
Safety-Critical Java Level 2:

Applications, Modelling, and Verification

Matthew Luckcuck

PhD

University of York

Computer Science

September 2016

2

Abstract

Safety-Critical Java (SCJ) introduces a new programming paradigm for applications that

must be certified. To aid certification, SCJ is organised into three compliance levels, which

increase in complexity from Level 0 to Level 2. The SCJ language specification (JSR 302)

is an Open Group Standard, but it does not include verification techniques. Previous work

has addressed verification for Level 0 and Level 1 programs. This thesis supports the much

more complex SCJ Level 2 programs, which allow for the programming of highly concurrent

multi-processor applications with Java threads, and wait and notify mechanisms.

The SCJ language specification is clear on what constitutes a Level 2 program but not

why it should be used. The utility of Levels 0 and 1 are clear from their features. The

scheduling behaviour required by a program is a primary indicator of whether or not Level 0

should be used. However, both Levels 1 and 2 use concurrency and fixed-priority scheduling,

so this cannot be used as an indicator to choose between them. This thesis presents the first

examination of utility of the unique features of Level 2 and presents use cases that justify

the availability of these features.

This thesis presents a technique for modelling SCJ Level 2 programs using the state-rich

process algebra Circus. The model abstracts away from resources (for example, memory) and

scheduling. An SCJ Level 2 program is represented by a combination of a generic model

of the SCJ API (the framework model) and an application-specific model (the application

model) of that program. The framework model is reused for each modelled program, whereas

the application model is generated afresh.

This is the first formal semantics of the SCJ Level 2 paradigm and it provides both top-

down and bottom-up benefits. Top-down, it is an essential ingredient in the development

of refinement-based reasoning techniques for SCJ Level 2 programs. These can be used to

develop Level 2 programs that are correct-by-construction. Bottom-up, the technique can be

used as a verification tool for Level 2 programs. This is achieved with the Failures Divergences

Refinement checker version 3 (FDR3), after translating the model from Circus to the machine

readable version of CSP (CSPM). FDR3 allows animation and model checking, which can

reveal sources of deadlock, livelock, and divergence. The CSPM version of the model fits the

same pattern, with a generic model of the API being combined with an application-specific

model of the program. Because the model ignores scheduling, these checks are a worst-case

analysis and can give false-negatives.

3

4

Contents

Abstract 3

Contents 5

List of Figures 7

List of Tables 9

Acknowledgements 11

Declaration 13

Publications 15

1 Introduction 17

1.1 Motivation . 17

1.2 Aim, Objectives, and Thesis Statement . 19

1.3 Contributions . 20

1.4 Thesis Structure . 20

2 SCJ, Circus, and Verification 23

2.1 Safety-Critical Java . 23

2.1.1 SCJ Overview . 23

2.1.2 Buffer: A Producer-Consumer Application 27

2.1.3 Aircraft: a Multi-Mode Application 28

2.2 Safety-Critical Standards and Language Assessment 29

2.2.1 Standards and Guidelines . 29

2.2.2 Safety-Critical Language Assessment 31

2.3 SCJ and Safety-Critical Standards . 34

2.3.1 Predictability and Reliability . 36

2.3.2 Analysability . 37

2.3.3 Pragmatic Design . 37

2.4 Circus Introduction . 38

2.5 Verification of Safety-Critical Java Programs 42

2.5.1 Worst-Case Execution Time . 43

2.5.2 Worst-Case Memory Consumption . 43

2.5.3 Memory Safety . 44

5

2.5.4 Schedulability . 46

2.5.5 Functional Correctness . 46

2.6 Summary . 48

3 Applications and Evaluation of SCJ Level 2 51

3.1 SCJ Level 2: Unique Features . 51

3.2 Nested Mission Sequencers . 52

3.2.1 Multiple-Mode Applications . 52

3.2.2 Independently Developed Subsystems 55

3.3 Managed Threads and Suspension . 57

3.3.1 Extended Release Patterns . 58

3.3.2 Suspension-based Waiting . 58

3.3.3 Encapsulation of State Information . 61

3.4 SCJ Level 2 Challenges . 62

3.4.1 Managed Thread Termination . 62

3.4.2 Deadlines on Mission Sequencers . 63

3.4.3 Support for Compositional Timing Analysis 64

3.5 Summary . 67

4 Safety-Critical Java Level 2 Modelling Approach 69

4.1 Modelling Overview . 69

4.2 Model Structure . 72

4.2.1 Safelet . 73

4.2.2 Mission Sequencers . 74

4.2.3 Mission . 75

4.2.4 Schedulables . 77

4.3 Synchronisation and Suspension . 77

4.4 Inheritance and Polymorphism . 79

4.5 Simplifying the SCJ Termination Protocol . 82

4.5.1 Model of the Original Termination Protocol 83

4.5.2 Model of Current Termination Protocol 87

4.5.3 Comparison of Termination Protocols 89

4.6 Summary . 91

5 SCJ Level 2 Translation 93

5.1 Translation Strategy . 93

5.1.1 Analysis . 94

5.1.2 Build . 96

5.1.3 Generate . 105

5.2 Core Formalisation . 117

5.3 Automatic Translation . 128

5.3.1 Overview . 128

5.3.2 Analysis Phase . 129

5.3.3 Build Phase . 130

6

5.3.4 Generate Phase . 133

5.4 Translation Examples . 134

5.5 Summary . 138

6 Conclusion 139

6.1 Summary . 139

6.2 Discussion . 140

6.3 Future Work . 142

Appendix 145

A Buffer Example Application 145

A.1 BSafeletLauncher . 145

A.2 BSafelet . 146

A.3 MainMissionSequencer . 147

A.4 MainMission . 148

A.5 Buffer . 149

A.6 Producer . 150

A.7 Consumer . 151

B Aircraft Example Application 153

B.1 ACSafeletLauncher . 153

B.2 ACSafelet . 154

B.3 MainMissionSequencer . 154

B.4 MainMission . 155

B.5 ControlHandler . 158

B.6 FlightSensorsMonitor . 158

B.7 EnvironmentMonitor . 159

B.8 CommunicationsHandler . 159

B.9 ACModeChanger . 160

B.10 TakeOffMission . 160

B.11 LandingGearHandlerTakeOff . 163

B.12 TakeOffMonitor . 164

B.13 TakeOffFailureHandler . 165

B.14 CruiseMission . 166

B.15 BeginLandingHandler . 167

B.16 NavigationMonitor . 167

B.17 LandMission . 168

B.18 GroundDistanceMonitor . 170

B.19 LandingGearHandlerLand . 171

C Framework Model 173

C.1 GlobalTypes . 173

C.2 Priority . 174

C.3 Priority Queue . 174

7

C.4 Ids . 175

C.4.1 MissionId . 175

C.4.2 SchedulableId . 175

C.5 Channels . 176

C.5.1 FrameworkChan . 176

C.5.2 ServicesChan . 176

C.5.3 ObjectChan . 176

C.5.4 ObjectFWChan . 176

C.5.5 ObjectMethChan . 177

C.5.6 ThreadChan . 177

C.5.7 ThreadFWChan . 178

C.5.8 ThreadMethChan . 178

C.5.9 SafeletChan . 178

C.5.10 SafeletFWChan . 178

C.5.11 SafeletMethChan . 178

C.5.12 MissionSequencerChan . 179

C.5.13 MissionSequencerFWChan . 179

C.5.14 MissionSequencerMethChan . 179

C.5.15 TopLevelMissionSequencerChan . 179

C.5.16 TopLevelMissionSequencerFWChan 180

C.5.17 MissionChan . 180

C.5.18 MissionFWChan . 180

C.5.19 MissionMethChan . 181

C.5.20 SchedulableChan . 181

C.5.21 SchedulableMethChan . 181

C.5.22 SchedulableFWChan . 182

C.5.23 SchedulableMissionSequencerChan . 182

C.5.24 SchedulableMissionSequencerFWChan 182

C.5.25 HandlerChan . 182

C.5.26 HandlerFWChan . 182

C.5.27 HandlerMethChan . 183

C.5.28 AperiodicEventHandlerChan . 183

C.5.29 AperiodicLongEventHandlerMethChan 183

C.5.30 OneShotEventHandlerChan . 183

C.5.31 OneShotEventHandlerFWChan . 184

C.5.32 OneShotEventHandlerMethChan . 184

C.5.33 PeriodicEventHandlerChan . 184

C.5.34 PeriodicEventHandlerFWChan . 185

C.5.35 ManagedThreadChan . 185

C.5.36 ManagedThreadFWChan . 185

C.5.37 ManagedThreadMethChan . 185

C.6 Thread . 186

C.7 Object . 188

8

C.8 SafeletFW . 200

C.9 TopLevelMissionSequencerFW . 202

C.10 MissionFW . 205

C.11 SchedulableMissionSequencerFW . 211

C.12 PeriodicEventHandlerFW . 215

C.13 AperiodicEventHandlerFW . 219

C.14 OneShotEventHandlerFW . 223

C.15 ManagedThreadFW . 228

D Circus BNF Encoding 231

E Formal Translation Functions 233

F Translated Application 1: Shared Buffer 255

F.1 ID Definitions . 255

F.1.1 MissionIds . 255

F.1.2 SchedulablesIds . 255

F.1.3 NonParadignIds . 256

F.2 Network . 256

F.2.1 Network Channel Sets . 256

F.2.2 MethodCallBinder . 257

F.2.3 Locking . 258

F.2.4 Program . 259

F.3 BSafelet . 260

F.4 MainMissionSequencer . 261

F.5 MainMission . 263

F.5.1 Schedulables of MainMission . 264

G Translated Application 2: Aircraft 267

G.1 ID Files . 267

G.1.1 MissionIds . 267

G.1.2 SchedulablesIds . 268

G.1.3 ThreadIds . 269

G.1.4 ObjectIds . 269

G.2 Network . 270

G.2.1 Network Channel Sets . 270

G.2.2 MethodCallBinder . 272

G.2.3 Program . 279

G.3 ACSafelet . 282

G.4 MainMissionSequencer . 283

G.5 Missions . 285

G.5.1 MainMission . 285

G.5.2 Schedulables of MainMission . 292

G.5.3 TakeOffMission . 297

9

G.5.4 Schedulables of TakeOffMission . 300

G.5.5 CruiseMission . 304

G.5.6 Schedulables of CruiseMission . 305

G.5.7 LandMission . 307

G.5.8 Schedulables of LandMission . 310

Bibliography 315

10

List of Figures

2.1 SCJ Mission Phases, from [79] . 24

2.2 SCJ Memory Hierarchy . 25

2.3 Object Diagram of the Buffer Example Application 27

2.4 Simplified Object Diagram of Aircraft Example Application 28

2.5 Partial BNF Syntax of Circus . 39

3.1 Multiple-Mode Applications Pattern . 53

3.2 Space Shuttle with Multiple Modes . 54

3.3 Independently-Developed Subsystem Pattern 55

3.4 Railway System with Multiple Subsystems 56

3.5 A Periodic Task Released by Software Notification 59

3.6 Consumer thread . 60

3.7 Buffer Object . 61

3.8 Augmented Periodic Schedulable Object . 62

3.9 Proposed New Methods for the MissionSequencer Class 64

3.10 Sketch of a ProcessingGroupParameters class for SCJ 65

3.11 The Subsystem Class, which Provides an Interface for Subsystems 67

4.1 High-Level Modelling Approach . 70

4.2 Level 2 Model Structure . 73

4.3 Modelling a Mission Using Two Components 74

4.4 The MissionFW ’s Register Action . 75

4.5 The MainMissionApp’s InitializePhase Action 76

4.6 Priority Queue Function . 77

4.7 The BufferApp Proceess’s readSyncMeth Action 79

4.8 The read MethodBinder Action . 80

4.9 deployLandingGear MethodBinder Action from the Model of the Aircraft Ap-

plication . 81

4.10 The Original TopLevelMissionSequencerFW ’s GetNextMission Action 82

4.11 The Original TopLevelMissionSequencerFW ’s StartMission Action 83

4.12 Part of the Original SchedulableMissionSequencerFW ’s GetNextMission Ac-

tion . 84

4.13 Original SchedulableMissionSequencerFW ’s StartMission Action 85

4.14 The Original SchedulableMissionSequencerFW ’s SignalTermination Action . 85

4.15 The Original RequestSequenceTermination Action 86

11

4.16 sOriginal Mission’s CleanupSchedulables Action 86

4.17 Original Mission’s Finish Action . 87

4.18 Current TopLevelMissionSequencerFW ’s StartMission Action 88

4.19 Current SchedulableMissionSequencerFW ’s StartMission Action 89

4.20 Current Cleanup Action . 89

4.21 Current Finish Action . 90

5.1 Flow Diagram of the Translation Phases . 94

5.2 The MainMission Class from the Buffer Example 95

5.3 Flow Chart of the Processes in the Build Phase 97

5.4 EBNF Description of the Environments Produced by the Build Phase 99

5.5 Flow Diagram of the Generate Phase . 106

5.6 Control Tier Template . 107

5.7 Program Tier Template . 108

5.8 Example of the Framework Process . 109

5.9 Application Process Template . 109

5.10 Template for the MethodCallBinder Process 110

5.11 Threads, Objects, and Locking Process Teamples 112

5.12 Generic Application Process Template . 113

5.13 Template for Safelet Application Processes 114

5.14 Template for Mission Sequencer Application Process 115

5.15 Template for Mission Application Processes 116

5.16 Example of MainMissionApp Processes Generated by the Translation Strategy 118

5.17 Template for an Event Handler Application Process 119

5.18 Template for a Managed Thread Application Process 120

5.19 Template for Non-Synchronised Method’s Call and Return Channels 120

5.20 Template for Synchronised Method’s Call and Return Channels 121

5.21 SCJ BNF Translated to Z . 122

5.22 The Top-Level Translation Rule TransSCJProg 124

5.23 The BuildFWEnv Function . 125

5.24 The Environments for the Framework processes 125

5.25 The GenerateFWProcs Function . 127

5.26 Package Diagram of TightRope . 129

5.27 Class Diagram of the tools.tightrope.environments Package 131

5.28 Class Diagram of the tools.tightrope.builders Package 131

12

List of Tables

2.1 SCJ Paradigm Components . 24

2.2 SCJ Features by Compliance Level . 26

2.3 Summary of Circus operators . 40

2.4 SCJ Tools and the Safety-Criteria they Address 43

3.1 Execution-Time Server Parameters . 66

3.2 Execution-Time Server and Schedulable Priorities 66

4.1 Summary of the Sizes of Level 1 and Level 2 Models 71

5.1 Object Types, their Markers and Templates 96

5.2 Type Translation Rules . 100

5.3 Class Variable Translation Rules . 100

5.4 Literal Value Translation Rules . 101

5.5 Statement Translation Rules . 101

5.6 Expression Translation Rules . 103

5.7 Method Invocation Translation Rules . 103

5.8 Environment of the MainMission Class . 104

5.9 Functions used by the TransSCJProg Function 123

5.10 Functions Used by BuildFWEnv to Build Ttier Environments 126

5.11 Functions Used by the GenerateFWProcs Function 126

5.12 Table Mapping the Builder Classes to the Environments they Implement . . 130

5.13 Summary of SCJ Translated Example Applications 135

5.14 Summary of Model States . 136

13

14

Acknowledgements

There are many people who deserve my gratitude for their help during the last four years.

Firstly, I must thank my supervisors, Professors Ana Cavalcanti and Andy Wellings, for their

patience, support, and guidance during my PhD. I will always be grateful for the time they

both dedicated to helping me complete this thesis. I must also thank Professor Alan Burns,

my internal examiner, for his feedback and support as my work progressed. I am also grateful

to Dr Helen Treharne for taking the time to examine my thesis and provide such detailed

feedback.

I would like to thank the EPSRC for the funding to undertake my PhD. I would also

like to thank the staff of the Department of Computer Science. Thanks are also due to

tmy officemates, particularly Dr Frank Zeyda and Dr Chris Marriott for their guidance and

knowledge of Safety-Critical Java and formal methods. My thanks also go to Dr Tom Gibson-

Robinson of the University of Oxford, UK, for giving up three days to help me wrestle my

CSPM model into a form that FDR3 liked.

My eternal thanks are due to the friends who have, possibly without knowing it, kept me

buoyant during the last four years of work. James Stovold is owed my thanks for many things

including his help with the York Doctoral Symposium 2014, inspiring the name TightRope,

some light proof-reading, and some heavy sarcasm. Grace Wood, Siobhan Callaghan, Victoria

Speers, and Jed Meers are each owed my gratitude for all of our nights out and nights in

together. I’d also like to thank David Zendle for his help, friendly conversation, and for

getting me into this mess in the first place.

I’d like to mention the dearly departed Deramore Arms, and its staff, for being a welcome

place of relaxation during my Master’s degree and most my of PhD. I’d also like to thank,

Natalie Welden, Anna McLeod, and Scott Doyle for putting up with me during the latter

part of my PhD. Finally, I must thank my parents, without whom I would not be here at all.

‘The road goes ever on and on, down from the door where it began. . . ’

— J.R.R. Tolkein

15

16

Declaration

I declare that the research described in this thesis is, except where stated, the original work

of the author. The work was undertaken at the University of York during 2012—2016. This

work has not previously been presented for an award at this, or any other, university. All

sources are acknowledged as references. Parts of this thesis have been published in conference

proceedings and journals; where items were published jointly with collaborators, the author

of this thesis is responsible for the material presented here. We list these publications below.

17

18

Publications

[1] Matt Luckcuck. A Formal Model for the SCJ Level 2 Paradigm. In Aichernig and Bernhard

Alessandro, editors, Doctoral Symposium of Formal Methods 2015, pages 45–48, 22 June

2015.

[2] Matt Luckcuck, Ana Cavalcanti, and Andy Wellings. A Formal Model of the Safety-

Critical Java Level 2 Paradigm. In Erika Ábrahám and Marieke Huisman, editors, In-

tegrated Formal Methods, Lecture Notes in Computer Science, pages 226–241. Springer

International Publishing, 1 June 2016.

[3] Matt Luckcuck, Andy Wellings, and Ana Cavalcanti. Safety-Critical Java: Level 2 in

Practice. Concurrency and computation: Practice and Experience, 2016.

[4] Andy Wellings, Matt Luckcuck, and Ana Cavalcanti. Safety-Critical Java Level 2: Mo-

tivations, Example Applications and Issues. In Proceedings of the 11th International

Workshop on Java Technologies for Real-time and Embedded Systems, JTRES ’13, pages

48–57, New York, NY, USA, 9 October 2013. ACM.

19

20

Chapter 1

Introduction

This chapter introduces our work and puts it into context within the literature. Section 1.1

presents the background and motivation for the work. Section 1.2 describes our objectives

and includes the thesis statement. In Sect. 1.3 we summarise the contributions of our work.

Finally, Sect. 1.4 describes the structure of this thesis.

1.1 Motivation

Safety-critical systems permeate everyday life; they are required to operate unfailingly and

in real time. Examples include medical equipment, cars, aeroplanes, and power plants: areas

in which failures can lead to ecological or financial disaster, serious injury, or death.

Of similar concern are systems such as deep-sea submersibles, automatic exploration vehi-

cles (for example, the Mars rover), and other scientific monitoring systems. These systems are

termed mission-critical and, while their failure may not risk life, it can cause large data- and

financial-losses. Therefore, ensuring that both safety- and mission-critical systems operate

as intended, in a safe and robust manner, is fundamentally important.

Java is not traditionally associated with safety-critical programming; its useful abstrac-

tions often reduce control over the predictability of execution. For example, Java’s garbage

collection automatically reclaims the memory used by unreachable objects, but this can delay

program threads. General purpose languages are often restricted for safety and extended for

expressiveness to make them amenable to safety-critical programming.

Java has features useful for safety-critical programming: a strong type system; object

references, which are easier to use safely than pointers; a precise language definition; threading

and synchronisation, which allow the expression of common real-time abstractions using first-

class constructs; and exception handling. Java also has a wide user base, so the standard

language is well understood. Finally, Java has a large variety of implementations and libraries,

and is highly portable, which allows for a comprehensive range of target platforms.

Despite its useful features, Java is not expressive enough and needs restriction and exten-

sion to make it more suitable for safety-critical programming [88]. Java lacks explicit support

for condition variables and the Java Virtual Machine (JVM) can spuriously wake suspended

threads. Java does not support absolute time delays or detecting if a thread has resumed

due to a time out (as opposed to it resuming due to being woken). Threads must hold a lock

on an object before suspending on it, and when a thread resumes it attempts to reacquire

21

the lock. However, no preference is given to resuming threads over threads attempting to

gain a lock for the first time. Further, threads that suspend while holding multiple locks only

release the lock on the object that they are suspending on. Workarounds for these problems

can lead to less efficient executions, race conditions, or deadlocks. Finally, Java’s support for

scheduling and priorities is not comprehensive enough for real-time programming.

Java Specification Requests (JSRs) are a process for adding features to Java. JSR 1

produced the Real Time Specification for Java (RTSJ) [8], which introduces: real-time ab-

stractions; region-based memory, to obviate garbage collection delays; and better control over

memory usage and scheduling. The RTSJ has several implementations [3, 44, 45], but its

programming paradigm is rather complex for safety-critical programs.

An international effort, led by The Open Group in JSR 302, produced Safety-Critical

Java (SCJ) [79] to take the final step in creating a real-time Java language that is suitable

for safety-critical programs. SCJ is aimed at applications that must be certified, for example,

against standards like DO-178C/ED-12C[30]. To do this, SCJ builds on the RTSJ and adopts

a new programming paradigm that is simpler to use for constructing safety-critical programs.

SCJ uses the real-time constructs and region-based memory, introduced in the RTSJ,

avoiding the problems with garbage collection mentioned above. The memory areas are

arranged hierarchically; associated safety rules prevent dangling references. Scheduling is

achieved in SCJ with a fixed-priority scheduler that uses Priority Ceiling Emulation. These

features require specialised virtual machines [72, 75] to run SCJ programs.

SCJ is organised into three compliance levels, which increase in complexity from Level 0

to Level 2. Each level defines a set of features, which include and expand on all the features

of the level below. This aids certification by controlling the complexity of SCJ; if you are

certifying a Level 1 program you need not worry about any of the features defined at Level 2.

Compliance Level 0 only allows simple single-processor programs that adopt a cyclic exec-

utive scheduling model. Level 1 introduces concurrency and less-restricted release patterns.

Level 2 is the least restricted, compliance level. Level 2 programs are highly concurrent,

potentially multi-processor, and allow suspension and a variety of release patterns.

SCJ has received attention from both industry and academia, but mostly aimed at Lev-

els 0 and 1. Case studies using SCJ include: a port of the CDx benchmark to SCJ Level 0 [64];

an implementation of a cardiac pacemaker in SCJ Level 1 [74]; and a 3D printer, with con-

trol software written in SCJ Level 1 [76]. However, to our knowledge, there is only one

implementation of Level 2: provided by the Icelab SDK[46]. Currently, the only examples of

applications that exercise Level 2’s features come from [89], which presents a simplified space

craft and discusses a railway control system from [43].

The SCJ Language Specification does not cover techniques to verify SCJ programs; pro-

viding support for this has been left to the community. Available development and verification

tools provide support for checking: memory safety [57, 24], memory consumption [4], execu-

tion time [53], schedulability [7], and functional correctness [53, 93]. These tools are discussed

in Sect. 2.5, however they are also mostly aimed at Levels 0 and 1.

SCJ provides an interesting new programming paradigm, but support for Level 2 remains

an open problem. The features of Level 2 are well defined in the language specification, but

their utility is not well understood. Further, Level 2 example applications are difficult to

22

find. Tools that support SCJ development are rarely explicitly aimed at Level 2, and there

are no techniques for providing program verification for Level 2 programs.

1.2 Aim, Objectives, and Thesis Statement

The aim of this thesis is to support safety-critical programming in SCJ Level 2, by investi-

gating the utility of the features provided by Level 2, and devising a model of SCJ Level 2’s

programming paradigm and programs. Our models are written in the state-rich process al-

gebra Circus, which combines Z and CSP, guarded commands and refinement. Extensions to

Circus provide features for capturing objects and time. These features make Circus a useful

language for modelling object-oriented real-time languages, like SCJ.

Our first objective is to investigate the structure and execution of SCJ Level 2 programs

and identify use cases where Level 2, as opposed to Levels 0 or 1, should be used. Ensuring

safe use of Level 2 programs is difficult without an understanding of how its API should be

used. However, example applications for Level 2 are sparse. We examine the features of SCJ

Level 2 and provide example applications for which Level 2 is suited. This is the first such

investigation of SCJ Level 2 programming practice.

The next objective of our work is to develop a Circus model of the SCJ Level 2 paradigm,

as described in the SCJ language specification. This has been achieved for SCJ Level 1 [93]

but not for Level 2. Our model captures the generic behaviour of SCJ Level 2, allowing it to

be reused in the model of any Level 2 program. We do not just add Level 2 features to the

Level 1 model; we also extend the coverage of Level 1 features.

We model the generic paradigm behaviour of SCJ separately from the program-specific

behaviour of particular applications. By focussing on SCJ Level 2, we provide impetus for

the development of more tools and techniques that are designed to make the use of Level 2

safer. In modelling SCJ Level 2, we also illustrate the utility of Circus.

Our model of the SCJ Level 2 paradigm abstracts away from scheduling and resources.

This means that the model does not capture the global multi-processor support, scheduling,

or region-based memory management present in Level 2. Section 2.5 discusses techniques

for the verification of various program safety criteria, including schedulability and memory

safety, and how suitable these techniques are for SCJ programs. In Sect. 6.3 we discuss the

potential for extending our model to cover these features.

Our third objective is to develop a translation strategy to capture the program-specific

behaviour of a Level 2 program and generate a Circus model representing its behaviour. The

combination of this model with the generic model of the API provides a full specification of

the program. Capturing the program-specific behaviour separately from the API reduces the

complexity of both the translation strategy and application models.

Our final objective is to mechanise the translation strategy and build an automatic trans-

lation tool to produce Circus models of SCJ Level 2 programs. These artefacts improve the

utility of our modelling approach and increase our confidence in its validity.

With the stated aim and these objectives, our thesis statement is:

The paradigm embedded in SCJ Level 2 provides features unique (within SCJ) to

Level 2, which support useful applications that Levels 0 and 1 do not. Further, the

23

Level 2 paradigm can be formally modelled using a language that captures state

and behaviour, in order to show that neither the SCJ paradigm nor a given Level 2

program introduce undesirable program states such as deadlock or divergence.

1.3 Contributions

The work we present in this thesis provides three contributions:

1. An examination of the utility of the features of SCJ Level 2,

2. A formal model of the SCJ Level 2 API, and

3. A strategy to translate SCJ Level 2 programs into our model.

Our first contribution is the examination of the utility of the features provided by SCJ

Level 2. The SCJ language specification describes in detail what constitutes a Level 2 pro-

gram, but not why Level 2 should be used. We provide the first examination of the features,

some of the first public example applications for which Level 2’s features are suited, and

propose improvements to Level 2.

Our second contribution is a formal model of the API of SCJ Level 2. We model the

programming paradigm described in SCJ’s (natural-language) specification. This is the first

formalisation of Level 2, though a model exists for Level 1. This model is generic and reusable

for models of any Level 2 program.

Our final contribution is a translation strategy that captures the application-specific be-

haviour of SCJ Level 2 programs and constructs a model for them. This strategy gives a

behavioural semantics to SCJ Level 2 in denotational style.

Our semantics combines the model of the API and the output of the translation strategy

to form a model of the whole program. This complete Circus model can be used to support

top-down and bottom-up verification of programs. In a top-down approach, our model is a

target for a correct-by-construction technique for building Level 2 programs. In a bottom-up

approach, our model can be used as a verification tool.

1.4 Thesis Structure

The outline of the rest of this thesis is as follows. Chapter 2 describes the details of SCJ and

presents the example applications we use in later chapters. It places SCJ in context alongside

other languages used for safety-critical systems, identifying their strengths and weaknesses

as indicated by several programming language standards and guidelines. It introduces Circus

and discusses similar notations. Finally, it places this work in the wider context of verifying

SCJ programs by describing the tools available for SCJ program verification.

Chapter 3 examines the utility of the features found in SCJ Level 2 and presents some

example applications for which Level 2 is particularly suited. This is an essential step in

understanding the sorts of programs for which Level 2 is likely to be used.

Chapter 4 presents our approach to modelling the SCJ Level 2 API and Level 2 programs.

Further, we describe how our model captures the more complex situations of inheritance and

polymorphism, and synchronisation and suspension.

24

Chapter 5 describes in detail how to construct models of Level 2 programs that are

compatible with our model of the API. This translation completes our approach to providing

a bottom-up technique to verify Level 2 programs, and supports the validity of our models.

We present the formalisation of part of our translation strategy in Z and describe a prototype

tool for automatic translation of Level 2 programs.

Finally, Chap. 6 provides a summary of the thesis contributions. It also discusses the

utility and validity of our modelling approach and translation strategy. Finally, it discusses

future work that builds on our approach.

25

26

Chapter 2

SCJ, Circus, and Verification

This chapter introduces Safety-Critical Java (SCJ), the features that make it a useful safety-

critical language, and its applicable verification techniques. Section 2.1 describes SCJ’s fea-

tures in detail. In Sect. 2.3 we discuss the utility of SCJ as a safety-critical language. Sec-

tion 2.4 introduces Circus and compares it to similar notations. In Sect 2.5 we describe the

current verification techniques that are applicable to SCJ programs, including a technique

based on Circus. Finally, Sect. 2.6 summarises the main points raised in the chapter and their

impact on our work.

2.1 Safety-Critical Java

In this section we describe SCJ in detail. Section 2.1.1 provides a full overview of SCJ’s

features. We discuss the structure of SCJ programs, memory management, and compliance

levels. However, as mentioned in Sect. 1.2, the model that we present in Chap. 4 abstracts

away from scheduling and resources. So, Sect. 2.1.1 describes features of SCJ Level 2 that

are not covered by our model. Finally, Sects. 2.1.3 and 2.1.2 provide example applications

written in SCJ, which we reuse in later chapters.

2.1.1 SCJ Overview

SCJ is a version of Java that adopts a new programming paradigm to support the development

of software that must be certified. It uses region-based memory management to avoid garbage

collection delays and improve control of memory usage; rules prevent dangling references. SCJ

also provides common real-time abstractions to support tasks. These features mean that SCJ

programs require specialised virtual machines [72, 75].

SCJ borrows its real-time abstractions and region-based memory management from the

Real-Time Specification for Java (RTSJ), which is a version of Java designed for real-time

systems. However, its programming paradigm is rather complex, which makes it less suitable

for constructing safety-critical programs. SCJ takes the real-time elements of the RTSJ and

provides its own, restricted, programming paradigm to make it easier to construct safe and

certifiable programs.

The SCJ API relieves the programmer of most of the burden of adhering to SCJ’s pro-

gramming paradigm by providing its generic behaviour and structure. This collection of

classes and interfaces must be overridden or implemented to construct a program.

27

Name Description

Safelet Controls the whole infrastructure and starts the

MissionSequencer

MissionSequencer Instantiates and starts a sequence of Missions

Mission Controls a set of tasks, represented by subclasses of

ManagedSchedulable

ManagedSchedulable The super-interface of all schedulable objects

PeriodicEventHandler A schedulable that executes once every period

OneShotEventHandler A schedulable that executes once after a time offset

AperiodicEventHandler A schedulable that executes when triggered by a method call

ManagedThread A schedulable that executes immediately, when the mission

starts

Table 2.1: SCJ Paradigm Components

Figure 2.1: SCJ Mission Phases, from [79]

At the top of every program hierarchy is a safelet, which controls the entire program.

The safelet chooses and starts a mission sequencer, which defines a sequence of missions to

be executed. The mission is the key component in structuring SCJ programs; each mission

encapsulates a function of the system and controls a set of tasks to achieve the required

behaviour. In SCJ, tasks are called schedulable objects and can take one of four release

patterns that we describe later. These paradigm components are summarised in Table 2.1.

Each mission progress through three phases, as shown in Fig. 2.1. First, in the initialisa-

tion phase, it registers its schedulable objects and initialises any data structures it requires.

Next, in the execution phase, each of the registered schedulables begins executing. Termina-

tion of a mission is triggered by all of its registered schedulables finishing or at the request of

one of its schedulables. During termination, the mission terminates each of its schedulables,

then the mission enters the clean up phase, where it can reset any changes it made to shared

resources. At the end of the clean up phase, the mission sends a signal to indicate if its

controlling mission sequencer should load another mission or not.

Although real-time Java garbage collection mechanisms are available [73, 71], SCJ uses a

hierarchical and region-based memory model that avoids heap use. The memory hierarchy is

28

Immortal Memory: Safelet

Scoped Memory: Top-Level Mission Sequencer

Scoped Memory: Mission

Scoped Memory:
Periodic Event

Handler

Scoped Memory:
Aperiodic Event

Handler
Temporary

Private
Memory

Scoped Memory: Schedulable Mission Sequencer

Scoped Memory:
Managed Thread

Temporary
Private
Memory

Temporary
Private
Memory

Scoped Memory:
One-Shot Event

Handler

Scoped Memory: Mission

Figure 2.2: SCJ Memory Hierarchy

illustrated in Fig. 2.2, where each box is a memory area and the bold text shows the type of

memory area: immortal memory or scoped memory. Each SCJ API class has a memory area

in which its allocations are made by default, the default allocation context, which is shown

in Fig. 2.2 after the bold text. Other memory areas can be entered during execution. The

immortal memory area is the top-level memory area, which persists for the lifetime of the

application. It is the default allocation context for the safelet.

Each scoped memory area persists for the lifetime of the component with which it is

associated. Each mission has its own scoped memory area, called mission memory, which

is cleared at the end of its clean up phase. Each schedulable has a scoped memory area

that is cleared after its release; this includes the mission sequencers, which are a subclass

of ManagedEventHandler. Data that is shared between schedulables must be stored in a

mission memory area or in immortal memory.

Temporary private memory areas are a scoped memory area that may be entered during a

mission’s initialisation or by schedulable objects during their release. This changes the default

allocation context, to the temporary private memory area, until the execution running inside

it terminates, which triggers the clearing of the memory area.

In an SCJ program, these memory areas form a hierarchy (shown in Fig. 2.2) where each

memory area uses some of the space reserved for its parent. At the top of this hierarchy is

immortal memory, followed by the private memory area of the mission sequencer loaded by

the safelet: the top-level mission sequencer. Next is the mission memory area used, in turn, by

each mission loaded by the top-level mission sequencer. As new components become active,

their associated memory areas are added to the hierarchy; when a component terminate, its

memory area is removed.

Figure 2.2 shows the memory hierarchy of a program that has a mission that is running

a periodic event handler and a schedulable mission sequencer. The periodic event handler is

active and has entered a temporary private memory area. The schedulable mission sequencer

has loaded a mission, which is running three schedulable objects. One of these schedulables,

29

Level Unique Schedulables Nested Missions Suspension Processor

Level 0 Periodic No No Single

Level 1 Aperiodic, One-Shot No No Multi

Level 2 Managed Thread, Mission

Sequencer

Yes Yes Global Multi

Table 2.2: SCJ Features by Compliance Level

the aperiodic event handler, has (sequentially) entered two temporary private memory areas.

These memory areas are nested, indicating that the space for the second temporary private

memory area is taken from the space reserved for the first.

Memory areas further down the hierarchy have a shorter lifetime. To avoid dangling

references, a reference may only point to an object stored in the same memory area or in a

memory area that is further up the hierarchy. That is, references can only point to objects in

memory areas that are cleared after, or at the same time as, the memory area that contains the

reference. We note that our model in Chap. 4 abstracts away from SCJ memory management.

Techniques for checking adherence to the SCJ memory safety rules, to show that a program

is memory safe, are discussed in Sect. 2.5.

SCJ is organised into three compliance levels, which ascend in complexity from Level 0

to Level 2. Our work is aimed at Level 2, which is the most complex, or least restricted,

compliance level. Each compliance level provides some unique features, while maintaining

the features of the level(s) below it. The features available at each compliance level are

summarised in Table 2.2 and described in detail below.

Level 0 is for sequential programs that adopt a cyclic executive, where a set of compu-

tations are executed periodically. Level 0 programs only contain a single mission sequencer,

but may use multiple (sequential) missions. A Level 0 program’s schedulable objects may

only consist of periodic event handlers, which execute their behaviour periodically after a

time offset. At Level 0, the scheduling of programs is restricted to one processor only. An

example of a Level 0 program is a simple aircraft collision detection application [92].

Level 1 programs contain only one mission sequencer and may use multiple sequential

missions, as at Level 0. However, a Level 1 program’s schedulable objects my include periodic

event handlers, one-shot event handlers, and aperiodic event handlers. A one-shot event

handler executes its behaviour once, after a time offset. An aperiodic event handler has

no set release time; it executes its behaviour when requested by a method call. Further, a

specialised type of aperiodic event handler, called an aperiodic long event handler, takes a

long parameter to allow information to be passed to the event handler during execution.

At Level 1, schedulables are concurrent. Active schedulables may preempt each other

based on their respective priorities. Access to shared data can be controlled with synchronised

methods, to avoid race conditions; synchronised blocks are not allowed in SCJ. At Level 1,

multiple processors may be used, but each schedulable may only be assigned to one processor.

An example of a Level 1 program is a cardiac pacemaker [74].

Level 2 is the most complex compliance level, suitable for highly concurrent programs.

Level 2 programs may use the three event handlers available at Level 1, and managed threads.

30

BSafelet : Safelet

MainMissionSequencer : MissionSequencer

MainMission : Mission

Consumer :
ManagedThread

Producer :
ManagedThread

≪instantiates≫

≪instantiates≫

≪instantiates≫

Buffer:Buffer

≪instantiates≫

≪instantiates≫

Figure 2.3: Object Diagram of the Buffer Example Application

A managed thread is a real-time thread that is released immediately, executes it behaviour,

and then terminates. Level 2 programs may contain multiple mission sequencers, each reg-

istered to a mission. This is possible because a mission sequencer is a schedulable object.

This feature allows a Level 2 program to have multiple active missions. However, there may

only be one active mission per mission sequencer; the maximum number of active missions is

equal to the number of active mission sequencers.

Level 2 programs are able to use a restricted version of Java’s suspension model. The

Object.wait() and Object.notify() family of methods may be used, but they may only

be invoked on this. That is, the target of the call can only be the current object – the object

containing the code currently being executed. Further, all queuing threads wait in eligibility

order. The most eligible waiting thread has the highest priority and has been waiting the

longest. Finally, Level 2 programs may be scheduled globally over multiple processors. That

is, the scheduler may select from several processors when executing a schedulable object. Our

work is concerned with the SCJ paradigm; since scheduling is handled by the SCJ virtual

machine, we do not discuss this feature further.

Below, we present two example applications to show the utility and complexity of Level 2.

The first is a simple producer-consumer program, the second is a simplified aircraft control

system. Further examples of applications that are supported by Level 2’s features are dis-

cussed in Chap. 3.

2.1.2 Buffer: A Producer-Consumer Application

In this section we present a buffer application, which is a simple solution to the Producer-

Consumer problem. This basic example illustrates how to compose an SCJ program, and

shows the use of managed threads and suspension. The full program listing can be found in

Appendix A.

An object diagram of the buffer application is shown in Fig. 2.3, where the arrows rep-

resent instantiation of the target object. The application contains a buffer object, which is

instantiated by the mission during its initialisation phase. Two managed threads, one pro-

ducer and one consumer, share access to this buffer. Access to the buffer is controlled using

suspension. The producer suspends if the buffer is full; if not, then it writes and notifies the

31

ACSafelet : Safelet

MainMissionSequencer : MissionSequencer

MainMission : Mission

EnvMonitor :
PeriodicEventHandler

FlightSensors :
PeriodicEventHandler

ControlHandler :
AperiodicEventHandler

CommsHandler :
AperiodicEventHandler

ACModeChanger : MissionSequencer

TakeOffMission : Mission CrusieMission : Mission LandMission : Mission

≪instantiates≫

≪instantiates≫

≪instantiates≫

≪instantiates≫
≪instantiates≫

≪instantiates≫

≪instantiates≫

≪instantiates≫ ≪instantiates≫ ≪instantiates≫

Figure 2.4: Simplified Object Diagram of Aircraft Example Application

consumer. The consumer suspends if the buffer is empty; if not, then it removes a value from

the buffer and notifies the producer. Suspension is achieved with a call to Buffer.wait().

Notification is achieved by a call to Buffer.notify(). After reading from the buffer 5 times,

the consumer requests that the mission terminates. When both the managed threads have

terminated, the program terminates.

2.1.3 Aircraft: a Multi-Mode Application

To show the complexity of Level 2’s features, we present a simplified aircraft control program

as an example application. This example is adapted from one in [89] that shows the complex-

ity of concurrent missions in Level 2. The full program listing can be found in Appendix B.

Our simplified aircraft has three modes of operations, which correspond to the phases of

flight: Take Off, Cruising, and Landing. Each of these has mode-specific behaviours that are

only pertinent during that phase of flight. The aircraft also has persistent behaviours that

are pertinent during all modes. A simplified object diagram of the aircraft control application

is shown in Fig. 2.4, where the arrows represent instantiation of the target object.

The program is controlled by the ACSafelet, which starts the MainMissionSequencer.

The MainMission controls the persistent schedulables, including the mission sequencer that

is used to change between modes. The missions representing the modes (TakeOffMission,

CruiseMission, LandMission) are controlled by the ACModeChanger. Each of these missions

controls its mode-specific schedulables, which are omitted from Fig. 2.4 for brevity.

SCJ Level 2 is particularly suited to capturing systems like the aircraft application, which

have multiple modes with their own schedulables and schedulables that run during all modes.

As discussed in Sect. 3.2.1, Level 1 can be used to program applications with multiple modes,

but persistent schedulables must be duplicated because Level 1 programs cannot have concur-

rent missions. The duplication of the persistent schedulable disrupts their operation during

mission changes, therefore Level 2 provides better control over programs with multiple modes.

32

2.2 Safety-Critical Standards and Language Assessment

Because safety-critical systems are often complex and their correct functioning is of such

paramount importance, standards and guidelines are used to ensure that the software func-

tions correctly. The SCJ Language Specification [79] is specifically aimed at software systems

that require certification, so the understanding of what is prescribed in such standards is

important. Section 2.2.1 discusses standards for safety-critical programs, and Sect. 2.2.2

assesses Ada, C and C++, and Java-based languages against these standards.

2.2.1 Standards and Guidelines

Safety-critical programming standards typically restrict the behaviour of programs, prescribe

or proscribe certain language features, or specify the processes that must be followed during

program development. More complicated standards combine some or all of these approaches.

Some standards are specific to certain languages – Ada or C, for example – or specific sectors

of industry – such as avionics or nuclear reactors – whereas others provide more general

guidelines. There are standards that were designed for a specific industry but are now more

widely used. For example, MISRA C [60], which was designed for the automotive industry

but has gained wider use within the safety-critical community.

During the mid 1970’s the USA Department of Defense (US DoD) produced the ‘Steel-

man’ requirements [84], which contains features that were used to create Ada, in 1983. The

requirements are grouped as either application, environment, or commonality features. The

application requirements are the ability to specify user interfaces, exception handling fea-

tures, real-time control, and the ability to perform parallel processing. The environmental

requirements are that programs have to be reliable, modifiable, and efficient. Lastly, the com-

monality requirements are that the language should be machine independent, be easy and

inexpensive to implement, be completely defined, and have easily accessible support software.

The Steelman requirements have been an influential benchmark. For example, they have

been used to compare Ada95, Java, C, and C++ [90]. This is useful, not only to compare

versions of the Ada language, but to compare other languages used in the area of safety-

critical programming based on the requirements for the creation of Ada83, which is one of

the most popular languages in the domain.

The book ‘Safer C‘, aimed at making the use of C safer in safety-critical programming,

contends that “it is not how safe a language is, but how safe the use of a language can be

made that matters” [37]. This book compares C to other contemporary languages, including

Ada83. These comparisons include non-functional features of language use, such as its user

base and the availability of appropriate tool support.

Given this holistic approach to language safety, it is no surprise that Safer C accepts the

flaws in C and strives to identify the potentially dangerous language features and restrict

their use. The book identifies the dangerous language features: dynamic objects, because of

their potential for causing memory leaks if not properly deallocated; recursion, because of its

potential to exhaust the available memory; overloading operators, because of the potential

confusion this brings; and inheritance, specifically multiple inheritance because it can lead

to highly complex architectures. Safer C also mentions the importance of the language’s

33

grammar, in terms of reading and writing a complier for the language. Some of these features

are simply prohibited, such as recursion, and others are only cautionary points, such as

warning of the problems with multiple inheritance.

The comparisons that Safer C makes between C and other languages are very detailed

and use varying sources. For example, language definitions, experiments, and interviews with

developers are all used. However, each comparison is only made pair-wise with C. This is

because the work is focussed around making C safer for use in safety-critical software. It is

no surprise to find, therefore, that the book concludes that C is a better option for reasons

such as its large user base (and so wider user testing), extensive libraries, and tool support.

The MISRA C standard [60] defines a subset of C for use in embedded automotive systems.

It also promotes the safe use of C and raises awareness of language-choice issues generally. A

further goal was to encourage the developers of commercial-off-the-shelf programming tools to

ensure their tools are suitable for the automotive industry. MISRA C contains 93 mandatory

and 34 advisory rules. The rules themselves are grouped into 17 different categories, which

include sections on basic language features (like types, identifiers, and constants) and more

complicated constructs (such as pointers and arrays). It recognises that vulnerabilities exist

in C and provides a series of rules concerning the use of the language. Vulnerabilities it

notes for C include: programming mistakes, like typing ‘==’ instead of ‘=’; programmer

misunderstanding, for example, of the operator precedence in the language; compiler errors;

and run-time errors. MISRA C also recognises that language vulnerabilities are only a small

part of program safety, and so it gives guidance for ‘best-practice’ development processes.

The DO-178/ED-12, “Software Considerations in Airborne Systems and Equipment Certi-

fication”, series of civil avionics standards have been very influential in safety-critical program

certification. The DO-178B/ED-12B [29] version of the standard was published in 1992 and

adopted in Europe and North America; it is concerned with the safety of software-controlled

systems in the air. The DO-178/ED-12 is specifically mentioned in the SCJ Language Spec-

ification as an example of the level of certification at which SCJ is aimed. It presents 66

guidelines for programming software safely and specifies a series of outputs from the devel-

opment process, which provide enough evidence that the software has been built correctly.

It intentionally does not emphasise any particular development method, so that certification

can be applied to a wide range of development processes.

The DO-178B/ED-12B has been adopted in areas other than civil avionics. The NASA

Software Safety Guidebook uses the definition of certification from the DO-178B/ED-12B and

a NASA report on certification for safety- and mission-critical software essentially adopts the

standard, adding extra details. The standard is also referenced in two standards adopted by

the US military. The MIL-HDBK-516B uses DO-178B/ED-12B as a reference in its section on

software safety, along with two other documents, and the Software System Safety Handbook

makes reference to the DO-178B/ED-12B amongst others [52].

In 2012 the DO-178B/ED-12B was updated, the new DO-178C/ED-12C [30] contains

updates in vocabulary and concepts, to bring them into line with current usage and the state

of the art. For example, the phrase ‘target computer’ was felt to be outdated and was changed

to ‘execution platform’ [49]. This accommodates the use of virtualisation in which the phrase

‘target computer’ is ambiguous. The updated standard gains four technology supplements,

34

including one for Object Oriented Programming [69] and one for Formal Methods [68] to

provide guidance for prevalent technologies in the safety-critical programming domain.

The DO-178C/ED-12C Object-Oriented Technology Supplement [69] presents the vulner-

abilities of using OO programming languages and describes how they may be dealt with. The

supplement aims to resolve the problems with the features core to most OO languages. There

is also a section discussing heap memory management in which real-time garbage collection is

allowed for the first time. The Formal Methods Supplement [68] provides guidance for their

use in the development of the software to be verified by the standard. This does not mean

that testing can be eliminated, but the standard does mention that appropriate use of formal

methods can reduce the burden on program testing.

The inclusion in the DO-178/ED-12 family of standards of the topics of virtualisation

and garbage collection is particularly useful for Java-based languages in avionics, and in

safety-critical software generally, given that they generally run on a virtual machine and use

automatic garbage collection [42]. The guidance provided in the Formal Methods Supplement

also adds credence to the proposed development of formal methods for SCJ Level 2.

2.2.2 Safety-Critical Language Assessment

There have been profiles and subsets of Ada, C and C++, and Java and the RTSJ that

improve on the ease of producing a safe program of the base language. Given the popularity

of these languages and their subsequent adaptations there has been much discussion in the

literature regarding their safety. The results of assessing these languages against various

standards and their pertinent safety features are presented below.

