
data is therefore considerably higher for these benchmarks than for the trading
engine benchmarks.

Using a fixed-block layout increases the memory consumption by 15 to around
50%, when comparing it to a simple header layout. A GC that uses such a layout
must be considerably more efficient in other areas to make up for this increased
memory consumption.

5.3 Programming Style

During the evaluation of the analysis, we encountered several times that rela-
tively simple operations resulted in seemingly excessive memory allocations. A
closer look at these operations revealed that this was due to the automatic resiz-
ing of data structures. Except for a few special cases, the analysis assumed that
such a resizing would always occur. For example, when appending characters to
a StringBuffer, the analysis assumed that the array to hold the actual characters
would be resized for each invocation of append(). Converting a float to a String
was reported to allocate several megabytes of memory, instead of a just few
dozen words. Similar effects were observed for other common data structures of
the Java library, such as ArrayLists.

Such situations can be circumvented in two ways. On the one hand, some
data structures exhibit more analysis-friendly behavior than others. For exam-
ple, adding an element to a LinkedList requires only the allocation of a single



list element. The drawback of this solution is that such data structures do not
always have the desired performance characteristics. On the other hand, it is
sometimes possible to size the data structure upon allocation such that no resiz-
ing is necessary. However, this solution requires programmers to correctly predict
the sizes of data structures. We believe that further research is necessary to find
a suitable tradeoff between analyzable memory allocation and ease of use for the
respective data structures.

6 Conclusion

Bounds for the worst-case heap allocations of real-time tasks are needed to cor-
rectly size scoped memories or to calculate the maximum period of the GC task.
We have adapted technologies from the WCET analysis field to analyze the heap
allocations of tasks. Instructions that allocate memory get a cost equivalent to
the the size of the allocated data structure. All other instructions have zero cost.
Analyzing the program with those costs gives the maximum memory allocation
for a task instead of its maximum execution time.

We have shown that our analysis can find reasonably tight bounds for mod-
erately complex programs. However, more realistic Java programs that are not
explicitly designed for real-time systems are hard to analyze and result in consid-
erable pessimism for the WCHA bounds. As future work we plan to investigate
the right Java based programming style for real-time applications. Furthermore,
we will investigate better analyzable replacements for library elements of the
JDK.
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