Ada

As previously mentioned, Ada was constructed from the ‘Steelman’ requirements [84], which

are grouped into application, environment, and commonality features. Unsurprisingly, Ada95

was found to meet 93% of the Steelman requirements [90]. However, this shows that Ada95

still satisfies most of its original requirements. But, the relevance of the Steelman require-

ments is questionable, as they have not been updated and so do not include features regularly

found in modern programming languages – such as object orientation.

When comparing the suitability of Ada83 and Ada95 for use in safety-critical systems,

Ada95 was found to be an improvement on the safety of Ada83 [22], which again is no

surprise. The analysis used a framework of 10 categories of features, organised into four

sections: predictability, analysability, traceability, and engineering concerns. Each feature

in the Ada Reference Manual for each version of the language was assessed against this

framework. However, this does not represent a contemporary view of Ada.

Ada83 has also been compared to assembly languages, C, and three other languages,

along with their subsets and possible subsets [23]. Each language was assessed against a

set of questions designed to elicit the insecurities of a programming language when it is

used in safety-critical systems. This list includes questions regarding: wild jumps, memory

overwrites, well defined semantics, strong data typing, exception handling, and the language

being well understood. This analysis showed that, at that time, a subset of ISO Pascal was

35

the safest choice out the languages assessed. But a hypothetical Ada subset – based on work

like the foundations of SPARK Ada [14] – was the next safest choice, though this is based

purely on theoretical considerations.

A comparison between Ada95 and both standard Java and the RTSJ [70] found that

Ada95 provides much better concurrency control; a range of pitfalls in the Java concurrency

model can be solved or prevented with the use of Ada95. However, Java was not designed

for hard real-time programming and has had to rely on the RTSJ to remedy problems in

the Java concurrency model, for example the delays caused by garbage collection. Despite

this, the study concludes that Java is ‘adequate’ for safe real-time programming, but that

Ada95 provides better confidence in the safety of the real-time systems it can construct. This

is because Ada provides particular features designed for real-time safety such as: protected

objects, which have an associated monitor and locks on all their operations; the provision

of condition synchronisation; the resumption of the most eligible waiting thread; and the

prevention of an operation blocking while holding a mutually exclusive lock.

Ada is unique in having a strong type system, a wide range of static types, a consis-

tent semantics defined in an international standard, support for abstraction, and validated

compilers. This makes makes it well suited for safety-critical applications programming.

However, to achieve full predictability, static analysis, and testing of programs written in

Ada, it may still be necessary to restrict or control certain features within the language [47].

Due to its popularity and safety features, Ada subsets have been developed. These subsets,

SPARK [15] and Ravenscar [28], for example, aim to improve on the already stable base

provided by standard Ada.

The SPARK Ada subset [15] provides a set of annotations to add extra semantic infor-

mation to a program. Not only are these useful when it comes to the human-readability

of program source, they also present hooks for static analysis. Tools – such as the SPARK

Examiner – can use this embedded information to check that the program performs as the

annotations dictate, using the annotations as fragments of specification embedded in the

program itself. However, using annotations like this adds an overheard to the development

process. SPARK Ada also provides a much simpler programming model, when compared to

Ada, while still maintaining the expressiveness needed for real-time programs. This has the

dual-purpose of improving a program’s amenability to verification tools and improving the

likelihood that the programmers intentions will be encoded into the program correctly.

C and C++

C is still commonly used in safety-critical systems; there are reports of C being used even

in situations where Ada has been mandated or is required [37]. When assessed against the

Steelman requirements, C was 53% and C++ was 68% compliant, neither coming close to

the 93% that Ada95 scored on the same assessment [90]. C failed an assessment against a

set of criteria for languages in safety-critical systems and so its use in such systems is not

advised [23]. However, Safer C [37] contends that this study was done before the C standard

was finalised and because it did not include tool support, its assessment of C was too heavy-

handed. Summarising both [37] and [55], [36] lists some of the difficulties with using C

for safety-critical programs, for example: weak typing, dynamic memory allocation, pointer

36

arithmetic, undefined data types, potential ambiguities in if conditions, and increment or

decrement operators.

Safer C [37] takes the opinion that the potential for making a language safe to use is more

important than its intrinsic safety. Safer C [37] considers the wide user base of C in making

an assessment of how safe it is, realising that this needfully brings a wide understanding of

the language. Safer C also takes an holistic view of the software being developed, in that

tool support, language profiles or subsets, and the wide user base, are all factors affecting the

development process and therefore all contribute the safety of the final program.

C was compared pair-wise with Ada83, C++, FORTRAN, and Modula-2, which con-

cluded that, while areas of Ada83 are fundamentally safer, the tool support for C is so good

that in places it can match or exceed this safety [37]. This is a useful point: assessing the

intrinsic safety of a language does not provide a full view of the safety of its programs, assess-

ing a language coupled with its prevalent tool support provides a fuller picture of language

suitability for safety-critical programming. If commonly used tools or a particular language

subset provide a safety feature, it is likely that this will have a positive effect on the safety

of the software produced.

Java and the RTSJ

Java has long been dismissed for use in safety-critical programs due to its root as a general-

purpose programming language. Though Java’s automatic garbage collection prevents ac-

cidental or forgotten deallocation, it also reduces the predictability of a running program

because program threads may be delayed by the garbage collector. Java has some redeem-

ing features, for example its strong typing, precise definition, and the inclusion of language

features like exceptions [40]. When assessed against the Steelman requirements, Java 1.0

met 72% of them [90]. Java 1.1 was assessed [41] in terms of defects found in the language,

using evidence from experiments, the Java language specification, web sources, and published

research. Java was found to have fewer defects, and therefore be far safer, than both C or

C++. However, this study also assessed Ada95, which had the fewest defects.

Java 1.5 was assessed against a conglomerate framework of several safety-critical stan-

dards [48]; this assessment concluded that the language has some weaknesses and, while

standard Java is very useful for general purpose programming and contains several useful

features, it is still not appropriate for high-integrity systems. This assessment also concludes

that safety-critical subsets that use Java as their base could be developed. Coupled with

the development of formal analysis techniques – for example, model checking – such a subset

could make Java a viable option. This work resulted in a subset of the RTSJ, which uses

Ravenscar Ada as its template and focusses on reliability, called Ravenscar-Java.

The RTSJ was aimed at addressing some of the problems of standard Java and making

it amenable for use in real-time software. It introduces memory scopes, which are not sub-

ject to automatic garbage collection, and improves support for handling interrupts [70]; it

also increases the control programmers have on the scheduling of concurrent activities [88].

RTSJ also succeeds in preventing dangling references though its memory allocation rules and

provides explicit support for paradigms like asynchronous or periodic events [9].

The features introduced in the RTSJ add expressiveness to the language, but certain

37

pitfalls are retained from standard Java. These include problems like the ability to program

synchronized blocks of code within methods and the lack of explicit support for condition

variables. While the scoped memory system of the RTSJ does improve the predictability of

programs, because all scopes other than the heap are not subject to garbage collection, it is

complicated and requires common programming paradigms to be rethought [9].

However as these problems are well known they can be overcome; for example, develop-

ment tools that are aware of the problems can help a programmer identify when they might

occur. Real-time Java profiles remain an attractive prospect for a safety-critical system

where Java is the chosen technology [9]. With specific regard to problems encountered due

to the complexity of the RTSJ scoped memory model, programming patterns have already

been developed that either adapt current programming patterns to be scope-aware – like the

adapted Singleton Pattern or Memory-Aware Factory Pattern [21] – or use memory scopes

more effectively – for example the Handoff Pattern [63].

The next section provides a detailed discussion of the relationship between the features of

SCJ and safety-critical standards. It provides an analysis of how easily certifiable SCJ pro-

grams are, under the categories of predictability and reliability, analysability, and pragmatic

design.

2.3 SCJ and Safety-Critical Standards

In this section we discuss how the features of SCJ improve the certifiability of its programs.

We combine the categories given in several safety-critical programming standards and guide-

lines to frame our discussion. We address how SCJ improves the predictability and reliability

(Sect. 2.3.1), analysability (Sect. 2.3.2), and pragmatic design (Sect. 2.3.3) of its programs.

Safety-critical programming languages should focus on providing features that allow

program verification because it is the main prerequisite for the certification of software-

systems [36]. Certain language features can frustrate program verification, and are often

prohibited or controlled by safety-critical standards.

Given that Ada was created with safety-critical systems in mind, we consider the ISO/IEC

technical report ‘Guide for the use of the Ada programming language in high integrity sys-

tems’ [47], which focusses on the control or removal of language features in Ada that prevent

program verification. It considers four motivations for rules that require or reject a particular

language feature: predictability, testing, modelling, and pragmatism.

� Rules to achieve program predictability strive to ensure that program code is unam-

biguous. These rules, which are separate from the analysis methods, include side-effects

in functions and evaluation-order effects.

� Rules to facilitate testing aim to remove any features that might prevent the verification

of dynamic program behaviour. These features include constructs that disrupt the

program flow or complicate the view of the system state.

� Rules to aid modelling are concerned with control of language features that are difficult

to model or produce intractable models. These features include aliasing of objects,

38

parameters, and other identifiers; and features causing complicated execution – like

recursion and concurrency. The report considers both formal and informal modelling.

� Pragmatic considerations deal with features that promote good program design. These

features are important because the architecture of the application, variable scope, visi-

bility, and so on, affect how easy it is to relate the program to its specification.

The report also considers additions to the language that can aid verification. For example,

loop invariants and hidden state, which are understood by the programmer, but are not

expressed in the program. This additional information can particularly aid formal verification,

and often takes the form of program annotations, like those present in Spark Ada or SCJ, to

embed the information within the program.

The DO-178C/ED-12C (‘Software Considerations in Airborne Systems and Equipment

Certification’) civil avionics standard [30], and its previous versions, have been very influential

in safety-critical program certification. It is specifically mentioned as a standard at which SCJ

programs are aimed. Its predecessor (DO-178B/ED-12B [29]) has been adopted in several

areas other than civil aviation [52]. The DO-178/ED-12 standards contain four themes:

reliability, predictability, analysability, and expressiveness.

DO-178C/ED-12C has four technology supplements, adding guidance for particular soft-

ware development technologies. Crucially for our work, these include a supplement for Object-

Oriented Programming [69] and for Formal Methods [68]. This aids the certification of SCJ

programs and formal methods for safety-critical development.

Craigen et al [22] construct a framework for comparing the suitability of different versions

of Ada for use in safety-critical systems. It draws on the DO-187B/ED-12B, British Ministry

of Defence MD00-55 and MD00-56 standards, and the Canadian Trusted Computer Product

Evaluation Criteria. Its features are organised into four themes:

� predictability, so that the system behaves unambiguously;

� analysability, so that language features allow tractable analysis;

� traceability, so that requirements can be tracked through the development process; and,

� engineering, features that aid the flexibility of design choices.

During the construction of an earlier Java profile for safety-critical programming, Ravenscar

Java [48], the features of Java and the RTSJ were assessed against a framework combining

several standards and guidelines, including DO-178B/ED-12B. The framework is organised

into three broad categories, which each have two levels: mandatory and desirable.

The categories and mandatory features are:

� Syntax and Semantics, which is subdivided into

– Type Safety and Strong Type Rules,

– Clear Description of Side Effects and Operator Precedence,

– Modularity and Structures,

– Formal Semantics and International Standards,

39

– Well Understood Semantics,

– Embedded Systems Support, and

– Concurrency;

� Predictability and Verification, which is subdivided into

– Functional Predictability,

– Temporal Predictability and Timing Analysis, and

– Resource Usage Analysis; and

� Language processors, Run-Time Environment, and Tools, which is subdivided into

– Certified Translators, and

– Run-Time Support and Environment Issues.

The features in the framework are rather broad, but they are useful to structure the discussion

that follows. Below, we discuss how the features of Java fit into the categories of predictability

and reliability, analysability, and pragmatic design. Predictability and reliability are key

features that are present in all of the standards discussed above. Analysability covers features

that aid the testing, modelling, and verification of a program. The pragmatic design category

covers features that improve the traceability, expressiveness, or engineering capabilities of the

language, which includes language translators and tools.

2.3.1 Predictability and Reliability

SCJ improves the predictability and reliability of it programs over Java. It uses the region-

based memory model introduced in the RTSJ, in which memory areas are deallocated by

the infrastructure when there are no threads active inside the memory area. This avoids

garbage collection reclaiming unused memory at an arbitrary point in time. Though there

are predictable garbage collection techniques [73, 71], SCJ chooses memory areas to simplify

its infrastructure. Further, the size of each memory area in an SCJ program can be defined

and fixed at compile-time. The memory usage and safety are analysable, as we discuss in

Sects. 2.5.2 and 2.5.3.

SCJ restricts the permissible structure of its programs, which makes their execution more

predictable. As discussed in Sect. 2.1, SCJ programs are hierarchical. This structure adds

a predictable instantiation order during the set up of the program. The predictable use of

memory and tasks execution times during execution are discussed below.

The time predictability of SCJ tasks is achieved using the real-time constructs introduced

in the RTSJ. Each of the three handler classes have release times and may have deadlines,

which can be defined and fixed at compile-time. Techniques are available for Worst Case

Execution Time analysis, which we discuss in Sect. 2.5.1.

The SCJ suspension behaviour is also more predictable than Java’s. Threads queue for

locks in order of eligibility. This provides a more predictable order for thread resumption.

40

2.3.2 Analysability

SCJ is designed to produce analysable programs, ensuring that they can be tested and mod-

elled, because this aids the development of safe programs. This occurs in several areas of the

language. The restrictions to SCJ’s memory model allow static memory usage analysis and

its simplified concurrency model aids schedulability analysis [40].

The novel SCJ paradigm is implemented on top of standard Java, which is widely un-

derstood and has a publicly available language specification. The popularity of standard

Java means that there are many testing tools that can be applied to the core parts of SCJ

programs. JUnit, for example, can be used to perform unit testing on the methods that

implement the behaviour of the schedulable objects in a program. The assert statement,

which is built into Java, can be used to test assertions during development.

The safety-critical features of an SCJ program, however, require SCJ-specific techniques.

There are techniques available for: memory safety [57, 24], memory consumption [4], execu-

tion time [53], schedulability [7], and functional correctness [53, 93]. These tools are discussed

in Sect. 2.5, however they are mostly aimed at Levels 0 and 1.

SCJ is defined informally in its language specification. However, this is an invaluable

resource for understanding the purpose and meaning of language features when modelling

SCJ programs. This specification has been the main source of information used in many

efforts to model and test SCJ programs, particularly as a full implementation of SCJ only

emerged at the beginning of 2015 [46].

SCJ has been the focus of a series of formal models written in Circus, which can be re-

lated by refinement to produce concrete SCJ models from abstract specifications [19]. This

technique can be used to develop programs that are correct-by-construction. The SCJ mem-

ory model [16] has been captured in Circus. This model does not cover the control flow of

programs, as this is addressed elsewhere. It is explicitly aimed at Level 1 programs: it only

uses a single mission memory area, which makes it unsuitable for Level 2.

The paradigm of SCJ Level 1 programs has been modelled in Circus [93], which provides

the refinement strategy with a target for Level 1 programs and allows programs to be model

checked. We build on this work in our model of SCJ Level 2. At a level of abstraction that is

closer to the programs themselves, SCJ-Circus [59] provides a formal notation for capturing

the components of SCJ. Its syntax and semantics are defined by mapping its constructs back

to standard Circus.

These efforts show that SCJ is analysable. Features of the language aid program testing,

and the information that programs contain can be used by analysis tools and for modelling.

The techniques that are available for analysing SCJ programs, however, generally ignore

Level 2, so this is an open area.

2.3.3 Pragmatic Design

SCJ is based on the firm foundation of Java, which is a popular and well understood language.

This makes it a good base on which to build a new safety-critical language. With such a

large pool of programmers who understand Java, the jump to understanding SCJ is relatively

small, compared to the jump from Java (or other C-like languages) to a language like Ada.

41

Further, SCJ is strongly typed and object-oriented, which means that common programming

errors are detected at compile-time.

The potential of tools to prove properties about SCJ programs is greater than that for

C or C++, because its semantics are less ambiguously defined. Java features like keywords,

which aid readability, and only using single inheritance help here. Further, Java applications

are compiled to standardised bytecode, and tools can analyse programs at this level [40].

SCJ’s basis in standard Java means that porting existing programs into SCJ is easier.

Further, SCJ uses common real-time abstractions such as periodic and aperiodic tasks, and

threads. This, again, eases the porting of real-time programming patterns to SCJ.

SCJ’s novel memory model can seem complicated, at first. Programming patterns have

been adapted, for the RTSJ, to be scope-aware – like the adapted Singleton Pattern and

Memory-Aware Factory Pattern [21] – or to use memory areas more effectively – like the

Handoff Pattern [63]. These patterns can be applied or adapted for use in SCJ to helps

programmers with the SCJ memory architecture.

Despite standard Java not being traditionally associated with safety-critical programming,

one key feature of SCJ’s utility in this area is its foundation in Java. Its familiar syntax and

some of its intrinsic features provide a stable base for SCJ.

2.4 Circus Introduction

Circus is a state-rich process algebra that combines Z, CSP, guarded commands, and refine-

ment. This allows us to capture the state and behaviour of SCJ programs that we model. Our

model also uses features from other members of the Circus family. OhCircus [18] introduces

a notion of object orientation and inheritance, and we use features from CircusTime [86] to

specify time budgets and deadlines. Figure 2.5 sketches the BNF description of the syntax

of Circus. Below, we describe the elements of the syntax that are pertinent to the discussion

of our formal model. A comprehensive account of Circus can be found in [62].

Circus programs, defined in Fig. 2.5 by the syntactic category Program, are formed by a

sequence of Circus paragraphs. Each Circus paragraph (CircusPar) may be either a Z paragraph

(the Par category), a channel declaration, a channel set declaration, or a process declaration.

The syntactic category N contains the valid Z (and, therefore, Circus) identifiers.

Circus programs use bi-directional channels to allow processes to communicate. All of

the channels used in a Circus program must be declared before use: channel declarations

are defined by the CDecl category. If a channel takes any parameters, their types must be

declared. Parameter types are drawn from Exp, which is the category of Z expressions. For

convenience, channels may be collected into a channel set – defined by elements of the CSExp

category. Channel sets allow easy specification of the interface of a process.

Each Circus process has a name and a body (process N =̂ ProcDef) and may take pa-

rameters. In our model, processes are often parametrised by an identifier of a particular

object. The body of a Circus process (begin PPar∗ state SchemaExp PPar∗ • Action end) is

delimited by begin and end; it may contain a state, which is modelled using a Z schema;

and some actions, modelled using a free combination of Z state operations, constructs of a

simple imperative language, and CSP constructs (PPar∗). A process’s state can be altered

42

Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | channelset N =̂ CSExp | ProcDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | . . .

CSExp ::= {| |} | {|N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp

| CSExp \ CSExp

ProcDecl ::= process N =̂ ProcDef | . . .
ProcDef ::= Decl • ProcDef | Proc . . .

Proc ::= begin PPar∗ state SchemaExp PPar∗ • Action end . . .

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp

| NSExp \ NSExp

PPar ::= Par | N =̂ ParAction | nameset N =̂ NSExp

ParAction ::= Action | Decl • ParAction

Action ::= Command | N | CSPAction | . . .
CSPAction ::= Stop | Chaos | Pred & Action | Action u Action

| Action \ CSExp | ; Decl • Action | . . .

Comm ::= N CParameter∗ | . . .

CParameter ::= ?N | ?N : Pred | !Exp | .Exp
Command ::= N+ := Exp+ | if GActions fi | var Decl • Action

| val Decl • Action . . .

GActions ::= Pred−→ Action | Pred−→ Action @ GActions

Figure 2.5: Partial BNF Syntax of Circus

by Z schemas or by a direct assignment (N+ := Exp+, from the Command category).

A Circus process always has a main action, at the end of the process after a •, that

dictates the combination of Z schemas and CSP actions that define the behaviour of the

process; these actions may reference other local actions for structuring. Both the state and

actions of a Circus process are local to that process. This makes Circus processes similar to

classes in object-oriented programming.

CSP has many operators that are adopted in Circus; actions defined using CSP operators

all belong to the syntactic category CSPAction. Table 2.3 provides a description of the

operators that we use in our model, some of which are omitted in Fig.2.5. Most of them are

familiar to users of CSP. We describe them to support the discussion of our model. We note

that Circus processes can also be combined using most CSP operators.

A simple operator is Skip, which terminates and does nothing else. A prefix c −→ A

waits for a communication on the channel c and then proceeds to behave like the action A.

Channel parameters can be either an input (c?x −→ A), an output (c!x −→ A), or added to

the channel name to indicate a specific communication on that channel (c.x −→ A). This

latter form is often used in our models to restrict an action to synchronise on a channel only

43

Action Syntax Description

Skip Skip A simple operator that terminates

Simple Prefix c −→A Simple synchronisation with no data

Input Prefix c?x −→A Synchronisation that binds a the input

value to x

Output Prefix c!x −→A Synchronisation outputting the value of

the variable x

Parameter Prefix c.x −→A Synchronisation with some data x

Sequence A ; B Executes A then B in sequence

External Choice A @ B Offers a choice between two actions A

and B

Conditional if (x = TRUE)−→A

8 (x = FALSE)−→B fi

Performs A if x = TRUE and B if x =

FALSE

Interrupt A4 c −→ Skip Executes A unless c occurs, which ter-

minates A

Parallelism A J nsa | cs | nsb K B Parallelism, synchronising on the chan-

nels in c, where A alters the variables in

nsa and B alters the variables in nsb

Interleaving A J nsa | nsb K B Parallelism with no synchronisation,

where A alters the variables in nsa and

B alters the variables in nsb

Iterated Interleaving 9 x : S • A(x) Interleaving of all actions A(x) where

x ∈ S

Recursion µX • A ; X A process X that executes A then X

Wait wait t Waits for t time units and then termi-

nates

Chaos Chaos The action that immediately diverges

Table 2.3: Summary of Circus operators

if it is parametrised by the identifier of a particular Circus process.

A related operator is sequential composition (;), which connects two processes, instead

of a channel communication and a process like the prefix operator −→. Hence A ; B executes

the action A until it terminates and then executes B .

The external choice operator @ allows an action to offer the choice of two or more different

channel communications. Hence c1−→A @ c2−→B proceeds to A if there is a communication

on c1 or B if there is a communication on c2. Circus also contains a simple conditional

statement, as shown in the syntactic category Command in Fig. 2.5. It takes a familiar

if. . . then. . . else form. Hence if (x = TRUE)−→ A 8 (x = FALSE)−→ B fi performs the

action A if x = TRUE and the action B if x = FALSE . The interrupt operator 4 allows

a process to execute unless another process can proceed, in which case the second process

interrupts the first. Hence, A4 c −→ Skip allows the process A to execute, until c occurs

(provided that c is not offered by A).

44

Two actions A and B may be placed in parallel: A J nsa | cs | nsb K B , specifies a

synchronisation set of channels cs over which both processes must agree to communicate;

and name sets (nsa and nsb) containing the variables that each side of the parallelism may

alter, which must be disjoint to avoid write conflicts. For example, in the execution of

A J ∅ | {| c1, c2 |} | ∅ K B , the actions A and B execute in parallel, but they must agree to

communicate on the channels c1 and c2 at the same time; further, the use of the empty

set (∅) indicates that neither A nor B can alter any variables.

A related operator is interleave, which is similar to the parallel operator except that it

does not specify a synchronisation set. Hence, A J nsa | nsb K B allows the processes A and B

to execute in parallel with no synchronisations between them. The two name sets, nsa and

nsb obey the same rules as described above for the parallel operator.

The name sets used by actions in parallel (A J nsa | cs | nsb K B) or interleaved actions

(A J nsa | nsb K B) control variable access during the parallelism. Essentially, this runs the

two actions in parallel, each with its own copy of their process’s state. On co-termination,

the two copies of the state are merged, according to the variables in the name sets. Where a

variable is a member of a name set, its final value is taken from the state of the associated

process. If it is in neither name set, then its value remains unchanged. This mechanism

does not prevent actions writing to variables not in their name set, but these writes are lost

because the version of the variable that is altered is discarded after termination.

In our model, we occasionally need to read a variable on one side of a parallelism or

interleaving that is being altered by the other side. To accommodate this we use an internal

channel to request the local copy of the variable from the action that is altering it. For

example in A J varA | | get a | | varB K B , we may have that the action A alters varA and

the action B needs to read the new value of varA. If B simply uses varA, then it reads the

version from before the parallelism. Instead, we can use the get a channel to request the

current value of varA from A. In this example, A encapsulates the variable varA in much

the same way as a Circus process encapsulates the variables in its state component.

Several operators, for example external choice, sequence, parallel, and interleave, can be

used in an iterated form. This allows the operator to be applied to all the values in a given

set. For example, 9 x : S • A(x) creates an interleaving of all actions A(x) where x ∈ S .

Recursion is defined with the µ operator. Hence, µX • A ; X defines a process X that

executes the action A then recurses back to X . This is usually combined with an external

choice or conditional to provide some condition to break out of the recursion.

Drawn from the CircusTime variant of Circus, the wait operator allows a process to wait

for a number of time units. Hence, wait t waits for t time units and then terminates. We

use this operator to capture time budgets and deadlines.

Finally, the Chaos operator is an action that immediately diverges. We use this to

model incorrect program states, which allows us to prove that a model does not exhibit these

incorrect states by checking for divergence-freedom.

Analysis of Circus programs can be performed using ProB [54] and FDR [33]. This requires

some skill in manual translation. A tool for automatic translation of Circus specifications to

CSPM , the input language for FDR, has recently emerged [5]. However, it is a prototype

tool that only accepts single-file specifications and potentially has a scalability problem with

45

regard to its translation of state. We return to this issue in Chap. 5.

There are several alternatives to Circus as a modelling language. We consider a few

below. For example, Event-B [2] is a notation that extends the B method to capture some

behavioural information. The behavioural aspects of the specification are captured by event

guards, which dictate when an event is enabled.

ABS [10] is an executable specification language that has similar capabilities to Circus.

Both ABS and Circus have an object-oriented model that is similar to Java’s and capture

concurrency. However, Circus contains a refinement calculus that ABS lacks. Refinement is

key to the contribution of our model as a target for the Circus refinement strategy [19].

CSP
f

B [82] takes a similar approach to Circus. It is a combined notation that uses CSP

to capture behaviour, and B to capture state. It aims to utilise the existing tool support

for both languages, so the CSP and B [1] parts of a model are each separate and complete.

The similarity between CSP
f

B and Circus is underscored by a technique to translate Circus

specifications in to CSP
f

B for model checking [91]. This exposes a key benefit of CSP
f

B :

tool support. Because the behaviour and state models remain separate, each part of the

specification can be model checked by ProB and FDR, respectively. While this is a strength,

in terms of analysis, having separate models can be less convenient than Circus’s combined

approach.

The existing work modelling Java and SCJ in Circus means that it is a good choice when

approaching formal methods for SCJ. A translation from Circus to JCSP, a Java library that

implements CSP constructs, has been developed [61]. This technique has been used to model

standard Java programs using a translation strategy that transforms Circus programs into

Java code [31]. This technique is automated in a tool called JCircus, which produces a simple

GUI for the translated program to facilitate quick prototyping of Circus specifications. JCircus

has recently been adapted to provide an automatic translation from Circus to CSPM [5].

The refinement strategy in [19] provides a technique to relate Circus models of different

levels of abstraction. A low-level model of SCJ Level 1 already exists [93], which is a target

for the refinement strategy. Providing the strategy with a similar target for Level 2 programs

is one of the contributions of our work.

2.5 Verification of Safety-Critical Java Programs

Despite being a relatively young language, there are several techniques to verify various prop-

erties of SCJ programs. Some of these tools rely on annotations, either custom annotations

or the set defined in the SCJ Language Specification. Other tools focus on the source code

alone, without annotations, or analyse the Java bytecode. Table 2.4 provides examples of

tools available for verifying SCJ programs and the criteria they support.

In the sections below, we discuss the tools and techniques available for verifying SCJ

programs, mentioned in Table 2.4. Most of these tools are explicitly aimed at Levels 0 or 1,

often ignoring the features of Level 2 entirely. This often makes it difficult to assess their

applicability to Level 2 programs. However, we have tried to judge the updates required to

make each technique compliant with Level 2 programs.

46

Criteria Tool

Worst-Case Execution Time SafeJML [53] and TetaJ [32]

Worst-Case Memory Consumption SpideyBC [4]

Memory Safety privmem [24], JOP Single Nesting Level [67], and

TransMSafe [57]

Schedulability TRSL [7] and TetaSARTS [80]

Functional Correctness SafeJML [53], Java PathExplorer [39], RSJ [51], and

TransCircus [93]

Table 2.4: SCJ Tools and the Safety-Criteria they Address

2.5.1 Worst-Case Execution Time

SafeJML [35] is a specification language for checking functional and timing constrains. It is

an extension of the Java Modelling Language (JML) [53], which has minimal memory and

timing features. Java source code is annotated with specifications of behaviour and compiled

with an extended open-source JML compiler to check the annotations against the code.

JML contains an annotation for specifying the duration of a method, which is effectively

its Worst-Case Execution Time (WCET). The duration is measured in JVM cycles, which

is not useful in a real-time context. In SafeJML, the duration annotation uses nanoseconds

and can check a program’s adherence to a WCET specification for methods or blocks.

SafeJML can be used for specifying other properties, as we discuss in Sect. 2.5.5. Further,

despite not being explicitly mentioned, it appears to be applicable to all compliance levels.

On the other hand, the annotation of programs adds to the overhead of verifying a program.

TetaJ [32] is a tool that translates Java bytecode into a network of timed automata for

analysis in the Uppaal model checker. The model of a program is combined with models

of the JVM and hardware on which the program will run. This allows model checking of

the entire system to estimate the WCET of the program on that JVM and hardware. This

analysis is achieved without annotations.

TetaJ seems to be aimed at Level 0 programs. The example application they describe

(an implementation of the mine pump control system) runs using a cyclic executive, which

is indicative of a Level 0 program. Applicability of TetaJ to other compliance levels is

not addressed. The authors mention that the process of modelling a JVM is automated, so

integrating a Level 2 compliant JVM (such as the icecap HVM [46]) may be possible. However,

it is unclear if the approach to modelling programs is easily adaptable to Levels 1 or 2, which

have a different structure to Level 0 programs.

2.5.2 Worst-Case Memory Consumption

Worst-Case Memory Consumption (WCMC) analysis is covered by a tool called SpideyBC,

which provides a static analysis of the memory usage of an SCJ program to determine the

worst-case consumption [4]. The analysis provides safe upper bound values for the backing

store required for memory regions and stack sizes for tasks.

SpideyBC analyses program bytecode to construct a call graph and a control flow graph

for each method. The graphs are used to find the most expensive paths through the pro-

47

gram in terms of allocated bytes and method invocations that result in frames on the stack,

respectively. These paths provide the WCMC values for the backing store and the stack.

SpideyBC restricts the programs it can analyse. All loops and arrays must have explicit

bounds, recursion is not supported, and the entire program must be available at compile-time

(meaning that dynamic class loading cannot be used, which is trivially satisfied since it is not

available in SCJ). The explicit bounds on loops and arrays are specified using annotations in

the source code, which we assume to be custom annotations designed by the authors.

To our knowledge, this is the only technique for calculating WCMC for SCJ programs.

The authors test their technique on three small example applications and manually compare

the most expensive paths suggested by SpideyBC with other possible paths. They hope that

their technique provides the impetus for others by providing a useful benchmark.

SpideyBC is explicitly aimed at Levels 0 and 1. The underlying technique (discovering

the most expensive execution paths) is compliance-level agnostic. But, to ensure that is

it amenable to Level 2, SpideyBC needs updating to accept programs with multiple active

missions and managed threads so that it can build accurate graphs.

2.5.3 Memory Safety

Early versions of the SCJ Language Specification contain a set of annotations for ensuring

the safety of memory references. The memory areas in which objects reside are tagged

within the program, and the checker tool analyses these annotations to prove the memory

safety of a program [77]. Problematically, the implementation of the checker tool revealed

that if a class is required in several memory areas, then it must be duplicated. Further, in

the current draft (v 0.100) they have been moved to an appendix because they ‘were not

ready for standardization’ [79]. This means that SCJ implementations need not include the

annotations, so their presence cannot be depended upon as a general technique for analysing

SCJ memory safety.

A hardware-based technique for checking memory safety of Level 0 or 1 programs has been

implemented on the Java Optimised Processor (JOP) [67]. This technique assigns a nesting

level to each of SCJ’s memory areas: immortal memory is level 0, the top-level mission

memory is level 1, and so on.

When assignments are made, the nesting level of the variable is compared to the nesting

level of the reference being assigned. If the variable is static, then its nesting level must be

0, because all static variables reside in immortal memory. For other variables, the reference

must be at a lower (more deeply nested) nesting level than the variable. These checks ensure

that memory references only point to longer-lived memory areas.

Using a single nesting level only caters to the simpler memory hierarchy of Levels 0 and 1,

where the the memory areas can only be nested linearly. In Level 2, the memory hierarchy

can grow as a tree, because of the nested memory areas. However, this technique can be

used to check parts of a Level 2 program where the relationship between the memory areas

is linear. For example, an outer nested mission memory cannot reference an inner mission

memory.

The privmem tool [24] performs a static analysis of Java bytecode to prove that a program

does not attempt to violate the SCJ memory rules, without the need for annotations. If the

48

input program does violate the memory rules, then privmem provide a counter-example. The

privmem analysis constructs an over-approximation of potential memory rule violations by

recording all the possible references from variables to objects. This is achieved by tracking

the current allocation context throughout the program, following the methods that alter it,

and updating the allocation contexts of new objects.

However, privmem does not track allocations made using the methods that allow allo-

cations directly into other scopes: newArray(), newArrayInArea(), and newInstance().

Further, it allows the SCJ infrastructure to make temporary memory rule violations: if such

violations occur, they are ignored. This diverts from the SCJ language specification, without

making a case for why the infrastructure needs to violate the memory rules.

Privmem struggles to track the usage of mission memory. The mission’s initialize()

method is used to track the initial entry to the mission memory, but there is no API method

that the tool can use to track the re-entry to mission memory before the schedulable objects

are activated. Also, because privmem performs its analysis on Java bytecode, tracing the

location of a counter-example back to the source code can be more difficult than with source

code analysis. Finally, the example applications used to evaluate privmem all appear to be

Level 0, since they only mention periodic event handlers.

While the technique of tracking where the program allocates memory is compliance-level

agnostic, the privmem tool needs updating to cater for Level 2 features, such as nested

mission sequencers and managed threads. This seems possible, but one challenge is how the

technique would deal with multiple active mission memory areas, particularly as it struggles

to track the usage of a single active mission memory.

TransMSafe [57] automatically analyses the memory safety of SCJ programs. It translates

the source code of an SCJ program into SCJ-mSafe, which is a novel abstract language for

describing the memory usage in SCJ programs. The translation is formalised in Z, which

paves the way to a proof of the soundness of the technique.

To check the SCJ-mSafe program, the tool builds an environment of reference variables

mapped to their reference contexts. A reference context is any of the memory areas available

in the program, plus a context for primitive values. Building this environment covers all

execution paths, so it captures all possible allocations that the program might make. This

environment is checked to ensure it adheres to the SCJ memory rules.

TransMSafe over-estimates the allocations that can occur in the program, so it can raise

false negatives. Further, it is explicitly aimed at checking the memory safety of Level 1 pro-

grams, so it is not directly applicable to Level 2 programs. However, this technique could

be extended to cover Level 2. Currently, an SCJ-mSafe program only allows one mission

sequencer, where Level 2 programs may have many. Further, the technique does not address

managed threads because they are only available at Level 2. Finally, the analysis treats mis-

sions individually, since they are sequential, in Level 1 programs. To accept Level 2 programs,

TransMSafe needs to either analyse each of the top-level mission sequencer’s missions along

side all of the missions from other mission sequencers or be adapted to take execution order

of missions into account.

49

2.5.4 Schedulability

The Time and Resource Specification Language (TRSL) [7] provides an approach for check-

ing the schedulability of SCJ programs. TRSL specifications of execution time and locking

behaviour are included in the program as annotations. A specification is an abstract trace,

which is composed of a sequence of blocks. Each block can be: skip, which takes no time; a

time interval; a trace; a usage block, which describes a critical section protected by locks; a

repeat block, which describes the repetition of a block a number of times; or a select block,

which is a non-deterministic choice between a set of traces.

To check the schedulability of the program, its traces are translated in to a network of

timed automata, which is checked using Uppaal. Schedulability of the modelled program is

indicated by deadlock freedom. The technique also allows a program to be checked to ensure

that it implements its specification.

A similar approach, TetaSARTS [80], merges many ideas, including the TetaJ WCET

technique discussed in Sect. 2.5.1. TetaSARTS generates a network of timed automata for

the SCJ input program and analyses it using Uppaal, to perform schedulability analysis.

TetaSARTS differs from the TRSL approach in that it generates the model from Java

bytecode, however it still requires annotations for loop bounds, like the TetaJ tool. Schedu-

lability of the model is, again, shown by deadlock freedom of the model.

The example applications used to evaluate both of these techniques make no mention of

Level 2 features, so we assume that they are aimed at Level 0 or 1. It appears that they are

both applicable to Level 2 programs. But, their respective tools need to be updated to accept

Level 2 programs for analysis by, for example, ensuring that they are expecting managed

threads and multiple mission sequencers. Further, the techniques need to be able to handle

the ability of Level 2 programs to allocate schedulable objects to multiple processors, which

is not present at the lower compliance levels. Finally, both techniques require annotations,

which increases the programming overhead. TetaJ requires the annotation of all the program’s

methods; TetaSARTS only needs annotations on loop bounds, which is less onerous.

2.5.5 Functional Correctness

The SCJ Language Specification contains a set of annotations that can be used to specify

that a class or class member may only be used in a particular compliance level, that a

method may only be used during a particular phase, that a method may self suspend, and

the memory areas that a method may allocate in. The SCJ annotation checker [77], discussed

in Sect. 2.5.3, can be used to statically check SCJ’s behavioural annotations.

The checker tool was constructed to be compliant with an earlier version of the SCJ

Language Specification, and some of the annotations have changed in the current version of

the specification [79]. First, the @SCJAllowed annotation defines that code is visible to other

code at a particular compliance level or infrastructure code (using the SUPPORT argument).

However, the checker tool allows further values of the annotation’s argument, which have been

subsequently removed. Three separate annotations in the current version of the specification

(@SCJMayAllocate, @SCJMaySelfSuspend, and @SCJPhase) are arguments to one annotation

(@SCJRestrict) in the version with which the checker tool is compliant. Finally, as previously

50

mentioned, the memory safety annotations that the checker tool accepts are not included in

the main SCJ Language Specification because they are not yet ready for standardisation.

The annotation checker statically checks the conformance of the program with its annota-

tions. However, the overhead of annotating an entire program, particularly with SCJ’s novel

programming and memory paradigm, potentially outweighs the usefulness of being able to

automatically check them. While the annotations cover useful metadata about the program,

they are inflexible and cannot be extended to check for custom program properties.

SafeJML [35] has also already been mentioned; it extends JML and uses custom Java an-

notations to specify functional and timing constraints of SCJ programs. The input program’s

source code, complete with annotations, is compiled by the SafeJML compiler to check that

the program complies with its annotations. SafeJML reports violations of statement annota-

tions by throwing an error.

SafeJML can be used to annotate a method or block with its duration, which (as we

discuss in Sect. 2.5.1) can be used to specify and check WCETs. Other annotations include

specifications of: maximum loop iterations, maximum executions of condition-guarded blocks,

and execution paths. Further, SafeJML handles subtype polymorphism. It uses ‘model

methods’ (side-effect free methods at are only intended for specification purposes) to allow

the specification of properties that can vary with the runtime type of an object. Again, the

downside of this technique is that the entire program must be annotated with behavioural

specifications.

Java PathExplorer [39] (JPE) is a tool that provides online monitoring of Java execution.

This is achieved by instrumenting the Java bytecode of a program to emit events to an

observer module, which is used to verify the execution of the program. This can either be high-

level verification, where the executing program is compared to user-provided requirements

specifications, or lower-level error detection, which is usually concerned with concurrency

related problems like race-conditions and deadlocks.

JPE accepts high-level specifications in Maude rewriting logic [20], which can be checked

using the Maude rewriting engine or translated to, and checked in, Java. JPE is intended to

aid testing, particularly the integration of formal methods with testing to avoid the problems

with ad-hoc testing and the complexity of theorem proving. It can also be used to provide

run-time verification and to influence program behaviour if its requirements are violated.

Java PathFinder (JPF) is a model checker for Java. The first version of JPF [38] translates

Java programs into Promela models, which are checked for deadlock freedom and adherence

to assertions (which are translated from any assert statements in the input program). This

technique requires the input program to have a finite and tractable state space.

While the first version of JPF is a useful approach to model checking Java programs, it

suffers from two drawbacks. Firstly, every Java expression has to be mirrored in Promela.

This is not always possible: for example, Promela does not support floating point numbers.

Secondly, the translation requires access to the source code. Again, this is not always possible:

for example, programs may use libraries for which only the Java bytecode is available [85].

The updated version of JPF in [85] departs from the idea of translating the input program

and, instead, uses a novel custom model checker, which consists of a custom JVM and a search

component to guide executions. JPF executes input programs to ensure that every possible

51

execution path is explored, from each choice point or instance of nondeterminism. A choice

point occurs when the program takes input values or a thread is chosen for execution.

The RSJ tool [51] extends the JPF to allow it to accept SCJ programs. This is achieved by

providing a novel scheduling algorithm to execute in an SCJ compliant way. RSJ can discover

memory access errors, race conditions, priority ceiling emulation protocol violations, and

other application-specific run-time errors, like dereferencing a null pointer, invalid arguments

to library code, array bound violations, division by zero, and failed assertions.

RSJ is explicitly aimed at Levels 0 and 1, but without aperiodic event handlers because

their arbitrary release times cause state explosion. It is, therefore, not directly suitable for

Level 2 programs. Since aperiodic event handlers lead to intractable models, it is unlikely

that RSJ would scale well to the more complex concurrency available at Level 2.

As previously mentioned, the model of SCJ programs in [93] provides directly represents

the expressions in the program, but at a more abstract level. It captures the SCJ paradigm

and the programs separately in Circus. The paradigm model is generic and reusable; programs

are translated by an automatic tool called TransCircus. Combining the two separate Circus

components produces a model that exhibits the behaviour of the program and is amenable

to model checking, via a translation of the model into CSPM for input to FDR.

The aim of the work in [93] is not solely to provide a model checking technique for SCJ

programs. It it also an important part of a Circus refinement strategy [19] that translates

abstract specifications of behaviour into concrete models of SCJ programs. This provides a

correct-by-construction technique for SCJ.

The model and translation provided by [93] are explicitly aimed at Level 1, and do not

cover some features that were either considered to be too complex or were not part of the

language specification at the time of modelling. We take this work as inspiration in modelling

SCJ Level 2. We describe our approach in full, in Chap. 4. Hence, the work presented in this

thesis addresses the functional correctness of SCJ Level 2 programs.

2.6 Summary

SCJ is a Java-based programming language for systems that must be certified. It restricts

the region-based memory and concurrency abstractions of the RTSJ, and provides a novel

hierarchical programming paradigm. Despite SCJ’s restrictions, its programs, especially at

Level 2, can be very complex. Level 2’s unique features can capture safety-critical use cases

that are not possible at Levels 0 or 1. Importantly for our work, however, SCJ programs are

amenable to modelling, as shown by the Circus models of different aspects of SCJ [16, 93, 59].

Circus and its extensions provides features for modelling state, behaviour, objects, and

time. This makes it useful for modelling languages like SCJ, which are object-orientated

and real-time. Circus produces readable specifications, but tool support is a weakness. In

particular, model checking Circus requires translation to CSPM for FDR. This can be achieved

manually, which requires some skill, or with a translation tool [5], which has limitations that

we discuss further in Chap. 5.

Despite being a young language, there are already several verification techniques aimed

at SCJ. However, the majority of techniques are not aimed at Level 2. There are some

52

techniques, such as SafeJML [35], that are applicable to all SCJ compliance levels. However,

Level 2 has not been the direct focus of verification of WCET, WCMC, memory safety,

schedulability, or functional correctness.

Despite its restricted structure, Level 2 programs can become very complex. This has

likely lead to the lack of verification techniques aimed at Level 2. Most of the techniques

available for SCJ seem to be amenable to extension for Level 2, as long as their tool support

is updated to cater to Level 2’s features. The Circus model of the Level 1 paradigm strikes a

useful balance between abstraction and close correspondence with programs, so we use this as

the foundation for our approach to address the functional correctness of Level 2 programs.

53

54

Chapter 3

Applications and Evaluation

of SCJ Level 2

This chapter discusses in detail the utility of the unique features of SCJ Level 2 and presents

use cases that justify the availability of these features. This is the first such examination

of the features and utility of SCJ Level 2. This chapter is based upon the work published

in [89] and [56]. Section 3.1 describes Level 2’s features, which frames the discussion in

this chapter. Section 3.2 describes two programming patterns that require Level 2’s unique

features. Section 3.3 shows the utility of managed threads, in providing extended release

patterns, when combined with suspension, and better encapsulation of state. In Sect. 3.4

we describe specific challenges arising from Level 2’s unique features identified following the

studies reported in Sects. 3.2 and 3.3. To meet these challenges, we propose changes to the

SCJ specification, one of which has already been accepted by the standardisation group.

Finally, in Sect. 3.5, we summarise the utility and challenges of SCJ Level 2.

3.1 SCJ Level 2: Unique Features

The SCJ Language Specification is clear on what constitutes a Level 2 program but not why

it should be used. From the features of SCJ Levels 0 and 1, described in Sect. 2.1, their utility

is clear. Level 0 programs are periodic and executed by a cyclic executive. So a program’s

required scheduling behaviour is a primary indicator of whether or not Level 0 should be

used. However, both Levels 1 and 2 use concurrency and fixed-priority scheduling, so this

cannot be used as an indicator to choose between them.

To understand the purpose of Level 2, we examine the application-level programming

requirements for which its functionality is necessary. These requirements are not included

in the rationale for the compliance levels in the SCJ Language Specification. We broadly

classify Level 2’s unique features into four groups:

� Nested MissionSequencers,

� ManagedThreads,

� Suspension, and

� Global Scheduling over Multiple Processors.

55

Since our modelling approach is agnostic to the number of processors in use, we ignore the

issue of global scheduling.

The most prominent of Level 2’s unique features, in terms of structure, is the possibility

of multiple active missions. This is achieved by allowing nested mission sequencers, which

are started by a mission. Each nested mission sequencer has a separate sequence of missions.

By contrast, Level 0 or 1 programs only have one mission sequencer, which is started by the

safelet and has a single sequence of missions.

Managed Threads have a simpler release pattern than that of SCJ’s event handlers: they

are released immediately and run to completion, with no deadline. Their release behaviour

is captured in their run() method; its default memory area is active for the duration of this

method. The length of a managed thread’s release can be as long as required; a loop may be

used within its run() method, or the thread may suspend. The practical outcome of this is

that the memory area of a managed thread can be kept active for as long as needed. Finally,

SCJ Level 2 programs are allowed to use the the Object.wait() and Object.notify()

family of methods from standard Java to perform suspension-based waiting

3.2 Nested Mission Sequencers

The ability to construct applications composed of nested mission sequencers is, perhaps, the

most important aspect to be considered when choosing between Levels 0 or 1 and Level 2.

The benefit of nested mission sequencers is primarily structural. They provide better control

over the schedulables in the program and the way that they execute.

In this section we identify two software architecture patterns that require nested mission

sequencers, and sketch an example application for each. We call these two patterns Multiple-

Mode Applications and Independently Developed Subsystems. Since both of these pattens are

examples of the utility of nested mission sequencers in SCJ Level 2 programs, we pick an

implementations of the Multiple-Mode Applications pattern (described in Sect. 3.2.1) to help

evaluate our translation in Sect. 5.4.

3.2.1 Multiple-Mode Applications

This pattern captures the typical architecture of systems that operate in multiple modes.

There may be persistent tasks, which operate in all modes, and mode-specific tasks, which only

operate in one mode. Schedulability analysis techniques can be used to guarantee the timing

properties in the steady-state situations of execution in each mode. Analysis techniques also

exist for handling the transitions between modes, but only on a single processor [81, 66].

This pattern can be programmed at Level 1, but Level 2 captures the requirements of

the application better. Level 1 lacks nested mission sequencers, so persistent tasks must be

duplicated in each mode. This duplication means that their execution is interrupted by mode

changes. If the persistent tasks have state, it must be stored in a higher-level memory area

(such as the immortal memory area) to prevent it from being lost during mode changes.

Level 2 allows persistent tasks to run uninterrupted by mode changes and, as we discuss

in Sect. 3.3.3, retain their state locally. Further, Level 2 allows a multiple-mode system to

be included as a component in a more complex program.

56

Coordinator

Mode ChangerTask

Mode

Task

Figure 3.1: Multiple-Mode Applications Pattern

Architecture Components

The components that characterise this pattern are shown in Fig. 3.1. A coordinator controls

a mode changer and any persistent tasks. Persistent tasks are required to operate during

all modes. A mode changer encapsulates several modes, and each mode encapsulates mode-

specific tasks. A mode changer can only have one active mode at a time. Mode changes are

typically requested by tasks from the currently active mode.

In SCJ, a mode changer can be conveniently implemented as a mission sequencer, each

mode as a mission, and each task as a schedulable. The coordinator component also has a

natural correspondence with a mission, often the main mission, which registers the persistent

tasks and the mode changer, and controls their operation.

Example Application

An example application that uses this pattern is a simplified Space Shuttle1, as shown in

Fig. 3.2. Each of its three modes is associated with a phase of operation, and has several

mode-specific schedulables. Fig. 3.2 only shows two mode-specific schedulables per mode and

two persistent schedulables (EnvironmentMonitor and ControlHandler), for brevity.

At the start of the execution phase of the main mission, the persistent schedulables begin

executing alongside those from the LaunchMode. Once the launch is complete, the LaunchMode

is requested to terminate. When it has, the mode changer loads the CruiseMode, and its

schedulables execute alongside the persistent schedulables, which remain active during the

mode change. When the craft needs to land, the CruiseMode is terminate and the LandMode

is loaded, which runs until the craft lands and the program can terminate.

Adequacy of SCJ Support

Using missions to support individual modes of operation and mission sequencers to control

the mode-changes has two main advantages. The first is that encapsulating each mode in a

mission enhances the modularisation of the program and the traceability of its structure to

its architectural design. This is especially important when each mode is a significant software

component in its own right, as is the case in our example.

1The code for this example can be found at http://www.cs.york.ac.uk/circus/hijac/case.html

57

http://www.cs.york.ac.uk/circus/hijac/case.html

Safelet : Safelet

MainMissionSequencer : MissionSequencer

MainMission : Mission

EnvironmentHandler :
AperiodicEventHandler

ControlHandler :
AperiodicEventHandler

ModeChanger:MissionSequencer

LaunchMode:Mission CrusieMode:Mission LandMode:Mission

≪instantiates≫

≪instantiates≫

≪instantiates≫ ≪instantiates≫

≪instantiates≫

≪instantiates≫ ≪instantiates≫ ≪instantiates≫

EnvironmentHandler :
AperiodicEventHandler

ControlHandler :
AperiodicEventHandler

≪instantiates≫ ≪instantiates≫

EnvironmentHandler :
AperiodicEventHandler

ControlHandler :
AperiodicEventHandler

≪instantiates≫

≪instantiates≫

EnvironmentHandler :
AperiodicEventHandler

ControlHandler :
AperiodicEventHandler

≪instantiates≫

≪instantiates≫

Figure 3.2: Space Shuttle with Multiple Modes

The second advantage is that SCJ supports a well-defined process for mission termination,

where schedulables can complete their current release before the mission terminates. Usefully,

this protocol supports mode change requests when they are planned events. Planned mode

changes occur at well defined points in a system’s operation. By contrast, unplanned mode

changes usually occur as a result of error conditions being detected. Such errors may be

anticipated, but the time of their occurrence can not be predicted. Hence the time at which

a mode change is required cannot be predicted; they are unplanned.

Using the multiple-mode applications pattern in SCJ raises some timing issues. First, in

order to execute a new mode, it is necessary to create all the new objects that are to reside

in the mission memory, during the initialization phase of the mission (mode). Hence, for

unplanned mode changes or applications that require fast and predictable planned changes,

there may be some efficiency or latency concerns.

Further, there is no automatic single release time for all of a program’s schedulables. The

persistent schedulables start before those in the first mode. A single start time can be created

manually for event handlers, using a periodic or one-shot event handler’s start time offset

(aperiodic event handlers are only released upon request). However, managed threads are

released immediately. Controlling their start time would require manually programming a

release mechanism, as discussed in Sect. 3.3.

Multiple-mode applications can be analysed for timing properties by treating the mission

sequencer implementing the mode changer as an aperiodic task. Its minimum inter-arrival

time is equal to the minimum time between mode change requests. Its deadline represents

any time constraints on the mode change operation.

An SCJ mission sequencer is a subclass of event handler so it only has a priority (for

scheduling) and storage parameters (for the size of its memory area); it does not have any

release parameters. To perform schedulability analysis on mission sequencers, their release

properties must be captured outside the program. We discuss this concern further in Sect. 3.4.

Finally, SCJ does not support hierarchical scheduling, which makes it challenging to

support compositional time analysis of the application. SCJ schedules persistent and mode-

58

Coordinator

Task

Mode

Figure 3.3: Independently-Developed Subsystem Pattern

specific schedulables in competition. Hence, the whole application must be analysed in each

mode along with each mode transition. We return to this issue in Sect.3.4.3.

3.2.2 Independently Developed Subsystems

Complex systems can be composed of one or more subsystems, which encapsulate and control

similar behaviour. These subsystems may be developed independently of each other and of

the main program. This pattern considers these subsystems to be a program in their own

right, each performing particular related behaviours. Nested mission sequencers are the key

to supporting this approach to constructing systems in SCJ.

Level 1 can capture the functionality of this programming pattern. However, at Level 1, all

the behaviours would have controlled by one mission, effectively flattening all the subsystems

into one. This complicates the independent development of a subsystem. Level 2 provides

better encapsulation and control of individual subsystems. For example subsystems can be

terminated or restarted independently of the main program and other subsystems. Using this

programming pattern at Level 2 provides a uniform method of plugging an independently

developed subsystem into a program.

Architecture Components

The architecture that characterises this pattern is shown in Fig. 3.3. Each subsystem con-

tains several tasks that perform related behaviours; they may also contain other subsystems.

Each subsystem may be developed independently and then integrated into the program. A

coordinator component controls and integrates the subsystems.

In SCJ, each subsystem can be implemented using: a mission sequencer, which allows the

integration of the subsystem into the program, and a single mission that manages the tasks

within that subsystem. Each task can then be implemented by an appropriate schedulable.

The coordinator component corresponds naturally to a mission, often the main mission, that

registers the mission sequencers controlling each subsystem.

Example Application

A good example of this pattern is the railway system described by Hunt and Nilsen [43]:

59

Safelet : Safelet

MainMissionSequencer : MissionSequencer

TrainMission : Mission

NavigationServices :
MissionSequencer

NavigationMission :
Mission

≪instantiates≫

≪instantiates≫

≪instantiates≫

≪instantiates≫

NavigationOversight :
ManagedThread

≪instantiates≫

GPSDriver :
ManagedThread

≪instantiates≫

CommunicationsServices :
MissionSequencer

CommsMission :
Mission

≪instantiates≫

≪instantiates≫

TimeServices :
MissionSequencer

TimeMission :
Mission

≪instantiates≫

TrainControl :
MissionSequencer

TrainControlMission :
Mission

≪instantiates≫

≪instantiates≫

≪instantiates≫

Figure 3.4: Railway System with Multiple Subsystems

‘Collision avoidance in rail systems is a representative safety-critical application.

A common approach to the challenge of avoiding train system collisions divides

all tracks into independently governed segments. A central rail traffic control

system takes responsibility for authorizing particular trains to occupy particular

rail segments at a given time. Each train is individually responsible for honouring

the train segment authorizations that are granted to it. Note that rail segment

control addresses multiple competing concerns. On the one hand, there is a

desire to optimize utilization of railway resources. This argues for high speeds

and unencumbered access. On the other hand, there is a need to assure the

safety of rail transport. This motivates lower speeds, larger safety buffers between

travelling trains, and more conservative sharing of rail segments.’

Their example considers the structure of the on-board software (illustrated in Fig. 3.4),

which supports the following requirements:

� maintain reliable and secure communication with the central rail traffic control author-

ity, provided by the CommunicationServices subsystem;

� monitor progress of the train along its assigned route, provided by the NavigationSer-

vices subsystem;

� control the train’s speed in accordance with scheduled station stops, rail segment au-

thorizations, local speed limit considerations, and fuel efficiency objectives, provided

by the TrainControl subsystem; and,

� maintain global time, provided by the TimeServices subsystem.

In the implementation described in [43], each of these subsystems is implemented as a nested

mission sequencer registered to the main mission (TrainMission), and each subsystem con-

trols a single mission that registers the subsystem-specific schedulables. There are multiple

60

tiers of nested mission sequencers within the subsystems. Each tier represents further sub-

systems that can be developed independently. For brevity, Fig. 3.4 only shows that two

subsystem-specific schedulables of the Navigation Services subsystem and omits the deeper

tiers of nested mission sequencers.

Adequacy of SCJ Support

Although the encapsulation provided by missions is ideal for structuring subsystems, there

are issues that need to be addressed when adopting this approach. The first is that in order

to compose a system from many subsystems, each of the missions that controls a subsystem

must be controlled by its own mission sequencer. This is natural if each mission has multiple

modes of operation, but can become cumbersome otherwise.

Secondly, as already mentioned in Sect. 3.2.1, when a system is composed of subsystems,

there is no automatic common release time for all the schedulables. If required, this has to

be programmed explicitly. For multiple nested mission sequencers, this can become awkward

because the system start time needs to be passed down to all schedulables in the program.

Whilst the above limitations can be seen as minor, the third is more significant. Namely,

it is difficult to decompose timing constraints when subsystems are independently developed,

because neither SCJ nor the RTSJ directly support hierarchical scheduling. The RTSJ sup-

ports processing groups, which allow several schedulables to share a CPU budget, but these

are too general and difficult to use in a multiprocessor environment [13, 87]. Hierarchical

scheduling techniques for single processor and partitioned multiprocessor systems are well

established [26] and techniques are beginning to emerge for globally scheduled multiprocessor

systems [11, 27]. The lack of this facility in SCJ severely limits its support for the timing

analysis of applications using this pattern. We return to this issue in Sect. 3.4.3.

3.3 Managed Threads and Suspension

The managed threads and suspension available in SCJ Level 2 applications provide several

benefits. Their utilities often complement each other, so we discuss them both here. We use

an application that combines managed threads and suspension (described in Sect. 2.1.2) to

help evaluate our translation, presented in Sect. 5.4.

SCJ provides four release patterns: periodic, aperiodic, one-shot, and the simple run-to-

completion exhibited by managed threads (which is only available at Level 2). The simple

run-to-completion release pattern of managed threads can be used to support background

activities that run as fast as possible when they have access to the processor. For example, a

logging task that processes data from application logs whenever it is scheduled. There is no

notion of release events for these activities, other than their initial release.

At Level 1, this could be achieved with an aperiodic event handler that is only released

once, when the program starts, or by a one-shot event handler that has no start time offset and

is released immediately. However, this is a misuse of these tasks, which embody a particular

release pattern. Although there is no negative consequence for this misuse, managed threads

are a cleaner abstraction to support this sort of activity.

61

Combining managed threads and suspension allows the programming of release patterns

not provided by SCJ, which we discuss in Sect. 3.3.1. Suspension itself is a useful feature,

and we discuss its utility in Sect. 3.3.2. Finally, we show how managed threads allow better

encapsulation of the state of schedulables than can be programmed at Level 1, in Sect. 3.3.3.

3.3.1 Extended Release Patterns

As previously mentioned, SCJ provides four release patterns, each implemented as a different

schedulable. By combining managed threads and suspension, one can program extended

release patterns. In SCJ, a periodic event handler is released either immediately or after an

absolute or relative delay from when it is started. Here we consider the example of a periodic

task that is released by a software notification. Such a release pattern supports a mechanical

system that requires periodic control, but is started by an aperiodic button press.

Using Level 2’s suspension features to allow a periodic event handler to wait for a noti-

fication, is not sufficient. Deadline monitoring of event handlers begins when the handler is

first released and they cannot be dynamically changed. This means that it is not possible to

set an initial deadline and then update it after the notification has occurred.

Managed threads can be extended to provide this release pattern. We consider, for exam-

ple, the class shown in Fig. 3.5, which extends ManagedThread to provide a periodic thread

that is released by a method call. The run() method (lines 24-34) is final and waits for the

initial release before calling the work() method periodically. The abstract work() method

declared on line 36 must be overridden to provide the functionality to be called each period.

The firstRelease() method (lines 38-44) is called during the mission to release the periodic

activity. This example illustrates the additional flexibility that is available at Level 2; the

periodic thread in Fig. 3.5 cannot be programmed using SCJ Level 1.

This release pattern can be extended to program the thruster control system described

by Wellings [88, Page 235]. Here, an astronaut activates the thruster and supplies a duration

for the engine ‘burn’. The engine requires periodic control to avoid the mechanical drift of

its valves. This requires an activity that is released by an event, executes periodically for a

certain duration (determined either by time itself or by another event), and then waits to be

started again. This can be programmed in SCJ by adapting the periodic thread in Fig. 3.5

to call waitFirstRelease() after a certain time offset and wait to be released again.

3.3.2 Suspension-based Waiting

Level 2 programs may use suspension-based waiting, which allows them to capture many use

cases that Levels 0 and 1 cannot. A simple example is device drivers, which often busy-wait

for input or output to complete because the expected delay is small and context switching

away from the driver is inefficient.

There are ways to integrate this delay into a driver’s scheduling (see [12, Section 14.6])

or allowing the driver to delay when it has no other activity to perform. But, when the delay

is relatively long, it is necessary to allow the system to schedule some alternative activities.

Since it is not possible to have a suspension-based delay in Level 1 programs, this re-

quirement can only be implemented at Level 2. Another example of where suspension-based

62

1 public abstract class PeriodicThread extends ManagedThread {

2

3 private final int period;

4 private final int deadline;

5 private AbsoluteTime nextRelease; // the next release time of this thread

6 private AbsoluteTime nextDeadline; // the next deadline of this thread

7 private DeadlineMissHandler deadlineMissDetection;

8 private Mission myMission; // this thread ’s controlling mission

9 private boolean hadFirstRelease = false;

10

11 public PeriodicThread(int period , int deadline , PriorityParameters priority) {

12 super(priority);

13 this.period = period;

14 this.deadline = deadline;

15 nextRelease = new AbsoluteTime ();

16 nextDeadline = new AbsoluteTime ();

17 deadlineMissDetection = new DeadlineMissHandler ();

18 myMission = Mission.getCurrentMission ();

19 }

20

21 private synchronized boolean waitFirstRelease () {

22 while(! hadFirstRelease){

23 try {

24 wait();

25 } catch(InterruptedException ie) {

26 // mission is to be terminated

27 return false;

28 }

29 }

30 return true;

31 }

32

33 public final void run() {

34 if (waitFirstRelease ()) {

35 while(! myMission.terminationPending ()) {

36 nextRelease.add(period ,0);

37 work();

38 nextDeadline.add(period ,0);

39 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

40 Services.delay(nextRelease); // waitForNextPeriod

41 }

42 }

43 }

44

45 protected abstract void work(); // override to provide thread ’s behaviour

46

47 public synchronized void firstRelease () {

48 hadFirstRelease = true; notify ();

49 nextRelease = Clock.getRealtimeClock ().getTime(nextRelease);

50 nextDeadline.set(nextRelease.getMilliseconds () + deadline);

51 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

52 }

53 }

Figure 3.5: A Periodic Task Released by Software Notification

63

1 public class Consumer extends ManagedThread {

2 private final PCMission pcMission;

3 private final Buffer buffer;

4

5 ...

6

7 public void run() {

8 while (! pcMission.terminationPending ()) {

9 try {

10 result = buffer.read();

11 } catch (InterruptedException e) {

12 e.printStackTrace ();

13 }

14 Console.println("Consumer Read " + result + " from Buffer");

15 }

16 }

17 }

Figure 3.6: Consumer thread

waiting is needed is producer-consumer systems.

Producer-Consumer Systems

Producer-consumer systems involve tasks generating data (the producers) that is to be pro-

cessed by other tasks (the consumers). The data is written to and read from a shared

bounded buffer. Here, the data often comes in bursts. A common solution to producer-

consumer problems uses suspension: the producers suspend when the buffer is full and the

consumers suspend when the buffer is empty.

Clearly these requirements cannot be met at Level 1, as it does not allow suspension. It

initially seems that producers and consumers could be implemented using aperiodic event

handlers, where a handler is released each time the buffer is full or empty – depending on if

it is a producer or a consumer. However, SCJ does not allow a queue of outstanding release

events for aperiodic event handlers, so they are not appropriate. Level 2 enables this release

pattern to be programmed using managed threads and suspension.

As an example, we consider a simple producer-consumer system with one producer, one

consumer, and a Buffer object to which they share access. Figure 3.6 shows the consumer

task, which extends ManagedThread. It holds a reference to its controlling mission and the

Buffer object – which is held in mission memory. In this simple example, the Buffer, shown

in Fig. 3.7, holds a one-place buffer.

The consumer’s run() method calls the synchronised buffer.read() method, which

encapsulates the behaviour of reading from the buffer (including the potential suspension).

The read() method first checks the status of the buffer, using the bufferEmpty() method.

The call to bufferEmpty() is in a while loop to guard against spurious wake ups. If the buffer

is empty, then it calls this.wait(), which suspends the consumer thread on the buffer. If

the buffer is not empty or the consumer has resumed, then the consumer: reads and clears

the buffer, then calls this.notify() to wake the producer. The producer thread has similar

behaviour, except it will wait when the buffer is full.

64

1 public class Buffer {

2

3 private volatile int buffer;

4

5 public boolean bufferEmpty () {

6 return buffer == 0;

7 }

8

9 ...

10

11 public synchronized int read() throws InterruptedException {

12 while(bufferEmpty ()) {

13 this.wait();

14 }

15 // Read buffer

16 int out = buffer;

17 buffer = 0;

18 this.notify ();

19

20 return out;

21 }

22 }

Figure 3.7: Buffer Object

3.3.3 Encapsulation of State Information

Memory usage is another differentiating factor between managed threads and event handlers.

An event handler has its private memory area cleared at the end of each release, which

means that for state to persist across releases it must be saved in a memory area further

up the hierarchy, usually the mission memory. But, a managed thread’s memory area is

only cleared when its run() method returns. This means that, with careful programming

to avoid memory leaks, data can be stored locally and preserved over successive application-

implemented ‘releases’ of the thread.

The thread’s memory area can last for as long as the memory area of its controlling mis-

sion, which is where persistent data used by an event handler is normally stored (although it

could be stored in a memory area higher up the memory hierarchy, like immortal memory).

However, this ability to encapsulate state is important from a software engineering perspec-

tive, since storing a schedulable’s private data in the memory area of its controlling mission

makes this data more widely visible than it should be.

As an example, we consider several schedulables that log changes to the system’s envi-

ronment into local bounded buffers. When a buffer becomes full (which may take several

releases), the data is copied into a single global buffer in mission memory, which another

schedulable uses to write the system log to secondary storage.

If the logging schedulables are event handlers, then the local buffers need to be stored in

mission memory because the event handler’s private memory areas are cleared at the end of

each release. Using managed threads, the local buffers can be stored in the private memory

areas, because they are not cleared until their associated managed threads terminate. This

means that the buffers do not become exposed to access by other schedulables.

65

1 Runnable runWork = new Runnable () {

2 public void run() {

3 work();

4 }

5 };

6

7 public final void run() {

8 if (waitFirstRelease ()) {

9 while(! myMission.terminationPending ()) {

10 nextRelease.add(period ,100);

11 ManagedMemory.enterPrivateMemory(privateMemorySize , runWork);

12 nextDeadline.add(period ,100);

13 deadlineMissDetection.scheduleNextReleaseTime(nextDeadline);

14 Services.delay(nextRelease);

15 }

16 }

17 }

Figure 3.8: Augmented Periodic Schedulable Object

Application-implemented releases, such as those discussed in Sect. 3.3.1, can be aug-

mented with a nested private memory area to provide a location for objects that can be

deallocated at the end of each application-implemented release. This allows a thread that

can store local data until it is terminated and allocate temporary objects during a ’release’.

This is illustrated in Fig. 3.8, which just shows the augmented run() method (and an asso-

ciated runnable) of Fig. 3.5. This would provide more efficient use of memory if the thread

allocates temporary objects during its application-implemented release.

3.4 SCJ Level 2 Challenges

During our investigation of Level 2’s features, we have identified three challenging areas where

SCJ’s support could be improved. In this section we discuss these challenges and propose

changes to the SCJ API to improve the support in that area. First, in Sect. 3.4.1, we discuss

a problematic corner case involving thread termination. This problem was present in SCJ

v0.94, but has since been fixed, after we identified it in [89]. Section 3.4.2 discusses the idea

of giving deadlines to a mission sequencer’s getNextMission() method. Finally, Sect. 3.4.3

discusses an approach to adding support for compositional timing analysis to SCJ.

3.4.1 Managed Thread Termination

In SCJ, a managed thread terminates when it returns from its run() method. Level 2

programs may suspend their execution, which the discussion in Sect. 3.3 shows to be useful

in SCJ. We found that, in a previous version of the draft SCJ language specification [78]

(v0.94), the combination of managed threads and suspension could lead to a problematic

corner case during mission termination where a thread might not terminate.

The previous version of SCJ defined the following activities to be performed on receipt of

a mission termination request:

� invoke this mission’s terminationHook() method;

66

� invoke the signalTermination() of each of this mission’s registered schedulables;

� disable each of this mission’s periodic event handlers, so that no further firings occur;

� disable each of this mission’s aperiodic event handlers, so that no further firings are

honoured;

� clear the pending release event (if any) for each of this mission’s event handlers so that

they can be terminated after completing any active event handling;

� wait for all of this mission’s schedulables to terminate;

� invoke the cleanUp() method for each of this mission’s registered schedulables; and,

� invoke the cleanUp() method of this mission.

We note that the termination activities do not include invoking interrupt() on each of the

schedulables, which would result in waking all blocked schedulables with an exception and

expedite termination. This must be programmed using the Mission.terminationHook()

method, which can be inconvenient when the mission has many schedulable objects.

As an example, we reconsider the event-released periodic thread in Sect. 3.3.1, which

shows the example of a periodic thread that waits for its first release using the Object.wait()

method. However, if the periodic thread is waiting when its controlling mission begins ter-

mination, then it may not finish its current release – its run() method may remain active.

To aid the termination of managed threads (and other schedulables) that are suspended

when a termination request is received, we proposed (in [89]) that either the SCJ infras-

tructure interrupts each of the mission’s registered schedulables or that all the mission’s

schedulables are informed of a pending termination request. The latter proposal can be

achieved via a new method (terminationSignalled()), which each schedulable must imple-

ment. The intention of this method is to allow the programmer to manually interrupt those

schedulables that may be blocked when mission termination is signalled.

In the current version of the language specification [79] (v0.100), Section 3.3.6 now con-

tains specific guidance regarding termination in Level 2 programs. The approach taken by

SCJ is that programmers should manually interrupt schedulables that may be suspended

using the signalTermination() method, which is called on each of a mission’s registered

schedulables during termination. The Mission.terminationHook() method has been re-

moved. This partial adoption of out proposal does not automatically solve the problem, but

it does provide a uniform way of handling custom termination behaviour.

3.4.2 Deadlines on Mission Sequencers

Section 3.2.1 identifies that mission sequencers can be used to program multiple-mode ap-

plications, and that Level 2 provides more flexibility in such applications. However, an SCJ

mission sequencer does not have any release parameters, so it cannot have an associated

deadline or deadline-miss handler. Multiple-mode systems often have deadlines associated

with their mode changes. Level 2 would be improved by the addition of these features, for

situations where a mode change does not occur promptly.

67

1 @SCJAllowed(Level_1)

2 public final void requestTerminationOfCurrentMission(AbsoluteTime deadline ,

3 AperiodicEventHandler deadlineMiss);

4

5 @SCJAllowed(Level_1)

6 public final void requestMissionChange(AbsoluteTime deadline ,

7 AperiodicEventHandler deadlineMiss);

Figure 3.9: Proposed New Methods for the MissionSequencer Class

Adding aperiodic release parameters to mission sequencers undermines the mission pro-

gramming model, particularly where they control a single non-terminating mission. Instead,

we propose adding the methods shown in Fig. 3.9 to the MissionSequencer class. These

methods invoke a mission change or termination with a deadline and a deadline-miss handler.

Both methods behave as Mission.requestTermination(), but provide additional be-

haviour. The requestTerminationOfCurrentMission method sets a timer, which counts

down to deadline. If the timer expires before the mission’s termination is complete, then it

releases deadlineMiss. If the mission terminates before the timer expires, then it is cancelled.

Similarly, the requestMissionChange method sets a timer to count down to deadline.

However, this method’s miss-handler is released if the mission change does not occur before

the timer expires. This approach allows SCJ to implement deadlines on mission changes and

terminations, without altering their standard protocols. We note that these facilities might

also prove useful at Level 1.

3.4.3 Support for Compositional Timing Analysis

Section 3.2.2 identifies a role for mission sequencers as a mechanism for the composition of

systems from independently-developed subsystems. We represent a subsystem in SCJ with a

mission sequencer controlling a single mission, which controls that subsystem’s schedulables,

as detailed in Sect. 3.2.2. Hence, we consider that the mission sequencer is the top component

of the subsystem.

Hierarchical scheduling (and its associated schedulability analysis) is a well established

technique that facilitates composition of components that have real-time attributes, such as

deadlines. Unfortunately, hierarchical scheduling is supported by neither SCJ nor the RTSJ,

possibly because of the lack of support by real-time operating system vendors.

We propose using two elements of hierarchical scheduling in SCJ to improve its sup-

port for independently-developed subsystems and components: CPU budgets, to implement

execution-time servers; and multi-level priorities, to isolate the scheduling of subsystems.

Developing an SCJ program made of subsystems can be achieved broadly in three steps.

First, each subsystem is allocated an execution-time server, which is given a capacity, a

priority order, and a replenishment period. These parameters need to be assigned

carefully to obtain good schedulability [25].

Second, the priority ordering of the schedulables in each subsystem is determined.

68

1 public class ProcessingGroupParameters {

2 public ProcessingGroupParameters (HighResolutionTime start ,

3 RelativeTime replenishmentPeriod , RelativeTime budget){

4 ...

5 }

6 ...

7 }

Figure 3.10: Sketch of a ProcessingGroupParameters class for SCJ

Third, an integration step assigns concrete priorities to the schedulables based on their

priority ordering and the priority order of their server.

The result of this process is that the schedulables within a subsystem are only scheduled

for execution (and in priority order) when their execution-time server server has the highest

priority and has available capacity. Once the parameters of the execution-time servers and

the schedulables are set, schedulability analysis must be performed for each subsystem and

the system as a whole. In the rest of this section we describe the integration of our proposal

into SCJ. We consider only two tiers in the program hierarchy here, for brevity.

CPU Budgets

The first aspect of hierarchical scheduling required is that each subsystem is allocated a bud-

get of CPU execution time, which is consumed whenever one of its schedulables is executing,

and a period after which its budget is replenished. When a subsystem’s budget is exhausted,

all of its associated schedulables are suspended until its next replenishment. In the RTSJ,

this functionality can be supported by processing groups, if all the schedulables run on the

same CPU.

Processing groups ensure that members of a group, collectively, are not given more

CPU time per period than their group’s budget. The RTSJ defines an optional class called

ProcessingGroupParameters, an instance of which is associated with each schedulable in

the processing group. This allows the RTSJ’s schedulables to share a budget while retaining

their individual priorities, deadlines, and periods.

Processing groups support the requirements of compositional timing analysis. So a pos-

sible solution is for SCJ to implement the class sketched in Fig. 3.10, which is a restricted

version of RTSJ’s ProcessingGroupParameters. Here, the processing group’s deadline is

equal to its replenishment period. However, this technique inherits the limitation that the

schedulables within a subsystem must execute on the same processor.

Simulating Multi-Level Priorities

The second aspect of hierarchical scheduling that we require is multi-level priorities, which can

be simulated in SCJ by manipulating the priorities of mission sequencers and schedulables.

For each mission sequencer, we propose:

� defining a priority range, from the priority of this mission sequencer to the priority of

the next highest priority mission sequencer, and;

69

� setting the priorities of all the schedulables in this subsystem within this range, while

maintaining their original priority order, to ensure that they only run when their sub-

system has the highest priority of all the subsystems.

This priority manipulation is performed statically, before the program is executed, in the

integration step of our proposed process. It may be that priorities of the program’s mission

sequencers must be changed during integration to accommodate the schedulables. This is

allowed, as long as the priority order of the mission sequencers is maintained.

For example, we consider a simple two-subsystem program using rate-monotonic schedul-

ing (where higher priorities are assigned to tasks with shorter periods). The parameters of

the execution-time servers of each subsystem are shown in Table 3.1. At the top level, the

Period (ms) Budget (ms)

Server 1 100 40

Server 2 50 15

Table 3.1: Execution-Time Server Parameters

execution-time server Server 1 has a replenishment period of 100 milliseconds and a budget

of 40 milliseconds. The execution-time server Server 2 has a replenishment period of 50

milliseconds and a budget of 15 milliseconds. The top-level is schedulable when the priority

of Server 2 is greater than the priority of Server 1.

Schedulable Priority

Server 1 10

S1 10

S2 11

S3 12

Server 2 20

Table 3.2: Execution-Time Server and Schedulable Priorities

The subsystem associated with Server 1 contains three schedulable objects, S1, S2, and

S3. They require a priority ordering where S3 has a higher priority than S2, which has a

higher priority than S1. During system integration, the priorities of the servers and schedu-

lables could be assigned so that the priority of Server 2 is greater than that of Server 1, plus

at least 3, in order to allow the priorities of the schedulable objects to be assigned between

those of the two servers. Table 3.2 shows an example of the priorities of this system, assigned

to simulate multi-level priorities, because the schedulables of the subsystem associated with

Server 1 are not able to run if Server 2 is executing.

Incorporation into SCJ

As detailed above, to support CPU budgets, SCJ needs to implement processing groups, and

SCJ can already support multi-level priorities, by manipulating the priorities of an applica-

tion’s schedulables and mission sequencers. To aid the integration of these two aspects of

hierarchical scheduling into SCJ applications, a new subclass of mission sequencer can be

added to encapsulate the concerns of a subsystem, as sketched in Fig. 3.11.

70

1 public class Subsystem extends MissionSequencer{

2 public Subsystem (PriorityParameters pri , StorageParameters storage ,

3 ProcessingGroupParameters params , int priRange){

4 ...

5 }

6 ...

7 }

Figure 3.11: The Subsystem Class, which Provides an Interface for Subsystems

The constructor in Fig. 3.11 takes a ProcessingGroupParameters object (Sect. 3.4.3). To

encapsulate the information needed for the priority manipulation described in Sect 3.4.3, the

values of pri (which is the priority of this mission sequencer) and of pri + priRange define

the priority range for schedulable objects encapsulated by this subsystem.

3.5 Summary

This chapter presents the first investigation of the utility of Level 2’s features. The three

unique features that we examine – nested mission sequencers, managed threads, and suspen-

sion – all have uses in SCJ. Nested mission sequencers are useful for programming multiple-

mode applications and independently-developed subsystems; Levels 0 and 1 cannot. Managed

threads can be used to program background tasks and provide better encapsulation of state

than SCJ’s event handlers. Suspension enables Level 2 to capture systems that require it,

such as producer-consumer systems. When combined, managed threads and suspension can

provide extended release patterns.

Level 2’s unique features, and some of the use cases we identify, have revealed some

challenges for Level 2 programs. In v0.94 of the SCJ Language Specification [78] there was a

problematic corner case where suspended schedulables were not interrupted during the termi-

nation of their controlling mission. We proposed that all schedulables are interrupted during

mission termination, or that a method call be used to signal a mission’s registered schedu-

lables. The current version of the language specification [79] (v0.100) guides programmers

to manually interrupt schedulables that may be suspended using the signalTermination()

method, which is called on each of a mission’s registered schedulables during termination.

The second challenge was the inability to place a deadline on a mission sequencer changing

or terminating missions. We propose adding two methods to the MissionSequencer class to

request the termination or change of a mission, giving a deadline and a deadline-miss handler

for the process. This is yet to be added to SCJ.

The final challenge is the lack of support for compositional timing analysis of SCJ pro-

grams. To address this difficulty, we propose three things. First, the implementation of

a version of the RTSJ’s processing group parameters to support CPU budgets. Second, a

technique for manipulating the priorities of a program’s schedulables to simulate multi-level

priorities. Third, to aid integration we propose a subclass of mission sequencer to encapsulate

a subsystem. However, these proposals are also yet to be integrated into SCJ. In the next

chapter, we describe a model of SCJ Level 2. We do not include the unadopted proposals:

our model is faithful to v0.100 of the SCJ Language Specification.

71

72

Chapter 4

Safety-Critical Java Level 2

Modelling Approach

This chapter describes our approach to modelling the paradigm of Safety-Critical Java (SCJ)

Level 2 v0.100 [79]. Our model is written in the state-rich process algebra Circus; a primer for

which is provided in Sect. 2.4. Section 4.1 introduces at a high level our approach to modelling

the SCJ Level 2 paradigm. Section 4.2 details the components of our model, showing how

we capture Level 2’s features. As described in Sect. 1.2, our model abstracts away from

scheduling and resources, which means that it does not capture SCJ’s global multi-processor

support, task scheduling, or region-based memory management. The full model of the SCJ

Level 2 paradigm can be found in Appendix C.

In Sect. 4.3 we describe how our model captures synchronisation and suspension, and

Sect. 4.4 describes how our model captures inheritance and polymorphism. Section 4.5 dis-

cusses using our model to show that the termination protocol from SCJ v0.94 was overly

complicated, and the current termination protocol (which we proposed in [56]) is simpler.

Finally, Sect. 4.6 summarises our modelling approach.

4.1 Modelling Overview

We provide the first formal semantics of the SCJ Level 2 programming paradigm, as described

in the SCJ language specification. We capture the paradigm of SCJ v0.100 [79], as described

in Chap. 2. We take the view that this paradigm is separate to its realisation in Java; we

capture the paradigm, abstracting away from the implementation details.

Our model is beneficial for both top-down and bottom-up SCJ development. Top-down,

our model provides a target for the Circus refinement strategy [17] to cater to Level 2 pro-

grams. The strategy allows refinement of abstract specifications of behaviour into concrete

specifications that capture the SCJ paradigm. Combining our model with the strategy would

allow the development of SCJ Level 2 programs that are correct-by-construction. Bottom-up,

our model can be used to aid program verification. Level 2 programs can be translated into

our model (which we discuss further in Chap. 5) for analysis. We can then use the model of

a program to catch program errors, such as deadlock, livelock, and exceptions.

Our overall modelling approach is illustrated in Fig 4.1. Firstly, we capture the behaviour

of the SCJ API (as described in the SCJ language specification) in the component called

73

ResultsSCJ
Framework

SCJ
Application

Circus
Program

SCJ API

SCJ Program
CSP

Program

FDR

Figure 4.1: High-Level Modelling Approach

the framework model. The framework model is generic, in that it captures the behaviour

common to all programs, and is reused when modelling each new program. Next, we capture

the program-specific behaviour of a particular program in a component called the application

model, which must be generated afresh for each input program.

These two models are combined to form a Circus program that captures the behaviour

of an input program. The separation of the generic from the program-specific behaviour in

our model has two main benefits. First, the framework model can be validated in isolation,

before we start checking programs for errors. Second, it simplifies the application model and,

therefore, the translation from an SCJ program to its application model. The communication

and cooperation between these two models is discussed in more detail in Sect. 4.2.

To verify programs using this technique, we must first translate our model from Circus

to CSPM – machine readable CSP, which is the input language for FDR3. Then we can use

FDR3 to check the model for deadlock, livelock, and divergence. The latter check also shows

if the model may throw an exception, because of the way we model exceptions. The extra

translation step is needed because there is currently no model checker for Circus. However,

it has the added benefit of decoupling the Circus model from the CSPM version, which is

adapted to enable tractable analysis in FDR3.

Our approach is based on that of a model of SCJ Level 1 [93], but instead of simply adding

Level 2 features to this model we also capture Level 1 features that it did not: exceptions,

synchronisation, and period or deadline overrun. We also, in contrast to the Level 1 model,

provide separate framework processes for each of the three event handlers, which considerably

simplifies their application processes and translation. Further, our model raises an exception

if a schedulable is registered twice, as specified by the API. Finally, since our model is based

on a newer version of the SCJ Language Specification, we capture API updates that were

implemented after the model of Level 1 was constructed.

Our model of Level 2 is commensurately larger than the Level 1 model [93]. Table 4.1

summarises the relative sizes of both models, showing the number of lines of Circus that

74

Component

Level 1 Level 2

Safelet 27 107

Mission Sequencer 36 153 + 236

Mission 120 360

Event Handler 49 N/A

Aperiodic Event Handler N/A 252

Oneshot Event Handler N/A 316

Periodic Event Handler N/A 267

Managed Thread N/A 360

Java Thread N/A 145

Java Object N/A 731

Total Lines in SCJ API 232 2671

Other Definitions 469 695

Total Lines of Circus 701 3366

Table 4.1: Summary of the Sizes of Level 1 and Level 2 Models

model each component and capture the other definitions. The Level 1 model comprises ∼
700 lines of Circus and the SCJ API is captured by 4 processes, which total ∼ 232 lines. In

contrast, our model of Level 2 comprises ∼ 3360 lines of Circus and the SCJ API is captured

by 10 processes, which total ∼ 2600 lines. The Level 1 model uses one process for all three

event handler classes, whereas our Level 2 model uses three separate processes to capture

these three classes. Also, mission sequencers are modelled by two separate processes in our

Level 2 model, as opposed to a single process in the Level 1 model.

Each class in the SCJ library and object in the program is represented in our models by a

Circus process. We use OhCircus classes to capture non-reactive behaviour, such as methods

that are purely data operations. OhCircus classes are similar to Java classes: they may hold

variables, specify constructors, make use of inheritance, and must be instantiated before use.

Specifically, data operations are captured in methods, which may be called from processes.

We also use constructs from CircusTime to capture deadlines and timed offsets.

Each process takes the name of the class it models, suffixed with ‘FW ’ for framework or

‘App’ for application processes. Each application process is parametrised by a unique identi-

fier, which is used to identify the process in channel communications and allows framework

processes to communicate with their application counterparts. The exception to this is the

SafeletFW process, which only has one instance because there is only one safelet in an SCJ

program. Multiple instances of the same class in a program each have their own identifier.

Each of an object’s methods are modelled by an action in the process that represents

that object. Calls to and returns from a method are represented by a pair of channels, which

signal the start and end of the action modelling the method. These channels take the name

of the method, suffixed with ‘Call ’ for a channel representing the call to the method, or ‘Ret ’

for a channel representing the return from the method. In the framework model, some of the

API methods are simple enough that they are modelled by only one channel. For example,

75

the Mission.missionActive() method, which returns a boolean representing if this mission

has been started or not. Using channels to represent calls to and return from methods allows

method calls between processes. We handle method calls between processes using a separate

process to ‘route’ the calls to the right process, which we discuss in Sect. 4.4.

We capture exceptions, but not the Java exception handling mechanism. Exceptions are

used in two ways in the SCJ language specification: as an artefact of SCJ’s implementation

in Java and as a way of indicating misuse of the paradigm. We model the latter category, as

we consider that exceptions are used in lieu of preventing paradigm misuse. We model these

exceptions with the throw event followed by Chaos, which is an in-built divergent process

that allows us to detect exceptions during analysis.

We capture exceptions thrown by the API when: a thread is interrupted, a method

receives an inappropriate argument, a thread attempts to use suspension without holding the

lock, a thread attempts to lock an object with a priority lower than the thread’s, or a mission

attempts to register a schedulable that is already registered to another or the same mission.

We also capture exceptions thrown by the Java assert statement, to support programs that

use it to thrown application-specific exceptions that indicate a misuse of the paradigm.

4.2 Model Structure

As previously mentioned, we model the state and behaviour of application objects in the

program as two cooperating components: the framework model and the application model.

The processes in these two components must communicate with each other to form the full

model of a program. This section discuses the communication and cooperation between the

framework and application processes representing the main SCJ API classes.

Figure 4.2 shows the main processes in the framework model and the channels that

they use to communicate. The channels with underscores in their names are control signals

(for example, start mission) and those in camel case represent method calls (for example,

initializeCall and initializeRet). Some of the channels have been omitted for brevity, indi-

cated by three dots. The layering indicates potentially multiple instances in one model. Each

of these framework processes communicate with an application process, which are also not

shown in Fig. 4.2.

The framework and application models cooperate to represent the behaviour of the input

program. When a framework process encounters application-specific methods, it signals its

application counterpart to take control and perform that method’s behaviour. Another signal

returns control to the framework. These signals are call-return event pairs that retain the

method name, suffixed with ‘Call ’, for the event modelling the method call, or ‘Ret ’, for the

event modelling its return.

We illustrate this in Fig. 4.3, which shows how we model a mission MyMission using an

instance of the MissionFW process and an instance of MyMissionApp. The MyMission class

implements the initialize() and cleanUp() methods, which it inherits from the Mission

class. The instance of MissionFW contains actions representing these two methods; since

their default implementations contain no behaviour, the actions representing those methods

simply contain the associated pair of call and return events.

76

SafeletFW

To
pL
ev
el

M
is
si
on
Se
qu
en
ce
rF
W

MissionFW

SchedulableMissionSequencerFW

ManagedThreadFW

AperiodicEventHandlerFW

start_toplevel_sequencer

PeriodicEventHandlerFW

OneShotEventHandlerFW

start_mission

done_mission

requestTermination

initializeRet

signalTerminationCall

signalTerminationRet

start_mission
done_mission

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

done_toplevel_sequencer

...

...

...

...

...

initializeCall

Figure 4.2: Level 2 Model Structure

The instance of MyMissionApp also contains actions representing the initialize() and

cleanUp() methods. However, because MyMissionApp models the behaviour of MyMission

the actions it contains describe the full behaviour of the methods from MyMission. Because

the two processes are associated via a shared identifier, they can communicate so that the

MissionFW process can hand control to the MyMissionApp process to achieve a model of

the behaviour of MyMission.

In the rest of this section we discus our models of the API classes and how they commu-

nicate with their application counterparts to model a program. We use the aircraft control

system, described in Sect. 2.1.3, to illustrate how we model an application. Section 4.2.1 pro-

vides a more detailed examination of the modelling pattern, because the safelet is relatively

simple. But the description in the other sections below needfully omits some of the behaviour

that is not pertinent to the main control flow of SCJ programs.

4.2.1 Safelet

The framework process SafeletFW , shown in Appendix C.8, handles the behaviour specified

by the Safelet interface. It is the process that defines the main execution flow of the program.

It contains an action modelling the generic behaviour of the getSequencer() method, which

gets the identifier of the top-level mission sequencer from its counterpart application process

and signals that it should start.

Additionally, the SafeletFW process tracks which schedulables in the program are reg-

istered to a mission. This collection of globally registered schedulables is used to trigger

a MissionFW process to raise an exception if it attempts to register a schedulable that

is already registered. This behaviour can be seen in the communication between the the

SafeletFW ’s Register action (in Appendix C.8) and the MissionFW ’s Register action (in

Appendix C.10) over the checkSchedulable channel. The SCJ Language Specification states

that this exception should be raised, but it is not part of the safelet’s specification. The

safelet was chosen to keep track of which schedulables are registered globally because it is at

the top of the program hierarchy.

77

initializeCall

initializeRet

cleanupCall

cleanupRet

MyMission

MyMissionApp

initialize

cleanup

MissionFW

initialize

cleanup

initialize()
cleanup()

Figure 4.3: Modelling a Mission Using Two Components

The application model of a class that implements the Safelet interface provides the

application-defined behaviour of the getSequencer() method. This method returns a refer-

ence to the top-level mission sequencer object. We model it using an action that returns the

identifier of a mission sequencer process. The safelet application model also contains actions

modelling any application-defined methods.

4.2.2 Mission Sequencers

Two framework processes model the behaviour of the MissionSequencer class, because it may

be used in two different contexts. The TopLevelMissionSequencerFW process (shown in Ap-

pendix C.9) models the top-level mission sequencer and the SchedulableMissionSequencerFW

process (shown in Appendix C.11) models a nested mission sequencer, which is used as a

schedulable – as described in Sect. 3.2. This simplifies both processes because they each only

need to be involved in events relevant to their context.

The TopLevelMissionSequencerFW process is started by the SafeletFW process. When

it begins termination, it signals the SafeletFW to indicate that the program has terminated.

A SchedulableMissionSequencerFW process is started by its controlling mission, and signals

to its controlling mission once it has terminated. Since it is a schedulable, it must respond

to termination requests from either its controlling mission or the mission it is executing.

The framework models of both flavours of mission sequencer contain an action modelling

the generic behaviour of the getNextMission() method. This method returns a reference

to the next mission that this mission sequencer executes. The action modelling the method

fetches a mission identifier, from the application counterpart of this framework process, and

starts that mission.

Despite having two separate framework models, the application model of either a top-

level or a nested mission sequencer fits the same pattern. The application model of a mission

78

Register =̂

register ? s ! mission−→

(
checkSchedulable .mission ? check : (check = True)−→
AddSchedulable

)
@

checkSchedulable .mission ? check : (check = False)−→
throw .illegalStateException−→
Chaos




Figure 4.4: The MissionFW ’s Register Action

sequencer provides the application-defined behaviour of the getNextMission() method: the

behaviour that returns a mission identifier. The application model of a mission sequencer

also contains actions representing any application-defined methods.

4.2.3 Mission

A MissionFW process is started by a mission sequencer process and models the generic

behaviour of the Mission class. It has actions that model the methods initialize(),

requestTermination(), and cleanUp() from the Mission. Here we present the Circus model

of a mission in more detail than the processes of the other paradigm objects, because it is

ideal for illustrating our modelling approach.

The InitializePhase action models the initialize() method, and controls the schedula-

bles being registered to this mission. The events initializeCall and initializeRet model the call

to and return from initialize(). InitializePhase comprises other actions that each control

a particular part of the registration protocol. For example, the Register action (shown in

Fig. 4.4), which controls the registration of one schedulable.

The Register action (Fig. 4.4) is triggered by the initializeCall event, and is then ready to

register schedulables. The registration of a schedulable is modelled by the event register . s .m,

where s is the identifier of the schedulable being registered and m is the identifier of the

mission registering the schedulable. The Register action accepts a register event, with

any schedulable identifier as long as the mission identifier matches the identifier of this

MissionFW process. These register events originate in the MissionFW ’s application coun-

terpart.

Next, Register waits for the checkSchedulable event, which indicates, via the variable

check , if a schedulable may be registered. This event comes from the SafeletFW process,

which listens to all register events and tracks globally registered schedulables. This allows

the detection of an attempt to register a schedulable more than once. If check is True, then

the schedulable can be registered. If check is False, then the schedulable is already registered

and we use the throw channel to model an exception being thrown and then diverge (Chaos).

Once all of a mission’s schedulables have been registered, the MissionFW process enters

its execution phase, where it starts all of its registered schedulables simultaneously and then

waits to handle method calls and schedulable termination. This is captured by the Execute

79

InitializePhase =̂

initializeCall .MainMission−→
register ! ProducerSID ! MainMission−→
register ! ConsumerSID ! MainMission−→
initializeRet .MainMission−→
Skip


Figure 4.5: The MainMissionApp’s InitializePhase Action

action, shown in Appendix C.10. The signal to terminate a mission is accepted from any

of that mission’s registered schedulables, and triggers the termination and clean up of that

mission’s active schedules.

Once the termination and cleanup of a mission’s schedulables is complete, it enters its

own cleanup phase. This is controlled by the Cleanup action, which models the CleanUp()

method. This simply indicates to the SafeletFW process that this mission’s schedulables are

no longer registered and triggers the Cleanup action of this mission’s application counterpart.

As an example of a mission application process, we examine the model of the MainMission

class in the Buffer application, described in Sect. 2.1.2. The MainMission is modelled by

the MainMissionApp process, which captures the reactive application-specific behaviour of

the mission. It cooperates with an instance of the MissionFW process to capture the be-

haviour of the mission. Channels on which the instances of MissionFW and MainMissionApp

communicate are parametrised by the mission identifier MainMission; this ensures that the

MainMissionApp process communicates with the right process instance. These channels are

used by the MissionFW process to hand control to the MainMissionApp process so that it

can execute application-specific behaviour.

The application model of a mission provides the application-defined behaviour of the

methods initialize() and cleanUp(). The initialize() method is modelled by the

InitializePhase action, and clearly illustrates the simplification of the application model of a

mission in comparison to its framework model.

In an SCJ program, the Mission’s initialize() method is overridden to register the

schedulables that this particular mission controls. Figure. 4.5 shows the InitializePhase action

of the MainMissionApp process, which models the initialize() method in the MainMission

class (shown in Appendix A).

The InitializePhase action is triggered by the initializeCall event and then proceeds to

register schedulables, which is modelled by the same event as in the MissionFW process,

register . s .m. The register events shown in Fig. 4.5 send the identifiers ProducerSID and

ConsumerSID , respectively, to the MissionFW process with the identifier MainMission. The

order of registration shown in Fig. 4.5 corresponds to the order in the program.

The cleanUp() method is modelled by the CleanupPhase action. In the buffer application,

there is no application-defined behaviour in the cleanUp() method, so the CleanupPhase

action simply performs the call and return events. In a program with cleanup behaviour,

events modelling it would be inserted in-between the call and return events.

80

PriorityQueue == PriorityLevel → (iseq ThreadID)

∀ pq : PriorityQueue • nullThreadId 6∈ ran(
⋃

(ran pq))

Figure 4.6: Priority Queue Function

4.2.4 Schedulables

The generic behaviour of each of the five schedulables is modelled by a different process:

the PeriodicEventHandlerFW process (shown in Appendix C.12) models a periodic event

handler, the AperiodicEventHandlerFW process (Appendix C.13) models either an aperi-

odic event handler or an aperiodic long event handler, the OneShotEventHandlerFW process

(Appendix C.14) models a one-shot event handler, the ManagedThreadFW process (Ap-

pendix C.15) models a managed thread, and the SchedulableMissionSequencerFW process

(Appendix C.11) models a schedulable mission sequencer. Each schedulable process is started

by a mission, performs its behaviour, accepts termination requests from the mission that

started it, and cleans up after it terminates.

Each event handler process has actions that control its specific release pattern. The release

behaviour of an event handler class is contained in its handleAsyncEvent() method, which

is modelled by an action that is triggered in accordance with the handler’s release pattern.

Event handlers may have deadlines, and periodic event handlers have a period. Our

models consider that periods may be overrun and deadlines may be missed, and captures the

response to this. This means that our model is capable of being used for checking potential

deadline or period overruns, for example. However, we note that implementing these check

is left as future work – as discussed in Sect. 6.3.

Managed threads are simpler and begin their release as soon as they are started. The

release behaviour of a managed thread is contained in its run() method, the generic behaviour

of which is modelled by an action that is called as soon as the managed thread is started.

Mission sequencers used as schedulables are described in Sect. 4.2.2.

Each of the schedulable application processes has an action modelling the method that

captures its release behaviour. For an event handler, this is the handleAsyncEvent() method.

For a managed thread, this is the run() method. Because the release patterns of the event

handlers are captured by their framework processes, the application models for these classes

are very simple; they only require the release behaviour. The application models of the

schedulables also contain actions modelling any application-defined methods.

4.3 Synchronisation and Suspension

The synchronisation model of SCJ constrains that of standard Java. First, SCJ programs

cannot use synchronized blocks, only synchronized methods. Second, threads queue for a

lock in order of eligibility. In SCJ, the most eligible thread is the thread at the highest priority

level that has been waiting for the longest time. We model this using the type PriorityQueue

(Fig. 4.6), which is a total function from PriorityLevel to injective sequences of ThreadID .

81

PriorityLevel is a free type containing the priorities available to the system and ThreadID is

the set of thread identifiers.

Our models use extra framework processes to control synchronisation and suspension.

In SCJ, each schedulable is executed by a thread. In our model, schedulables that call a

synchronised method are associated with an instance of the ThreadFW process – shown in

Appendix C.6. ThreadFW holds the thread identifier and keeps track of its priority and

interrupted status. Overall, the framework model of a schedulable that calls a synchronised

method is the parallel composition of its associated ThreadFW process with the appropriate

framework process, which depends on the type of schedulable (event handler, managed thread,

or mission sequencer).

Additionally, each object used as a lock is associated with an instance of the ObjectFW

process, which stores the threads waiting on this object and controls the threads trying to lock

this object. Again, the overall framework model of each object that represents a paradigm

component and is used as a lock is its framework process in parallel with an instance of

ObjectFW . Non-paradigm objects used as locks are modelled in the framework by just an

instance of ObjectFW .

As an example, we revisit the buffer application described in Sect. 2.1.2, in which a

producer and consumer thread each share access to a bounded buffer. The Buffer object

controls access to the buffer with the methods read() and write(), which are synchronised,

to control the concurrent access. We consider the read() method here as an example of

our approach to modelling synchronisation and suspension. The read() method, shown in

Fig. 4.7, suspends the calling thread (by calling wait()) if the buffer is empty. This is

wrapped in a loop that checks if the buffer is empty, to deal with spurious wake ups by the

Java Virtual Machine.

The instance of ObjectFW that is associated with the BufferApp process (which models

the reactive behaviour of the Buffer object) controls the synchronisation and suspension be-

haviour using the startSyncMeth, lockAcquired , and endSyncMeth events. The startSyncMeth

event models the beginning of a synchronized method and triggers the ObjectFW process to

request a lock on this object by the thread calling this action.

Because the lock may already be held by another thread, the readSyncMeth action waits

for the lockAcquired event (from the ObjectFW process) to signal that it has the lock and

can proceed. After the body of the method, the endSync event signals that the synchronised

method is complete, to trigger ObjectFW to release the lock on the mission currently held by

the calling thread. We note that SCJ does not support Java’s ReentrantLock, however, SCJ

does support reentrant locking by allowing synchronised methods to call other synchronised

methods in the same object. The ObjectFW process provides this behaviour; to unlock the

object, after the first lockAquired event, each subsequent startSyncMeth event (which must be

from the same thread) must be matched by an endSyncMeth event from the locking thread.

We model the call to wait() using the call-return event pair waitCall and waitRet . These

events take the identifier of the associated ObjectFW instance (BufferOID , in Fig. 4.7) and

the identifier of the thread calling this action. The instance of ObjectFW associated with the

mission adds thread to its queue of waiting threads. The process calling waitCall waits for

waitRet to communicate its identifier.

82

readSyncMeth =̂ var ret : Z •

readCall .BufferID ? caller ? thread−→

startSyncMeth .BufferOID . thread−→
lockAcquired .BufferOID . thread−→

var bufferEmpty : B • bufferEmpty := bufferEmpty();

µX •

var loopVar : B • loopVar := bufferEmpty;

if (loopVar = True)−→
; X

8 (loopVar = False)−→ Skip

fi


;


waitCall .BufferOID . thread−→
waitRet .BufferOID . thread−→
Skip;

bufferEmpty := bufferEmpty()

 ;

var out : Z • out := buffer ;

ret := out



;

endSyncMeth .BufferOID . thread−→
readRet .BufferID . caller . thread ! ret−→
Skip




Figure 4.7: The BufferApp Proceess’s readSyncMeth Action

We model the call to notify() with the event notify . As with waitCall and waitRet ,

notify also takes the identifier of the associated ObjectFW process and the identifier of the

thread calling this action. The notify event triggers the ObjectFW process to resume the most

eligible thread. If there are no waiting threads, then ObjectFW allows the call to notify , but

does nothing. To resume a thread, ObjectFW calls waitRet with the identifier of the thread

to be resumed.

SCJ Level 2 can also use the notifyAll() method, which resumes all the waiting threads

in eligibility order. We model a call to notifyAll() with the event notifyAll . It triggers

the NotifyAll action in the ObjectFW process to call the NotifyAllHandler action, which

uses waitRet to resume the most eligible thread and then recurses if there are more threads

waiting.

4.4 Inheritance and Polymorphism

Inheritance and polymorphism are key features of object-oriented programming. An SCJ

program’s paradigm objects (the safelet, mission sequencer, mission, etc) each extend an

SCJ API class, except for the safelet, which implements an interface. As in standard Java,

SCJ classes may extend one super class and implement one or more interfaces.

When modelling inheritance, we must consider that a method’s declaration and implemen-

83

read MethodBinder =̂

binder readCall ? l : (l ∈ readLocs) ? c : (cs ∈ readCallers) ? callingThread−→
readCall . l . c . callingThread−→
readRet . l . c . callingThread ? ret−→
binder readRet . l . c . callingThread ! ret−→
read MethodBinder


Figure 4.8: The read MethodBinder Action

tation may be in different classes. Further, implementations may be overridden in subclasses.

From what we have already described, this causes problems for our modelling approach. We

describe our solution to this problem here.

As described in Sect. 4.2, our model usually captures method calls using a pair of channels

representing the call to and return from the method. This pair of channels is parametrised

by: the identifiers of the process representing the calling class and the process representing

the called class, any parameters the method may take, and its return value – if it has one.

However, the location of the method may not be the class on which the call is being made, so

the action representing it may not exist in the process representing the called class, causing

a spurious deadlock.

In our model of SCJ programs, we handle calls to inherited methods using a process named

the MethodCallBinder (MCB), which is placed in parallel with the Application model to bind

method calls to the method locations. The MCB also facilitates non-inherited method calls

made between application processes. The MCB process is constructed during the translation

for a particular SCJ program, as described in Chap. 5.

Since SCJ allows dynamic class loading, the MCB can resolve dynamic binding only once

the entire program is known. Dynamically loaded classes are handled in the same way as

any other potentially instantiated class, for example a mission choosing to instantiate only

one of two different schedules in its initialisation phase. The potential for that class to be

instantiated means that it will be included in the model.

The MCB process contains one binding action for each application-defined method in the

program. Each binding action has two associated sets, a Locs set and a Callers set. To ensure

uniqueness, the names of these sets are prepended by the name of the action they method

they are binding. The Locs set contains the identifiers of all the processes that contain the

method being bound, and the Callers set contains the identifiers of the processes that may

call the method being bound.

Each action is triggered by an event that has the same name as the event representing the

call to the method, but prepended with ‘binder ’. This event accepts communications with any

identifier form the Locs set and any identifier from the Callers set, these parameters ensure

that the other evens in the action are related to the same method call. When triggered, the

action engages in the call and return events of the method being bound. Finally the action

signals the return from the bound method with an event that has the same name as the

return channel, again prepended with ‘binder ’.

84

deployLandingGear MethodBinder =̂

binder deployLandingGearCall ? l : (l ∈ deployLandingGearLocs)

? c : (c ∈ deployLandingGearCallers)

? callingThread−→
deployLandingGearCall . l . c . callingThread−→
deployLandingGearRet . l . c . callingThread−→
binder deployLandingGearRet . l . c . callingThread−→
deployLandingGear MethodBinder


Figure 4.9: deployLandingGear MethodBinder Action from the Model of the Aircraft Appli-

cation

As an example of the MCB facilitating non-inherited method calls, we revisit the buffer

application described in Sect. 2.1.2, in which a producer and consumer thread each share

access to a bounded buffer. The Buffer object controls access to the buffer with the methods

read() and write(). In our model, both of these methods are represented by actions in the

Buffer process. Because the read() method is called by the Producer thread and the write()

method is called by the Consumer thread, they also each have an action in the MCB . Here

we examine the read() method, which is controlled by the readCall and readRet events.

The MCB action that binds calls to the readCall and readRet events is shown in Fig. 4.8.

The action is triggered by the binder readCall event, which takes the same parameters as

the readCall event. The process passes these parameters to the readCall event, which hands

control over to the read action in the Buffer process. The readRet event signals that the

read action is finished and is handing back control. The return parameter from readRet is

passed to binder readRet , which signals the end of the method call and returns control to

the location of the call. The readLocs set contains the identifier of the Buffer process and

the readCallers set contains the identifier of the Consumer process. This example shows the

MCB providing a simple one-to-one binding; the method it is binding is only defined in one

location and is only called by one object.

As an example of the MCB handling an inherited method call, we use the aircraft ap-

plication described in Sect. 2.1.3, which is a simplified aircraft control system. The aircraft

application operates in three modes: take off, cruise, and land. Each mode is represented by

a mission that controls several mode-specific schedulables. Since both the take off and land

modes activate the aircraft’s landing gear, both modes contain a schedulable that controls

the landing gear by calling methods in the mission representing that mode. Each of the

missions implements the LandingGearUser interface, which defines the methods to operate

the landing gear. Here we examine the deployLandingGear() method, which is controlled

by the deployLandingGearCall and deployLandingGearRet events.

The MCB action binding calls to the deployLandingGearCall and deployLandingGearRet

events is shown in Fig. 4.9. This action is triggered by the binder deployLandingGearCall

event, and its completion is signalled by the binder deployLandingGearRet event, in the same

way as described above. The difference with this example is in the Locs and Callers sets.

85

GetNextMission =̂

getNextMissionCall . sequencer−→
getNextMissionRet . sequencer ? next−→
currentMission := next ;

StartMission;

if terminating = FALSE −→
GetNextMission

8 terminating = TRUE −→
Skip

Figure 4.10: The Original TopLevelMissionSequencerFW ’s GetNextMission Action

The deployLandingGearLocs set contains the identifiers of both the TakeOffMission and

LandMission processes, because the bound method is defined in both of these locations.

The deployLandingGearCallers set contains the identifiers of each of the schedulables that

control the landing gear. This allows events that represent either of the schedulables calling

the deployLandingGear() method defned in either of the two missions and issue the return

event to the caller. In this example, the two calls cannot occur at the same time (because

the two missions where the methods are defined are mutually exclusive) but it illustrates how

the MCB can handle simultaneous calls.

4.5 Simplifying the SCJ Termination Protocol

The current SCJ termination protocol restricts communication to components separated by

one layer in the program hierarchy. For example, a schedulable can only signal its controlling

mission to terminate, it cannot request the top-level mission sequencer to terminate. This is

the result of our proposal, presented in [56], for simplifying the original termination protocol.

The original SCJ termination protocol (from SCJ v0.94 [78] and earlier) included the

method MissionSequencer.requestSequenceTermination(), which allows a schedulable

to request the termination of a mission sequencer. During the termination of a mission

sequencer, it will terminate its current mission and any schedulables that mission is executing.

The concern with this facility was that it could be misused by a schedulable to terminate

an arbitrary mission sequencer. This complicates the semantics of the termination protocol

needed to support mission termination and breaks the encapsulation of missions.

This section presents our models of the original termination protocols and describes the

changes made to produce the current protocol. In Sect. 4.5.1 we describe a formal model of

the original termination protocol, as presented in the SCJ language specification v0.94 [78].

Section 4.5.2 presents the model of the current termination protocol. Finally, Sect. 4.5.3

provides a comparison of these two models and summarises the changes that produced the

current protocol.

We test the two protocols by model checking them and comparing the number of states

in each model, to show that the original termination protocol was more complicated than

86

StartMission =̂

if currentMission 6= nullMissionId −→

start mission . currentMission−→
initializeRet . currentMission−→

RequestSequenceTermination

J{terminating} | {| end termination |} | ∅K(
done mission . currentMission−→
end termination . sequencer −→ Skip

)



8 currentMission = nullMissionId −→

terminating := TRUE ; Skip

fi

Figure 4.11: The Original TopLevelMissionSequencerFW ’s StartMission Action

necessary (indicated by its model having far more states than the current protocol). Indeed,

it was the process of formally modelling SCJ Level 2 that first illuminated the complexities

of the mission sequencer termination protocol. These complications only became apparent at

Level 2 because of its capacity to nest mission sequencers arbitrarily deeply, which means that

mission sequencers could be terminated by schedulables both above and below themselves in

the program’s hierarchy at any point during the execution phase.

4.5.1 Model of the Original Termination Protocol

The original termination protocol required both the TopLevelMissionSequencerFW and the

SchedulableMissionSequencerFW to be very complex process because mission sequencers

could be terminated at an arbitrary point during their execution. In this section we de-

scribe our model of the original protocol and explain the source of its complexity. We present

the model of the top-level mission sequencer, the model of the schedulable mission sequencer,

the model of the requestSequenceTermination() method (from the original protocol), and

the model the mission’s cleanUp() method.

Top-Level Mission Sequencer

The TopLevelMissionSequencerFW process has one parameter, sequencer , which is the iden-

tifier of this mission sequencer process, and two variables: currentMission, which holds the

identifier of this mission sequencer’s current mission; and terminating , which is a boolean

value that records if this mission sequencer has been asked to terminate. The GetNextMission

action models the getNextMission() method and is shown in Fig. 4.10.

It communicates with the application model using the channels getNextMissionCall and

getNextMissionRet to get the identifier of the next mission that this mission sequencer should

execute. This identifier is stored in the variable currentMission. Then the StartMission action

(Fig. 4.11) is called; it uses the start mission channel to start the current mission.

Once the current mission enters its execution phase (indicated by the communication on

87

if terminatingAbove = FALSE ∧ terminatingBelow = FALSE −→
GetNextMission

8 terminatingAbove = TRUE ∨ terminatingBelow = TRUE −→
Skip

Figure 4.12: Part of the Original SchedulableMissionSequencerFW ’s GetNextMission Action

the initializeRet channel) the RequestSequenceTermination action is offered in parallel with a

communication on the done mission channel, which is used by the current mission to indicate

that it has terminated.

The parallelism here specifies that RequestSequenceTermination and the communica-

tions in the brackets below the parallel operator synchronise on end termination, that

RequestSequenceTermination alters the terminating variable, and the behaviours below the

parallel operator do not alter any variables.

Once a communication on done mission occurs, the StartMission action waits for the

RequestSequenceTermination action to be ready to engage in end termination; this ends

both sides of the parallelism and control returns to the GetNextMission action. Then, the

GetNextMission action checks the value of the variable terminating , which is set in the

RequestSequenceTermination action (shown in Fig. 4.15 and discussed below) to determine

whether it should recurse or exit.

Schedulable Mission Sequencer

The SchedulableMissionSequencerFW process represents a schedulable mission sequencer; it

is slightly more complicated than the TopLevelMissionSequencerFW . It has a parameter,

sequencer , and a variable, currentMission, like the top-level mission sequencer process. How-

ever, instead of the terminating variable it has two state components: terminatingAbove,

which indicates if this mission sequencer’s controlling mission has asked it to terminate, and

terminatingBelow , which indicates if this mission sequencer’s current mission (or one of its

schedulables) has asked it to terminate. Two variables are required because we have to treat

the requests for termination differently, depending on their source. With two variables, we

can model the different protocols separately.

The GetNextMission action models the getNextMission() method, and behaves the

same as that in the TopLevelMissionSequencerFW process (Fig. 4.10) with the addition of

the conditional statement shown in Fig. 4.12. This conditional checks both terminatingAbove

and terminatingBelow to handle the possibility of the schedulable mission sequencer being

asked to terminate from above or below itself in the program hierarchy.

The StartMission action shown in Fig. 4.13, contains a parallelism of three actions that

offer the choice of waiting for its controlling mission to signal its termination (handled by

the SignalTermination action), the RequestSequenceTermination action (which we discuss

below), and waiting for its current mission to communicate its termination on done mission.

The SignalTermination action in Fig. 4.14 handles the schedulable mission sequencer

88

StartMission =̂

if currentMission 6= nullMissionId−→

start mission . currentMission−→
initializeRet . currentMission−→


SignalTermination

J{terminatingAbove} | {| end terminations |} | terminatingBelowK

RequestSequenceTermination


J{terminatingAbove, terminatingBelow} | {| end terminations |} | ∅K(
done mission . currentMission−→
end terminations . sequencer −→ Skip

)




8currentMission = nullMissionId−→

terminating := TRUE

fi

Figure 4.13: Original SchedulableMissionSequencerFW ’s StartMission Action

SignalTermination =̂

(
end terminations . sequencer −→ Skip

)
@

signalTerminationCall . sequencer−→
terminatingAbove := TRUE ;

requestTermination . currentMission−→
signalTerminationRet . sequencer −→ Skip


; end terminations . sequencer −→ Skip


Figure 4.14: The Original SchedulableMissionSequencerFW ’s SignalTermination Action

being terminated from above and the done mission communication handles its current mis-

sion telling it to terminate from below. The RequestSequenceTermination action handles the

schedulable mission sequencer being told to terminate its sequence of missions by a managed

schedule. We discuss this action next.

Request Sequence Termination

The RequestSequenceTermination action, shown in Fig. 4.15, waits for a communication

on the requestSequenceTermination channel. After this, the value of terminating is set to

TRUE and the mission is queried to see if it is active and has not been asked to terminate

already – using the channels terminationPending and missionActive. If these conditions

are met, the action communicates on requestTermination, which tells the current mission to

begin terminating. Then, RequestSequenceTermination recurses, so that subsequent calls to

requestSequenceTermination() in the SCJ application can be handled, and so that the

action can be terminated using end termination.

89

RequestSequenceTermination =̂



requestSequenceTermination . sequencer−→
terminating := TRUE ;

terminationPending . currentMission ? missionTerminating−→
missionActive . currentMission ? missionIsActive−→

if missionTerminating = FALSE ∧ missionIsActive = TRUE −→
requestTermination . currentMission−→
Skip

8 missionTerminating = TRUE ∨ missionIsActive = FALSE −→
Skip

fi


; RequestSequenceTermination


@(

end termination . sequencer −→ Skip
)


Figure 4.15: The Original RequestSequenceTermination Action

CleanupSchedulables =̂


9 s : schedulables •

cleanupSchedulableCall . s−→
cleanupSchedulableRet . s −→ Skip


Figure 4.16: sOriginal Mission’s CleanupSchedulables Action

In the SchedulableMissionSequencerFW process, the RequestSequenceTermination action

differs only in that, where terminating is set to TRUE , the variable terminatingBelow is

set instead. This is to handle the schedulable mission sequencer being terminated from a

schedulable that is above it in the program hierarchy using SignalTermination, or below it,

using RequestSequenceTermination. This can be seen in Fig. 4.15, where SignalTermination

sets terminatingAbove, and in the excerpt of GetNextMission in Fig. 4.12, which checks both

terminatingAbove and terminatingBelow .

Clean Up

Our model of a mission uses three actions to model its three phases of operation: ini-

tialisation, execution, and clean up. As soon as one phase ends, the mission transitions to

the next phase. Hence, the mission’s Cleanup action begins directly after its Execute action

has finished. First, the CleanupSchedulables action is called (Fig. 4.16), which iterates over

the set schedulables and triggers the cleanUp() action of each of the schedulables, calling the

cleanupSchedulableCall event followed by the cleanupSchedulableRet event. The interleave

operator (9) is used to interleave each schedulable’s clean up phase action.

Once the clean up of each of this mission’s registered schedulables has finished, the

Cleanup action executes the mission’s cleanup behaviour, using the cleanupMissionCall and

90

Finish =̂

end mission app .mission−→
done mission .mission −→
Skip

Figure 4.17: Original Mission’s Finish Action

cleanupMissionRet events. Afterwards, the Finish action (Fig. 4.17) is executed; it informs

the mission’s application process to terminate (end mission app) and then informs the mis-

sion’s controlling mission sequencer that is has finished (done mission).

This model captures the original termination protocol. While the model is tractable, we

argue that the same functionality can be achieved with a simpler termination protocol. In

Sect. 4.5.2 we describe our model of the termination protocol including our proposed changes.

4.5.2 Model of Current Termination Protocol

This section describes our model of the current SCJ termination protocol, which incorporates

that changes that we proposed in [56]. In the current protocol there are two changes from

the protocol described in Sect. 4.5.1. First, the requestSequenceTermination() method

is removed, which prevents the arbitrary termination of mission sequencers. Second, the

Mission.cleanUp() method is altered so that it returns a boolean, which indicates if this

mission’s controlling mission sequencer should continue or terminate. This enforces a hierar-

chical termination of mission sequencers.

In adapting the original model to the current protocol, the state components of both

flavours of mission sequencer process were altered. In the TopLevelMissionSequencerFW

process (Appendix C.9), the variable terminating was replaced with continue; and in the

SchedulableMissionSequencerFW process (Appendix C.11), the variables terminatingAbove

and terminatingBelow were replaced with continueAbove and continueBelow . These variables

indicate to the sequencer that it should continue executing its sequence of missions (if they

are both TRUE).

If continue is FALSE (or either continueAbove or continueBelow is FALSE in the case of

the SchedulableMissionSequencerFW) then the mission sequencer does not execute any more

missions. In the SchedulableMissionSequencerFW process the variable continueBelow holds

the return value from the current mission that is communicated to the mission sequencer

at the end of the cleanup phase (on the done mission channel); this value is held in the

continue variable in the TopLevelMissionSequencerFW process. The continueAbove vari-

able, in the, SchedulableMissionSequencerFW , is only changed during the SignalTermination

action, which handles the mission sequencer’s controlling mission requesting it to terminate.

Removing the RequestSequenceTermination action is a clear simplification of the model;

the requestSequenceTermination channel is no longer needed and is removed from the model

entirely. Besides this, the actions (in the model of the original termination protocol) that

use the RequestSequenceTermination action are also simplified in the model of the current

protocol. We give more details of these simplifications in the following three sections. We

91

StartMission =̂

if currentMission! = nullMissionId −→
start mission . currentMission−→
done mission . currentMission ? continueReturn−→
continue := continueReturn ; Skip


8 currentMission = nullMissionId −→

continue := FALSE

fi

Figure 4.18: Current TopLevelMissionSequencerFW ’s StartMission Action

present the models of the top-level mission sequencer, the schedulable mission sequencer, and

the mission’s cleanup method.

Top-Level Mission Sequencer

The StartMission action in the TopLevelMissionSequencerFW process is simpler than the

previous version (in Fig. 4.11), as can be seen from the excerpt presented in Fig. 4.18.

This action simply starts the current mission using the start mission channel and then

waits for it to terminate and communicate on the done mission channel. The parallelism

(executing RequestSequenceTermination) in the previous version of this action has been re-

moved.

Schedulable Mission Sequencer

The StartMission action in the SchedulableMissionSequencerFW process (which models a

schedulable mission sequencer) is shown in Fig. 4.19. It is needfully more complex than the

same action in the TopLevelMissionSequencerFW process, but it is still simpler than in the

model of the original protocol in Fig. 4.13.

After the mission has been initialised (indicated by the initializeRet channel) this action

proceeds to a parallelism that offers SignalTermination to handle this mission sequencer’s

controlling mission being terminated and a communication on done mission that indicates

that the mission sequencer’s current mission has terminated. This has eliminated one parallel

process (RequestSequenceTermination) that was presenting in the previous version of this

action.

Clean Up

To model Mission.cleanUp(), which now returns a boolean value, the MissionFW process’s

cleanupMissionRet channel takes a boolean parameter, continueSequencer , which is passed

to the Finish action. This can be seen in the Cleanup action, shown in Fig. 4.20.

The value of continueSequencer is communicated to the MissionSequencer process via the

done mission channel, shown in the Finish action in Fig. 4.21. This channel is the means

92

StartMission =̂

if currentMission! = nullMissionId −→

start mission . currentMission−→
initializeRet . currentMission−→

SignalTermination

J∅ | {| end terminations |} | {continueBelow}K
done mission . currentMission ? continueReturn−→
continueBelow := continueReturn;

end terminations −→ Skip






8 currentMission = nullMissionId −→

continueBelow := FALSE

fi

Figure 4.19: Current SchedulableMissionSequencerFW ’s StartMission Action

Cleanup =̂

CleanupSchedulables;

cleanupMissionCall .mission−→
cleanupMissionRet .mission ? continueSequencer−→
Finish(continueSequencer)

Figure 4.20: Current Cleanup Action

of communication that allows a mission to inform its controlling mission sequencer of its

completion, and, as revised, also communicates this continuation information.

When the MissionSequencer receives the boolean value from done mission, it stores it in

the variable continue, which is checked by the GetNextMission action after the StartMission

action finishes. This variable is used to decide whether the MissionSequencer should continue

its execution and get another mission, or terminate. This minor addition to the model

presents little extra complexity, while supporting our proposal to simplify the termination

protocol significantly. Section 4.5.3 compares the two termination protocols in more detail.

4.5.3 Comparison of Termination Protocols

The original termination protocol allowed any schedulable to call any mission sequencer’s

requestSequenceTermination() method, regardless of its place in the hierarchy. The Circus

action modelling this method is presented in Fig. 4.15. The mission sequencer that receives

this call informs its current mission to terminate. This is shown in Fig. 4.15 by the com-

munication on the requestTermination channel, which indicates to the mission that it should

terminate. The mission, once it is instructed to terminate, passes this on to its schedulables

– at least one of which may have called the requestSequenceTermination() method of the

mission sequencer in the first place. This created a needless cycle of termination requests.

93

Finish =̂ val continueSequencer : B •
end mission app .mission−→
done mission .mission ! continueSequencer−→
Skip

Figure 4.21: Current Finish Action

In the current termination protocol, which we proposed in [56], the instigation of termi-

nation still begins in a schedulable object, but this request is only passed up one tier at a

time. For example, if a reason to terminate the application is detected by a schedulable,

this is passed to its controlling mission – by setting some flag in the mission, for example.

During the mission’s cleanup phase, it communicates this request for termination to its con-

trolling mission sequencer. This is captured in our models by the communication on the

done mission channel of the boolean parameter continueSequencer to the particular mission

sequencer process that controls the mission. In this way, the request for termination passes

up the program hierarchy, with each tier terminating before the next tier begins handling its

termination.

This prevents the situation in the original protocol in which a schedulable initiates the

termination of a sequence of missions that includes its controlling mission, and then waits

to be terminated itself when its controlling mission is terminated. The current approach

does create a small amount of programmer overhead, since the programmer must ensure

that schedulables can inform their controlling mission that it should return false from its

cleanUp() method. A simple way to remove this small overhead is for the default implemen-

tation of Mission.cleanUp() to return false. We note that even in the current termination

protocol, the schedulable that discovers the need for termination triggers the termination of

its controlling mission and is then asked to terminate itself. To avoid this, the schedulables

can be programmed to check for the termination of their controlling mission periodically and

begin to shut themselves down; this is in fact the only way to terminate a ManagedThread.

Another solution is to have the schedulable that discovers the need for termination terminate

itself after it has triggered the termination of its controlling mission.

Our proposal has a subtle effect on the termination order of the objects in the program. As

an example, we consider a program with two nested subsystems. With the original protocol,

a schedulable within one of them may call requestSequenceTermination() on the top-

level mission sequencer and begin a cascade of termination requests that leads to the nested

sub-systems terminating in parallel. In the same situation, using the current termination

protocol, the termination requests must pass up the hierarchy from the schedulable that

initiates termination to the top-level mission sequencer. This means that the subsystem that

contains the schedulable that requested termination has to terminate before the request for

termination passes to the top-level mission and the termination of the other subsystem – and

any schedulables started by the top-level mission – begins.

In summary, the requestSequenceTermination() method complicated the SCJ termi-

nation protocol by allowing arbitrary termination of mission sequencers. Our models, while

94

tractable, were complex when modelling this feature of SCJ at Level 2. With our proposed

changes incorporated, our models became much simpler and easier to analyse. Our proposed

changes to the SCJ termination protocol represent a positive simplification of the language

while retaining the ability to terminate a mission sequencer from the application.

In order to show how far our proposed changes simplify the model of SCJ, we constructed

two specifications of a simple program similar to that presented in Sect. 2.1.2, which con-

tains a single mission, controlling two managed threads that share a one-place buffer in the

mission’s memory. One specification uses the model of the original framework and the other

specification uses the model of the current framework, which incorporates our proposal. Both

of these specifications were translated to CSPM , the machine-readable version of CSP, in or-

der to utilise FDR3 [33] to model check the specifications. Note that, because CSP does not

have a notion of state in the same way that Circus does, the CSP versions of our models use

state processes to control variables instead, which means that the CSP models have more

states than the Circus versions.

The results obtained are from running a check for divergence-freedom while hiding any

channels relating to the state processes. The model of the original framework shows 4,539,021

states, whereas the model of the current framework shows only 249,869 states. Our proposed

changes decreased the number of states in the model by 94.5% in comparison to the original.

We note that the number of states here is higher than the number of states often found in

models of full programs because these checks only use the framework model, which will often

exhibit more states when not driven by an application model. This decrease in the number

of states in our model shows a simplification that is useful for further modelling efforts and

for programmer understanding of the SCJ paradigm.

4.6 Summary

This chapter presents the first formal model of SCJ Level 2, written in the state-rich process

algebra Circus. The full model can be found in Appendix C. We follow the approach used to

model SCJ Level 1 [93]. Our model captures the state and behaviour of the Level 2 paradigm,

exceptions (where they indicate a misuse of the paradigm), inheritence and polymorphism,

and, finally, synchronisation and suspension.

We do not simply add Level 2 features to the Level 1 model; our model captures API

changes that occurred after the Level 1 model was constructed and some features of Level 1

that were omitted from the original model for brevity. For example, mutually exclusive

synchronised methods are available at Level 1, but they are not captured by the Level 1

model. Our Level 2 model captures this feature. Further, the Level 2 model captures the

release patterns of event handlers, so that this does not have to be captured during program

translation, and considers that deadlines can be overrun.

This model provides both top-down and bottom-up benefits. Top-down, it is a target

for the Circus refinement strategy [17] to develop SCJ Level 2 programs that are correct by

construction. Bottom-up, it can be used as a program verification tool via a translation of

the model to CSPM for analysis using FDR3.

The modelling process itself has also proved beneficial. During modelling we found that

95

the original SCJ termination protocol was more complicated than needed and used our model

to show that a proposed protocol (which is the protocol currently used by SCJ programs)

was simpler, while allowing the same functionality.

In the next chapter, we describe the process of translating a given SCJ Level 2 program

into our model. The chapter shows a detailed, step-by-step process for translating programs;

describes a formalisation of the core elements of the translation, written in Z; and describes

a tool to automate the translation, called TightRope, which is written in Java.

96

Chapter 5

SCJ Level 2 Translation

In this chapter we present a translation strategy that captures the application-specific infor-

mation from a SCJ Level 2 program and produces a model of this behaviour that is compatible

with the model of the SCJ API presented in Chap. 4. Section 5.1 presents this translation

strategy in a step-by-step manner. This is presented first to better inform the reader for the

discussion that follows. We use the Buffer example, in Sect. 2.1.2, to illustrate the transla-

tion. Section 5.2 presents a formalisation in Z of the core elements of the translation strategy.

Section 5.3 describes TightRope, a prototype tool that automatically translates SCJ Level 2

programs into our Circus model. Section 5.4 evaluates the translation work presented in

this chapter. Finally, Sect. 5.5, summarises the translation strategy, core formalisation, and

automatic translation tool presented in this chapter.

5.1 Translation Strategy

Our translation strategy captures the application-specific information in an SCJ Level 2

program and produces the application model of its behaviour. This comprises the models

of each object in the program and processes that control the network of those models. The

generic behaviour of SCJ programs is already captured by the framework model, described

in Chap. 4. Combining these two models forms the model of a program. This approach

simplifies the translation and the models that it produces.

Paradigm objects (the safelet, mission sequencers, missions, and schedulables) each have a

template that describes the structure required by each type of process. Non-paradigm objects

do not have framework models; they are, by definition, application specific. Therefore, they

all share a simpler template that captures the variables and methods of the class.

Where objects in the program contain non-reactive behaviour, for example methods that

only perform data operations, they are represented by an extra component. As an example of

this. we consider the Buffer class from the buffer example in Sect. 2.1.2. The Buffer class

is non-reactive, as it simply holds an integer variable and provides methods to access and

update it. This sort of non-reactive behaviour is represented by an OhCircus class. Objects

that contain a mixture of reactive and non-reactive behaviour are represented by both a

Circus process and OhCircus, which cooperate to model the object.

SCJ programs are arranged hierarchically. The safelet is at the top of the hierarchy

and controls the program. It loads a top-level mission sequencer, which loads a sequence of

97

SCJ
Program

Circus
Program

Analysis

Build

Generate

Preprocessing
Information

Environments

Model

Figure 5.1: Flow Diagram of the Translation Phases

missions. The safelet and top-level mission sequencer compose the Control Tier of a program.

Note that while a program will only have one top-level mission sequencer while it is running,

the getSequencer() method may return one of several mission sequencers. The rest of the

program is organised into Program Tiers. A program tier is a list of Clusters, which each

contain a mission and its registered schedulables.

The clusters containing the missions loaded by the top-level mission sequencer comprise

Tier0; all programs will have a Tier0. Subsequent program tiers indicate missions in Tier0

registering a schedulable mission sequencer. We characterise the structure of programs this

way to make it easier to construct the model of a program at the top level. The arrangement

of the tiers and clusters is captured by a specific template.

The translation occurs in three phases, shown in Fig. 5.1. In the next three sections we

describe each phase of the translation and illustrate the information that is produced. We use

the MainMission class from the Buffer example, shown in Fig. 5.2, as a running example.

First, the analysis phase (Sect. 5.1.1) identifies the program’s object types, methods and

their locations, and the callers of the methods. Second, the build phase (Sect. 5.1.2) extracts

information from the SCJ program and constructs an environment for each object and the

program as a whole. Third, the generate phase (Sect. 5.1.3) produces the model from the

data in the environments.

5.1.1 Analysis

The analysis phase produces three maps that contain information about the program, to help

the other two phases of the translation, and is achieved by two steps. The first step builds a

map of each object to the template it requires. Table 5.1 shows the marker that identifies each

type of object and the template that should be selected. There are eight application process

98

1 public class MainMission extends Mission

2 {

3 private final Buffer buffer;

4

5 public PCMission (){

6 buffer = new Buffer ();

7 }

8

9 protected void initialize (){

10 StorageParameters storageParameters = new StorageParameters (150 * 1000,

11 Const.PRIVATE_MEM_DEFAULT , Const.IMMORTAL_MEM_DEFAULT ,

12 Const.MISSION_MEM_DEFAULT - 100 * 1000);

13

14 new Producer(new PriorityParameters (10), storageParameters , this).register ();

15

16 new Consumer(new PriorityParameters (10), storageParameters , this).register ();

17 }

18

19 public Buffer getBuffer (){

20 return buffer;

21 }

22

23 public boolean cleanUp () {

24 return false;

25 }

26 }

Figure 5.2: The MainMission Class from the Buffer Example

template, one for each type of the paradigm objects and one for non-paradigm objects. These

templates define the structure of the application processes. The application model of each

paradigm object has an action for each of its overridden API methods. For example, the

application model of a mission has actions capturing the application-specific behaviour of the

initialize() and getNextMission() methods, respectively. These actions are triggered by

the framework model when it encounters application-specific behaviour. Additionally, the

application models capture a paradigm object’s application-defined variables and methods.

Since each paradigm object extends a different class (or implements an interface, in the

case of the safelet) and requires a different output template, it is simple to identify the

output template of each paradigm object. The only complication is that the template type

of a mission sequencer cannot be identified until the build phase (in Sect. 5.1.2). This is

because we model a mission sequencer that is started by a safelet differently to a mission

sequencer that is started by a mission, as described in Sect. 4.2.2. Since this cannot be

ascertained without checking the contents of a method, we defer this until the build phase.

Non-paradigm objects – any object of a class that is not a safelet, mission sequencer, mission,

or schedulable – share an output template, so this mapping is also simple to identify.

The second step produces two maps that are used in the generate phase to produce the

MethodCallBinder process. The first is the Class Method Map, which maps each class to

the names of its methods that are not defined in the SCJ API. The second is the Method

Callers Map, which maps each application-defined method in the program to the names of

the classes that call it. To deal with name clashes, two methods are considered to be the

99

Object type Marker Template Type

Safelet implments Safelet SafeletApp

Mission Sequencer extends MissionSequencer TopLevelMissionSequencerApp or

SchedulableMissionSequencerApp

Mission extends Mission MissionApp

Periodic Event Handler extends PeriodicEventHandler PeridoicEventHandlerApp

Aperiodic Event Handler extends AperiodicEventHandler AperiodicEventHandlerApp

One-Shot Event Handler extends OneShotEventHandler OneShotEventHandlerApp

Managed Thread extends ManagedThread ManagedThreadApp

Non-Paradigm Object None of the above NonParadigmApp

Table 5.1: Object Types, their Markers and Templates

same if their names are the same and they are declared in the same class or classes related by

inheritance. If two methods share only the same name, but are not declared in classes related

by inheritance, then the method name is prefixed by the class name to produce unique action

and channel names.

As a example of the output from the analysis phase we consider the MainMission, shown

in Fig. 5.2, from the buffer example (described in Sect. 2.1.2). The first step of the analysis

phase identifies MainMission as a mission, because it extends the Mission class. Step two

analyses each of the methods in MainMission and finds that only getBuffer() is not defined

by the SCJ API. This means that the second step adds a mapping between MainMission

and a list containing getBuffer (MainMission 7→ [getBuffer]) to the Method Class Map.

As the MainMission does not call any application-defined methods, the second step does not

update the Method Callers Map.

5.1.2 Build

The build phase takes the SCJ program and the maps produced by the analysis phase

(Sect. 5.1.1), performs a translation of elements of the program, and outputs an environ-

ment for each object. For each type of object – safelet, mission sequencer, mission, one of

the schedulables, or non-paradigm object – this phase builds a different environment. The

environment representing a class contains its name, variables, and methods. Each variable

and method is also represented by an environment, which contains its translation.

The build phase also constructs an overall environment of the program. This environment

holds information about all of the objects in the program and about its structure. This is

passed on to the generate phase to produce the part of the model that controls the network

of processes.

In the rest of this section we present an overview of the build phase. This comprises a

description of the process that builds an environment (which is reused and extended when

building the environments for each type of object), and then, in order, the process of building:

non-paradigm objects, safelet, mission sequencers, missions, and schedulables.

100

Build
Non-Paradigm

Objects

Build Mission Sequencer

Build Mission

Build Schedulable

[No More Mission Sequencers]
[More Mission
Sequencers]

[More Missions]

[No More Missions]

[More Schedulables]

[Schedulable Not a
Mission Sequencer]

[Schedulable is a Mission Sequencer]

[No More Schedulables]

Build
Safelet

Figure 5.3: Flow Chart of the Processes in the Build Phase

Overview

Figure 5.3 illustrates the build phase. The non-paradigm objects are the first to be trans-

lated, because they are unrelated to the SCJ program’s structure. Then the paradigm objects

are translated. Because they form a hierarchy, the translation strategy uses the structure of

the program to inform the order of translation, and branches to ensure that every paradigm

object is translated. Each type of object in the program has a different process to build its en-

vironment. However, because the environments share a common definition of the information

of a class, they share a sub-process that builds the common elements of those environments.

The safelet identified by the analysis phase (Sect. 5.1.1), is the first paradigm object to

be translated because it is the component at the top of the program hierarchy. We build the

environment of the safelet and then retrieve the mission sequencers that may be returned by

its getSequencer() method. For each of these top-level mission sequencers, we build all of

the environments of the missions that can be returned by its getNextMission() method. For

each mission, we build the environments of its schedulables until there are none left. Once

the environments of all of the missions from a particular mission sequencer have been built,

we build the environment of the next mission sequencer. Because we build the tree of an

SCJ program depth-first, if there are no more top-level mission sequencers to build then we

101

have explored the whole program and we can proceed to the generate phase, described in

Sect. 5.1.3.

Figure 5.4 shows an EBNF description of the environments produced by the build phase.

The NetworkEnv category defines the network environment, which holds information for

producing the network of processes that control the model at the top level. It contains

the ProgramEnv , which we describe next; the AppEnv , which contains a list of the names

and parameters of the application processes; and the LockingEnv containing the names and

priorities of the ThreadFW s and the names of the ObjectFW processes. The LockingEnv

may be empty if the program does not use synchronisation or suspension.

The ProgramEnv category defines the program environment, which contains the class

environments and characterises the structure of the program being translated. It comprises

the SafeletEnv , an optional list of MissionSequencerEnvs, a list of TierEnvs, and a number of

ClassEnvs. The TierEnv comprises a list of ClusterEnvs, which each contain a MissionEnv

and a list of SchedulableEnvs representing its schedulables. This structure mirrors that of

the network of processes that characterise the framework processes at the top level. Finally,

the list of ClassEnvs represents the non-paradigm objects in the program.

A ClassEnv contains information extracted from a class in the SCJ program. Each

of the environments that represent paradigm objects is defined as a ClassEnv , but three

of them contain an extra list that holds structural information used to guide the transla-

tion. The SafeletEnv holds a list of the names of the mission sequencers returned from

the safelet’s getSequencer() method. A MissionSequencerEnv holds a list of the names

of the missions returned from the mission sequencer’s getNextMission() method. Finally,

a MissionEnv environment holds a list of the names of the schedulables registered in the

mission’s initialize() method.

Building a Class Environment

As previously mentioned, the process of constructing a class’s environment is reused by each

build process in this phase. For each type of object, the build phase constructs a different

environment. However, each of these environments is defined as a ClassEnv (some with extra

information), so the process of extracting the information required by a ClassEnv is shared.

First, the name of the class is extracted and then translated (to ensure that it only

contains characters that are valid in Z). Then the variables of the class are extracted. Here

we are only concerned with the class variables (attributes), not variables declared in methods.

For each class variable we build a VarEnv (defined in Fig. 5.4) that stores the translation

of the name, type, and initialisation value of a variable. The VarEnv is added to the list of

variable environments in the ClassEnv .

Then the class’s methods are translated. For a class’s constructors, their parameters

(that are not strings or instances of the ReleaseParameters, SchedulingParameters, or

MemoryParameters family of classes) become the parameters to the process. These are

translated and stored in the ClassEnv The body of the constructor is analysed for variables

assignments, which are used to update the initialisation of variables in the ClassEnv .

For each of a class’s non-constructor methods we build a MethodEnv (Fig 5.4) and check

if it is synchronised or not. If a method is synchronised then the MethodEnv representing it

102

NetworkEnv = ProgramEnv AppEnv LockingEnv

AppEnv = {Name Parameters}
Threads = {Name PriorityLevel}
Objects = {Name}
LockingEnv = [Threads] [Objects]

ProgramEnv =
SafeletEnv [MissionSequencerEnv]

{TierEnv} {ClassEnv}
TierEnv = {ClusterEnv}
ClusterEnv = MissionEnv {SchedulableEnv}
PEHEnv = ClassEnv

APEHEnv = ClassEnv

OSEHEnv = ClassEnv

MTEnv = ClassEnv

SchedulableEnv =

MissionSequencerEnv
| PEHEnv
| APEHEnv
| OSEHEnv
| MTEnv

MissionEnv = ClassEnv Schedulables

Schedulables = {Name}
MissionSequencerEnv = ClassEnv Missions

Missions = {Name}
SafeletEnv = ClassEnv Sequencers

Sequencers = {Name}

ClassEnv =
Name [Parameters] [Variables]

[SyncMeths] [Meths] [ClassEnv]

Meths = {MethodEnv}
SyncMeths = {MethodEnv}
Variables = {VarEnv}
Parameters = {NameType}
ReturnType = Type

MethodEnv =
Name Parameters
ReturnType [RetVal] Body

VarEnv = Name Type Init

Figure 5.4: EBNF Description of the Environments Produced by the Build Phase

103

Application Result Note

boolean B where B ::= True | False

byte byte where byte = −128 . . 127

short short where short = −215 . . 215 − 1

int int where int = −231 . . 231 − 1

long long where long = −263 . . 263 − 1

float float where float is a given type

double double where double is a given type

ClassName ClassNameClass where ClassName is the name of a class or other

reference type.

Table 5.2: Type Translation Rules

Application Result

CVarDecl ; CVarDecls
CVarInit(CVarDecl)

∧ CvarInit(CVarDecl(CVarDecls))

AccesMod Type Name ; Name(Name) = DefaultInit(Type)

AccesMod Type Name = Expr ; Name(Name) = Expr(Expr)

Table 5.3: Class Variable Translation Rules

is recorded in the ClassEnv ’s list of synchronised methods, if not, then it goes into the list

of the non-synchronised methods.

For each method, we extract its name, its return type and potential values, and its param-

eters. We then translate the body of the method, capturing its behaviour. To achieve this

we reuse translation rules from the Level 1 translation [93] because all three SCJ compliance

levels are similarly restricted in their use of the Java language (except for suspension, which

is only available at Level 2). Some alterations to these rules was required to accommodate

the differences between our modelling approach and that of [93].

There are six categories that the EBNF in Fig. 5.4 does not define. The PriorityLevel

category defines the range of priorities available to the program, which is defined in the SCJ

API as being at least 1. .28. The Name category describes the name of a class, method, or

variable, so it can only include valid Z identifiers. The Type category describes a type, so it is

a translation of a Java type into Circus, as defined in Table 5.2. The Init category describes

the variable initialisation (defined in Table 5.3), so it is the translation of a value (a literal

value, as described in Table 5.4 or the result of a statement, described in Table 5.5). The

ReturnValue category describes the return value of a method, so it is also the translation of

a value using the same rules as for Init . Finally, the Body category describes the body of a

method, so it is the translation of a list of statements in the method body, which we describe

in detail below.

To translate the body of a method we apply a translation rule to each statement. Each

type of statement (for example, assignment, conditional, or return) has a rule to translate

it into Circus. Table 5.5 describes the Stmts rule, which is used to translate most Java

104

Application Result Note

0, 1, 2, ... 0, 1, 2, . . . Unsigned Numbers

0, -1, -2, ... 0,−1,−2, . . . Signed Numbers

true True Boolean value true

false False Boolean value false

null null Null reference for data objects

Table 5.4: Literal Value Translation Rules

Application Result

Stmts
(

Var = Expr ;
)

Name(Var) := Expr(Expr)

Stmts
(

Type Var ; Statements
)

var Name(Var) : Type(Type) •
Stmts(Statements)

Stmts

(
if (Expr) IfBranch

else ElseBranch

)
if(Expr(Expr))−→ Stmts(IfBranch)

8(¬ Expr(Expr))−→ Stmts(ElseBranch)

Stmts


switch (Expr) {
case value : Stmts; break;

. . .

default : DefltStmts ; }


if Expr(Expr) = Value(Value) −→
Stmts(Stmts)

8 . . .

8(¬ Expr(Expr) = Value(Value) ∨ . . .)

−→ Stmts(DefltStmts)

Stmts
(
while (Expr) { Stmts }

) µX •
if Expr(Expr) −→ Stmts(Stmts) ; X

8¬ Expr(Expr) −→Skip

fi



Stmts
(
assert Expr(Expr) ;

) if Expr(Expr) −→Skip

8 ¬ Expr(Expr) −→ abort

fi

Stmts
(
;

)
Skip

Stmts
(

Stmts1 ; Stmts2 ;

)
Stmts(Stmts1) ; Stmts(Stmts2)

Stmts

(
for (Stmts1 ; Expr ; Stmts2)

ForBody

)

µX •



if Expr(Expr) −→
Stmts(ForBody) ;

Stmts(Stmts2) ; X

8¬ Expr(Expr) −→Skip

fi




Table 5.5: Statement Translation Rules

105

statements, except Java expressions, which are translated using the Expr rule in Table 5.6.

These translation rules must often make use of other rules to translate specific elements of

a statement or expression. The Name rule translates a name into a valid Z identifier. The

Type rule translates a Java type into a valid Z type. Finally, the Value rule translates a Java

value, literal or otherwise.

Translating method calls is more complex. The rules to translate method call statements

are described in Table 5.7. A simple method call (meth();) implicitly targets this class

(assuming that meth() does not belong to an imported class), whereas a more complex

method call (c.meth();) targets the class c. However, the method may be located in the

class that is that target of the call or inherited from a super class. We must also consider if

a method is synchronised or not.

Each of the rules in Table 5.7 applies for a different type of method and method call. If the

method is application-defined and is defined in the same class as the method invocation, or if

the method is API-defined, then rule Meth1 is used, producing event names that simply com-

bine the method name with Call and Ret , respectively. If the method is application-defined

and is defined in another class, then rule Meth2 is used. This produces event names that

combine ‘binder ’ and the methods name. Such methods make use of the MethodCallBinder

(MCB) process, described in Sect. 4.4, to bind the method invocation to its location.

Synchronised methods use rule Meth3, which includes an extra parameter to the call

and return events. This parameter is the identifier of the ThreadFW process associated

with the process making the method call. This uses the part of the framework model that

handles synchronisation and suspension, described in Sect. 4.3. For all types of method call,

method parameters are added as parameters to the Call event and return values are added

as parameters to the Ret event.

As previously mentioned, we use OhCircus classes to capture non-reactive behaviour,

for example methods that are purely data operations. The ClassEnv optionally holds a

CircClassEnv , not shown in Fig. 5.4, which represents an OhCircus class that is associ-

ated with this ClassEnv ; this models the situation where an object has both reactive and

non-reactive behaviour, and so it captured by both a Circus process and an OhCircus class.

CircClassEnv holds the same attributes as the ClassEnv , except for the CircClassEnv so as

to avoid a circular definition.

As an example of an environment that is produced by the build phase, we return to

the MainMission example shown in Fig. 5.2. The environment built for the MainMission

class is shown in Table 5.8, where the values are given in a JSON-style format. The name

is simply the name of the class: ‘MainMission’. The class declares one variable, Buffer

buffer, which declares no initialiser. MainMission has no synchronised methods, so the

synchronised methods list in its environment is empty. Finally, the class has four non-

synchronised methods. The class’s constructor declares no parameters, so the parameters list

in the environment is empty. The buffer variable is initialised in the constructor, so this

is added to the environment for the buffer variable. The names, return values and types,

and bodies of the initialize(), cleanUp(), and getBuffer() methods are extracted and

translated. The initialize() method calls register() on two schedulables, a Producer

and a Consumer. So the Schedulables list in the environment contains these two class names.

106

Application Result Note

Expr(Value) Value(Value) Where Value is a literal

value

Expr(UniOp Expr) Expr(UniOp) Expr(Expr) Where UniOp is a unary

operator

Expr(Expr1 BinOp Expr2)

Expr(Expr1)

Expr(BinOp)

Expr(Expr2)

Where BinOp is a bi-

nary operator

Expr(+, -/ * ...) +, −, ∗. . .

Expr(& & , ||, !) ∧, ∨, ¬

Expr(Expr1?Expr2:Expr3)

if Expr(Expr1) = True−→
Expr(Expr2)

8 Expr(Expr3)

fi

Expr((Arg1, Arg2)) (Expr(Arg1), Expr(Arg2)) Translating argument

tuples

Table 5.6: Expression Translation Rules

Rule � Application Result

Meth1 Obj.Meth(Args);
Name(Meth)Call . Id(Obj) ! Expr(Args) −→
Name(Meth)Ret . Id(Obj)−→Skip

Meth2 Obj.Meth(Args);
binder Name(Meth)Call . Id(Obj) ! Expr(Args) −→
binder Name(Meth)Ret . Id(Obj)−→Skip

Meth3 Obj.Meth(Args);

Name(Meth) Call . Id(Obj) . Id(this)

.TId(Obj) ! Expr(Args) −→
Name(Meth)Ret . Id(Obj) . Id(this) .TId(Obj)−→Skip

Table 5.7: Method Invocation Translation Rules

107

Attribute Value

Name “MainMission”

Parameters []

Variables [name:“buffer”, type:“Buffer”, initialisation:“new Buffer()”]

Synchronised

Methods
[]

Methods

[{name:“initialize”, parameters:null, returnType:void,

returnValue:null, body:“register !ProducerSID !MainMission−→
register !ConsumerSID !MainMission”},
{name:“cleanUp”, parameters:null, returnType:boolean,

returnValue:false, body:“”},
{name:“getBuffer”, parameters:null, returnType:“Buffer”,

returnValue:[“buffer”], body:“”}]

Circus Class {name:“MainMission”,parameters:[], variables:[name:“buffer”,

type:“Buffer”, initialisation:“new Buffer()”], methods:[], synchro-

nised methods:[]}
Schedulables [“Producer”,“Consumer”]

Table 5.8: Environment of the MainMission Class

This is is specialised for the environments of missions.

Build Non-Paradigm Objects

The process of constructing a ClassEnv is the same for each non-paradigm object. The

ClassEnvs for all of the non-paradigm objects in the program can be built at the beginning

of the build phase. This is because non-paradigm objects are not involved in a program’s

hierarchy, so the order in which they are built is unimportant. This process translates the

methods and variables of the object, using the rules described above to build its class envi-

ronment. The list of ClassEnvs is stored in the program’s ProgramEnv .

Build Safelet

The process of constructing a SafeletEnv for the safelet uses the rules described above to

build its class environment and captures some additional information, which we describe in

this section. To find the safelet, we consult the map constructed during step one of the

analysis phase, which indicates which class implements the Safelet interface.

This process specifically translates the safelet’s API methods initializeApplication()

and getSequencer(). The SafeletEnv records the names of the mission sequencers that are

returned by the getSequencer() method. These mission sequencers are the top-level mission

sequencers. The SafeletEnv built by this process is stored in the ProgramEnv .

108

Build Mission Sequencer

The process to build a MissionSequencerEnv for a mission sequencers uses the rules described

above to build its class environment and captures some extra information, which we describe

in this section. This process is used for both top-level and schedulable mission sequencers. It

captures a mission sequencer’s getNextMission() method and application-defined variables

and methods. The missions returned by the getNextMission() method are recorded in the

MissionSequencerEnv . This list informs which missions are translated next.

The MissionSequencerEnv produced by this process is stored in the ProgramEnv . If the

MissionSequencerEnv represents a top-level mission sequencer, then it is stored directly in

the list in the ProgramEnv . If it is a schedulable mission sequencer, then it is stored in the

list of schedules in the ClusterEnv that holds its controlling mission.

Build Mission

The process to build a MissionEvn for a mission uses the rules described above to build its

class environment and captures some extra information, which we describe in this section.

It captures a mission’s initialise() and cleanUp() methods. This process also records

the schedulables that are registered to this mission in its initialise() method, in the

MissionEnv . This list informs the schedulables that are translated next. The environment

built by this process is stored in its own ClusterEnv , where its schedulables will also be

stored.

Build Schedulable

The process that builds a ClassEnv for a schedulable uses the rules described above to build

its class environment. The schedulable is checked against the map constructed in step one

of the analysis phase (Sect. 5.1.1 to find its type. If the schedulable is an event handler or

managed thread, then a ClassEnv is built. If the schedulable is a mission sequencer, then the

previously described process is used to build a MissionSequencerEnv . Any mission sequencers

translated by this process are schedulable mission sequencers.

For an event handler, this process captures its handleAsyncEvent() method. For a

managed thread, this process captures its run() method. A ClassEnv built by this process is

stored in the ClusterEnv that holds its controlling mission. The environments of the missions

and schedulables loaded by a schedulable mission sequencer are built before the process is

complete.

5.1.3 Generate

The generate phase takes the environments produced by the build phase (Sect. 5.1.2) and

outputs the Circus processes, OhCircus classes, and sets of channels that make up the appli-

cation model. Generating the components of our model involves combining an environment

with a template. This combination replaces tags in the template with the relevant informa-

tion from the environment. There is a different template for each type of paradigm object,

for non-paradigm objects, for OhCircus classes, and for channels.

109

Stage 2. Generate Processes (for each
paradigm or non-paradigm object)

Step 1.
Generate
Process

Stage 1. Generate Network Processes

Step 1.
Generate
Framework

Step 2.
Generate

Bound_Application

Step 3.
Generate

MethodCallBinder

Step 4.
Generate
Locking

Step 2.
Generate
Channels

Figure 5.5: Flow Diagram of the Generate Phase

Figure 5.5 the structure of this phase, which is split into two stages. Stage one produces

the top-level network of processes that control our model. Stage two produces the Circus

processes, OhCircus classes, and channels that model the objects in the SCJ program. Chan-

nels are generated for both the top-level processes generated in stage one and the processes

representing the objects in the program, generated in stage two.

Stage One

Stage one occurs in four steps, illustrated in the top box of Fig. 5.5. It uses the information

in the NetworkEnv environment, which records the ProgramEnv , AppEnv , and LockingEnv

environments. These are used to construct the network of processes that make up the whole

model: process Program =̂ (Framework J appSync K Bound Application) J lockSync K Locking .

The Framework process controls all of the framework processes. The Bound Application

process contains the Application and MethodCallBinder processes; Application controls the

application processes and MethodCallBinder provides actions that bind method calls to their

locations. Finally, the Locking process controls the processes dealing with locking and suspen-

sion. The arrangement of the processes in the Framework process and the processes contained

in the Application and Locking processes are driven by the information in the environments.

The channel set appSync contains the channels needed to allow communication between

the Framework and Application processes. This set comprises all the channels that repre-

sent the framework handing control to the application. The lockSync channel set contains

the channels that allow the Framework and Application processes to communicate with the

Locking process. This set comprises the channels representing synchronisation, suspension,

110

process ControlTier =̂
SafeletFW

JControlTierSyncK

TopLevelMissionSequencerFW (Name)


Figure 5.6: Control Tier Template

and thread interruption. Both of these channel sets are fixed and require no information from

the SCJ program. Below, we describe the four steps in stage one of the generate phase, each

generating a different component of the network.

Step One: Framework Process

The first step generates the Framework process, which controls the framework processes in

the model. The framework processes are generic and reused for each translated program (as

described in Chap 4). However, the application being translated dictates which framework

processes are required and their structural arrangement.

Each process, except for the SafeletFW process, in instantiated with the identifier of

its application counterpart, and any parameters required by the process. As previously

mentioned, to make communication between the framework processes easier to specify, they

are split into the ControlTier and a number of program tiers. The ControlTier contains the

SafeletFW and TopLevelMissionSequencerFW processes in parallel. The template for the

ControlTier , shown in Fig. 5.6, is combined with the MissionSequencerEnv representing the

top-level mission sequencer to produce its model. In this simple example, that tag Name is

replaced by the name from the top-level mission sequencer’s environment.

A program tier contain one or more clusters, with each cluster containing a MissionFW

process and its schedulable framework processes. Fig: 5.7 shows the template for a program

tier. Each TierEnv is combined with this template to produce the model of one program

tier, by using the information in the environments recorded in the TierEnv . The i tag is the

index of the location of the tier being constructed in the list of TierEnvs, this produces a

simple unique name for the process. For example, the first tier in the list is named ‘Tier0’,

the second tier in the list is named ‘Tier1’, and so on.

For each ClusterEnv in the TierEnv , a cluster Circus process is generated, which consists

of the name of the mission (which replaces the MName tag) and the names and parame-

ter lists of the schedulables registered to that mission. For each schedulable we instantiate

the relevant framework process with its name and any API parameters. For example, a

periodic event handler produces PeriodicEventHandlerFW (PEHNameID ,Params), where the

PHEName tag is replaced by the name in the ClassEnv representing the handler, and the

Params tag is replaced by a list of the parameters to the periodic event handler constructor.

For example, translating a periodic event handler with the name Peh, no start time off-

set, a period of 50ms, no deadline, and no deadline miss handler, produces the instantiation

PeriodicEventHandlerFW (PehID ,NULL, time(50, 0),NULL,nullSID). The NULL values in-

dicate that no time has been specified, and the nullSID is a null identifier to indicate that

111

process Tier i =̂

MissionFW (MNameID)

JMissionSyncK

PeriodicEventHandlerFW (PEHNameID ,Params)

JSchedulablesSyncK

. . .

AperiodicEventHandlerFW (APEHNameID ,Params)

JSchedulablesSyncK

. . .

OneShotEventHandlerFW (OSEHNameID ,Params)

JSchedulablesSyncK

. . .

SchedulableMissionSequencerFW (SMSNameID)

JSchedulablesSyncK

ManagedThreadFW (MTNameID)

JSchedulablesSyncK

. . .




JClusterSyncK

. . .

Figure 5.7: Program Tier Template

there is no deadline miss handler.

The MissionSync, SchedulablesSync, and ClusterSync channel sets require no informa-

tion from the program, they are fixed. The MissionSync channel set allows the mission to

communicate with its schedulables. It contains the channels for signalling the activation, reg-

istration, and termination of schedulables; the termination of the mission, top-level mission

sequencer, and safelet; and, the channels modelling the schedulable’s cleanUp() method. The

SchedulablesSync channel set controls the communication between schedulables in the same

cluster. It contains the channels that activate the schedulables and signal the termination of

the safelet and top-level mission sequencer. Finally, the ClusterSync channel set controls the

communication between clusters. It contains the channels that signal the termination of the

safelet and top-level mission sequencer.

The Framework process uses the TierSync channel set to control the communication

between the ControlTier and the program tiers, shown in Fig. 5.8. The process also uses tier-

specific channel sets to control the communication between the program tiers (for example,

Tier0Sync in Fig. 5.8), which contain the channels signalling termination of the safelet and

top-level mission sequencer and some channels that are specific to each tier.

As previously mentioned, a program will always have a Tier0, containing the MissionFw

processes that can be returned by the top-level mission sequencer. If a mission in Tier0

registers a schedulable mission sequencer, then Tier1 will contain the MissionFW processes

that can be returned by that schedulable mission sequencer. A tier can contain MissionFW

112

process Framework =̂

ControlTier

JTierSyncK
Tier0

JTier0SyncK

Tier1




Figure 5.8: Example of the Framework Process

process Application =̂
NameApp(Params)

9

. . .


Figure 5.9: Application Process Template

processes that are not loaded by the same mission sequencer. For example, if a mission in

Tier0 registers two schedulable mission sequencers, then the missions of both of those mission

sequencers would be in Tier1. As an example, Fig. 5.8 shows the Framework process for a

program that has at lest one schedulable mission sequencer and hence has two tiers.

To generate the synchronisation set that controls communication between tiers, we use the

identifier from each MissionEnv in the tier below to restrict the channels controlling the start

and termination of missions with the identifier of the missions in this tier. If we are generating

a channel set for a program tier that is not Tier0, then we also use the identifiers from any

MissionSequencerEnv environments in the tier below to restrict the channel requesting mis-

sion termination with the identifiers of the missions and mission sequencers in this tier. For ex-

ample, generating the TierSync set in Fig. 5.8, where Tier0 contains the mission MainMission

produces the set {| done toplevel sequencer , done safeletFW , start mission.MainMissionID ,

done mission.MainMissionID , initializeRet .MainMissionID |}.

Step Two: Application Process

The second step generates the Application process, which is one half of the Bound Application

process. The Application process is simpler to generate than the Framework process, be-

cause it is an interleaving of all the application processes that represent the program being

modelled. The template for the Application process is shown in Fig. 5.9, and it is com-

bined with the information in the AppEnv environment, produced by the build phase. The

AppEnv lists pairs of process names and parameters. We combine each pair with the template

NameApp(Params), replacing the Name tag with the process name and the Params tag with

the list of application-defined parameters. For example, generating an application process

representing a managed thread Thread, which takes the identifier of the mission MainMission

as a parameter, produces the process ThreadApp(MainMissionID).

113

process MethodCallBinder =̂ begin

Name MethodBinder =̂

binder NameCall

? loc : (loc ∈ NameLocs)

? caller : (caller ∈ NameCallers)

?Params−→
NameCall . loc . caller !Params−→
NameRet . loc . caller ? ret−→
binder NameRet . loc . caller ! ret−→
Name MethodBinder


. . .

BinderActions =̂
Name MethodBinder

9

. . .



• BinderActions 4 (done toplevel sequencer −→ Skip)

end

Figure 5.10: Template for the MethodCallBinder Process

Step Three: MethodCallBinder Process

The third step generates the MethodCallBinder (MCB) process, which is the second half

of the Bound Application, and its associated channels and sets. The MCB contains an

action for each of the application-defined methods in the program, as described in Sect. 4.4.

Figure 5.10 shows the template for the MethodCallBinder process. Each action in the process

is generated using the information in one MethodEnv . The Name and the Params tags in the

template are replaced by the name and parameter list from the MethodEnv , respectively. If

the MethodEnv represents a synchronised method, then the channels in the action generated

also take a thread identifier as a parameter, to ensure that the communication refers to the

correct ThreadFW process (as described in Sect. 4.3). This is achieved using the rules in

Table 5.7.

This step also produces the call and return channels and the ‘Locs’ and ‘Callers’ sets for

each of the MCB process’s actions. The purpose of the ‘Locs’ and ‘Callers’ sets is described

in full in Sect. 4.4 and recapped below. As shown in Fig. 5.10, the call and return channels

are generated using the name of the bound method. They both accept a loc and a caller

parameter. The call channel accepts the same parameters as the method’s call channel,

114

and the return channel accepts a return parameter of the same type as the method’s return

channel. The Locs set contains the identifiers of the processes that contain the method, and

the Callers set contains the identifiers of the processes that call the method. These sets are

prefixed by the method name, to produce a unique name. The ‘binder ’ call event only accepts

communications when the loc and caller parameters are in its associated ‘Locs’ and ‘Callers’

sets, respectively.

The Locs set for a particular method contains the names of all of the classes in the Method

Class Map (constructed during step two of the analysis phase) that map to a list that contains

the method’s name. As previously mentioned, to deal with name clashes, two methods are

considered to be the same if their names are the same and they are declared in the same class

or classes related by inheritance. In such cases, those methods share call and return channels

and produce one ‘ MethodBinder ’ action. If two methods share only the same name, but are

not declared in classes related by inheritance, then the method name is prefixed by the class

name to produce unique action and channel names.

The Callers set for a particular method is the list of class names mapped to by that

method in the Method Callers Map (constructed during step two of the analysis phase).

During the building of the Method Callers Map, the same name clash precautions have been

taken as for building the Locs set, above.

Step Four: Locking Process

The fourth step generates the Locking process. It contains the Objects and Threads process

in parallel, synchronising on ThreadSync, which contains the channels that allow ObjectFW

processes to alter or query a ThreadFW ’s priority. This allows our model to capture Priority

Ceiling Emulation, as used by SCJ programs. However, we only check for priority exceptions

during suspension.

The LockingEnv environment is combined with the template for the Threads, Objects, and

Locking processes, shown in Fig. 5.11, to produce the processes. The TName and TPriority

tags are replaced with the names and priories of each of the ThreadFW processes. The

OName tags are replaced with the names of each of the ObjectFW processes.

Stage Two

In stage two, for each environment representing a paradigm or non-paradigm object, we take

two steps. Because the environments already contain the information required to produce

the model, this phase can approach the environments in any order. The first step generates

a process, and possibly an OhCircus class, from an environment. The second step generates

the channels required by the processes generated by the first step.

Step One: Processes

The first step takes each environment, identifies the required output template, and combines

them to produce a process (and possibly an OhCircus class). The required output template

can be determined by checking the type of the environment in Table 5.1.

Figure 5.12 shows the generic template for all application processes; it shows the structure

of the generic application process templates and is used to as the template non-paradigm

115

process Threads =̂
ThreadFW (TNameID ,TPriority)

9

. . .



process Objects =̂
ObjectFW (ONameID)

9

. . .



process Locking =̂ Threads J ThreadSync K Objects

Figure 5.11: Threads, Objects, and Locking Process Teamples

objects. The processName tag is replaced by the name in the ClassEnv and the params tag

is replaced by the list of parameters. For each of the VarEnvs in the ClassEnv ’s variable list

we produce a variable in the process’s state and an entry in the init schema (if the variable is

initialised in the program). To do this, we replace the varName tags with the variable’s name,

the varType tags with the variable type, and varInit with the variable’s initialisation. Finally,

the processType is replaced by the type of process (the type of paradigm object it models

except for non-paradigm objects, which use ‘safelet’ so that they are terminated along with

the safelet process) and the processID tag is replaced by the identifier of the process.

Similarly, for a class’s methods, we produce one action per MethodEnv in the ClassEnv ’s

Meth or SyncMeth list – which contain the environments of the class’s method and synchro-

nised methods, respectively. To do this, we replace the methName tags with the name of the

method, the returnType tag with the method’s return type, and the methBody tags with the

body of the method. Note that if the method has no return type, then the return variable

(var returnType : ret) is omitted from the action definition.

Each type of object requires its own template. These specific templates are based on

the generic template in Fig. 5.12, extended with local actions for its specific API-defined

methods. We describe these specific templates below.

To generate the safelet application process, we combine a SafeletEnv with the template in

Fig. 5.13. In addition to the tags present in the generic template, when using this template

we replace the initBody tag with the body of the safelet’s initializeApplication() method

and the SchedulableID tag with the identifier of the top-level mission sequencer that is returned

by the safelet’s getSequencer() method. The information required by both of these tags is

found in the MethodEnv representing the relevant method in the SafeletEnv .

To generate a mission sequencer application process we combine a MissionSequenecerEnv

with the template in Fig. 5.14. This template adds an action to model the getNextMission()

method, but contains no tags that are not present in the generic template. The state of a

mission sequencer application process contains an OhCircus class, which defines the variables

116

process processNameApp =̂ paramsbegin

State

varName : varType

. . .

Init

State ′

varName′ = varInit

. . .

methName =̂

var returnType : ret •
(
methBody

)
. . .

Methods =̂
methName

@

. . .

 ; Methods

• (Init ; Methods)4 (end processType app . processID−→ Skip)

Figure 5.12: Generic Application Process Template

and non-reactive behaviour of the mission sequencer object. An example of this can be

seen in the GetNextMission action in Fig. 5.14, which calls the getNextMission() OhCircus

method in the class referenced by the variable this. The method contains a translation of

the mission sequencer object’s getNextMission() method, because it does not interact with

other processes.

To generate a mission application process we combine a MissionEnv with the template

shown in Fig. 5.15. In addition to the generic template, the mission template adds two extra

actions. The InitializePhase action represents the initialize() method. In this action, for

each schedulable in the Schedulables list in the source MissionEnv , we generate a register

event, where the SID tag is replaced with the identifier of the schedulable.

The CleanupPhase action represents the cleanUp() method, which returns a boolean,

so the action defines a boolean ret variable that is output on the return channel. The

cleanupBody tag is replaced with the body of the cleanUp() method. It is expected that the

ret variable will be set in the method body, but if it is not then ret := True; is added before

the return channel.

As an example of the output of the generate phase, we return to the MainMission from the

buffer application, shown in Fig. 5.2. To produce the model for the MainMisison class, the

generate phase combines the template in Fig. 5.15 with the information from the environment

117

process processNameApp =̂ paramsbegin

State

varName : varType

. . .

Init

State ′

varName′ = varInit

. . .

InitializeApplication =̂
initializeApplicationCall−→
initBody

initializeApplicationRet−→
Skip


GetSequencer =̂

getSequencerCall−→
getSequencerRet ! SchedulableID−→
Skip


methName =̂

var returnType : ret •
(
methBody

)
. . .

Methods =̂

GetSequencer

@

InitializeApplication

@

methName

@

. . .


; Methods

• (Init ; Methods)4 (end safelet app −→ Skip)

Figure 5.13: Template for Safelet Application Processes

118

process processNameApp =̂ paramsbegin

State

this : ref processNameClass

varName : varType

. . .

Init

State ′

this = new processNameClass()

varName′ = varInit

. . .

GetNextMission =̂ var ret : MissionID •
getNextMissionCall . processNameID−→
ret := this . getNextMission();

getNextMissionRet . processNameID ! ret−→
Skip


methName =̂

var returnType : ret •
(
methBody

)
. . .

Methods =̂

GetNextMission

@

methName

@

. . .


; Methods

• (Init ; Methods)4 (end sequencer app .ProcessNameID −→ Skip)

Figure 5.14: Template for Mission Sequencer Application Process

119

process processNameApp =̂ paramsbegin

State

varName : varType

. . .

Init

State ′

varName′ = varInit

. . .

InitializePhase =̂

initializeCall .ProcessNameID−→
register !SchedulableID !ProcessNameID−→
. . .

initializeRet .ProcessNameID−→
Skip


CleanupPhase =̂

varB : ret •
cleanupMissionCall .ProcessNameID−→
cleanupBodycleanupMissionRet .ProcessNameID ! ret−→
Skip


methName =̂

var returnType : ret •
(
methBody

)
. . .

Methods =̂



InitializePhase

@

CleanupPhase

@

methName

@

. . .


; Methods

• (Init ; Methods)4 (end mission app .ProcessNameID −→ Skip)

Figure 5.15: Template for Mission Application Processes

120

described in Table. 5.8. The result of this combination generates the model MainMissionApp

shown in Fig. 5.16.

To generate a process for an event handler we combine a ClassEnv representing the event

handler with the template shown in Fig. 5.17. This template is used to translate all three

types of event handler. This is possible because the specifics of their release patterns are

captured by the framework model. In addition to the generic template, the event handler

template adds an action to model the handler’s handleAsyncEvent() method, in which we

replace the HandleAsyncBody tag with the body of the method. The method body is taken

from the MethodEnv that represents the handleAsyncEvent() method in the ClassEnv for

this handler. Finally, the HandlerType tag is replaced with name of the type of handler

(periodic, aperiodic, or oneshot) to complete the name of the channel that terminates it.

To generate a process for a managed thread we combine a ClassEnv that represents a

managed thread object with the template shown in Fig 5.18. In addition to the generic

template, the managed thread template adds an action to model the run() method, in which

we replace the RunBody tag with the body of the action (found in the MethodEnv representing

that method in the ClassEnv).

Step Two: Channels

The second step generates the channels required by the processes produced in the first step.

These channels represent the call to and return from the actions in each application process.

Figure 5.19 shows the template for generating the pair of channels for non-synchronised

methods and 5.20 shows the templates for generating the pair of channels for synchronised

methods. We combine one of these templates with the information in a MethodEnv , replacing

each tag with the relevant information.

The ChanName tag is replaced with the name of the channel (which is the name of the

method is representing). The LocType tag is replaced with the type of the identifier used by

the location of the method and the CallerType tag with the type of the identifier used by the

callers of the method. If the method is only called inside the class it’s defined in, then the

‘×CallerType’ is omitted. The identifier type will be either appID , for non-paradigm objects;

MissionID , for missions; or SchedulableID , for schedulables. The CallerType and LocType

are used to handle inheritance and polymorphism, as described in Sect. 4.4. For the call

channel, we replace the Params tag with any parameters of the method it represents. Finally,

for the return channel, we replace the ReturnType tag with the return type of the method it

is representing.

5.2 Core Formalisation

In this section we present a formalisation in Z of the core elements of the translation strategy

described in Sect. 5.1. Z provides a useful logical framework with which to formalise our

translation. At the top-level, we define a function, TransSCJProg that accepts an SCJ

Level 2 program and outputs its Circus model. To give us the facility to describe SCJ and

Circus programs, we encode a BNF description of both SCJ and Circus into Z. This encoding

121

process MainMissionApp =̂ begin

State

this : ref MainMissionClass

Init

State ′

this ′ = new MainMissionClass()

InitializePhase =̂

initializeCall .MainMissionMID−→
register ! ProducerSID ! MainMissionMID−→
register ! ConsumerSID ! MainMissionMID−→
initializeRet .MainMissionMID−→
Skip


CleanupPhase =̂

var ret : B •
cleanUpCall .MainMissionMID−→
ret := this . cleanUp();

cleanUpRet .MainMissionMID ! ret−→
Skip


getBufferMeth =̂ var ret : Buffer •

getBufferCall .MainMissionMID−→
ret := this . getBuffer();

getBufferRet .MainMissionMID ! ret−→
Skip



Methods =̂



InitializePhase

@

CleanupPhase

@

getBufferMeth


; Methods

• (Init ; Methods)4 (end mission app .MainMissionMID −→ Skip)

Figure 5.16: Example of MainMissionApp Processes Generated by the Translation Strategy

122

process processNameApp =̂ paramsbegin

State

varName : varType

. . .

Init

State ′

varName′ = varInit

. . .

handleAsyncEvent =̂
handleAsyncEventCall . processNameID−→
HandleAsyncBody;

handleAsyncEventRet . processNameID−→
Skip


methName =̂

var returnType : ret •
(
methBody

)
. . .

Methods =̂

handleAsyncEvent

@

methName

@

. . .


; Methods

• (Init ; Methods)4 (end HandlerType app . processNameID −→ Skip)

Figure 5.17: Template for an Event Handler Application Process

123

process processNameApp =̂ paramsbegin

State

varName : varType

. . .

S Init

State ′

varName′ = varInit

. . .

Run =̂
runCall . processNameID−→
RunBody;

runRet . processNameID−→
Skip


methName =̂

var returnType : ret •
(
methBody

)
. . .

Methods =̂
Run

@

. . .

 ; Methods

• (Init ; Methods)4 (end managedThread app . processNameID −→ Skip)

Figure 5.18: Template for a Managed Thread Application Process

channelChanNameCall : LocType× CallerTypeParams

channelChanNameRet : LocType× CallerType× ReturnType

Figure 5.19: Template for Non-Synchronised Method’s Call and Return Channels

124

channelChanNameCall : LocType× CallerType× ThreadIDParams

channelChanNameRet : LocType× CallerType× ThreadID × ReturnType

Figure 5.20: Template for Synchronised Method’s Call and Return Channels

uses the BNF presented in Fig. 2.5 as its base, and is presented in Appendix. D.

Figure 5.21 shows the SCJ BNF encoded in Z. As previously mentioned, we consider that

the paradigm of SCJ is separate from its implementation in Java. Therefore, the SCJ BNF

encoding shows only the syntactic categories specific to SCJ programs. The definition of Java

syntactic categories remains the same as in the Java Language Specification (JLS) [34].

In the Z encoding of the SCJ BNF, the SCJProgram type models an SCJ program as

a Safelet , a TopLevelMissionSequencer , and a sequence of Tier values. The Safelet type

defines the safelet as an Identifier and a SafeletClassBody . An Identifier has the same

definition as in the JLS [34]. The SafeletClassBody defines the body of a safelet class as

an InitializeApplication, GetSequencer , and ImmortalMemorySize, which represent the API

methods defined by the Safelet interface, and a sequence of ClassBodyDeclaration values.

Each of these is defined as a MethodBody , which has the same definition as in the JLS [34].

The sequence of ClassBodyDeclaration values represents the application-specific contents of

the class, where a ClassBodyDeclaration has the same definition as in the JLS [34]. Each of

the paradigm classes is encoded using this pattern, where each is defined as an identifier and

the body of the relevant class.

TopLevelMissionSequencer defines the top-level mission sequencer as either NoSequencer

(because a safelet may return null from its getSequencer() method) or a mission sequencer

value defined by the constructor tlms〈〈MissionSequencer〉〉. For simplicity, this assumes that

there is only one top-level mission sequencer, unlike the environments presented in Fig. 5.4. A

MissionSequencer is defined with the same pattern as the Safelet category: it is an Identifier

and a MissionSequencerClassBody , which contains values to represent the getNextMission()

method and a sequence of ClassBodyDeclaration values.

As described at the start of Sect. 5.1.2, SCJ programs are organised into a control tier

and several program tiers. Each program tier comprises several clusters, which each con-

tain a mission and its registered schedulables. In the SCJ BNF encoding the Safelet and

TopLevelMissionSequencer objects compose the control tier and the Tier object represents a

program tier. A Tier is defined as a sequence of Cluster values, which comprises a Mission

and a sequence of SchedulableObjects.

A Mission value defines a mission, using the same pattern as the previously described

paradigm objects. A SchedulableObject constructs one of the schedulable object types: either

an event handler (handler〈〈EventHandler〉〉), a managed thread (mt〈〈ManagedThread〉〉), or a

mission sequencer (nms〈〈NestedMissionSequencer〉〉). An EventHandler is defined as one of

the three types representing an event handler (periodic, aperiodic, or one-shot). Each of the

handler categories, the ManagedThread , and the NestedMissionSequencer are defined with

the same patternas the other paradigm objects we describe above. The MethodDeclaration,

Long , and ClassDeclaration types have the same definition as in the JLS [34].

125

SCJProgram == Safelet × TopLevelMissionSequencer × seq Tier

Safelet == Identifier × SafeletClassBody

SafeletClassBody ==
InitializeApplication ×GetSequencer ×
ImmortalMemorySize × seq ClassBodyDeclaration

GetSequencer == MethodBody

InitializeApplication == MethodBody

ImmortalMemorySize == MethodDeclaration

TopLevelMissionSequencer ::= NoSequencer | tlms〈〈MissionSequencer〉〉
Tier == seq Cluster

Cluster == Mission × seq SchedulableObject

Mission == Identifier ×MissionClassBody

MissionClassBody == Initialize × Cleanup × seq ClassBodyDeclaration

Initialize == MethodBody

Cleanup == MethodBody

SchedulableObject ::= handler〈〈EventHandler〉〉 | mt〈〈ManagedThread〉〉 |
nms〈〈NestedMissionSequencer〉〉

NestedMissionSequencer == MissionSequencer

MissionSequencer == Identifier ×MissionSequencerClassBody

MissionSequencerClassBody == GetNextMission × seq ClassBodyDeclaration

GetNextMission == MethodBody

EventHandler ::=

pehDecl〈〈PeriodicEventHandler〉〉 |
apehDecl〈〈AperiodicEventHandler〉〉 |
osehDecl〈〈OneShotEventHandler〉〉

PeriodicEventHandler == Identifier × EventHandlerClassBody

AperiodicEventHandler ::=
apehType〈〈Identifier × EventHandlerClassBody〉〉 |
aplehType〈〈Identifier×LongEventHandlerClassBody〉〉

LongEventHandlerClassBody == HandleAsyncLongEvent × seq ClassBodyDeclaration

OneShotEventHandler == Identifier × EventHandlerClassBody

EventHandlerClassBody == HandleAsyncEvent × seq ClassBodyDeclaration

HandleAsyncLongEvent == Long ×MethodBody

HandleAsyncEvent == MethodBody

ManagedThread == Identifier ×ManagedThreadClassBody

ManagedThreadClassBody == Run × seq ClassBodyDeclaration

Run == MethodBody

[MethodBody ,ClassBodyDeclaration, Identifier ,MethodDeclaration,Long ,ClassDeclaration]

Figure 5.21: SCJ BNF Translated to Z

126

Model Component Build Function Generate Function

Framework Processes BuildFWEnv GenerateFWProcs

Application Process BuildAppProcEnv GenerateAppProc

MethodCallBinder Process BuildMCBEnv GenerateMCBProc

Locking Processes BuildLockEnv GenerateLockProc

Table 5.9: Functions used by the TransSCJProg Function

The formalisation captures the same three phases as the translation strategy in Sect. 5.1.

The functions defining the analysis phase extract information from the program. The func-

tions defining the build phase construct an environment for each of the objects in the program.

Finally, the functions defining the generate phase construct the Circus models from the in-

formation in the environments. The build and generate functions use various other auxiliary

functions to perform the translation. Some of these implement the analysis phase.

Figure 5.22 shows the main translation function TransSCJProg , which accepts an SCJ

program and an Identifier , which is the SCJ program’s name. This function calls a number

of others, which build and generate specific parts of the model. Table 5.9 shows the functions

used by TransSCJProg , the phase to which they belong, and the component they produce.

Each build function produces an environment that holds the information needed to generate

the model of that particular component. For example, the BuildFWEnv function produces

a FWEnv , which is used by the GenerateFWProcs function to generate the framework pro-

cesses. In addition to the functions in Table 5.9, the TransClasses function translates the

application classes. The definitions of the functions omitted here can be found in Appendix E.

The Program process is defined inside the TransSCJProg function (Fig. 5.22) and takes the

form process Program =̂ (Framework JappSync KBound Application) J lockSync KLocking , as

explained in the previous section. The framework type is defined, outside of TransSCJProg ,

as a sequence of all the framework processes. The result of TransSCJProg is defined as

the concatenation of the framework type, the translated application processes app, the

MethodCallBinder processes mcbModel , the Locking processes lockModel , the Program pro-

cess, and two processes that are constructed during the result’s definition. The first process

is 〈procDef (pd(FWName, head fwProcs))〉, which defines the Framework process in our z

BNF encoding of Circus. The second is 〈procDef (pd(AppName, appProc))〉, which defines

the Bound Application process. This sequence of processes corresponds to the processes

described in Sect. 5.1 combined with the framework model in Chap. 4.

To illustrate how components of the model are translated by TransSCJProg using other

functions, we examine the translations of the framework processes. Figure 5.23 shows the

build phase function BuildFWEnv , which takes an SCJProgram and extracts the information

required to generate the framework processes. It produces an FWEnv (defined in Fig. 5.24),

which holds the information extracted from the program. The FWEnv type is a schema,

which records the identifier of the top-level mission sequencer and a non-empty sequence of

TierEnvs. Note that an FWEnv does not need to hold any information about the safelet

because its framework process does not take any parameters.

The BuildFWEnv function extracts the top-level mission sequencer from the SCJ program

127

TransSCJProg : Identifier × SCJProgram 7→ CircusProgram

dom TransSCJProg = Identifier × TranslatablePrograms

∀name : Identifier ; scjProg : SCJProgram

• ∃ app : CircusProgram; program : CircusProgram;

fwProcs : seq Process; appProc : Process; lockModel : seq CircusParagraph;

mcbModel : seq CircusParagraph; fwEnv : FWEnv ;

appEnv : AppProcEnv ; mcbEnvs : MCBEnv ; lockEnv : LockingEnv |
fwEnv = BuildFWEnv(scjProg)

appEnv = BuildAppProcEnv(scjProg)

mcbEnvs = BuildMCBEnvs(scjProg)

lockEnv = BuildLockEnv(scjProg)

app = TransClasses(scjProg)

∧ fwProcs = GenerateFWProcs(fwEnv)

∧ appProc = GenerateAppProc(appEnv)

∧ mcbModel = GenerateMCBModel(mcbEnvs)

∧ lockModel = GenerateLockModel(lockEnv)

∧ program = 〈procDef (pd(ProgName(name),

procHide(procPar(

procHide(

procPar(

procName(FWName),

appComms,

procHide(

procPar(procName(AppName),

mcbComms,

procName(MCBName)),

mcbComms)),

appComms),

lockComms,

procName(LockName)),

lockComms)))〉 •
TransSCJProg(name, scjProg) =

framework a 〈procDef (pd(FWName, head fwProcs))〉
aapp a 〈procDef (pd(AppName, appProc))〉
amcbModel a lockModel a program

Figure 5.22: The Top-Level Translation Rule TransSCJProg

128

BuildFWEnv : SCJProgram 7→ FWEnv

dom BuildFWEnv = TranslatablePrograms

∀ scjProg : dom BuildFWEnv

• ∃ tlmsID : Identifier ; tlmsBody : MissionSequencerClassBody ;

tiers : seq Tier |
ProgTLMS (scjProg) 6= NoSequencer

⇒ ProgTLMS (scjProg) = tlms(tlmsID , tlmsBody)

• BuildFWEnv(scjProg) =

〈|TopLevelMS == tlmsID ,Tiers == BuildTierEnvs(ProgTiers(scjProg))|〉

Figure 5.23: The BuildFWEnv Function

FWEnv

TopLevelMS : Identifier

Tiers : seq TierEnv

Tiers 6= 〈〉

TierEnv

Clusters : seq ClusterEnv

Clusters 6= 〈〉

ClusterEnv

Mission : Identifier

NestedMissionSequencers : P Identifier

ManagedThreads : P Identifier

PeriodicEventHandlers : P Identifier

AperiodicEventHandlers : P Identifier

OneShotEventHandlers : P Identifier

disjoint〈NestedMissionSequencers,ManagedThreads,PeriodicEventHandlers,

AperiodicEventHandlers,OneShotEventHandlers〉⋃
{NestedMissionSequencers,ManagedThreads,PeriodicEventHandlers,

AperiodicEventHandlers,OneShotEventHandlers} 6= ∅

Figure 5.24: The Environments for the Framework processes

129

Function Parameters Result

BuildTierEnvs seq Tier seq TierEnv

BuildTierEnvs Tier TierEnv

BuildClusterEnvs seq Cluster seq ClusterEnv

BuildClusterEnv Cluster ClusterEnv

BuildSOEnvs FSchedulableObject

F Identifier× F Identifier ×
F Identifier× F Identifier×
F Identifier

GetIdentifiers FSchedulableObject F Identifier

Table 5.10: Functions Used by BuildFWEnv to Build Ttier Environments

Function Parameters Result

TierSync TierEnv CSExpression

GenerateTierFWProcs FWEnv seq Process

GenerateTierFWProc ClusterEnv Process

GetParams Identifier seq Expression

Table 5.11: Functions Used by the GenerateFWProcs Function

using the ProgTLMS function. BuildFWEnv only extracts the top-level mission sequencer if

it is not equal to NoSequencer , which is the value that represents the safelet returning null

from its getSequencer() method. The ProgTLMS function extracts a value of top-level

mission sequencer type, where its identifier (tlmsID) is the identifier of the top-level mission

sequencer.

BuildFWEnv uses a chain of functions, summarised in Table 5.10, to build the environ-

ments for the tiers. First, the BuildTierEnvs function, which takes a sequence of program

tiers and produces a sequence of TierEnvs. We use ProgTiers to extract the sequence of tiers

from the SCJ program. The BuildTierEnvs function uses the BuildTierEnv function to build

the environment of each tier, which in turn uses BuildClusterEnvs to build the environments

for each cluster. The BuildClusterEnvs function calls BuildClusterEnv to build the environ-

ment for each cluster, which in turn calls BuildSOEnvs to build the environments for the

schedulable objects in that cluster. Finally, BuildSOEnvs uses the GetIdentifiers function to

extract the identifiers from the sequence of schedulables objects in that cluster.

Figure 5.25 shows the GenerateFWProcs function, which generates the processes that

compose the Framework process. This implements the first step of stage one in the generate

phase (described Sect. 5.1.3). The function takes an FWEnv environment and produces a

sequence of Process values, each of which defines a Circus process.

Table 5.11 shows the functions used by the GenerateFWProcs function. The TierSync

function takes two tier environments and from these generates a channel set that allows the

two tiers to communicate. The order of the TierEnv parameters must be the same as the

order of the tiers that they represent. For example, the environments representing the highest

tier in a program’s hierarchy and the next tier down, Tier0 and Tier1 respectively, should

be passed in that order so that TierSync can produce a channel set that allows them to

130

GenerateFWProcs : FWEnv → seq Process

∀ env : FWEnv

• ∃ fwProc : Process; controlTierProc : Process; tierProcs : seq Process

| fwProc = procPar(

procName(ControlTier),

TierSync(head env .Tiers),

GenerateTierFWProc(env .Tiers)

)

∧ controlTierProc = procPar(

procName(SafeletFWName),

ControlTierSync,

procInstP(procName(TopLevelMissionSequencerFWName),

GetParams(env .TopLevelMS))

)

∧ tierProcs = GenerateTierFWProcs(env .Tiers)

• GenerateFWProcs(env) = 〈fwProc〉a 〈controlTierProc〉a tierProcs

Figure 5.25: The GenerateFWProcs Function

communicate.

To produce the channel set we extract the mission identifiers (and possibly mission se-

quencer identifiers) from the second TierEnv parameter, which represents the lower of the

two tiers. These identifiers are used to restrict some of the channels in the set, so that the syn-

chronisation only occurs for the events intended to communicate with processes in these two

tiers. The GenerateTierFWProcs function generates a sequence of tier processes using the

GenerateTierFWProc function to generate each individual process. Finally, the GetParams

function extracts from an environment the API-parameters to the object it represents, which

become parameters to the process. This captures, for example, the parameter classes passed

to schedulables to specify their deadline, deadline miss handler, and so on.

This approach is reused to produce the application process, method call binder, and the

locking model. Each of the components shown in Table 5.9 is translated by a a generate func-

tion, which constructs the component based on the information in an environment produced

by a build function. These functions also make use of various auxiliary functions to help the

translation.

The full listing of the translation functions, including those presented in this section,

is presented in Appendix E. It covers 43 functions and several other schemas, types, and

other definitions. It has been parsed and type checked using the Community Z Tools [65].

The structure of this formalisation mirrors that of the translation strategy (presented in

Sect. 5.1), and is mirrored by the automatic translation tool TightRope presented in Sect. 5.3,

below. Figure 5.4 shows the environments that are produced by the build phase. These

environments are implemented in the automatic translation tool, which is described in the

131

next section.

5.3 Automatic Translation

In this section we present TightRope, a Linux Java prototype tool for automatic translation

of SCJ Level 2 programs into Circus. It, like our modelling approach, is based on the Level 1

translation tool, TransCircus, in [93]. It reuses the structure and method body translation

technique found in TransCircus, but in all other aspects TightRope is vastly re-engineered.

TransCircus comprises 122 classes over approximately 9100 lines of code. In contrast,

TightRope comprises 48 classes and has approximately 12500 lines of code. Once the location of

the input program has been identified the translation and output is fully automatic. TightRope

reuses some classes from TransCircus, as described in Sect. 5.3.1. However, it only reuses one

class from the package that captures application specific information from Level 1 programs

(tool.modelgen) because our new model requires new classes to capture Level 2 programs.

TransCircus requires its input programs to be annotated with information including the

class’s identifier and if it requires a process to model it or just an OhCircus class. By contrast,

TightRope extracts all the required information from the program, without annotations.

5.3.1 Overview

The translation performed by TightRope implements the same three phases as described in

Sect. 5.1. First, the analysis phase compiles the input program to produce a list of Abstract

Syntax Trees (AST), then extracts information useful for the translation from the ASTs

during a pre-processing step. The build phase constructs environment objects from the input

ASTs, using the information extracted by the analysis phase. Finally, the generate phase

uses the information in the environments to produce the output model files. This is achieved

by combining each environment with a template, which dictates the shape of the process,

replacing tags in the template with the relevant information from the environment.

TightRope can translate all the unique features of SCJ Level 2. It requires that the SCJ

program compiles and is structured with one paradigm class per file. It also requires that

programs conform to an input pattern, which simplifies statements without altering their

semantics. Complex Java statements must be rewritten: chains of method calls in one state-

ment become several separate method calls, and if a method parameter is an new object,

then any parameters the object takes must be literal values. Finally, the condition for a

while loop must not be a variable, the entire condition should be contained within the while

loop statement. Note that these are restrictions of the current version of the tool, not of the

technique as a whole.

Figure 5.26 shows a package diagram of TightRope. There are five tools.tightrope

packages (in bold), which compose the core of the application, and six smaller tools packages,

which are reused from TransCircus [93]. The tools.application package contains the main

classes of both TransCircus and TightRope. The tools.application.TightRope class is the

entry point of the application and controls the program flow.

The tools.analysis and tools.compiler packages are reused from TransCircus by the

analysis phase to compile the SCJ program (Sect. 5.3.2). As previously mentioned, the

132

tools.tightrope.builders tools.tightrope.environmentstools.tightrope.generators

tools.tightrope.utils

tools.tightrope.visitors

tools.application

tools.compilertools.utils tools.analysis tools.config tools.modelgen

Figure 5.26: Package Diagram of TightRope

tools.modelgen package provides the classes that perform the translation in TransCircus.

TightRope reuses one class form this package, which represents a parsed SCJ program. The

build phase (Sect. 5.3.3) uses the classes in three packages, tools.tightrope.builders,

tools.tightrope.environments, and tools.tightrope.visitors to translate the SCJ

program and store the translation in environments. The tools.tightrope.generators

package is used by the generate phase, described in Sect. 5.3.4, to produce the model from the

information in the environments. The tools.tightrope.utils and tool.utils packages

provide utility classes that support the translation. Finally, TightRope uses one class from the

tools.config package to provide access to the properties in the tool’s configuration file.

5.3.2 Analysis Phase

The analysis phase occurs in three steps. In the first step, we take the input program

and compile it into a list of ASTs representing the program’s classes, which facilitates the

translation. The program is compiled using the Java Compiler Tree API1 against the Icecap

SCJ implementation [46], but any valid Level 2 implementation can be used.

In the second step, we iterate through the list of ASTs produced by the first step and pre-

process them to build two of the maps described in Sect. 5.1.1. The first map, classTypeMap,

maps each class in the SCJ program to a list of the names of its supertypes. For each AST,

we extract the interfaces it implements and the class it extends. A list of these components

and the name of the class represented by the AST are added to the classTypeMap. The

generate phase uses the classTypeMap to identify the output template for each class, using

the rules described in Table 5.1.

The second map, classMethodsMap, maps each class to a list of the names of its methods

that are not defined in the SCJ API. For each AST, we iterate through its methods. For each

method, if it is not defined in the SCJ API, then we add it’s name to a temporary list. Once

all the methods have been checked, if the temporary list is not empty, we add the name of

the class that the AST represents and the temporary list to the map. The classMethodsMap

is used to help construct the MethodCallBinder process. The analysis phase (in Sect. 5.1.1)

1docs.oracle.com/javase/7/docs/jdk/api/javac/tree/

133

docs.oracle.com/javase/7/docs/jdk/api/javac/tree/

Class Environment

ProgramEnv NetworkEnv , Threads, Objects

StructureEnv ProgramEnv , TierEnv , ClusterEnv , SchedulableEnv

PeriodicEventHandlerEnv PEHEnv

AperiodicEventHandlerEnv APEHEnv

OneShotEventHandlerEnv OSEHEnv

ManagedThreadEnv MTEnv

MissionEnv MissionEnv

MissionSequencerEnv MissionSequencerEnv

SafeletEnv SafeletEnv

ClassEnv ClassEnv

MethodEnv MethodEnv

VariableEnv VarEnv

Table 5.12: Table Mapping the Builder Classes to the Environments they Implement

produces a third map, which maps method names to the names of classes that call that

method. In TightRope this map is constructed during the build phase, which we describe in

Sect 5.3.3.

Finally, the third step produces a list of all relevant non-paradigm objects in the program.

This list includes any object that does not implement the Safelet interface or extend the

MissionSequencer, Mission, or one of the schedulable classes. The Icecap implementation

includes a Launcher class to act as the entry point to the SCJ program. Since this is not in

the API or part of the program, it is also excluded from this list.

5.3.3 Build Phase

The build phase takes the ASTs and maps from the analysis phase and constructs environ-

ment objects (contained in the tools.tightrope.environments package) that capture the

information in the system using classes in the tool.tightrope.builder package. The en-

vironment classes, shown in Fig. 5.27, are the implementation of the environments shown in

Fig. 5.4. The builder classes, shown in Fig. 5.28, are the implementation of the processes

used to build each type of environment, described in Sect. 5.1.2. Table 5.12 shows which

functions and types are implemented by these classes.

Each type of object has its own specialised environment that holds the information needed

by the generate phase to produce its model. The environments for each paradigm object –

the safelet, mission sequencers, missions, and schedulables – extend the ParadigmEnv class.

Non-paradigm objects, those that do not extend any of the paradigm objects, are represented

by the NonParadigmEnv environment. Both the NonParadigmEnv and ParadigmEnv classes

extend the ObjectEnv class, which is the superclass that characterises all the environments.

The ProgramEnv environment records information such as the identifiers in the program, the

non-paradigm objects, and the program’s structure. The StructureEnv class records the

structure of the program and the environments for each of the paradigm objects.

134

ObjectEnv

NonParadigmEnv ParadigmEnv

SafeletEnv MissionSequencerEnv

TopLevel
MissionSequencerEnv

Schedulable
MissionSeuqnecer

Env

MissionEnv

ManagedThreadEnv

EventHandlerEnv

Periodic
EventHandlerEnv

Aperiodic
EventHandlerEnv

OneShot
EventHandlerEnv

StructureEnv

variableEnv

MethodEnv

ClassEnv

ProgramEnv

Figure 5.27: Class Diagram of the tools.tightrope.environments Package

ParadigmBuilder

SafeletBuilderEnvironmentBuilder MissionSequencerBuilder MissionBuilder

SchedulableBuilder

Figure 5.28: Class Diagram of the tools.tightrope.builders Package

135

This phase operates in the same way as illustrated in Fig. 5.3. First, the environments of

the non-paradigm objects are built, because they do not affect the structure of the program.

The preprocessing that occurs in the analysis phase identifies the safelet, and it is the first

paradigm object to be translated because it is at the top of the program’s hierarchy. The

mission sequencer returned by the safelet’s getSequencer() method is the top-level mission

sequencer, and its environment is built next. After the top-level mission sequencer, we build

the environment of each mission returned by its getNextMission() method. For each of

these missions, we build the schedulable objects registered to it, and then move on to the

next mission. If a mission registers a schedulable mission sequencer, then we build the

environments of each of that mission sequencer’s mission and their registered schedulables

before moving on to the next schedulable. Once there are no more missions to translate

that are controlled by the top-level mission sequencer, we move on to the generate phase.

Note that, for simplicity, TightRope assumes that there will only be one top-level mission

sequencer, whereas the translation strategy described in Sect. 5.1 accepts the possibility of

multiple top-level mission sequencers.

The environment of each type of object is built by a specific builder class, each of which

extends a generic builder class ParadigmBuilder that contains methods reused by all the

builder classes. For example, the SafeletBuilder class, which extends ParadigmBuilder,

builds the environment of the program’s safelet.

Each builder class has a build() method, which traverses the AST of an object and

extracts its variables and methods. Because this functionality is required for any builder class,

it is encapsulated in the classes in the visitors package. These visitor classes implement

the process of building an environment, which is described in Sect. 5.1.2. In addition to the

generic behaviour, the build() method of each builder class is specialised to extract the

contents of the overridden API methods.

Each visitor traverses the tree of a particular component to retrieve the information

required for its environment. The visitor classes do not have as obvious a correspondence

to the functions in the core formalisation of the translation. This is stylistic; each visitor

is specialised to the SCJ component from which it is extracting information (methods or

method bodies, for example) as opposed to the model component for which it is producing

the information.

The MethodVisitor class traverses a tree representing a method and translates its name

and parameters, and uses other visitors to extract the return type and value, and body. It

produces a MethodEnv containing this information. The ReturnVisitor class traverses a tree

representing a method and extracts a list of the names that are returned by that method. The

RegistersVisitor class traverses a tree representing the Mission.initialize() method

and extracts the name of the schedulables on which register() is called.

The MethodBodyVisitor class traverses a tree representing a method and translates its

body using the rules described in Sect. 5.1.2. The VariableVisitor class traverses a tree

representing a member of a class and extracts any variables that tree might contain. This class

corresponds to the translation rules presented in Table 5.3. Finally, the ParametersVisitor

class is used to translate method and class parameters. It traverses a tree representing an

expression and extracts the name, type, and value of the parameter.

136

The SafeletBuilder.build() method builds the environment of a safelet object. In

addition to the object’s variables and methods, it specifically captures two extra compo-

nents. First, it translates the safelet’s initializeApplication() method and stores it in

the SafeletEnv. Then, it translates the names of the mission sequencers returned by the

getSequencer() method. This is achieved by the ReturnVisitor, as described above. The

mission sequencer identified here is the top-level mission sequencer and identifies the next

component to be built.

The MissionSequencerBuilder class builds the environment of a mission sequencer ob-

ject. It is used to build the environments of both top-level and schedulable mission sequencers.

In addition to the object’s variables and methods, its build() method specifically captures

the missions returned by the getNextMission() method. Again, this is achieved by the

ReturnVistor class, as described above. These missions are stored in the MissionEnv and

identifies the next components to be built.

The MissionBuilder class builds the environment of a mission object. In addition to the

objects variables and methods, its build() method specifically captures two extra compo-

nents. First, it translates the cleanUp() method. Then, it translates the schedulables that

are registered during its initialize() method. This is achieved by the RegistersVisitor,

which finds a call to the register method of a schedulable object and returns the name of

that schedulable. The schedulables identified are stored in the MissionEnv and identifies the

next components to be built.

The SchedulableBuilder class builds the environment of any schedulable object. It is

used to build the environments of any of the event handler classes and the managed thread

class. In addition to the object’s variables and methods, its build() method translates the

handleAsyncEvent() method of an event handler or the run() method of a managed thread.

These methods are translated by the MethodVisitor, as described above. The build()

method also checks if an aperiodic event handler’s handleAsyncEvent() method takes a

long parameters or not, and records it in the environment. This information is required

because we model the behaviour of these two types of aperiodic event handler differently.

5.3.4 Generate Phase

The generate phase produces the models of the program by combining a template with an

environment, which has been produced by the build phase. There are different templates for

processes, OhCircus classes, and channel sets. The combination process replaces the tags in

the template with the relevant application-specific information from the environment. For

example, each process template uses the name of the class to generate the name of the process.

So the combination of a process template with an environment replaces the tag for the process

name with the actual name of the class in the environment.

The CircusGenerator class controls the generate phase, using its generate() method,

which performs the combination of templates and environments using the Freemarker tem-

plate engine. The templates used in this phase are implementations of the templates, pre-

sented in Sect. 5.1, for Freemarker.

This phase implements the two stages of the generate phase described in Sect. 5.1.3. As

previously mentioned, stage one produces the top-level network of processes that control

137

our model. It is implemented by the generateNetwork() method. Stage two produces the

Circus processes, OhCircus classes, and channels modelling the objects in the program. The

processes and channels for each type of object are generated by a different generate method.

The generateNetwork() method uses the information in the ProgramEnv to generate the

Framework , Bound Application, MethodCallBinder , and Locking processes. It also generates

the channels that these processes require. The order in which these steps occur is unimpor-

tant, because the structure of the program has already been captured by the build phase.

Each of these components is generated from the information in the ProgramEnv, but uses a

different template. These templates are the same as described in stage one of the generate

phase in Sect. 5.1.3, but implemented for Freemarker.

The other generate methods compose stage two. They generate the non-paradigm objects

and then the safelet, the top-level mission sequencer, missions, and schedulables. Again, the

order in which these components are generated is unimportant because the program structure

has been captured during the build phase. Each of these generate methods takes the infor-

mation from a particular type of environment and combines it with a particular template.

For example, the generateSafelet() method takes the information in a SafeletEnv and

combines it with the safelet template to produce the SafeletApp process.

In addition to generating the model, the generate() method performs some tasks that

are specific to TightRope. It writes the files of the model to an output folder. It also generates a

report of the translated program that contains all the application-specific processes, OhCircus

classes, and channels. The report is written in LATEX, and TightRope compiles the report after

the generate phase has completed.

5.4 Translation Examples

Our translation strategy, presented in Sect. 5.1, captures the application-specific behaviour

of SCJ Level 2 programs. In particular, we model managed threads, schedulable mission

sequencers, and suspension, as these are unique features of Level 2. We used the example ap-

plications2 summarised in Table 5.13 to test the translation strategy during its development.

These examples exhibit a range of features available in SCJ Level 2 programs, including: sin-

gle and sequential missions, nested mission sequencers, all of the types of schedulable object,

and programs with several tiers to test the termination protocol on more complex program

structures. The final two applications are the running examples that we have previously

described, Buffer in Sect. 2.1.2 and Aircraft in Sect. 2.1.3.

During the development of the translation strategy, the example applications have high-

lighted particular problems with our model and allowed us to fix them. For example, the

Mission2 example illuminated that a managed thread terminating before it is requested to

(by its run() method returning) produced a spurious deadlock. This occurred when the

controlling mission attempted to request the managed thread to terminate, but the managed

thread was no longer offering the termination request event. Managed threads are the only

schedulable capable of terminating without being requested to, and the Mission2 example

2The example SCJ programs and their translations are available at http://www.cs.york.ac.uk/circus/

hijac/case.html

138

http://www.cs.york.ac.uk/circus/hijac/case.html
http://www.cs.york.ac.uk/circus/hijac/case.html

Name Description � Classes Translation Time (s)

Mission1 A single mission with periodic

event handler that releases an

aperiodic event handler

5 ∼1.53

Mission2 A single mission with a man-

aged thread and a one-shot

event handler

5 ∼1.27

ThreeOneShots A single mission with three

one-shot event handlers

6 ∼1.28

ThreeThreads A single mission with three

managed threads

6 ∼1.21

SequentialMissions Two sequential missions, each

with two managed threads

8 ∼1.28

NestedSequencer1 A single mission with a single

nested mission sequencer

7 ∼1.21

NestedSequencer2 A mission, with three nested

mission sequencers. Each has

one mission controlling a peri-

odic event handler

14 ∼1.34

NestedSequencer3 A mission, with a nested

mission sequencer that has

two sequential nested mis-

sions, each with a managed

thread.

8 ∼1.30

NestedSequencer4 A complicated example using

two levels of nesting. It con-

tains 4 missions and 3 man-

aged threads

12 ∼1.18

NestedSequencer5 Extends NestedSequencer4,

combines complex nesting,

all schedulable types, and

sequential missions

12 ∼1.28

Buffer Small program using managed

threads and synchronisation

6 ∼1.23

Aircraft A multiple-mode program us-

ing a schedulable mission se-

quencer to represent phases of

aircraft flight

23 ∼2.57

Table 5.13: Summary of SCJ Translated Example Applications

139

Name � Classes States
Assertion Time (s)

Compilation Checking Total

Mission1 5 549 0.25 0.39 0.64

Mission2 5 138 0.42 0.10 0.52

ThreeOneShots 6 1,460 0.20 0.41 0.61

ThreeThreads 6 213 0.18 0.33 0.51

SequentialMissions 8 343 0.27 0.40 0.67

NestedSequencer1 7 147 0.64 0.12 0.76

NestedSequencer2 14 898,584 4.57 3.65 8.22

NestedSequencer3 8 311 0.98 0.13 1.11

NestedSequencer4 12 6,417 4.13 0.24 4.37

NestedSequencer5 12 36,219 6.76 0.64 7.40

Buffer 6 310 0.41 1.02 1.43

Aircraft 23 ∼ 46,647 ∼ 20.75 ∼ 59.41 ∼ 80.16

Table 5.14: Summary of Model States

helped us to model this behaviour correctly.

The NestedSequencer2 example exposed a problem with the periodic event handler frame-

work process when it requests its controlling mission to terminate. The resulting attempt by

the mission to terminate the periodic event handler caused the deadlock, which this example

helped us to resolve. Further, the NestedSequencer4 and NestedSequencer5 examples are

particularly useful illustrations of the complex structures that nested mission sequencers in

Level 2 programs allow. These two examples also provided a test bed for modelling the new

termination protocol that we proposed in [56], as applied to a program with several tiers.

This shows the termination request ‘bubbling’ up the program hierarchy.

TightRope, described in Sect. 5.3, implements the translation strategy (Sect. 5.1) and pro-

vides automatic translation of SCJ programs to Circus. It has been used to translate all of

the example applications summarised in Table 5.13, where the reported translation times are

from running TightRope on a Lenovo W540 with an Intel Core i7-4700MQ CPU. All of the

example programs were translated in less than 3 seconds. The Buffer and Aircraft are the

most complex applications translated, each exhibiting a unique feature of SCJ Level 2. Buffer

contains six classes, two of which are managed threads that use synchronisation and suspen-

sion to share access to a bounded buffer held by their controlling mission. This application

was translated in ∼1.23 seconds. Buffer was the test bed application for the ObjectFW and

ThreadFW processes (which control the synchronisation behaviour) and how they interact

with the rest of the model. Aircraft contains 23 classes in a more complex hierarchy than

the Buffer application. Aircraft uses a schedulable mission sequencer and both aperiodic and

periodic event handlers. The Aircraft example was translated in ∼2.57 seconds. While this

is a small sample of examples, they lend us confidence that our automatic translation can

deal with structurally complex programs and will scale well.

The Circus models of the programs in Table 5.13 have been validated by translating them

to CSPM , which is the machine-readable version of CSP. The framework model was also

140

translated to CSPM . The CSP version of the models have been analysed using the Failures

Divergences Refinement tool (FDR3) [33]. This analysis includes animating the framework

model to compare its behaviour to that described in the SCJ Language Specification, and

both animating and model checking the models of full programs to check their behaviour

against running programs and to check for deadlock and divergence freedom.

Table 5.14 summarises, for the CSPM version of each of the modelled programs, the

number of states and the time taken (in seconds) to check a deadlock freedom assertion in

FDR3. The assertion times shown are split into the compilation and checking phases of the

FDR3 assertion check, and their sum. The use of particular processes and combinations

of processes increases the number of states. For example, the large number of states in

ThreeOneShots application is due to the possibility that a OneShotEventHandler may be

descheduled and rescheduled.

The model of the NestedSequencer5 application has the third highest number of states

because the program has three tiers and one of each type of schedulable, which produces

more states because of the termination-related events. As Table 5.14 shows, the model takes

longer to compile (6.76s) than it does to perform the deadlock check (0.64s). This is because

of the large number of events in the model, because of the communication between the tiers,

which increases the compilation time. The model of the NestedSequencer2 application has

the highest number of states because it contains two tiers and three PeriodicEventHandler

processes. In general, models containing PeriodicEventHandler processes have more states

because of the possibility of period overruns.

Despite using synchronisation and suspension, the model of the Buffer application contains

only 310 states. The processes controlling synchronisation and suspension in the Circus version

of the model contain a lot of variables, so extra attention was paid when they were translated

to CSPM . This has resulted in a version of the synchronisation and suspension modal that

does not unnecessarily inflate the state space of the model and is better suited to analysis

in FDR. The compilation time of the model (0.41s) is faster than its checking time (1.02s)

because it has a large number of states, due to the model’s complexity as opposed to large

number of events

The translation from Circus to CSPM is relatively straightforward, because CSP is part of

Circus. We translate each Circus process and its actions into a CSP process comprising pro-

cesses representing the Circus actions. This provides a CSP model that mirrors the structure

of the Circus process, but which lacks the encapsulation provided by Circus.

Because CSP lacks variables, the state component of a Circus process is translated into

a CSP process that is parametrised by values representing the Circus variables. This ‘state

process’ provides channels to ‘read‘ and ‘write’ to the parameters it controls, before recurring

(possibly with an updated value) to offer the ‘read’ and ‘write’ channels again.

The translation of state from Circus to CSPM occasionally produced models that FDR3

could not analyse, because of state explosion. Firstly, each Circus variable requires (usually at

least two) extra channels in the CSP model. Secondly, and more importantly, state processes

can yield a large number of model states. This is especially true when one of its parameters

is a set or a sequence. The CSPM version of the framework model has been refactored

to improve the tractability of analysis in FDR3, by reducing the number of states while

141

maintaining the same behaviour3.

For example, the previously mentioned synchronisation and suspension processes were

a particular focus for refactoring, as the original translation from Circus proved intractable

because of the large number of variables. We reduced the use of variables and reorganised

the processes to ensure a smaller state space for the synchronisation and suspension system.

Other refactorings ranged from simple restrictions, such as defining a sequential order for the

termination of a mission’s schedulables instead of allowing them to interleave, to defining a

process to capture a complicated data structure. An example of the latter is the priority

queue (Fig. 4.6), used to ensure the highest priority thread that has also been waiting the

longest gains a lock, which is a function in the Circus version of the model. The FDR-friendly

translation to CSPM defines this as an parallelism of small processes, which each control one

element of the queue. These processes toggle a cell between being empty and being full, and

specify the events available in each of these two states. This proves a much more tractable

approach for checking in FDR.

The model of the Aircraft application is the biggest that we have checked, having 23

classes arranged over two tiers. It is also relatively complex because the schedulables in

both tiers access variables held in the main mission (in Tier 0), which generates a lot of

communication between the tiers. Because of this complexity, the Aircraft model required

modifications that reduced the state space to allow it to be checked – hence the results in

Table 5.14 being approximations. This model seems to be at the limit of what our verification

technique can handle, with the current CSPM version of our model. We not that this is not

a limitation of the modelling approach as a whole. Further work on improving the efficiency

of our CSPM models, especially when translated from Circus, will improve the scalability of

the verification technique.

5.5 Summary

This chapter presents a detailed description of our strategy for translating SCJ Level 2 pro-

grams into Circus. This strategy captures the application-specific behaviour of SCJ programs

and produces Circus models that are compatible with the model of the SCJ API described in

Chap. 4. The combination of these two models is also captured by the translation strategy,

and this chapter presents the information and rules required to perform this combination.

This chapter also presents two implementations of the translation strategy. The first is

a formalisation in Z of the core elements of our translation, which paves the way for a full

formalisation that could be used to prove the soundness of our technique. The second is the

implementation of TightRope, a tool for automatic translation.

To test the translation strategy, we have translated 12 SCJ example applications. These

programs cover the full-range of Level 2 features, including managed threads, suspension, and

schedulable mission sequencers. These example applications include the Buffer in Sect. 2.1.2

and Aircraft in Sect. 2.1.3. These examples have been translated by hand and by our trans-

lation tool, TightRope. However, the tool places some limitations on the input programs it

can accept. It is important to note that these are simplifications required by the tool only,

3This work was done with the help of Tom Gibson-Robinson, University of Oxford, UK

142

and that they are not limitations of the technique as a whole. These limitations add a

small programmer overhead, as they require some program rewriting, but do not restrict the

functionality of the programs TightRope can handle.

To validate the translated Circus models, they have been translated to CSPM and anal-

ysed using FDR3. The analysis involved comparing the behaviour of the models with that

described in the SCJ Language Specification, and with running programs. This has been

used to ensure that the models produced by the translation are valid, with respect to the

SCJ API. Work has been done to optimise the CSPM model to enable tractable analysis in

FDR3. It also presents an interesting avenue of future work for model checking Circus.

In the next, and final, chapter, we evaluate the work presented in this thesis, present our

conclusions, and discuss future work.

143

144

Chapter 6

Conclusion

This chapter concludes the thesis. Section 6.1 summarises the contributions that have been

presented. Section 6.2 discusses the validity and utility of the presented work. Finally,

Sect. 6.3 describes extensions to our approach that could be completed as future work.

6.1 Summary

Safety-Critical Java (SCJ) is a new programming language, which embeds a novel program-

ming paradigm for safety-critical programs. To aid certification, SCJ is organised into three

compliance levels, which increase in complexity from Level 0 to Level 2. Level 0 is for se-

quential programs that adopt a cyclic executive, where a set of computations are executed

periodically. Level 1 introduces concurrency and provides both periodic and aperiodic tasks.

Level 2 is the least restricted compliance level. Level 2 programs are highly concurrent,

potentially multi-processor, and allow suspension and a variety of release patterns.

We aim our work at Level 2, because it has received little attention in comparison to

Levels 0 and 1. For example, at the beginning of the thesis work there was no Level 2

implementation, little assessment of its features in the literature, and sparse Level 2 tool

support. Even now, few tools or verification techniques are specifically aimed at Level 2.

We perform the first assessment of the features of Level 2, illuminating programming

patterns for which the features are uniquely (in SCJ) useful. The assessment also provides

guidelines for areas where Level 2’s features could be improved to bolster it’s support.

We model the programming paradigm of SCJ Level 2 as described in the SCJ language

specification (v0.100). We view this paradigm as being separate to its realisation in Java.

Therefore, we capture the paradigm, abstracting away from the details of its implementation

in Java. The model specifies the generic behaviour that is shared by all SCJ programs.

Our model is written in the state-rich process algebra Circus, which captures the state and

behaviour of the paradigm. The model also uses elements from other languages in the Circus

family. We use operators from CircusTime to capture delays and budgets, and we use OhCircus

classes to capture non-reactive behaviour.

Finally, we provide a translation strategy that captures the application-specific behaviour

of SCJ Level 2 programs and generates models representing this behaviour. These models

are combined with those of the paradigm to provide a model that captures the behaviour

of the whole program. We provide a formalisation of the core elements of the translation

145

strategy, in Z. We have also developed a tool, TightRope to automatically generate models of

SCJ programs.

6.2 Discussion

Our model of the SCJ API is the first to tackle the unique features of SCJ Level 2. It is

built to have close correspondence with the SCJ API, and is based on a previous model of

SCJ Level 1 [93]. However, the complexity of SCJ Level 2’s unique features has meant that

significant re-engineering of the model has been required. Our model also captures elements

of SCJ that are not covered by the Level 1 model.

Our modelling effort has had a positive effect on SCJ, as the modelling process has

illuminated some problems with its specification. Two of our suggestions for improvements

have already been accepted into the language specification. The first is a simplification of

the SCJ termination protocol. We used the model of the API to compare the original and

simplified termination protocol, by translating the models of each from Circus to CSPM . We

found that our proposed simplified protocol had 94.5% fewer states than the original protocol.

The second improvement is the rationalisation of the termination of waiting schedulables.

In older versions of the language specification, waiting schedulables were not automatically

woken and the only support for this was a method called only on each managed thread

during termination of its controlling mission. One of our suggestions to solve this potential

problem was partially adopted: the SCJ API calls the new signalTermination() method

on each schedulable during termination. This provides a uniform way of dealing with all

application-specific termination behaviour, including schedulables that may be waiting.

The framework model, which captures the SCJ API, has been constructed from the SCJ

(natural) Language Specification, because it was the only description of the language that ex-

isted at the beginning of the thesis work. Subsequently, SCJ implementations have emerged,

including a Level 2 implementation [46]. The fact that our model is the first of SCJ Level 2

means that it could be used as the specification for further implementations or models in

other notations.

Our translation strategy has been tested by manually translating 12 example programs,

which are constructed to cover the features of SCJ. They range from simple tests of SCJ’s

features, such as different release patterns or synchronisation and suspension, to more complex

programs that use nested mission sequencers to provide concurrent missions. Further, we

have developed a tool to automatically generate the Circus application models of a given SCJ

application, called TightRope. These techniques produce models of full programs that are

valid, with respect to SCJ Language Specification.

TightRope provides automatic translation of valid SCJ Level 2 programs (that is programs

that compile against an SCJ implementation) into Circus models written using our approach.

The only input required from the user is the location of the SCJ program. The translation

is then performed without the need for program annotations, in contrast to the tool for

translating Level 1 programs [93]. However, the tool requires that each paradigm class is in

a separate file. Further, complex Java statements must be rewritten: chains of method calls

in one statement become several separate method calls, and if a method parameter is a new

146

object then the object’s parameters must be literal values. However, this rewriting does not

affect the program’s behaviour and it should be noted that these are restrictions of TightRope,

not of the technique as a whole.

We have translated both the model of the API and the models of full programs to CSPM

for analysis using FDR3. We have animated and model checked the CSPM version of the

models. Animation was used to compare the behaviour of the models to that specified in

the SCJ Language Specification and to running programs. Model checking was used to

prove deadlock and divergence freedom. This technique allows program analysis and gives us

confidence that our model is valid, with respect to the SCJ Language Specification.

Using Circus as the language in which we write our models and CSPM as the language in

which we analyse them provides us with several benefits. Firstly, Circus is a combined notation

so we get the benefits of Z, CSP, and refinement. This is useful, for example, in the ObjectFW

process, which requires complex data operations to control waiting threads. Also, since

Circusis written in LATEXits models are more human-readable than CSPM . Secondly, using

the two different notations decouples the Circus model from the analysis. This is illustrated by

the optimisations made to the CSPM models to allow tractable analysis. These optimisations

were not incorporated into the Circus models, which are concerned with modelling the SCJ

paradigm. It also insulates the Circus models from any changes in FDR3 that require the

CSPM version to change.

The thesis work has shown us that Circus is a useful modelling language that provides

adequate features for capturing the behaviour of programming languages such as SCJ. The

thesis work also shows us that our modelling approach, separating the unchanging from the

application-specific behaviour, is beneficial when capturing programs because it reduces the

burden on translation. Further, we found it useful to have as close a correspondence between

our model and SCJ as possible, as this aids traceability. For example, each of the paradigm

objects in the SCJ API is represented by one process in our model – expect for the mission

sequencer, which we model with two processes because of the two contexts in which mission

sequencers can operate (as described in Sect. 4.2.2).

At a lower level, our modelling efforts show that care can be required when combining

parallel actions that both access the same variables. The Circus parallel operator (introduced

in Sect. 2.4) takes two name sets, each specifying the variables that one of the parallel actions

can update. If two parallel actions need to update the same variable, then a third process is

required to control variable access. An example of this pattern can be seen in the MissionFW

process in Appendix. C.10, where the Methods action runs the RequestTerminationMeth

action in parallel with the TerminationPendingMeth action, and each requires update access

to the missionTerminating variable. To resolve this conflict, we delegate control of the

variable to a third action MissionTerminatingController .

Overall, our work provides benefits for both the safety-critical systems and formal methods

communities. Our analysis of SCJ has illuminated the utility of the unique features provided

by Level 2 and helped to improve features of the language that have an impact on all three

compliance levels. Our formal model of SCJ Level 2 is its first formal semantics, and enables

links to a strategy that can provide refinement from abstract specifications of behaviour to

concrete models of SCJ programs. Our translation, which captures SCJ Level 2 programs,

147

validates our model and enables (via a translation to CSP) a technique for checking properties

of SCJ Level 2 programs. The various threads of future work that use our contributions as a

base are discussed in the next section.

6.3 Future Work

The main focus for future work is the translation. First, a full formalisation of the translation

strategy in Z enables verification of the translation. This can be used to show that each func-

tion only produces a valid translation and, therefore, improve confidence in the translation.

Second, improving TightRope by removing the restrictions on the SCJ programs that it can

accept will improve its applicability. Further, TightRope is currently a terminal program, but

it can be incorporated into a plugin for Eclipse. There are other popular development envi-

ronments for Java, but the Icecap tool [46] (which currently provides the only implementation

of SCJ Level 2) is provided as an Eclipse plugin. Such an extension for TightRope can help to

integrate it into the emerging development process for SCJ programs.

As previously mentioned, our model abstracts away from scheduling and resources. This

means that it does not capture SCJ’s scheduling behaviour or region-based memory man-

agement, including the global multiprocessor scheduling that is available at Level 2. These

features could be added to our modelling approach to capture more concrete program infor-

mation, by adding another parallel system to the Program process for each feature. However,

both of these features require alterations to the application model and translation.

SCJ scheduling and global multiprocessor scheduling can be captured by a Scheduling

process that stores the number of processors and the identifiers of the thread executing on

each of these processors. This process should contain actions that record changes in a thread’s

status between running, eligible to run, blocked, or waiting. Our model already captures,

as events, waiting, notification, acquiring and releasing a lock. These events can be used to

synchronise with the Scheduling process to track a thread’s status.

To implement the fixed-priority scheduler, the ThreadFW process must be instantiated

for all threads in the program, not just those engaging in synchronisation and suspension

behaviour, as in our current model. Further, ThreadFW needs to store the thread’s affinity set

(the set of processors on which it can execute), which means that the translation strategy must

capture this information from the program. Control signals must be added to the framework

model to allow the scheduling process to start and stop the threads within the model. The

addition of another process to our model, and adding more channels, will complicate the

model and possibly increase model checking times. However, it would remove the potential

false negatives that our verification technique can generate, due to abstracting away from

SCJ’s scheduling behaviour.

SCJ’s region-based memory management can be captured as a Memory subsystem that

instantiates a MemoryArea process for each memory area in the SCJ program. The Memory

subsystem should implement the abstract specification of the SCJ memory model that is

described in [16]. The MemoryArea process must hold the names of the variables stored in

the memory area, their types, and their values. Additionally, storing the nesting level of the

memory area allows this information to be used for checking SCJ’s memory safety rules. This

148

could combine with extending the memory safety checking technique in [58].

In addition to the Memory subsystem, the application model and translation strategy

must capture extra information from an SCJ program about its memory usage. For example,

variable assignments and calls to enterPrivateMemory() must be captured. This enables

the subsystem to replicate the memory behaviour of the SCJ program.

As described in Sect. 4.2, our model captures the potential for an event handler to overrun

its period or deadline. Implementing checks for these potential overruns is left as future

work. In our model a deadline overrun is signalled by a release event with the identifier of a

deadline miss handler, so constructing a CSP check for this event in the model will reveal a

deadline overrun. Period overrun is signalled by a release event occurring between the events

that signal the beginning and end of the event handler’s handleAsyncEvent() method, so

checking for this will reveal a period overrun. It should be noted that this technique only

works if the model terminates. Checks for other behaviours that our model captures but are

undesirable can be constructed in a similar way.

The tool support for verification of SCJ Level 2 programs is lacking. Section 2.5 identi-

fies tools for verification of Worst-Case Execution Time, Worst-Case Memory Consumption,

Memory Safety, Schedulability, and Functional Correctness. A line of future work is the

analysis of these verification tools to see where they fail for SCJ Level 2 programs and then

extending them to cater to Level 2 programs. These extended tools and TightRope can be

combined in a suite of tools that verify a range of properties of SCJ Level 2 programs.

An alternative translation approach to that in Chap. 5 is using meta-models of both

SCJ and Circus to enable the transformation of SCJ programs into Circus models. This has

been achieved for similar target formal languages; for example in [83], which takes two UML

models (a class diagram and a state machine that describe the same system) and transforms

them into a CSP
f

B model. An advantage of this approach is that the meta-models could

be reused for other translations involving SCJ and Circus. For example, [50] provides a meta-

model translation of a Domain Specific Language into a formal model, but it agnostic of the

formal language used. The authors present an example translation into CSP
f

B . The Z

formalisation in Sect. 5.2 could be seen as a meta-model, as it defines and abstract syntax

for both SCJ programs and our Circus model.

Model checking the Circus specifications of SCJ programs is a useful technique for verifying

program properties, for example, deadlock and divergence freedom. Strategies exist for model

checking Circus specifications [61, 6, 91], and these can be incorporated into TightRope to

improve the workflow of model checking SCJ programs.

Our approach to animating and model checking our Circus models has been to translate

them into CSPM and use FDR3. Initially, this translation occasionally resulted in intractable

CSPM models due to the translation of the Z elements of Circus causing state explosion.

Subsequently, the CSPM models have been improved to allow tractable analysis using FDR3.

However, further work is required to improve the scalability of the CSPM model and the

translation from Circus application models. This would allow our verification technique to

cope with models of programs that are more complex.

Another line of future work is to generalise this Circus-to-CSPM translation by providing a

library of Z data structures captured in CSPM in a way that is amenable to analysis in FDR.

149

This can provide reusable models of elements of Circus that allow tractable analysis. The

library can be combined with the automatic translation of Circus models to CSPM provided

by [6], which we think can produce CSPM models with the same state explosion problem as

our original translation.

Adding a GUI and incorporating a Circus-to-CSPM translation into TightRope would pro-

vide a tool that could automatically translate SCJ Level 2 programs into Circus, translate the

Circus models into CSPM , and then send them directly to FDR3. The API of FDR3 allows

model checking where the results are returned as a JSON string. This can be interpreted by

TightRope to feedback the results of the analysis directly to the GUI.

150

Appendix A

Buffer Example Application

This appendix presents the buffer application, described in Sect. 2.1.2. It has one mission

and two managed threads, which communicate using a one-place buffer in the mission in the

familiar Readers-Writers style. This program uses the Object.wait() and Object.notify()

methods, which are only available at SCJ Level 2, to control access to the buffer.

The producer schedulable suspends if the buffer is full; if not, then it writes and notifies the

consumer. The consumer suspends if the buffer is empty; if not, then it removes a value from

the buffer and notifies the producer. Suspension is achieved with a call to Buffer.wait().

Notification is achieved by a call to Buffer.notify(). After reading from the buffer 5 times,

the consumer requests that the mission terminates. When both the managed threads have

terminated, the program terminates.

A.1 BSafeletLauncher

This section presents the safelet launcher for the buffer application, which is the program

entry point in the Icecap SCJ implementation. We present it here for completeness, but since

it is not part of the SCJ API it is not included in out models.

1 public class BSafeletLauncher

2 {

3 public static void main(String [] args)

4 {

5 new LaunchLevel2(new PCSafelet ());

6 }

7 }

151

A.2 BSafelet

This section presents the buffer application’s safelet class, which controls the application.

1 public class BSafelet implements Safelet <Mission >

2 {

3 public MissionSequencer <Mission > getSequencer ()

4 {

5 StorageParameters storageParameters = new StorageParameters(

6 Const.OVERALL_BACKING_STORE_DEFAULT - 2000000 ,

7 Const.PRIVATE_MEM_DEFAULT , 10000 * 2, Const.MISSION_MEM_DEFAULT);

8

9 return new MainMissionSequencer(new PriorityParameters (5), storageParameters);

10 }

11

12 @Override

13 public void initializeApplication () {}

14

15 @Override

16 public long immortalMemorySize ()

17 {

18 return Const.IMMORTAL_MEM_DEFAULT;

19 }

20

21 public Level getLevel ()

22 {

23 return Level.LEVEL_2;

24 }

25 }

152

A.3 MainMissionSequencer

This section presents the top-level mission sequencer of the aircraft application, which loads

the main mission.

1 public class MainMissionSequencer extends MissionSequencer <Mission >

2 {

3 private boolean returnedMission;

4

5 public MainMissionSequencer(PriorityParameters priorityParameters ,

6 StorageParameters storageParameters)

7 {

8 super(priorityParameters , storageParameters , null);

9 returnedMission = false;

10 }

11

12 protected Mission getNextMission ()

13 {

14 if (! returnedMission)

15 {

16 returnedMission = true;

17 return new MainMission ();

18 }

19 else

20 {

21 return null;

22 }

23 }

24 }

153

A.4 MainMission

This section presents the main mission of the buffer application, which holds the buffer object

and registers two schedulables.

1 public class MainMission extends Mission

2 {

3 private final Buffer buffer;

4

5 public MainMission ()

6 {

7 Services.setCeiling(this , 20);

8 buffer = new Buffer ();

9 }

10

11 protected void initialize ()

12 {

13 StorageParameters storageParameters = new StorageParameters (150 * 1000,

14 Const.PRIVATE_MEM_DEFAULT , Const.IMMORTAL_MEM_DEFAULT ,

15 Const.MISSION_MEM_DEFAULT - 100 * 1000);

16

17 new Producer(new PriorityParameters (10), storageParameters , this).register ();

18 new Consumer(new PriorityParameters (10), storageParameters , this).register ();

19 }

20

21 public Buffer getBuffer ()

22 {

23 return buffer;

24 }

25

26 public boolean cleanUp ()

27 {

28 return false;

29 }

30

31 public long missionMemorySize ()

32 {

33 return 1048576;

34 }

35 }

154

A.5 Buffer

This section presents the Buffer class, which controls access to a one-place buffer using

suspension.

1 public class Buffer

2 {

3 private volatile int theBuffer;

4

5 public Buffer ()

6 {

7 theBuffer = 0;

8 Services.setCeiling(this , 20);

9 }

10

11 public boolean bufferEmpty(String name)

12 {

13 return theBuffer == 0;

14 }

15

16 public synchronized void write(int update) throws InterruptedException

17 {

18 while (! bufferEmpty("Producer"))

19 {

20 this.wait();

21 }

22

23 theBuffer = update;

24 this.notify ();

25 }

26

27 public synchronized int read() throws InterruptedException

28 {

29 while (bufferEmpty("Consumer"))

30 {

31 this.wait();

32 }

33

34 int out = theBuffer;

35 theBuffer = 0;

36 this.notify ();

37

38 return out;

39 }

40 }

155

A.6 Producer

This section presents the Producer managed thread, which writes data to the shared buffer.

1 public class Producer extends ManagedThread

2 {

3 private final MainMission mainMission;

4 private final Buffer buffer;

5

6 public Producer(PriorityParameters priority , StorageParameters storage ,

7 MainMission mainMission)

8 {

9 super(priority , storage , null);

10

11 this.mainMission = mainMission;

12 buffer = mainMission.getBuffer ();

13 }

14

15 public void run()

16 {

17 int i = 1;

18

19 while (! mainMission.terminationPending ())

20 {

21 try

22 {

23 buffer.write(i);

24 }

25 catch (InterruptedException e)

26 {

27 e.printStackTrace ();

28 }

29

30 i++;

31

32 if (i >= 5)

33 {

34 pcMission.requestTermination ();

35 }

36 }

37 }

38 }

156

A.7 Consumer

This section presents the Consumer managed thread, which reads data from the shared buffer.

1 public class Consumer extends ManagedThread

2 {

3 private final MainMission mainMission;

4 private final Buffer buffer;

5

6 public Consumer(PriorityParameters priority , StorageParameters storage ,

7 MainMission mainMission)

8 {

9 super(priority , storage , null);

10

11 this.mainMission = mainMission;

12 buffer = mainMission.getBuffer ();

13 }

14

15 public void run()

16 {

17 while (! mainMission.terminationPending ())

18 {

19 int result = 999;

20 try

21 {

22 result = buffer.read();

23 }

24 catch (InterruptedException e)

25 {

26 e.printStackTrace ();

27 }

28 }

29 }

30 }

157

158

Appendix B

Aircraft Example Application

This appendix presents the aircraft example application, described in Sect. 2.1.3, which con-

trols a simplified aircraft. It has several persistent schedulable objects, which represent things

about the aircraft that always need monitoring or handling; and three missions: TakeOff,

Cruise, and Land, that represent the aircraft’s phases of flight. These mission representing

modes of operation are controlled by the mode changer, which is a mission sequencer. As this

is an abstract example application these persistent handlers simplify what in reality would be

more complex systems. Each of these schedulable objects could be implemented as multiple

schedulable objects, possibly in their own nested mission – for structuring purposes.

Upon termination of the Land mission, or in the event of a failure causing the termination

of the TakeOff mission, the application terminates. As this is an abstract example any

remedial actions taken in the event of failures or any cleanup actions at the end of a successful

landing are omitted.

B.1 ACSafeletLauncher

This section presents the safelet launcher for the aircraft application, which is the program

entry point in the Icecap SCJ implementation. We present it here for completeness, but since

it is not part of the SCJ API it is not included in out models.

1 public class ACSafeletLauncher

2 {

3 public static void main(String [] args)

4 {

5 ACSafelet GERTI = new ACSafelet ();

6 new LaunchLevel2(GERTI);

7 }

8 }

159

B.2 ACSafelet

This section presents the safelet that controls the aircraft application.

1 public class ACSafelet implements Safelet <Mission >

2 {

3 @Override

4 public MissionSequencer <Mission > getSequencer ()

5 {

6 StorageParameters storageParameters = new StorageParameters (150 * 1000,

7 Const.PRIVATE_MEM_DEFAULT - 25 * 1000,

8 Const.IMMORTAL_MEM_DEFAULT - 50 * 1000,

9 Const.MISSION_MEM_DEFAULT - 100 * 1000);

10

11 return new MainMissionSequencer(new PriorityParameters (5),

12 storageParameters);

13 }

14

15 @Override

16 public void initializeApplication () {}

17

18 @Override

19 public long immortalMemorySize ()

20 {

21 return Const.IMMORTAL_MEM_DEFAULT;

22 }

23 }

B.3 MainMissionSequencer

This section presents the aircraft top-level mission sequencer, which loads the main mission.

1 public class MainMissionSequencer extends MissionSequencer <Mission >

2 {

3 private boolean returnedMission;

4

5 public MainMissionSequencer(PriorityParameters priority ,

6 StorageParameters storage)

7 {

8 super(priority , storage , null);

9 returnedMission = false;

10 }

11

12 @Override

13 protected Mission getNextMission ()

14 {

15 if (! returnedMission)

16 {

17 returnedMission = true;

18 return new MainMission ();

19 } else

20 {

21 return null;

22 }

23 }

24 }

160

B.4 MainMission

This section presents the MainMission class, which registers the aircraft’s four persistent

schedulables and the nested mission sequencer that controls the three modes that the aircraft’s

software can be in.

1 public class MainMission extends Mission

2 {

3 private double cabinPressure;

4 private double emergencyOxygen;

5 private double fuelRemaining;

6

7 private double altitude;

8 private double airSpeed;

9 private double heading;

10

11 @Override

12 protected void initialize ()

13 {

14 StorageParameters storageParameters = new StorageParameters (150 * 1000,

15 Const.PRIVATE_MEM_DEFAULT - 25 * 1000,

16 Const.IMMORTAL_MEM_DEFAULT - 50 * 1000,

17 Const.MISSION_MEM_DEFAULT - 100 * 1000);

18

19 StorageParameters storageParametersSchedulable = new StorageParameters(

20 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

21 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

22 Const.IMMORTAL_MEM_DEFAULT - 50 * 1000,

23 Const.MISSION_MEM_DEFAULT - 100 * 1000);

24

25 ACModeChanger2 aCModeChanger = new ACModeChanger2(new PriorityParameters(

26 5), storageParameters , this);

27

28 aCModeChanger.register ();

29

30 EnvironmentMonitor environmentMonitor = new EnvironmentMonitor(

31 new PriorityParameters (5), new PeriodicParameters(

32 new RelativeTime (10, 0), null),

33 storageParametersSchedulable , "Environment Monitor", this);

34

35 environmentMonitor.register ();

36

37 ControlHandler controlHandler = new ControlHandler(

38 new PriorityParameters (5), new AperiodicParameters(new RelativeTime (10, 0),

null),

39 storageParametersSchedulable , "Control Handler");

40

41 controlHandler.register ();

42

43 FlightSensorsMonitor flightSensMon = new FlightSensorsMonitor(

44 new PriorityParameters (5), new PeriodicParameters(

45 new RelativeTime (10, 0), null),

46 storageParametersSchedulable , "Flight Sensors Monitor", this);

47

48 flightSensMon.register ();

49

50 CommunicationsHandler commsHandler = new CommunicationsHandler(

51 new PriorityParameters (5), new AperiodicParameters (),

161

52 storageParametersSchedulable , "Communications Handler");

53

54 commsHandler.register ();

55

56 }

57

58 @Override

59 public long missionMemorySize ()

60 {

61 return Const.MISSION_MEM_DEFAULT;

62 }

63

64 public double getAirSpeed ()

65 {

66 return airSpeed;

67 }

68

69 public double getAltitude ()

70 {

71 return altitude;

72 }

73

74 public double getCabinPressure ()

75 {

76 return cabinPressure;

77 }

78

79 public double getEmergencyOxygen ()

80 {

81 return emergencyOxygen;

82 }

83

84 public double getFuelRemaining ()

85 {

86 return fuelRemaining;

87 }

88

89 public double getHeading ()

90 {

91 return heading;

92 }

93

94 public void setAirSpeed(double newAirSpeed)

95 {

96 this.airSpeed = newAirSpeed;

97 }

98

99 public void setAltitude(double newAltitude)

100 {

101 this.altitude = newAltitude;

102 }

103

104 public void setCabinPressure(double newCabinPressure)

105 {

106 this.cabinPressure = newCabinPressure;

107 }

108

109 public void setEmergencyOxygen(double newEmergencyOxygen)

162

110 {

111 this.emergencyOxygen = newEmergencyOxygen;

112 }

113

114 public void setFuelRemaining(double newFuelRemaining)

115 {

116 this.fuelRemaining = newFuelRemaining;

117 }

118

119 public void setHeading(double newHeading)

120 {

121 this.heading = newHeading;

122 }

123 }

163

B.5 ControlHandler

This section present the ControlHandler, a persistent schedulable that handles the aircraft’s

controls.

1 public class ControlHandler extends AperiodicEventHandler

2 {

3 public ControlHandler(PriorityParameters priority ,

4 AperiodicParameters release , StorageParameters storage , String name)

5 {

6 super(priority , release , storage , null);

7 }

8

9 @Override

10 public void handleAsyncEvent ()

11 {

12 // Handle Control Signals

13 }

14 }

B.6 FlightSensorsMonitor

This section present the FlightSensorsMonitor, a persistent schedulable that monitors the

aircraft’s flight sensors.

1 public class FlightSensorsMonitor extends PeriodicEventHandler

2 {

3 private MainMission controllingMission;

4

5 public FlightSensorsMonitor(PriorityParameters priority ,

6 PeriodicParameters periodic , StorageParameters storage ,

7 String name , MainMission controllingMission)

8 {

9 super(priority , periodic , storage , null);

10 this.controllingMission = controllingMission;

11 }

12

13 @Override

14 public void handleAsyncEvent ()

15 {

16 // read air speed

17 controllingMission.setAirSpeed (0);

18 // read altitude

19 controllingMission.setAltitude (0);

20 // read heading

21 controllingMission.setHeading (0);

22 }

23 }

164

B.7 EnvironmentMonitor

This section present the EnvironmentMonitor, a persistent schedulable that monitors the

aircraft’s environment.

1 public class EnvironmentMonitor extends PeriodicEventHandler

2 {

3 private MainMission controllingMission;

4

5 public EnvironmentMonitor(PriorityParameters priority ,

6 PeriodicParameters periodic ,

7 StorageParameters storage ,

8 String name ,

9 MainMission controllingMission)

10 {

11 super(priority , periodic , storage , null);

12 this.controllingMission = controllingMission;

13 }

14

15 @Override

16 public void handleAsyncEvent ()

17 {

18 // read cabin pressure from sensors

19 controllingMission.setCabinPressure (0);

20

21 // read emergency Oxygen Levels

22 controllingMission.setEmergencyOxygen (0);

23

24 // read remaining fuel

25 controllingMission.setFuelRemaining (0);

26 }

27 }

B.8 CommunicationsHandler

This section present the CommunicationsHandler, a persistent schedulable that monitors the

aircraft’s communication systems.

1 public class CommunicationsHandler extends AperiodicEventHandler

2 {

3 public CommunicationsHandler(PriorityParameters priority ,

4 AperiodicParameters release , StorageParameters storage , String name)

5 {

6 super(priority , release , storage , null);

7 }

8

9 @Override

10 public void handleAsyncEvent ()

11 {

12 // Handle Communication Signal

13 }

14 }

165

B.9 ACModeChanger

This section presents the nested mission sequencer that controls the three modes of the

aircraft system: taking off, cruising, and landing. Each mode is represented by a mission

that is loaded by this mission sequencer.

1 public class ACModeChanger extends MissionSequencer <Mission >

2 {

3 private MainMission controllingMission;

4

5 public ACModeChanger(PriorityParameters priority ,

6 StorageParameters storage , MainMission controllingMission)

7 {

8 super(priority , storage , null);

9 this.controllingMission = controllingMission;

10 }

11

12 private int modesLeft = 3;

13

14 public ACModeChanger(PriorityParameters priority , StorageParameters storage)

15 {

16 super(priority , storage , null);

17 }

18

19 @Override

20 protected Mission getNextMission ()

21 {

22 if (modesLeft == 3)

23 {

24 modesLeft --;

25 return new TakeOffMission(controllingMission);

26 } else if (modesLeft == 2)

27 {

28 modesLeft --;

29 return new CruiseMission(controllingMission);

30 } else if (modesLeft == 1)

31 {

32 modesLeft --;

33 return new LandMission(controllingMission);

34 } else

35 {

36 return null;

37 }

38 }

39 }

B.10 TakeOffMission

This section presents the TakeOffMission, which registers the schedulables that are specific

to the take off mode. It implements the LandingGearUser interface because it uses the

landing gear.

1 public class TakeOffMission extends Mission

2 {

3 private final double SAFE_AIRSPEED_THRESHOLD = 10.00;

4 private final double TAKEOFF_ALTITUDE = 10.00;

166

5 private MainMission controllingMission;

6 private boolean abort = false;

7 private boolean landingGearDeployed;

8

9 public TakeOffMission(MainMission controllingMission)

10 {

11 this.controllingMission = controllingMission;

12 }

13

14 @Override

15 protected void initialize ()

16 {

17 StorageParameters storageParametersSchedulable = new StorageParameters(

18 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

19 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

20 Const.IMMORTAL_MEM_DEFAULT - 50 * 1000,

21 Const.MISSION_MEM_DEFAULT - 100 * 1000);

22

23 LandingGearHandler landingGearHandler = new LandingGearHandler(

24 new PriorityParameters (5), new AperiodicParameters (),

25 storageParametersSchedulable , "Landing Gear Handler", this);

26

27 landingGearHandler.register ();

28

29 TakeOffMonitor takeOffMonitor = new TakeOffMonitor(

30 new PriorityParameters (5), new PeriodicParameters(

31 new RelativeTime (0, 0), new RelativeTime (500, 0)),

32 storageParametersSchedulable , controllingMission , this , TAKEOFF_ALTITUDE ,

33 landingGearHandler);

34

35 takeOffMonitor.register ();

36

37 TakeOffFailureHandler takeOffFailureHandler = new TakeOffFailureHandler(

38 new PriorityParameters (5), new AperiodicParameters (),

39 storageParametersSchedulable , "Take Off Handler", controllingMission , this ,

40 SAFE_AIRSPEED_THRESHOLD);

41

42 takeOffFailureHandler.register ();

43 }

44

45 @Override

46 public long missionMemorySize ()

47 {

48 return Const.MISSION_MEM_DEFAULT;

49 }

50

51 @Override

52 public boolean cleanUp ()

53 {

54 return !abort;

55 }

56

57 public void takeOffAbort ()

58 {

59 abort = true;

60 }

61

62 public void deployLandingGear ()

167

63 {

64 landingGearDeployed = true;

65 }

66

67 public void stowLandingGear ()

68 {

69 landingGearDeployed = false;

70 }

71

72 public boolean isLandingGearDeployed ()

73 {

74 return landingGearDeployed;

75 }

76 }

168

B.11 LandingGearHandlerTakeOff

This section presents the LandingGearHandlerTakeOff, which stows the aircraft’s landing

gear when it reaches a certain altitude.

1 public class LandingGearHandlerTakeOff extends AperiodicEventHandler

2 {

3 private final TakeOffMission mission;

4

5 public LandingGearHandler(PriorityParameters priority ,

6 AperiodicParameters release , StorageParameters storage ,

7 String name , TakeOffMission mission)

8 {

9 super(priority , release , storage , null);

10 this.mission = mission;

11 }

12

13 @Override

14 public void handleAsyncEvent ()

15 {

16 boolean landingGearIsDeployed = mission.isLandingGearDeployed ();

17

18 if (landingGearIsDeployed)

19 {

20 mission.stowLandingGear ();

21 } else

22 {

23 mission.deployLandingGear ();

24 }

25 }

26 }

169

B.12 TakeOffMonitor

This section presents the TakeOffMonitor, which monitors the aircraft’s altitude during take

off and triggers the termination of the TakeOffMission when a certain altitude is reached.

1 public class TakeOffMonitor extends PeriodicEventHandler

2 {

3 private final MainMission mainMission ;

4 private final TakeOffMission takeOffMission;

5 private double takeOffAltitude;

6 private AperiodicEventHandler landingGearHandler;

7

8 public TakeOffMonitor(PriorityParameters priority ,

9 PeriodicParameters periodic , StorageParameters storage ,

10 MainMission mainMission , TakeOffMission takeOffMission , double takeOffAltitude ,

11 AperiodicEventHandler landingGearHandler)

12 {

13 super(priority , periodic , storage , null);

14 this.mainMission = mainMission;

15 this.takeOffMission = takeOffMission;

16 this.takeOffAltitude = takeOffAltitude;

17 this.landingGearHandler = landingGearHandler;

18

19 }

20

21 @Override

22 public void handleAsyncEvent ()

23 {

24 double altitude = mainMission.getAltitude ();

25

26 if (altitude > takeOffAltitude)

27 {

28 landingGearHandler.release ();

29 takeOffMission.requestTermination ();

30 }

31 }

32 }

170

B.13 TakeOffFailureHandler

This section presents the TakeOffFailureHandler, which aborts the take off and terminates

the main mission (and, therefore, the application) if the correct take off speed is not reached

when the handler is released.

1 public class TakeOffFailureHandler extends AperiodicEventHandler

2 {

3 private final MainMission mainMission;

4 private final TakeOffMission takeoffMission;

5 private double threshold;

6

7 public TakeOffFailureHandler(PriorityParameters priority ,

8 AperiodicParameters release , StorageParameters storage ,

9 String name , MainMission mainMission , TakeOffMission takeoffMission , Double

threshold)

10 {

11 super(priority , release , storage , null);

12 this.takeoffMission = takeoffMission;

13 this.mainMission = mainMission;

14 this.threshold = threshold;

15 }

16

17 @Override

18 public void handleAsyncEvent ()

19 {

20 double currentSpeed = mainMission.getAirSpeed ();

21

22 if (currentSpeed < threshold)

23 {

24 // Failure Abort

25 takeoffMission.takeOffAbort ();

26 takeoffMission.requestTermination ();

27 } else

28 {

29 // Failure: Continue and Land

30 }

31 }

32

33 }

171

B.14 CruiseMission

This section presents CruiseMission, which registers the schedulables that are specific to

the cruise mode.

1 public class CruiseMission extends Mission

2 {

3 private final MainMission controllingMission;

4

5 public CruiseMission(MainMission controllingMission)

6 {

7 this.controllingMission = controllingMission;

8 }

9

10 @Override

11 protected void initialize ()

12 {

13 StorageParameters storageParametersSchedulable = new StorageParameters(

14 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

15 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

16 Const.IMMORTAL_MEM_DEFAULT - 50 * 1000,

17 Const.MISSION_MEM_DEFAULT - 100 * 1000);

18

19 BeginLandingHandler beginLandingHandler = new BeginLandingHandler(

20 new PriorityParameters (5), new AperiodicParameters (),

21 storageParametersSchedulable , "Begin Landing Handler", controllingMission);

22 beginLandingHandler.register ();

23

24 int maxP = PriorityScheduler.instance ().getMaxPriority ();

25

26 NavigationMonitor navigationMonitor = new NavigationMonitor(

27 new PriorityParameters (5), new PeriodicParameters(

28 new RelativeTime (0, 0), new RelativeTime (10, 0)),

29 storageParametersSchedulable , "Cruise Controller", controllingMission);

30 navigationMonitor.register ();

31 }

32

33 @Override

34 public long missionMemorySize ()

35 {

36 return Const.MISSION_MEM_DEFAULT;

37 }

38 }

172

B.15 BeginLandingHandler

This section presents the BeginLandingHandler, which triggers the termination of the mis-

sion CruiseMission, so that the landing mode can begin.

1 public class BeginLandingHandler extends AperiodicEventHandler

2 {

3 private Mission controllingMission;

4

5 public BeginLandingHandler(PriorityParameters priority ,

6 AperiodicParameters release , StorageParameters storage ,

7 String name , Mission controllingMission)

8 {

9 super(priority , release , storage , null);

10 this.controllingMission = controllingMission;

11 }

12

13 @Override

14 public void handleAsyncEvent ()

15 {

16 controllingMission.requestTermination ();

17 }

18 }

B.16 NavigationMonitor

This section presents the NavigationMonitor, which provides the navigation services re-

quired during normal flight.

1 public class NavigationMonitor extends PeriodicEventHandler

2 {

3 private final MainMission mainMission;

4

5 public NavigationMonitor(PriorityParameters priority ,

6 PeriodicParameters periodic , StorageParameters storage ,

7 String name , MainMission mainMission)

8 {

9 super(priority , periodic , storage , null);

10 this.mainMission = mainMission;

11 }

12

13 @Override

14 public void handleAsyncEvent ()

15 {

16 // Read and check these variables

17 double heading = mainMission.getHeading ();

18 double airSpeed = mainMission.getAirSpeed ();

19 double altitude = mainMission.getAltitude ();

20

21 // Check the variables again expected values

22 }

23 }

173

B.17 LandMission

This section presents the LandMission, which registers the schedulables that are specific to

the land mode. It implements the LandingGearUser interface because it uses the landing

gear.

1 public class LandMission extends Mission

2 {

3 private final MainMission controllingMission;

4

5 final double SAFE_LANDING_ALTITUDE = 10.00;

6 final double ALTITUDE_READING_ON_GROUND = 0.0;

7

8 private boolean abort = false;

9

10 public LandMission(MainMission controllingMission)

11 {

12 this.controllingMission = controllingMission;

13 }

14

15 private boolean landingGearDeployed;

16

17 @Override

18 protected void initialize ()

19 {

20

21 StorageParameters storageParametersSchedulable = new StorageParameters(

22 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

23 Const.PRIVATE_MEM_DEFAULT - 30 * 1000,

24 Const.IMMORTAL_MEM_DEFAULT - 50 * 1000,

25 Const.MISSION_MEM_DEFAULT - 100 * 1000);

26

27 GroundDistanceMonitor groundDistanceMonitor = new GroundDistanceMonitor(

28 new PriorityParameters (5), new PeriodicParameters(

29 new RelativeTime (0, 0), new RelativeTime (10, 0)),

30 storageParametersSchedulable , controllingMission , ALTITUDE_READING_ON_GROUND);

31 groundDistanceMonitor.register ();

32

33 LandingGearHandlerLand landingHandler = new LandingGearHandlerLand(

34 new PriorityParameters (5), new AperiodicParameters (),

35 storageParametersSchedulable , "Landing Handler", this);

36

37 landingHandler.register ();

38

39 InstrumentLandingSystemMonitor ilsMonitor = new InstrumentLandingSystemMonitor(

40 new PriorityParameters (5), new PeriodicParameters(

41 new RelativeTime (0, 0), new RelativeTime (10, 0)),

42 storageParametersSchedulable , "ILS Monitor", this);

43 ilsMonitor.register ();

44

45 SafeLandingHandler safeLandingHandler = new SafeLandingHandler(

46 new PriorityParameters (5), new AperiodicParameters (),

47 storageParametersSchedulable , "Safe Landing Handler", controllingMission ,

48 SAFE_LANDING_ALTITUDE);

49

50 safeLandingHandler.register ();

51 }

52

174

53 @Override

54 public long missionMemorySize ()

55 {

56 return Const.MISSION_MEM_DEFAULT;

57 }

58

59 public void deployLandingGear ()

60 {

61 landingGearDeployed = true;

62 }

63

64 public void stowLandingGear ()

65 {

66 landingGearDeployed = false;

67 }

68

69 public boolean isLandingGearDeployed ()

70 {

71 return landingGearDeployed;

72 }

73

74 @Override

75 public boolean cleanUp ()

76 {

77 return false;

78 }

79 }

175

B.18 GroundDistanceMonitor

This section presents the GroundDistanceMonitor, which monitors the aircraft’s distance

from the ground and terminates the MainMission when the aircraft has landed.

1 public class GroundDistanceMonitor extends PeriodicEventHandler

2 {

3 private final MainMission mainMission;

4 private final double readingOnGround;

5

6 public GroundDistanceMonitor(PriorityParameters priority ,

7 PeriodicParameters periodic , StorageParameters storage ,

8 MainMission mainMission , double readingOnGround)

9 {

10 super(priority , periodic , storage , null);

11

12 this.mainMission = mainMission;

13 this.readingOnGround = readingOnGround;

14 }

15

16 @Override

17 public void handleAsyncEvent ()

18 {

19 // Read this value from sensors

20 double distance = mainMission.getAltitude ();

21

22 if (distance == readingOnGround)

23 {

24 mainMission.requestTermination ();

25 }

26 }

27 }

176

B.19 LandingGearHandlerLand

This section presents the LandingGearHandlerLand, which deploys the aircraft’s landing gear

at a certain altitude.

1 public class LandingGearHandlerLand extends AperiodicEventHandler

2 {

3 private final LandMission mission;

4

5 public LandingGearHandlerLand(PriorityParameters priority ,

6 AperiodicParameters release , StorageParameters storage ,

7 String name , LandMission mission)

8 {

9 super(priority , release , storage , null);

10 this.mission = mission;

11 }

12

13 @Override

14 public void handleAsyncEvent ()

15 {

16 boolean landingGearIsDeployed = mission.isLandingGearDeployed ();

17

18 if (landingGearIsDeployed)

19 {

20 mission.stowLandingGear ();

21 } else

22 {

23 mission.deployLandingGear ();

24 }

25 }

26 }

177

178

Appendix C

Framework Model

This appendix presents our entire model of the SCJ API (the framework model) written in

Circus. It captures the unchanging behaviour of SCJ Level 2 programs.

C.1 GlobalTypes

section GlobalTypes parents scj prelude,SchedulableId

[ThreadID]

[ObjectID]

[NonParadigmID]

[totalThreads]

SafeletTId : ThreadID

nullThreadId : ThreadID

ThreadMap == ThreadID 7→ N1

ExceptionType ::= interruptedException | illegalMonitorStateException |
illegalArgumentException | illegalThreadStateException |
illegalStateException | ceilingViolationException

maxNanos == 999999

AperiodicType ::= aperiodic | aperiodicLong

R : PA

Z ⊂ R

179

C.2 Priority

section Priority parents scj prelude

MinPriority : N1

MaxPriority : N1

MaxPriority −MinPriority ≥ 2

PriorityLevel == MinPriority . . MaxPriority

C.3 Priority Queue

section PriorityQueue parents scj prelude,GlobalTypes,Priority

PriorityQueue == PriorityLevel → (iseq ThreadID)

∀ pq : PriorityQueue • nullThreadId 6∈ ran(
⋃

(ran pq))

IsEmpty : PriorityQueue→ B

∀ pq : PriorityQueue | (
⋃

(pq L PriorityLevel M)) = ∅ •
IsEmpty(pq) = True

AddToPriorityQueue : PriorityQueue × ThreadID × PriorityLevel → PriorityQueue

∀ pq : PriorityQueue; t : ThreadID ; p : PriorityLevel |
t 6= nullThreadId ∧
t 6∈ ran(

⋃
(ran(pq))) •

AddToPriorityQueue(pq , t , p) = (pq ⊕ {p 7→ pq(p)a 〈t〉})

RemoveFromPriorityQueue : PriorityQueue 7→ PriorityQueue × ThreadID

(∀ pq : PriorityQueue •
(∃ t : ThreadID ; p : PriorityLevel |

p = max {pl : PriorityLevel | pq(pl) 6= 〈〉} ∧
t = head pq(p)

• RemoveFromPriorityQueue(pq) = (pq ⊕ {p 7→ tail pq(p)}, t)))

RemoveThreadFromPriorityQueue : PriorityQueue × ThreadID × PriorityLevel

→PriorityQueue

∀ pq : PriorityQueue; t : ThreadID ; p : PriorityLevel |
pq(p) � {t} 6= 〈〉 •
RemoveThreadFromPriorityQueue(pq , t , p) = pq ⊕ {p 7→ squash (pq(p)−B {t})}

180

ElementsOf : PriorityQueue→ PThreadID

∀ pq : PriorityQueue | pq 6= ∅ •
(∃ elems : PThreadID |

elems =
⋃

(ran L ran pq M)

• ElementsOf (pq) = elems)

C.4 Ids

C.4.1 MissionId

section MissionId

[MissionID]

nullMissionId : MissionID

C.4.2 SchedulableId

section SchedulableId

[SchedulableID]

TopLevelSequencerId : SchedulableID

nullSequencerId : SchedulableID

nullSchedulableId : SchedulableID

181

C.5 Channels

C.5.1 FrameworkChan

section FrameworkChan parents GlobalTypes

channel throw : ExceptionType

channel done toplevel sequencer

C.5.2 ServicesChan

section ServicesChan parents scj prelude,GlobalTypes,MissionId ,Priority ,PriorityQueue

channel setCeilingPriority : MissionID ×ObjectID × PriorityLevel

C.5.3 ObjectChan

section ObjectChan parents ObjectFWChan,ObjectMethChan,ServicesChan

channelset MonitorSync == {| fully unlock , relock , relock this |}
channelset MLCSync == {| relock this, lock request , lockAcquired , get lockedBy ,

reset lockedBy , fully unlock |}
channelset CPCSync == {| setCeilingPriority , get ceilingPriority |}
channelset WaitSync == {| cancel wait timer ,waitRet ,waitForObjectRet |}
channelset WQSync == {| add to wait , remove from wait , remove most eligible from wait |}
channelset InterruptSync == {| remove from wait , get waitQueue |}

C.5.4 ObjectFWChan

section ObjectFWChan parents GlobalTypes,Priority ,PriorityQueue, JTime

WaitType ::= wait | waitForObject

182

channel unlock Monitor : ObjectID × ThreadID

channel relock : ObjectID × ThreadID

channel relock this : ObjectID × ThreadID

channel startSyncMeth : ObjectID × ThreadID

channel lockAcquired : ObjectID × ThreadID

channel endSyncMeth : ObjectID × ThreadID

channel cancel wait timer : ObjectID × ThreadID

channel start timer : ObjectID × ThreadID × PriorityLevel × JTime

channel lock request : ObjectID × ThreadID

channel assignLock : ObjectID

channel add to wait : ObjectID × ThreadID × PriorityLevel ×WaitType

channel remove from wait : ObjectID × ThreadID × PriorityLevel

channel remove most eligible from wait : ObjectID

channel removed thread : ObjectID × ThreadID ×WaitType

channel get lockedBy : ObjectID × ThreadID

channel get waitQueue : ObjectID × PriorityQueue

channel reset lockedBy : ObjectID

channel fully unlock : ObjectID

channel increment locks : ObjectID

channel decrement locks : ObjectID × Z
channel get ceilingPriority : ObjectID × PriorityLevel

channel start waitForObject timer : ObjectID × ThreadID × PriorityLevel × JTime

channel get waitForObjectThreads : ObjectID × PThreadID

C.5.5 ObjectMethChan

section ObjectMethChan parents GlobalTypes,Priority , JTime

channel waitCall : ObjectID × ThreadID

channel timedWaitCall : ObjectID × ThreadID × JTime

channel waitRet : ObjectID × ThreadID

channel waitForObjectCall : ObjectID × ThreadID × JTime

channel waitForObjectRet : ObjectID × ThreadID × B
channel notify : ObjectID × ThreadID

channel notifyAll : ObjectID × ThreadID

C.5.6 ThreadChan

section ThreadChan parents ThreadFWChan,ThreadMethChan

183

C.5.7 ThreadFWChan

section ThreadFWChan parents GlobalTypes,Priority

channel get priorityLevel : ThreadID ×ObjectID × PriorityLevel

channel raise thread priority : ThreadID × PriorityLevel

channel lower thread priority : ThreadID

channel set interrupted : ThreadID × B
channel get interrupted : ThreadID × B

C.5.8 ThreadMethChan

section ThreadMethChan parents GlobalTypes

channel interrupt : ThreadID

channel isInterruptedCall : ThreadID

channel isInterruptedRet : ThreadID × B
channel interruptedCall : ThreadID

channel interruptedRet : ThreadID × B

C.5.9 SafeletChan

section SafeletChan parents SafeletFWChan,SafeletMethChan

channelset SafeletAppSync == {| getSequencerCall ,

getSequencerRet , initializeApplicationCall , initializeApplicationRet ,

end safelet app |}

C.5.10 SafeletFWChan

section SafeletFWChan parents scj prelude

channel end safelet app

channel done safeletFW

C.5.11 SafeletMethChan

section SafeletMethChan parents scj prelude,SchedulableId ,MissionId

184

channel initializeApplicationCall

channel initializeApplicationRet

channel getSequencerCall

channel getSequencerRet : SchedulableID

channel checkSchedulable : MissionID × B
channel deregister : FSchedulableID

C.5.12 MissionSequencerChan

section MissionSequencerChan parents scj prelude,

MissionId ,SchedulableId ,MissionSequencerMethChan,

MissionSequencerFWChan

channelset MissionSequencerAppSync == {| getNextMissionCall , getNextMissionRet ,

end sequencer app |}

C.5.13 MissionSequencerFWChan

section MissionSequencerFWChan parents scj prelude,MissionId ,SchedulableId

channel get continue : SchedulableID × B
channel end sequencer app : SchedulableID

channel end methods : SchedulableID

channel end terminations : SchedulableID

C.5.14 MissionSequencerMethChan

section MissionSequencerMethChan parents scj prelude,MissionId ,SchedulableId

channel getNextMissionCall : SchedulableID

channel getNextMissionRet : (SchedulableID ×MissionID)

channel requestSequenceTermination : (SchedulableID × B)

channel sequenceTerminationPendingCall : SchedulableID

channel sequenceTerminationPendingRet : (SchedulableID × B)

C.5.15 TopLevelMissionSequencerChan

section TopLevelMissionSequencerChan parents TopLevelMissionSequencerFWChan,

MissionSequencerChan

185

C.5.16 TopLevelMissionSequencerFWChan

section TopLevelMissionSequencerFWChan parents scj prelude,MissionSequencerFWChan,

SchedulableId ,SchedulableIds

channel start toplevel sequencer : SchedulableID

channel set continue : SchedulableID × B

channelset CCSync == {| get continue, set continue |}
channelset TopLevelMissionSequencerFWChan ==

{| start toplevel sequencer , end sequencer app, end methods,

get continue, set continue |}

C.5.17 MissionChan

section MissionChan parents MissionFWChan,MissionMethChan,SchedulableMethChan

channelset MissionAppSync == {| initializeCall , initializeRet , register ,

cleanupMissionCall , cleanupMissionRet , end mission app |}

C.5.18 MissionFWChan

section MissionFWChan parents scj prelude,MissionId ,SchedulableId

channel start mission : MissionID × SchedulableID

channel done mission : MissionID × B
channel done schedulables : MissionID

channel stop schedulables : MissionID

channel get activeSchedulables : MissionID × (FSchedulableID)

channel schedulables stopped : MissionID

channel schedulables terminated : MissionID

channel end mission terminations : MissionID

channel end mission fw : MissionID

channel end mission app : MissionID

channel get missionTerminating : MissionID × B
channel set missionTerminating : MissionID × B

186

channelset TerminateSync == {| schedulables terminated ,

schedulables stopped , get activeSchedulables |}
channelset MTCSync == {| get missionTerminating ,

set missionTerminating , end mission terminations |}

C.5.19 MissionMethChan

section MissionMethChan parents scj prelude,MissionId ,SchedulableId

channel initializeCall : MissionID

channel initializeRet : MissionID

channel cleanupMissionCall : MissionID

channel cleanupMissionRet : MissionID × B
channel requestTerminationCall : MissionID × SchedulableID

channel requestTerminationRet : MissionID × SchedulableID × B
channel terminationPendingCall : MissionID

channel terminationPendingRet : MissionID × B
channel missionactive : MissionID × B

channelset MissionMethChan ==

{| initializeCall , initializeRet , cleanupMissionCall , cleanupMissionRet ,

requestTerminationCall , requestTerminationRet ,

terminationPendingCall , terminationPendingRet |}

C.5.20 SchedulableChan

section SchedulableChan parents MissionId ,SchedulableId ,

SchedulableFWChan,SchedulableMethChan

C.5.21 SchedulableMethChan

section SchedulableMethChan parents MissionId ,SchedulableId

channel register : SchedulableID ×MissionID

channel signalTerminationCall : SchedulableID

channel signalTerminationRet : SchedulableID

channel cleanupSchedulableCall : SchedulableID

channel cleanupSchedulableRet : SchedulableID

187

C.5.22 SchedulableFWChan

section SchedulableFWChan parents MissionId ,SchedulableId

channel activate schedulables : MissionID

channel done schedulable : SchedulableID

C.5.23 SchedulableMissionSequencerChan

section SchedulableMissionSequencerChan parents

SchedulableMissionSequencerFWChan,MissionSequencerChan

C.5.24 SchedulableMissionSequencerFWChan

section SchedulableMissionSequencerFWChan parents scj prelude,

MissionSequencerFWChan,SchedulableId ,SchedulableIds

channel set continueBelow : SchedulableID × B
channel set continueAbove : SchedulableID × B

channelset CCSync == {| get continue, set continueBelow , set continueAbove |}

channelset SchedulableMissionSequencerFWChan ==

{| end sequencer app, end methods, end terminations, get continue |}

C.5.25 HandlerChan

section HandlerChan parents HandlerFWChan,HandlerMethChan,

MissionFWChan, JTime

C.5.26 HandlerFWChan

section HandlerFWChan parents scj prelude,SchedulableId ,GlobalTypes, JTime

channel deschedule handler : SchedulableID

channel end releases : SchedulableID

channel release complete : SchedulableID

188

C.5.27 HandlerMethChan

section HandlerMethChan parents scj prelude,SchedulableId ,GlobalTypes

channel handleAsyncEventCall : SchedulableID

channel handleAsyncEventRet : SchedulableID

channel release : SchedulableID

C.5.28 AperiodicEventHandlerChan

section AperiodicEventHandlerChan parents HandlerChan,

HandlerMethChan,AperiodicLongEventHandlerMethChan,SchedulableId

channel end aperiodic app : SchedulableID

channelset APEHSync == {| handleAsyncEventCall , handleAsyncEventRet ,

end aperiodicEventHandler app |}
channelset DeadlineClockSync == {| end releases, release complete |}

C.5.29 AperiodicLongEventHandlerMethChan

section AperiodicLongEventHandlerMethChan parents HandlerChan,

HandlerMethChan,MissionFWChan, JTime

channel releaseLong : SchedulableID × Z
channel handleAsyncLongEventCall : SchedulableID × Z
channel handleAsyncLongEventRet : SchedulableID

C.5.30 OneShotEventHandlerChan

section OneShotEventHandlerChan parents HandlerChan,HandlerMethChan,

OneShotEventHandlerFWChan,OneShotEventHandlerMethChan

channelset STCSync == {| get startTime, set startTime |}
channelset MethodsSync == {| end releases, reschedule handler , deschedule handler |}
channelset ReleaseSync == {| handleAsyncEventCall , reschedule handler , end releases,

stop release, release |}
channelset DeadlineSync == {| handleAsyncEventCall , end releases,

deschedule handler , release complete |}
channelset OSEHAppSync == {| descheduleCall , descheduleRet , scheduleNextRelease,

getNextReleaseTimeCall , getNextReleaseTimeRet , end oneShot app |}

189

C.5.31 OneShotEventHandlerFWChan

section OneShotEventHandlerFWChan parents HandlerChan,

HandlerMethChan, JTime

channel wait for start time : SchedulableID

channel end schedule : SchedulableID

channel reschedule handler : SchedulableID × JTime

channel stop release : SchedulableID

channel end oneShot app : SchedulableID

channel get fireCount : SchedulableID × Z
channel increment fireCount : SchedulableID

channel decrement fireCount : SchedulableID

channel get startTime : SchedulableID × JTime

channel set startTime : SchedulableID × JTime

C.5.32 OneShotEventHandlerMethChan

section OneShotEventHandlerMethChan parents SchedulableId , JTime

channel getNextReleaseTimeCall : SchedulableID

channel getNextReleaseTimeRet : SchedulableID × JTime

channel scheduleNextRelease : SchedulableID × JTime

channel descheduleCall : SchedulableID

channel descheduleRet : SchedulableID × B

C.5.33 PeriodicEventHandlerChan

section PeriodicEventHandlerChan parents HandlerChan,

HandlerMethChan,PeriodicEventHandlerFWChan

channel end periodic app : SchedulableID

channelset PEHSync ==

{| handleAsyncEventCall , handleAsyncEventRet , end periodic app |}

190

C.5.34 PeriodicEventHandlerFWChan

section PeriodicEventHandlerFWChan parents HandlerChan,HandlerMethChan,

MissionFWChan, JTime

channel get missedReleases : SchedulableID × Z
channel increment missedReleases : SchedulableID

channel decrement missedReleases : SchedulableID

channel stop period : SchedulableID

channel periodic release complete : SchedulableID × Z
channel end periodic app : SchedulableID

channel get periodicTerminating : SchedulableID × B
channel set periodicTerminating : SchedulableID × B

channelset MRCSync == {| get missedReleases, increment missedReleases,

decrement missedReleases |}
channelset ReleaseSync == {| release, stop period |}
channelset PTCSYnc == {| get periodicTerminating , set periodicTerminating |}

C.5.35 ManagedThreadChan

section ManagedThreadChan parents ManagedThreadFWChan,

ManagedThreadMethChan,SchedulableChan

channelset MTAppSync == {| runCall , runRet , end managedThread app |}

C.5.36 ManagedThreadFWChan

section ManagedThreadFWChan parents SchedulableId

channel end managedThread app : SchedulableID

C.5.37 ManagedThreadMethChan

section ManagedThreadMethChan parents SchedulableId

channel runCall : SchedulableID

channel runRet : SchedulableID

191

C.6 Thread

section ThreadFW parents scj prelude,GlobalTypes,ThreadChan,

ObjectFWChan,FrameworkChan,Priority

process ThreadFW =̂ thread : ThreadID ; basePriority : PriorityLevel • begin

state State

priorityStack : seq1 PriorityLevel

activePriority : PriorityLevel

interrupted : B

activePriority = last priorityStack

state State

Init

∆State

priorityStack ′ = 〈basePriority〉
interrupted ′ = False

Execute =̂




Priority

||[{basePriority} | {interrupted}]||
Interrupts


9

GetPriorityLevel




4

(
done toplevel sequencer−→
Skip

)

Priority =̂

if priorityStack = 〈basePriority〉−→
IncreasePriority 8 priorityStack 6= 〈basePriority〉−→(

IncreasePriority

@DecreasePriority

)
fi

IncreasePriority =̂

raise thread priority . thread ? ceilingPriority−→
activePriority := ceilingPriority;

IncreasePriority

192

DecreasePriority =̂

lower thread priority . thread−→
activePriority := basePriority;

DecreasePriority

Interrupts =̂




Interrupt

||[∅ | ∅]||
IsInterrupted


||[∅ | ∅]||

Interrupted


J∅ | {| set interrupted , get interrupted |} | ∅K

InterruptedController


Interrupt =̂

interrupt . thread−→
set interrupted . thread ! True −→ Skip

IsInterrupted =̂

isInterruptedCall . thread−→
get interrupted . thread ? interrupted−→
isInterruptedRet . thread ! interrupted −→ Skip

Interrupted =̂

interruptedCall . thread−→
get interrupted . thread ? interrupted−→
interruptedRet . thread ! interrupted−→
set interrupted . thread ! False −→ Skip

InterruptedController =̂(
get interrupted . thread ! interrupted−→
InterruptedController

)
@

set interrupted . thread ? newInterrupted−→
interrupted := newInterrupted ;

InterruptedController


GetPriorityLevel =̂

get priorityLevel . thread ? object ! activePriority−→
GetPriorityLevel

• (Init ; Execute)4 (done toplevel sequencer −→ Skip)

end

193

C.7 Object

section Object parents scj prelude,GlobalTypes,ObjectChan,MissionChan,SchedulableChan,

SchedulableId ,MissionId ,MissionIds,TopLevelMissionSequencerChan,

HandlerChan,SafeletMethChan,FrameworkChan,PriorityQueue,Priority ,ThreadChan

process ObjectFW =̂ object : ObjectID • begin

state State

waitQueue : PriorityQueue

lockedBy : ThreadID

locks : N
previousLocks : ThreadMap

queueForLock : PriorityQueue

ceilingPriority : PriorityLevel

waitForObjectThreads : PThreadID

locks > 0⇔ lockedBy 6= nullThreadId

lockedBy 6∈ dom previousLocks

lockedBy 6∈ ElementsOf (waitQueue)

lockedBy 6∈ ElementsOf (queueForLock)

waitForObjectThreads ⊆ ElementsOf (waitQueue)

state State

Init

State ′

IsEmpty(queueForLock ′) = True

IsEmpty(waitQueue ′) = True

locks ′ = 0

previousLocks ′ = ∅
ceilingPriority ′ = MaxPriority

waitForObjectThreads ′ = ∅

194

FullyUnlock

∆State

lockedBy? : ThreadID

locks? : N1

previousLocks ′ = previousLocks ⊕ {lockedBy? 7→ locks?}
lockedBy ′ = nullThreadId

locks ′ = 0

waitQueue ′ = waitQueue

queueForLock ′ = queueForLock

ceilingPriority ′ = ceilingPriority

waitForObjectThreads ′ = waitForObjectThreads

AddToQueueForLock

∆State

someThread? : ThreadID

priorityLevel? : PriorityLevel

someThread? 6= nullThreadId

someThread? 6∈ ElementsOf (queueForLock)

queueForLock ′ = AddToPriorityQueue(queueForLock , someThread?, priorityLevel?)

lockedBy ′ = lockedBy

locks ′ = locks

previousLocks ′ = previousLocks

waitQueue ′ = waitQueue

ceilingPriority ′ = ceilingPriority

waitForObjectThreads ′ = waitForObjectThreads

AssignEligible

∆State

(queueForLock ′, lockedBy ′) = RemoveFromPriorityQueue(queueForLock)

lockedBy ′ ∈ dom previousLocks ⇒ locks ′ = previousLocks(lockedBy ′)

lockedBy ′ 6∈ dom previousLocks ⇒ locks ′ = 1

previousLocks ′ = {lockedBy} −C previousLocks

waitQueue ′ = waitQueue

ceilingPriority ′ = ceilingPriority

waitForObjectThreads ′ = waitForObjectThreads

195

AddToWaitQueue

∆State

someThread? : ThreadID

priorityLevel? : PriorityLevel

waitType? : WaitType

someThread? 6= nullThreadId

someThread? 6∈ ElementsOf (waitQueue)

waitQueue ′ = AddToPriorityQueue(waitQueue, someThread?, priorityLevel?)

lockedBy ′ = lockedBy

locks ′ = locks

previousLocks ′ = previousLocks

queueForLock ′ = queueForLock

ceilingPriority ′ = ceilingPriority

waitType? = waitForObject ⇒
waitForObjectThreads ′ = waitForObjectThreads ∪ {someThread?}

waitType? = wait ⇒ waitForObjectThreads ′ = waitForObjectThreads

RemoveThreadFromWaitQueue

∆State

waitingThread? : ThreadID

priorityLevel? : PriorityLevel

waitingThread? ∈ ran(waitQueue(priorityLevel?))

waitQueue ′ = RemoveThreadFromPriorityQueue(waitQueue,waitingThread?, priorityLevel?)

lockedBy ′ = lockedBy

locks ′ = locks

previousLocks ′ = previousLocks

ceilingPriority ′ = ceilingPriority

waitForObjectThreads ′ = waitForObjectThreads \ {waitingThread?}

196

RemoveMostEligigbleFromWaitQueue

∆State

notified ! : ThreadID

waitType! : WaitType

(waitQueue ′,notified !) = RemoveFromPriorityQueue(waitQueue)

lockedBy ′ = lockedBy

locks ′ = locks

previousLocks ′ = previousLocks

queueForLock ′ = queueForLock

ceilingPriority ′ = ceilingPriority

notified ! ∈ waitForObjectThreads ⇒ waitType! = waitForObject

notified ! 6∈ waitForObjectThreads ⇒ waitType! = wait

waitForObjectThreads ′ = waitForObjectThreads \ {notified !}

Execute =̂

var interruptedThreads : PThreadID •





Monitor

J∅ |
MonitorSync |
{waitQueue,waitForObjectThreads}K
Synchronisation


J{waitQueue,waitForObjectThreads} |

MLCSync |
{queueForLock , previousLocks, locks, lockedBy}K
MonitorLockController(interruptedThreads)


J{waitQueue,waitForObjectThreads,

queueForLock , previousLocks, locks, lockedBy} |
CPCSync |

{ceilingPriority}K
CeilingPriorityController



Monitor =̂

MonitorUnlocked

197

MonitorUnlocked =̂
startSyncMeth . object ? someThread−→
lock request . object ! someThread−→
MonitorUnlocked


@

lockAcquired . object ? lockingThread−→
get ceilingPriority . object ? ceilPri−→


get priorityLevel . lockingThread . object ? pri : (pri ≤ ceilPri)−→
raise thread priority . lockingThread ! ceilPri−→
MonitorLocked(lockingThread)


@

get priorityLevel . lockingThread . object ? pri : (pri > ceilPri)−→
throw .ceilingViolationException−→
Chaos







MonitorLocked =̂ val lockedBy : ThreadID •
startSyncMeth . object . lockedBy−→
increment locks . object−→
MonitorLocked(lockedBy)


@

startSyncMeth . object ? someThread : (someThread 6= lockedBy)−→
lock request . object ! someThread−→
MonitorLocked(lockedBy)


@

endSyncMeth . object . lockedBy−→


decrement locks . object . 0−→
lower thread priority . lockedBy−→
MonitorUnlocked


@(

decrement locks . object ? l : (l 6= 0)−→
MonitorLocked(lockedBy)

)




@

unlock Monitor . object ? unlockingThread−→
fully unlock . object−→
lower thread priority . unlockingThread−→
MonitorUnlocked



198

Synchronisation =̂




WaitActions

J∅ |WaitSync | ∅K

NotifyActions


J∅ |

WQSync |
{waitQueue,waitForObjectThreads}K

WaitQueueController


J{waitQueue,waitForObjectThreads} | InterruptSync | ∅K

Interrupt



WaitActions =̂

(Wait 9 TimedWait) 9 WaitForObject

NotifyActions =̂

Notify 9 NotifyAll

Wait =̂

waitCall . object ? someThread−→



isInterruptedCall . someThread−→
isInterruptedRet . someThread .False−→



get lockedBy . object . someThread−→
get priorityLevel . someThread . object ? priorityLevel−→
add to wait . object ! someThread ! priorityLevel ! wait−→
unlock Monitor . object ! someThread−→
Wait


@

get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException−→
Chaos






@

isInterruptedCall . someThread−→
isInterruptedRet . someThread .True−→
throw .interruptedException−→
Chaos





TimedWait =̂

TimedWaitHandler

J∅ | {| start timer |} | ∅K

(9 t : ThreadID • TimedWaitTimer(t))

199

TimedWaitHandler =̂

timedWaitCall . object ? someThread ? waitTime−→



get lockedBy . object . someThread−→
if((timeMillis(waitTime) < 0) ∨ (timeNanos(waitTime) < 0

∧ timeNanos(waitTime) > maxNanos))−→(
throw . illegalArgumentException−→
Chaos

)
8((timeMillis(waitTime) > 0) ∧ (timeNanos(waitTime) > 0)

∧ (timeNanos(waitTime) ≤ maxNanos))−→

get priorityLevel . someThread . object ? priorityLevel−→
add to wait . object ! someThread ! priorityLevel ! wait−→
start timer . object ! someThread ! priorityLevel ! waitTime−→
unlock Monitor . object ! someThread−→
TimedWaitHandler


fi


@
get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException−→
Chaos





TimedWaitTimer =̂ val waitingThread : ThreadID •

start timer . object .waitingThread ? priorityLevel ? waitTime−→




wait valueOf (waitTime);

remove from wait . object ! waitingThread ! priorityLevel−→
waitRet . object ! waitingThread−→
Skip


@(

cancel wait timer . object .waitingThread−→
Skip

)


;

relock this . object ! waitingThread−→
TimedWaitTimer(waitingThread)




@(

cancel wait timer . object .waitingThread−→
TimedWaitTimer(waitingThread)

)
@

(waitRet . object .waitingThread −→ TimedWaitTimer(waitingThread))

@

(waitForObjectRet . object .waitingThread ? w −→ TimedWaitTimer(waitingThread))


200

WaitForObject =̂

WaitForObjectHandler

J∅ | {| start waitForObject timer |} | ∅K

(9 t : ThreadID •WaitForObjectTimer(t))

WaitForObjectHandler =̂

waitForObjectCall . object ? someThread ? waitTime−→



get lockedBy . object . someThread−→
if((timeMillis(waitTime) < 0) ∨ (timeNanos(waitTime) < 0))−→(

throw . illegalArgumentException−→
Chaos

)
8((timeMillis(waitTime) ≥ 0) ∧ (timeNanos(waitTime) ≥ 0))−→

get priorityLevel . someThread . object ? priorityLevel−→
add to wait . object ? someThread ? priorityLevel ! waitForObject−→
start waitForObject timer . object ! someThread

! priorityLevel ! waitTime−→
unlock Monitor . object ! someThread−→
WaitForObjectHandler


fi


@
get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException−→
Chaos





WaitForObjectTimer =̂ val waitingThread : ThreadID •

start waitForObject timer . object ? waitingThread ? priorityLevel ? waitTime−→




remove from wait . object ! waitingThread ! priorityLevel−→
waitForObjectRet . object ! waitingThread ! False−→
Skip


@(

cancel wait timer . object .waitingThread−→
Skip

)


;

relock this . object ! waitingThread−→
WaitForObjectTimer(waitingThread)




@(

cancel wait timer . object .waitingThread−→
WaitForObjectTimer(waitingThread)

)
@

(waitRet . object ? n −→WaitForObjectTimer(waitingThread))

@

(waitForObjectRet . object ? n ? w −→WaitForObjectTimer(waitingThread))


201

Notify =̂

notify . object ? someThread−→



get lockedBy . object . someThread−→

if IsEmpty(waitQueue) = False−→(
ResumeThread ; Notify

)
8 IsEmpty(waitQueue) = True−→

Notify

fi




@(

get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException −→Chaos

)




@

(waitRet . object ? n −→Notify)

@

(waitForObjectRet . object ? n ? w −→Notify)



ResumeThread =̂
removed thread . object ? notified .wait−→
cancel wait timer . object ! notified−→
relock this . object ! notified−→
waitRet . object ! notified −→ Skip


@

removed thread . object ? notified .waitForObject−→
cancel wait timer . object ! notified−→
relock this . object ! notified−→
waitForObjectRet . object ! notified ! True−→ Skip



NotifyAll =̂

notifyAll . object ? someThread−→

(
get lockedBy . object . someThread−→
NotifyAllHandler ; NotifyAll

)
@(

get lockedBy . object ? lockedBy : (lockedBy 6= someThread)−→
throw . illegalMonitorStateException −→Chaos

)




@

(waitRet . object ? n −→NotifyAll)

@

(waitForObjectRet . object ? n ? w −→NotifyAll)


202

NotifyAllHandler =̂ var notified : ThreadID •

if IsEmpty(waitQueue) = False −→
(

ResumeThread ;

NotifyAllHandler

)
8 IsEmpty(waitQueue) = True −→ Skip

fi

WaitQueueController =̂
add to wait . object ? someThread ? priorityLevel ? waitType−→
AddToWaitQueue;

WaitQueueController


@

remove from wait . object ? waitingThread ? priorityLevel−→
RemoveThreadFromWaitQueue;

WaitQueueController


@

IsEmpty(waitQueue) = FalseN

var notified : ThreadID ; waitType : WaitType •
RemoveMostEligigbleFromWaitQueue;

removed thread . object ! notified ! waitType−→
WaitQueueController


@(

get waitQueue . object ! waitQueue −→WaitQueueController
)

@(
get waitForObjectThreads . object ! waitForObjectThreads −→WaitQueueController

)

Interrupt =̂

interrupt ? waitingThread−→



get waitQueue . object ? gotWait : (waitingThread ∈ ElementsOf (gotWait))−→
cancel wait timer . object ! waitingThread−→
get priorityLevel .waitingThread . object ? priorityLevel−→
remove from wait . object ! waitingThread ! priorityLevel−→
relock this . object ! waitingThread−→

(
get waitForObjectThreads . object ? wfot : (waitingThread 6∈ wfot)−→
waitRet . object ! waitingThread −→ Skip

)
@(

get waitForObjectThreads . object ? wfot : (waitingThread ∈ wfot)−→
waitForObjectRet . object ! waitingThread ! True−→ Skip

)


;

Interrupt


@(

get waitQueue . object ? gotWait : (waitingThread 6∈ ElementsOf (gotWait))−→
Interrupt

)


203

MonitorLockController =̂ val interruptedThreads : PThreadID •
lock request . object ? someThread−→
get priorityLevel . someThread . object ? priorityLevel−→
AddToQueueForLock ;

MonitorLockController(interruptedThreads)


@

relock this . object ? someThread−→
get priorityLevel . someThread . object ? priorityLevel−→

AddToQueueForLock ;


isInterruptedCall . someThread−→
isInterruptedRet . someThread .False−→
MonitorLockController(interruptedThreads)


@

isInterruptedCall . someThread−→
isInterruptedRet . someThread .True−→
interruptedThreads := interruptedThreads ∪ {someThread};
MonitorLockController(interruptedThreads)








@

IsEmpty(queueForLock) = False ∧ lockedBy = nullThreadIdN

AssignEligible;

lockAcquired . object . lockedBy−→

if lockedBy ∈ interruptedThreads −→
(

throw .interruptedException−→
Chaos

)
8lockedBy 6∈ interruptedThreads −→

(
MonitorLockController(interruptedThreads)

)
fi




@(

get lockedBy . object ! lockedBy−→
MonitorLockController(interruptedThreads)

)
@

increment locks . object−→
locks := locks + 1;

MonitorLockController(interruptedThreads)


@

decrement locks . object ! (locks − 1)−→

locks := locks − 1;
if locks = 0−→

(
lockedBy := nullThreadId ;

MonitorLockController(interruptedThreads)

)
8locks 6= 0−→ MonitorLockController(interruptedThreads)

fi






@

fully unlock . object−→
FullyUnlock ;

MonitorLockController(interruptedThreads)


204

CeilingPriorityController =̂
setCeilingPriority ? mission ! object ? priority−→
ceilingPriority := priority;

µX • (get ceilingPriority . object ! ceilingPriority −→X)


@(

get ceilingPriority . object ! ceilingPriority−→
CeilingPriorityController

)

• (Init ; Execute)4 (done toplevel sequencer −→ Skip)

end

205

C.8 SafeletFW

section SafeletFW parents scj prelude,SchedulableId ,SchedulableIds,SafeletChan,

TopLevelMissionSequencerChan,FrameworkChan,SchedulableChan

process SafeletFW =̂ begin

state S State

globallyRegistered : FSchedulableID

topLevelSequencer : SchedulableID

S Init

S State ′

globallyRegistered ′ = ∅
topLevelSequencer ′ = nullSequencerId

state S State

InitializeApplication =̂

initializeApplicationCall−→
initializeApplicationRet−→
Skip

Execute =̂

GetSequencerMeth;

if topLevelSequencer 6= nullSequencerId−→(
start toplevel sequencer . topLevelSequencer−→
Methods

)
8topLevelSequencer = nullSequencerId−→

Skip

fi

GetSequencerMeth =̂

getSequencerCall−→
getSequencerRet ? sequencer−→
topLevelSequencer := sequencer

206

Methods =̂

(
Register ;

Methods

)
@(

Deregister ;

Methods

)
@(

done toplevel sequencer−→
Skip

)



Register =̂
register ? schedulable : (schedulable 6∈ globallyRegistered) ? mission−→

globallyRegistered := globallyRegistered ∪ {schedulable};
checkSchedulable .mission ! True−→
Skip




@

register ? schedulable : (schedulable ∈ globallyRegistered) ? mission−→
checkSchedulable .mission ! False−→
Skip



Deregister =̂

deregister ? schedulables−→
globallyRegistered := (globallyRegistered \ schedulables);

Skip

•
(

S Init ; InitializeApplication ; Execute
)

end

207

C.9 TopLevelMissionSequencerFW

section TopLevelMissionSequencerFW parents TopLevelMissionSequencerChan,

MissionId ,MissionMethChan,SchedulableId ,MissionFWChan,FrameworkChan

process TopLevelMissionSequencerFW =̂ sequencer : SchedulableID • begin

state TLMS State

currentMission : MissionID

continue : B

state TLMS State

TLMS Init

TLMS State ′

continue ′ = True

currentMission ′ = nullMissionId

Start =̂

start toplevel sequencer . sequencer−→
Skip

Execute =̂




RunMission;

end methods . sequencer−→
Skip


J{currentMission} | {| end methods |} | ∅K

Methods


J∅ | CCSync | {continue}K
ContinueController



RunMission =̂

GetNextMission;

StartMission;

Continue

GetNextMission =̂

getNextMissionCall . sequencer−→
getNextMissionRet . sequencer ? next−→
currentMission := next

208

StartMission =̂

if currentMission 6= nullMissionId−→
start mission . currentMission . sequencer−→
done mission . currentMission ? returnedcontinue−→
set continue . sequencer ! returnedcontinue−→
Skip


8currentMission = nullMissionId−→(

set continue . sequencer ! False−→
Skip

)
fi

Continue =̂(
get continue . sequencer ? continue : (continue = True)−→
RunMission

)
@(

get continue . sequencer ? continue : (continue = False)−→
Skip

)

Methods =̂(
SequenceTerminationPending;

Methods

)
@(

end methods . sequencer−→
Skip

)

SequenceTerminationPending =̂

sequenceTerminationPendingCall . sequencer−→
get continue . sequencer ? continue−→
sequenceTerminationPendingRet . sequencer ! continue−→
Skip

ContinueController =̂(
get continue . sequencer ! continue−→
ContinueController

)
@

set continue . sequencer ? newContinue−→
continue := newContinue;

ContinueController


@(

end methods . sequencer−→
Skip

)

209

Finish =̂
done toplevel sequencer−→
end sequencer app . sequencer−→
Skip



• TLMS Init ; Start ; Execute ; Finish

end

210

C.10 MissionFW

section MissionFW parents scj prelude,SafeletMethChan,MissionId ,

SchedulableId ,MissionChan,SchedulableChan,FrameworkChan,ServicesChan

process MissionFW =̂ mission : MissionID • begin

state M State

registeredSchedulables : FSchedulableID

activeSchedulables : FSchedulableID

missionTerminating : B
applicationTerminating : B
controllingSequencer : SchedulableID

state M State

M Init

M State ′

registeredSchedulables ′ = ∅
activeSchedulables ′ = ∅
missionTerminating = False

applicationTerminating = False

controllingSequencer = nullSequencerId

AddSchedulable

∆M State

s? : SchedulableID

s? 6∈ registeredSchedulables

registeredSchedulables ′ = registeredSchedulables ∪ {s?}
activeSchedulables ′ = activeSchedulables

missionTerminating ′ = missionTerminating

applicationTerminating ′ = applicationTerminating

controllingSequencer ′ = controllingSequencer

Start =̂(
start mission .mission ? mySequencer−→
controllingSequencer := mySequencer

)
@(

done toplevel sequencer−→
applicationTerminating := True

)

211

InitializePhase =̂

initializeCall .mission −→
Initialize

Initialize =̂

(
Register ;

Initialize

)
@(

SetCeilingPriority;

Initialize

)
@(

initializeRet .mission−→
Skip

)



Register =̂

register ? s ! mission−→

(
checkSchedulable .mission ? check : (check = True)−→
AddSchedulable

)
@

checkSchedulable .mission ? check : (check = False)−→
throw .illegalStateException−→
Chaos





RegisterException =̂

register ? s ! mission−→
throw .illegalStateException−→
Chaos

SetCeilingPriority =̂

setCeilingPriority .mission ? o ? p−→
Skip

SetCeilingPriorityException =̂

setCeilingPriority .mission ? o ? p−→
throw .illegalStateException−→
Chaos

MissionPhase =̂

Execute

J{registeredSchedulables, activeSchedulables,missionTerminating ,

applicationTerminating , controllingSequencer} | {| done schedulables |} | ∅K

Exceptions

212

Execute =̂

if registeredSchedulables = ∅−→(
done schedulables .mission−→
Skip

)
8registeredSchedulables 6= ∅−→

activate schedulables .mission −→
activeSchedulables := registeredSchedulables;

TerminateAndDone

J{activeSchedulables} |
{| stop schedulables, done schedulables |} |
{missionTerminating}K

Methods




fi



\ {| done schedulables |}

TerminateAndDone =̂


SignalTermination

J∅ | TerminateSync | {activeSchedulables}K
DoneSchedulables

 ;

done schedulables .mission−→
Skip



SignalTermination =̂

stop schedulables .mission−→
get activeSchedulables .mission ? schedulablesToStop−→
StopSchedulables(schedulablesToStop);

schedulables stopped .mission−→
Skip


4(schedulables stopped .mission −→ Skip)

StopSchedulables =̂ val schedulablesToStop : FSchedulableID •
9 s : schedulablesToStop •

signalTerminationCall . s−→
signalTerminationRet . s−→
Skip


213

DoneSchedulables =̂


@ schedulable : activeSchedulables •
done schedulable . schedulable−→
activeSchedulables := activeSchedulables \ {schedulable};
Skip

 ;

if activeSchedulables = ∅−→(
schedulables stopped .mission−→
Skip

)
8activeSchedulables 6= ∅−→

DoneSchedulables

fi


@(

get activeSchedulables .mission ! activeSchedulables−→
DoneSchedulables

)

Methods =̂


RequestTerminationMeth

J∅ | {| end mission terminations |} | ∅K

TerminationPendingMeth


J∅ | MTCSync | {missionTerminating}K
MissionTerminatingController


J{missionTerminating} | {| end mission terminations |} | ∅K

done schedulables .mission−→
end mission terminations .mission−→
Skip



RequestTerminationMeth =̂(
end mission terminations .mission−→
Skip

)
@

@ schedulable : registeredSchedulables •
requestTerminationCall .mission . schedulable−→



get missionTerminating .mission?mT : (mT = False)−→
set missionTerminating .mission ! True−→
stop schedulables .mission−→
requestTerminationRet .mission . schedulable .False−→
RequestTerminationMeth


@

get missionTerminating .mission?mT : (mT = True)−→
requestTerminationRet .mission . schedulable .True−→
RequestTerminationMeth






214

TerminationPendingMeth =̂(
end mission terminations .mission−→
Skip

)
@

terminationPendingCall .mission−→
get missionTerminating .mission ? missionTerminating−→
terminationPendingRet .mission ! missionTerminating−→
TerminationPendingMeth


MissionTerminatingController =̂(

get missionTerminating .mission ! missionTerminating−→
MissionTerminatingController

)
@

set missionTerminating .mission ? newMissionTerminating−→
missionTerminating := newMissionTerminating;

MissionTerminatingController


@(

end mission terminations .mission−→
Skip

)

CleanupPhase =̂

Cleanup

J{registeredSchedulables, activeSchedulables,

missionTerminating , applicationTerminating ,

controllingSequencer} | {| done schedulables |} | ∅K

Exceptions

Cleanup =̂

deregister !registeredSchedulables−→
CleanupSchedulables;

cleanupMissionCall .mission−→
cleanupMissionRet .mission ? continueSequencer−→
Finish(continueSequencer)


CleanupSchedulables =̂

9 s : registeredSchedulables •
cleanupSchedulableCall . s−→
cleanupSchedulableRet . s−→
Skip


Finish =̂ val continueSequencer : B •

end mission app .mission−→
done mission .mission ! continueSequencer−→
Skip

215

Exceptions =̂
RegisterException

9

SetCeilingPriorityException


@(

done schedulables .mission−→
Skip

)

•



µX • M Init ; Start ;

if applicationTerminating = False−→(
InitializePhase ; MissionPhase ; CleanupPhase ; X

)
8applicationTerminating = True−→(

end mission app .mission−→
Skip

)
fi





end

216

C.11 SchedulableMissionSequencerFW

section SchedulableMissionSequencerFW parents SchedulableMissionSequencerChan,

SchedulableChan,MissionIds,MissionChan,

SchedulableId , scj prelude,SafeletMethChan,FrameworkChan

process SchedulableMissionSequencerFW =̂ sequencer : SchedulableID • begin

state SMS State

currentMission : MissionID

continueAbove : B
continueBelow : B
controllingMission : MissionID

applicationTerminating : B

state SMS State

SMS Init

SMS State ′

continueAbove ′ = True

continueBelow ′ = True

applicationTerminating ′ = False

currentMission ′ = nullMissionId

controllingMission ′ = nullMissionId

GetContinue

ΞSMS State

continue! : B

continueAbove = True ∧ continueBelow = True⇒ continue! = True

Start =̂(
Register ;

Activate

)
@(

done toplevel sequencer−→
applicationTerminating := True

)
@(

activate schedulables ? someMissionID−→
Start

)

217

Register =̂

register . sequencer ? mID−→
controllingMission := mID

Activate =̂

activate schedulables.controllingMission−→
Skip

Execute =̂




RunMission;

end methods . sequencer−→
Skip


J{currentMission} | {| end methods |} | ∅K

Methods


J∅ | CCSync | {continueAbove, continueBelow}K
ContinueController


;

done schedulable . sequencer −→ Skip

RunMission =̂

GetNextMission;

StartMission;

Continue

GetNextMission =̂

getNextMissionCall . sequencer−→
getNextMissionRet . sequencer ? next−→
currentMission := next

StartMission =̂

if currentMission 6= nullMissionId −→

start mission . currentMission . sequencer−→
initializeRet . currentMission−→

SignalTermination

J∅ | {| end terminations |} | ∅K
done mission . currentMission ? continueReturn−→
set continueBelow . sequencer ! continueReturn−→
end terminations . sequencer−→
Skip






8 currentMission = nullMissionId −→(

set continueBelow . sequencer ! False−→
Skip

)
fi

218

Continue =̂(
get continue . sequencer ? continue : (continue = True)−→ RunMission

)
@(

get continue . sequencer ? continue : (continue = False)−→ Skip
)

SignalTermination =̂

(
end terminations . sequencer −→ Skip

)
@

signalTerminationCall . sequencer−→
set continueAbove . sequencer ! False−→
requestTerminationCall . currentMission . sequencer−→
requestTerminationRet . currentMission . sequencer ? isTerminating−→
signalTerminationRet . sequencer −→ Skip


;

end terminations . sequencer −→ Skip


Methods =̂(

SequenceTerminationPending ; Methods
)

@(
end methods . sequencer −→ Skip

)
SequenceTerminationPending =̂

sequenceTerminationPendingCall . sequencer−→
get continue . sequencer ? continue−→
sequenceTerminationPendingRet . sequencer ! continue−→
Skip

ContinueController =̂ var continue : B •(
GetContinue ; get continue . sequencer ! continue−→
ContinueController

)
@

set continueBelow . sequencer ? newContinueBelow−→
continueBelow := newContinueBelow ;

ContinueController


@

set continueAbove . sequencer ? newContinueAbove−→
continueAbove := newContinueAbove;

ContinueController


@(

end methods . sequencer−→
Skip

)
Cleanup =̂

cleanupSchedulableCall . sequencer−→
cleanupSchedulableRet . sequencer−→
Finish

219

Finish =̂

done schedulable . sequencer−→
Skip

•



µX • SMS Init ; Start ;

if applicationTerminating = False−→(
Execute ; Cleanup ; X

)
8applicationTerminating = True−→(

end sequencer app . sequencer−→
Skip

)
fi





end

220

C.12 PeriodicEventHandlerFW

section PeriodicEventHandlerFW parents MissionChan,SchedulableChan,

SchedulableId ,MissionId ,MissionIds,TopLevelMissionSequencerChan,

PeriodicEventHandlerChan,SafeletMethChan,FrameworkChan,PeriodicParameters

process PeriodicEventHandlerFW =̂

schedulable : SchedulableID ; periodicParameters : PeriodicParameters • begin

state PEH State

controllingMission : MissionID

applicationTerminating : B
period : JTime

startTime : JTime

deadline : JTime

deadlineMissHandler : SchedulableID

missedReleases : N
periodicTerminating : B

valueOf (deadline) ≤ valueOf (period)

state PEH State

PEH Init

PEH State ′

controllingMission ′ = nullMissionId

applicationTerminating ′ = False

periodicTerminating ′ = False

period ′ = periodOf (periodicParameters)

startTimeOf (periodicParameters) = NULL

⇒ startTime ′ = time (0, 0)

startTimeOf (periodicParameters) 6= NULL

⇒ startTime ′ = startTimeOf (periodicParameters)

deadlineOfPeriodic(periodicParameters) = NULL

⇒ deadline ′ = period ′

deadlineOfPeriodic(periodicParameters) 6= NULL

⇒ deadline ′ = deadlineOfPeriodic(periodicParameters)

missedReleases ′ = 0

deadlineMissHandler ′ = missHandlerOfPeriodic(periodicParameters)

221

Start =̂(
Register ;

Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)

Register =̂

register . schedulable ? missionID−→
controllingMission := missionID

Activate =̂

activate schedulables . controllingMission−→
Skip

Execute =̂





wait valueOf (startTime);

if deadlineMissHandler 6= nullSchedulableId−→
RunningWithDeadlineDetection

8deadlineMissHandler = nullSchedulableId−→
Running

fi


@(

end releases . schedulable−→
Skip

)


J{startTime} | {| stop period |} | ∅K

SignalTermination


J{startTime} | PTCSYnc | ∅K

PeriodicTerminatingController

Running =̂
PeriodicClock

J∅ | ReleaseSync | {missedReleases}K
Release(0)



222

RunningWithDeadlineDetection =̂
Running

J{missedReleases} | ReleaseSync | ∅K

DeadlineClock(0)



PeriodicClock =̂

release . schedulable−→

µX •




wait valueOf (period);

release . schedulable−→
X


@(

end releases . schedulable−→
Skip

)



Release =̂ val index : N •
if missedReleases = 0−→

release . schedulable−→
handleAsyncEventCall . schedulable−→
Skip


8missedReleases 6= 0−→

handleAsyncEventCall . schedulable−→
missedReleases := missedReleases − 1;

Skip


fi ;


handleAsyncEventRet . schedulable−→
periodic release complete . schedulable . index−→
Skip


J∅ | {| handleAsyncEventRet |} | ∅K
µX •




release . schedulable−→
missedReleases := missedReleases + 1;

X


@(

handleAsyncEventRet . schedulable−→
Skip

)







;



(
get periodicTerminating . schedulable ? pehTerm : (pehTerm = False)−→
Release(index + 1)

)
@(

get periodicTerminating . schedulable ? pehTerm : (pehTerm = True)−→
Skip

)


223

DeadlineClock =̂ val index : N •




wait valueOf (deadline);

release . deadlineMissHandler−→
periodic release complete . schedulable . index−→
Skip


@(

periodic release complete . schedulable . index−→
Skip

)


9

((
wait valueOf (period);

DeadlineClock(index + 1)

))


4


end releases . schedulable−→
periodic release complete . schedulable ? index−→
Skip


SignalTermination =̂

signalTerminationCall . schedulable−→
set periodicTerminating . schedulable ! True−→
end releases . schedulable−→
signalTerminationRet . schedulable−→
done schedulable . schedulable−→
Skip

Cleanup =̂

cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable−→
Skip

PeriodicTerminatingController =̂(
get periodicTerminating . schedulable ! periodicTerminating−→
PeriodicTerminatingController

)
@

set periodicTerminating . schedulable ? newPeriodicTerminating−→
periodicTerminating := newPeriodicTerminating;

PeriodicTerminatingController



•


µX •



PEH Init ; Start ;

if applicationTerminating = False−→(
Execute ; Cleanup ; X

)
8applicationTerminating = True−→(

end periodic app . schedulable −→ Skip
)

fi






end

224

C.13 AperiodicEventHandlerFW

section AperiodicEventHandlerFW parents MissionChan,SchedulableChan,

SchedulableId ,MissionId ,MissionIds,TopLevelMissionSequencerChan,

SafeletMethChan,FrameworkChan,AperiodicEventHandlerChan,

AperiodicParameters

process AperiodicEventHandlerFW =̂

schedulable : SchedulableID ; aperiodicType : AperiodicType;

aperiodicParameters : AperiodicParameters • begin

state APEH State

controllingMission : MissionID

applicationTerminating : B
pending : B
data : Z
deadline : JTime

deadlineMissHandler : SchedulableID

state APEH State

APEH Init

APEH State ′

controllingMission ′ = nullMissionId

applicationTerminating ′ = False

pending ′ = False

deadline ′ = deadlineOfAperiodic(aperiodicParameters)

deadlineMissHandler ′ = missHandlerOfAperiodic(aperiodicParameters)

Start =̂(
Register ;

Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)

Register =̂

register . schedulable ? missionID−→
controllingMission := missionID

225

Activate =̂

activate schedulables . controllingMission−→
Skip

Execute =̂

if deadlineMissHandler ! = nullSchedulableId−→





if aperiodicType = aperiodic−→
Ready

8aperiodicType = aperiodicLong−→
ReadyLong

fi


J{pending , data} | {| end releases |} | ∅K

SignalTermination


J{pending , data} |

DeadlineClockSync ∪ {| release.schedulable, releaseLong .schedulable |}
| ∅K




release . schedulable −→ Skip

@

releaseLong . schedulable?data −→ Skip

 ; DeadlineClock


4
(

end releases.schedulable −→ Skip
)




8deadlineMissHandler = nullSchedulableId−→



if aperiodicType = aperiodic−→
Ready

8aperiodicType = aperiodicLong−→
ReadyLong

fi


J{pending , data} | {| end releases |} | ∅K

SignalTermination


fi

DeadlineClock =̂

(
wait valueOf (deadline);

release . deadlineMissHandler −→DeadlineClock

)
@(

release complete . schedulable −→DeadlineClock
)


4
(

end releases . schedulable −→ Skip
)

226

Ready =̂(
release.schedulable−→
handleAsyncEventCall . schedulable −→ Release

)
@(

end releases . schedulable −→ Skip
)

ReadyLong =̂
releaseLong . schedulable ? longData−→
data := longData;

handleAsyncLongEventCall . schedulable . data −→ ReleaseLong


@(

end releases . schedulable −→ Skip
)

SignalTermination =̂
signalTerminationCall . schedulable−→
end releases . schedulable−→
signalTerminationRet . schedulable−→
done schedulable . schedulable −→ Skip



Release =̂
release.schedulable−→
pending := True;

Release


@

handleAsyncEventRet .schedulable−→
if pending = True−→

pending := False;

release complete . schedulable−→
handleAsyncEventCall .schedulable−→
Release


8pending = False−→

Ready

fi


@(

end releases.schedulable −→ Skip
)

227

ReleaseLong =̂
releaseLong .schedulable ? longData−→
data := longData;

pending := True;

ReleaseLong


@

handleAsyncLongEventRet .schedulable−→
if pending = True−→

pending := False;

release complete . schedulable−→
handleAsyncLongEventCall .schedulable.data−→
ReleaseLong


8pending = False−→

ReadyLong

fi


@(

end releases.schedulable −→ Skip
)

Cleanup =̂

cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable −→ Skip

•


µX •



APEH Init ; Start ;

if applicationTerminating = False−→(
Execute ; Cleanup ; X

)
8applicationTerminating = True−→(

end aperiodic app . schedulable −→ Skip
)

fi







end

228

C.14 OneShotEventHandlerFW

section OneShotEventHandlerFW parents MissionChan,SchedulableChan,

SchedulableId ,MissionId ,MissionIds,TopLevelMissionSequencerChan,

OneShotEventHandlerChan,SafeletMethChan,FrameworkChan,

AperiodicParameters

process OneShotEventHandlerFW =̂

schedulable : SchedulableID ; startTime : JTime;

aperiodicParameters : AperiodicParameters • begin

state OSEH State

controllingMission : MissionID

applicationTerminating : B
deadline : JTime

deadlineMissHandler : SchedulableID

state OSEH State

OSEH Init

OSEH State ′

controllingMission ′ = nullMissionId

applicationTerminating ′ = False

deadline ′ = deadlineOfAperiodic(aperiodicParameters)

deadlineMissHandler ′ = missHandlerOfAperiodic(aperiodicParameters)

Start =̂(
Register ;

Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)

Register =̂

register . schedulable ? mID−→
controllingMission := mID

Activate =̂

activate schedulables . controllingMission−→
Skip

229

Execute =̂


(

Run J ∅ | MethodsSync | ∅K

Methods

)
J∅ | {| end releases |} | ∅K

SignalTermination


J∅ | STCSync | {startTime}K

StartTimeController



Run =̂

if deadlineMissHandler = nullSchedulableId−→
ScheduleOrWait

J∅ | ReleaseSync | ∅K

Release


8deadlineMissHandler 6= nullSchedulableId−→


ScheduleOrWait

J∅ | ReleaseSync | ∅K

Release


J∅ | DeadlineSync | ∅K

DeadlineClock


fi

ScheduleOrWait =̂

get startTime . schedulable ? startTime−→
if startTime! = NULL−→

Scheduled

8startTime = NULL−→
NotScheduled

fi

Release =̂
handleAsyncEventCall . schedulable−→
handleAsyncEventRet . schedulable−→
release complete . schedulable−→
Release


@

reschedule handler . schedulable ? newStartTime−→
set startTime . schedulable ! newStartTime−→
Release


@

end releases . schedulable−→
stop release . schedulable−→
Skip


230

DeadlineClock =̂

release . schedulable−→




wait valueOf (deadline);

release . deadlineMissHandler−→
DeadlineClock


@(

release complete . schedulable−→
DeadlineClock

)
@(

deschedule handler . schedulable−→
DeadlineClock

)




4

(
end releases . schedulable−→
Skip

)

Scheduled =̂

get startTime . schedulable ? startTime−→


wait valueOf (startTime)

release . schedulable−→
handleAsyncEventCall . schedulable−→
NotScheduled


4

(
deschedule handler . schedulable−→
NotScheduled

)
@

reschedule handler . schedulable ? newStartTime−→
set startTime . schedulable ! newStartTime−→
Scheduled







NotScheduled =̂(
deschedule handler . schedulable−→
NotScheduled

)
@

reschedule handler . schedulable ? newStartTime−→
set startTime . schedulable ! newStartTime−→
Scheduled


@(

end releases . schedulable−→
Skip

)

231

Methods =̂(
Deschedule;

Methods

)
@(

GetNextReleaseTime;

Methods

)
@(

ScheduleNextRelease;

Methods

)
@(

end releases . schedulable−→
Skip

)

Deschedule =̂

var wasScheduled : B •
descheduleCall . schedulable−→
deschedule handler .schedulable−→
get startTime . schedulable ? startTime−→

if startTime = NULL−→
wasScheduled := False

8startTime 6= NULL−→
wasScheduled := True

fi ;

set startTime . schedulable ! NULL−→
descheduleRet . schedulable ! wasScheduled−→
Skip



GetNextReleaseTime =̂

getNextReleaseTimeCall . schedulable−→
get startTime . schedulable ? startTime−→
getNextReleaseTimeRet . schedulable ! startTime−→
Skip

ScheduleNextRelease =̂

scheduleNextRelease . schedulable ? newStartTime−→
set startTime . schedulable ! newStartTime−→
if newStartTime = NULL−→(

deschedule handler .schedulable−→
Skip

)
8newStartTime 6= NULL−→(

reschedule handler ! schedulable ! newStartTime−→
Skip

)
fi

232

SignalTermination =̂

signalTerminationCall . schedulable−→
end releases . schedulable−→
signalTerminationRet . schedulable−→
done schedulable . schedulable−→
Skip

StartTimeController =̂(
get startTime . schedulable ! startTime−→
StartTimeController

)
@(

set startTime . schedulable ? newStartTime−→
StartTimeController

)

Cleanup =̂

cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable−→

Skip

•


µX •



OSEH Init ; Start ;

if applicationTerminating = False−→(
Execute ; Cleanup ; X

)
8applicationTerminating = True−→(

end oneShot app . schedulable−→
Skip

)
fi







end

233

C.15 ManagedThreadFW

section ManagedThreadFW parents ManagedThreadChan,SchedulableId ,MissionId ,

MissionIds,TopLevelMissionSequencerChan,SchedulableChan,SafeletMethChan,

FrameworkChan

process ManagedThreadFW =̂ schedulable : SchedulableID • begin

state MT State

controllingMission : MissionID

applicationTerminating : B

state MT State

MT Init

MT State ′

controllingMission ′ = nullMissionId

applicationTerminating ′ = False

Start =̂(
Register ;

Activate

)
@(

activate schedulables?someMissionID−→
Start

)
@(

done toplevel sequencer−→
applicationTerminating := True

)

Register =̂

register . schedulable ? mID−→
controllingMission := mID

Activate =̂

activate schedulables . controllingMission−→
Skip

Execute =̂ Run J ∅ | {| done schedulable |} | ∅ K Methods

234

Run =̂

runCall . schedulable−→
runRet . schedulable−→
done schedulable . schedulable−→
Skip

Methods =̂(
SignalTerminationMeth ; Methods

)
@

done schedulable . schedulable−→
Skip

SignalTerminationMeth =̂

signalTerminationCall . schedulable−→
signalTerminationRet . schedulable−→
Skip

Cleanup =̂

cleanupSchedulableCall . schedulable−→
cleanupSchedulableRet . schedulable−→
Skip

•



µX • MT Init ; Start ;

if applicationTerminating = False−→(
Execute ; Cleanup ; X

)
8applicationTerminating = True−→(

end managedThread app . schedulable−→
Skip

)
fi





end

235

236

Appendix D

Circus BNF Encoding

This appendix presents our encoding in Z of the BNF description of Circus.

CircusProgram == seq CircusParagraph

CircusParagraph ::= para〈〈Paragraph〉〉 | chanDef 〈〈ChannelDefinition〉〉 |
chanSetDef 〈〈ChanSetDefinition〉〉 | procDef 〈〈ProcDefinition〉〉

ChannelDefinition == CDeclaration

CDeclaration ::= scDecl〈〈SCDeclaration〉〉 | multiDecl〈〈SCDeclaration × CDeclaration〉〉

SCDeclaration ::= chanName〈〈seq N 〉〉 | chanNameWithType〈〈seq N × Expression〉〉 |
scSe〈〈SchemaExp〉〉

ChanSetDefinition ::= csdName〈〈N × CSExpression〉〉

ProcDefinition ::= pd〈〈N × Process〉〉

Process ::= proc〈〈seq PParagraph ×Action〉〉 | procName〈〈N 〉〉 |
procSeq〈〈Process × Process〉〉 | procExtChoice〈〈Process × Process〉〉 |
procIntChoice〈〈Process × Process〉〉 | procPar〈〈Process × CSExpression × Process〉〉 |
procInter〈〈Process × Process〉〉 | procHide〈〈Process × CSExpression〉〉 |
procRename〈〈Process × seq N × seq N 〉〉 | procParam〈〈Declaration × Process〉〉 |
procInstP〈〈Process × seq Expression〉〉 | procGeneric〈〈seq N × Process〉〉 |
procInstG〈〈Process × seq Expression〉〉 |
procItrInter〈〈Declaration × Process〉〉

PParagraph ::= pPar〈〈Paragraph〉〉 | def 〈〈N ×Action〉〉

GuardedAction ::= thenAct〈〈Predicate ×Action〉〉 |
thenActComp〈〈Predicate ×Action ×GuardedAction〉〉

237

Action ::= actSe〈〈SchemaExp〉〉 | com〈〈Command〉〉 | skip | stop | chaos |
prefixExp〈〈Communication ×Action〉〉 |
guard〈〈Predicate ×Action〉〉 | seqExp〈〈Action ×Action〉〉 |
extChoice〈〈Action ×Action〉〉 | intChoice〈〈Action ×Action〉〉 |
actPar〈〈Action × CSExpression ×Action〉〉 | actInter〈〈Action ×Action〉〉 |
actHide〈〈Action × CSExpression〉〉 | mu〈〈N ×Action〉〉 | actParam〈〈Declaration ×Action〉〉 |
actInst〈〈Action × seq Expression〉〉

CSExpression ::= cs〈〈seq N 〉〉 | csName〈〈N 〉〉 |
union〈〈CSExpression × CSExpression〉〉 |
intersect〈〈CSExpression × CSExpression〉〉 |
subtract〈〈CSExpression × CSExpression〉〉

Communication == N × seq CParameter

CParameter ::= shriek〈〈N 〉〉 | shriekRestrict〈〈N × Predicate〉〉 | bang〈〈Expression〉〉 |
dotParam〈〈Expression〉〉

Command ::= spec〈〈seq N × Predicate × Predicate〉〉 | equals〈〈N × seq Expression〉〉

[Predicate,N ,Expression,Paragraph,SchemaExp,Declaration]

238

Appendix E

Formal Translation Functions

This appendix presents all of the translation functions discussed in Sect. 5.2. These functions

are written in Z and translate SCJ programs into our Circus model. As discussed in Sect. 5.2,

these functions formalise the core of our translation strategy.

Framework

This section presents the definition of the framework model. Since the Circus model of the

framework is generic and reused, it is defined here as a Circus program composed of the model

presented in Sect. C.

section Framework parents scj prelude,SCJBNFEncoding ,CircusBNFEncoding

[ID]

[Type]

NullType : Type

SafeletFWName : N

TopLevelMissionSequencerFWNMame : N

controlTierSync : CSExpression

Tier0 : N

MissionIds : seq CircusParagraph

SchedulableIds : seq CircusParagraph

ThreadIds : seq CircusParagraph

ObjectIds : seq CircusParagraph

ServicesChan : seq CircusParagraph

GlobalTypes : seq CircusParagraph

JTime : seq CircusParagraph

239

PrimitiveTypes : seq CircusParagraph

Priority : seq CircusParagraph

PriorityQueue : seq CircusParagraph

FrameworkChan : seq CircusParagraph

MissionId : seq CircusParagraph

SchedulableId : seq CircusParagraph

ObjectFW : CircusParagraph

ObjectChan : seq CircusParagraph

ObjectFWChan : seq CircusParagraph

ObjectMethChan : seq CircusParagraph

ThreadFW : CircusParagraph

ThreadChan : seq CircusParagraph

ThreadFWChan : seq CircusParagraph

ThreadMethChan : seq CircusParagraph

SafeletFW : CircusParagraph

SafeletFWChan : seq CircusParagraph

SafeletChan : seq CircusParagraph

SafeletMethChan : seq CircusParagraph

TopLevelMissionSequencerFW : CircusParagraph

TopLevelMissionSequencerChan : seq CircusParagraph

TopLevelMissionSequencerFWChan : seq CircusParagraph

MissionSequencerChan : seq CircusParagraph

MissionSequencerFWChan : seq CircusParagraph

MissionSequencerMethChan : seq CircusParagraph

MissionFW : CircusParagraph

MissionChan : seq CircusParagraph

MissionFWChan : seq CircusParagraph

MissionMethChan : seq CircusParagraph

240

SchedulableChan : seq CircusParagraph

SchedulableMethChan : seq CircusParagraph

SchedulableFWChan : seq CircusParagraph

HandlerChan : seq CircusParagraph

HandlerFWChan : seq CircusParagraph

HandlerMethChan : seq CircusParagraph

PeriodicEventHandlerChan : seq CircusParagraph

PeriodicEventHandlerFW : CircusParagraph

PeriodicEventHandlerFWChan : seq CircusParagraph

PeriodicParameters : seq CircusParagraph

AperiodicEventHandlerChan : seq CircusParagraph

AperiodicEventHandlerFW : CircusParagraph

AperiodicLongEventHandlerMethChan : seq CircusParagraph

AperiodicParameters : seq CircusParagraph

OneShotEventHandlerChan : seq CircusParagraph

OneShotEventHandlerFW : CircusParagraph

OneShotEventHandlerFWChan : seq CircusParagraph

OneShotEventHandlerMethChan : seq CircusParagraph

SchedulableMissionSequencerFW : CircusParagraph

SchedulableMissionSequencerChan : seq CircusParagraph

SchedulableMissionSequencerFWChan : seq CircusParagraph

ManagedThreadFW : CircusParagraph

ManagedThreadChan : seq CircusParagraph

ManagedThreadFWChan : seq CircusParagraph

ManagedThreadMethChan : seq CircusParagraph

241

framework : CircusProgram

framework = ServicesChan aGlobalTypes a JTime a PrimitiveTypesa

Priority a PriorityQueue a FrameworkChan aMissionIda

SchedulableId a 〈ObjectFW 〉aObjectChana

ObjectFWChan aObjectMethChan a 〈ThreadFW 〉a

ThreadChan a ThreadFWChan a ThreadMethChan a 〈SafeletFW 〉a

SafeletFWChan a SafeletChan a SafeletMethChana

〈TopLevelMissionSequencerFW 〉a TopLevelMissionSequencerChana

TopLevelMissionSequencerFWChan aMissionSequencerChana

MissionSequencerFWChan aMissionSequencerMethChan a 〈MissionFW 〉a

MissionChan aMissionFWChan aMissionMethChan a SchedulableChana

SchedulableMethChan a SchedulableFWChan aHandlerChan aHandlerFWChana

HandlerMethChan a 〈PeriodicEventHandlerFW 〉a

PeriodicEventHandlerChan a PeriodicEventHandlerFWChan a PeriodicParametersa

AperiodicEventHandlerChan a 〈AperiodicEventHandlerFW 〉a

AperiodicLongEventHandlerMethChan aAperiodicParametersa

OneShotEventHandlerChan a 〈OneShotEventHandlerFW 〉a

OneShotEventHandlerFWChan aOneShotEventHandlerMethChana

〈SchedulableMissionSequencerFW 〉a

SchedulableMissionSequencerChan a SchedulableMissionSequencerFWChana

〈ManagedThreadFW 〉aManagedThreadChana

ManagedThreadFWChan aManagedThreadMethChan

Build Phase

This section presents the functions that constitute the build phase. This phase extracts the

application-specific information from an SCJ program and build an environment for each

component.

section BuildPhase parents scj prelude,SCJBNFEncoding ,CircusBNFEncoding ,Framework

TranslatablePrograms : PSCJProgram

TranslatablePrograms =

{s : SCJProgram |
ProgTLMS (s) 6= NoSequencer

∧ ProgTiers(s) 6= 〈〉
∧ ProgClusters(s) 6= ∅
∧ ∀ c : ProgClusters(s)

• ClusterSchedulables(c) 6= ∅}

242

AppEnv

Name : N

Parameters : seq Expression

ClusterAppEnv

Mission : AppEnv

Schedulables : FAppEnv

Schedulables 6= ∅

TierAppEnv

Clusters : seq ClusterAppEnv

Clusters 6= 〈〉

AppProcEnv

Safelet : AppEnv

TopLevelMS : AppEnv

Tiers : seq TierAppEnv

Tiers 6= 〈〉

GetSafeletAppEnv : AppProcEnv →AppEnv

∀ a : AppProcEnv •
GetSafeletAppEnv(a) = a.Safelet

GetTLMSAppEnv : AppProcEnv →AppEnv

∀ a : AppProcEnv •
GetTLMSAppEnv(a) = a.TopLevelMS

GetTiersAppEnv : AppProcEnv → seq TierAppEnv

∀ a : AppProcEnv •
GetTiersAppEnv(a) = a.Tiers

243

IDof : Identifier →N

ParamsOf : seq ClassBodyDeclaration→ seq Expression

BuildSOAppEnv : PSchedulableObject → FAppEnv

∀ scheds : PSchedulableObject

• ∃manT : ManagedThread ; nestMS : NestedMissionSequencer ; eh : EventHandler

perEH : PeriodicEventHandler ; oneEH : OneShotEventHandler ;

apehShort : Identifier × EventHandlerClassBody ;

apehLong : Identifier × LongEventHandlerClassBody

• BuildSOAppEnv(scheds) = {a : AppEnv

| ∀ so : scheds • ∃name : N ; params : seq Expression

| so = mt(manT)⇒
name = IDof (manT .1) ∧ params = ParamsOf (manT .2.2)

∧ so = nms(nestMS)⇒
name = IDof (nestMS .1) ∧ params = ParamsOf (nestMS .2.2)

∧ so = handler(pehDecl(perEH))⇒
name = IDof (perEH .1) ∧ params = ParamsOf (perEH .2.2)

∧ so = handler(osehDecl(oneEH))⇒
name = IDof (oneEH .1) ∧ params = ParamsOf (oneEH .2.2)

∧ so = handler(apehDecl(apehType(apehShort)))⇒
name = IDof (apehShort .1) ∧ params = ParamsOf (apehShort .2.2)

∧ so = handler(apehDecl(aplehType(apehLong)))⇒
name = IDof (apehLong .1) ∧ params = ParamsOf (apehLong .2.2)

• a = 〈|Name == name,Parameters == params|〉}

BuildClusterAppEnv : Cluster → ClusterAppEnv

∀ c : Cluster

• ∃m : Mission; seqSO : FSchedulableObject

| c = (m, seqSO)

• BuildClusterAppEnv(c) =

〈|Mission == 〈|Name == IDof (m.1),Parameters == ParamsOf (m.2.3)|〉,
Schedulables == BuildSOAppEnv(seqSO)|〉

BuildClusterAppEnvs : seq Cluster → seq ClusterAppEnv

244

BuildTierAppEnv : Tier → TierAppEnv

∀ tier : Tier

• BuildTierAppEnv(tier) = 〈|Clusters == BuildClusterAppEnvs(tier)|〉

BuildTiersAppEnv : seq Tier → seq TierAppEnv

∀ tiers : seq Tier

• # tiers = 1⇒ BuildTiersAppEnv(tiers) = 〈BuildTierAppEnv(head tiers)〉
∧ # tiers ≥ 1⇒ BuildTiersAppEnv(tiers) =

〈BuildTierAppEnv(head tiers)〉a BuildTiersAppEnv(tail tiers)

BuildAppProcEnv : SCJProgram 7→AppProcEnv

dom BuildAppProcEnv = TranslatablePrograms

∀ scjProg : dom BuildAppProcEnv

• ∃ safelet : Safelet ; tiers : seq Tier ; ms : MissionSequencer

| safelet = ProgSafelet(scjProg)

∧ tlms(ms) = ProgTLMS (scjProg)

∧ tiers = ProgTiers(scjProg)

• ∃ sfEnv : AppEnv ; tlmsEnv : AppEnv ;

tiersEnv : seq TierAppEnv

• sfEnv = 〈|Name == IDof (safelet .1),

Parameters == ParamsOf (safelet .2.4)|〉
∧ tlmsEnv = 〈|Name == IDof (ms.1),

Parameters == ParamsOf (ms.2.2)|〉
∧ tiersEnv = BuildTiersAppEnv(tiers)

∧ BuildAppProcEnv(scjProg) = 〈|Safelet == sfEnv ,

TopLevelMS == tlmsEnv ,Tiers == tiersEnv |〉

ClusterEnv

Mission : Identifier

NestedMissionSequencers : P Identifier

ManagedThreads : P Identifier

PeriodicEventHandlers : P Identifier

AperiodicEventHandlers : P Identifier

OneShotEventHandlers : P Identifier

disjoint〈NestedMissionSequencers,ManagedThreads,PeriodicEventHandlers,

AperiodicEventHandlers,OneShotEventHandlers〉⋃
{NestedMissionSequencers,ManagedThreads,PeriodicEventHandlers,

AperiodicEventHandlers,OneShotEventHandlers} 6= ∅

245

TierEnv

Clusters : seq ClusterEnv

Clusters 6= 〈〉

FWEnv

TopLevelMS : Identifier

Tiers : seq TierEnv

Tiers 6= 〈〉

GetTierFWEnvs : FWEnv → seq TierEnv

∀ env : FWEnv

• GetTierFWEnvs(env) = env .Tiers

GetIdentifiers : FSchedulableObject → F Identifier

∀ scheds : FSchedulableObject

• ∃manT : ManagedThread ; nestMS : NestedMissionSequencer ;

perEH : PeriodicEventHandler ; oneEH : OneShotEventHandler ;

eh : EventHandler ;

apehShort : Identifier × EventHandlerClassBody ;

apehLong : Identifier × LongEventHandlerClassBody

• GetIdentifiers(scheds) = {i : Identifier

| ∀ s : scheds

• s = mt(manT)⇒ i = manT .1

∧ s = nms(nestMS)⇒ i = nestMS .1

∧ s = handler(pehDecl(perEH))⇒ i = perEH .1

∧ s = handler(apehDecl(apehType(apehShort)))⇒ i = apehShort .1

∧ s = handler(apehDecl(aplehType(apehLong)))⇒ i = apehLong .1

∧ s = handler(osehDecl(oneEH))⇒ i = oneEH .1

}

246

BuildSOEnvs : FSchedulableObject→
F Identifier × F Identifier × F Identifier×
F Identifier × F Identifier

∀ s : FSchedulableObject

• ∃ sms : F Identifier ; pehs : F Identifier ;

apehs : F Identifier ; osehs : F Identifier ; mts : F Identifier

| mts = GetIdentifiers({mtSched : s

| ∃m : ManagedThread

• mtSched = mt(m)})
∧ sms = GetIdentifiers({nmsSched : s

| ∃n : NestedMissionSequencer

• nmsSched = nms(n)})
∧ pehs = GetIdentifiers({pehSched : s

| ∃ p : PeriodicEventHandler

• pehSched = handler(pehDecl(p))})
∧ apehs = GetIdentifiers({apehSched : s

| ∃ a : Identifier × EventHandlerClassBody

• apehSched = handler(apehDecl(apehType(a)))})
∧ apehs = GetIdentifiers({apehLSched : s

| ∃ a : Identifier × LongEventHandlerClassBody

• apehLSched = handler(apehDecl(aplehType(a)))})
∧ osehs = GetIdentifiers({osehSched : s

| ∃ o : OneShotEventHandler

• osehSched = handler(osehDecl(o))})
• BuildSOEnvs(s) = (sms, pehs, apehs, osehs,mts)

BuildClusterEnv : Cluster 7→ ClusterEnv

∀ c : Cluster

• ∃missionName : Identifier ; sms : F Identifier ; pehs : F Identifier ;

apehs : F Identifier ; oseh : F Identifier ; mts : F Identifier ; cluster : ClusterEnv

| missionName = c.1.1

∧ (sms, pehs, apehs, oseh,mts) = BuildSOEnvs(c.2)

• BuildClusterEnv(c) =

〈|Mission == missionName,NestedMissionSequencers == sms,

PeriodicEventHandlers == pehs,AperiodicEventHandlers == apehs,

OneShotEventHandlers == oseh,ManagedThreads == mts|〉

247

BuildClusterEnvs : seq Cluster → seq ClusterEnv

∀ c : seq Cluster

| c 6= 〈〉 ∧ ∀ s : seq Cluster • s 6= 〈〉
• # c = 1⇒ BuildClusterEnvs(c) = 〈BuildClusterEnv(head c)〉
∧ # c ≥ 1⇒

BuildClusterEnvs(c) = 〈BuildClusterEnv(head c)〉a BuildClusterEnvs(tail c)

BuildTierEnv : Tier → TierEnv

∀ tier : seq Cluster

• BuildTierEnv(tier) = 〈|Clusters == BuildClusterEnvs(tier)|〉

BuildTierEnvs : seq Tier → seq TierEnv

∀ tiers : seq Tier •
BuildTierEnvs(tiers) = 〈BuildTierEnv(head tiers)〉a BuildTierEnvs(tail tiers)

BuildFWEnv : SCJProgram 7→ FWEnv

dom BuildFWEnv = TranslatablePrograms

∀ scjProg : dom BuildFWEnv

• ∃ tlmsID : Identifier ; tlmsBody : MissionSequencerClassBody ;

tiers : seq Tier |
ProgTLMS (scjProg) 6= NoSequencer

⇒ ProgTLMS (scjProg) = tlms(tlmsID , tlmsBody)

• BuildFWEnv(scjProg) =

〈|TopLevelMS == tlmsID ,Tiers == BuildTierEnvs(ProgTiers(scjProg))|〉

BinderMethodEnv

MethodName : N

Locs : FN

LocType : Type

Callers : FN

CallerType : Type

ReturnType : Type

Params : seq Type

Synchronised : B

MCBEnv == FBinderMethodEnv

248

BuildBinderMethodName : N →N

GetSFMethods : Safelet → seq ClassBodyDeclaration

∀ sf : Safelet

• GetSFMethods(sf) = sf .2.4

GetTLMSMethods : MissionSequencer → seq ClassBodyDeclaration

∀ tlms : MissionSequencer

• GetTLMSMethods(tlms) = tlms.2.2

SuperInterfacesOf : ClassDeclaration→ FN

SuperClassOf : ClassDeclaration→N

ProgramClasses : FClassDeclaration

ClassName : ClassDeclaration→N

MethodsOf : ClassDeclaration→ FMethodDeclaration

MethodName : MethodDeclaration→N

TypeOf : ClassDeclaration→ Type

IsSync : MethodDeclaration→ B
ReturnTypeOf : MethodDeclaration→ Type

MethodParams : MethodDeclaration→ seq Type

ClassMethodMap : ClassDeclaration→ FBinderMethodEnv

∀ c : ClassDeclaration

| c ∈ ProgramClasses

• ClassMethodMap(c) =

{m : MethodsOf (c)

• 〈|MethodName == MethodName(m),

Locs == {ClassName(c)},
LocType == TypeOf (c),

Callers == ∅,

CallerType == NullType,

ReturnType == ReturnTypeOf (m),

Params == MethodParams(m),

Synchronised == IsSync(m)|〉}

249

GetCallerType : N → Type

AddCaller : (BinderMethodEnv ×N)→ BinderMethodEnv

∀meth : BinderMethodEnv ; caller : N

• AddCaller((meth, caller)) =

〈|MethodName == meth.MethodName,

Locs == meth.Locs,

LocType == meth.LocType,

Callers == meth.Callers ∪ {caller},
CallerType == GetCallerType(caller),

ReturnType == meth.ReturnType,

Params == meth.Params,

Synchronised == meth.Synchronised |〉

IgnoredMethods : FN

ClassesIn : SCJProgram→ FClassDeclaration

IsMethodInvocation : BlockStatement → B
CallTypeName : BlockStatement 7→N

StatementsIn : MethodDeclaration→ FBlockStatement

NameOfMethod : MethodDeclaration→N

MakesExternalMethodCall : ClassDeclaration→ B

∀ c : ClassDeclaration

• MakesExternalMethodCall(c) = True⇔
∃m : MethodDeclaration

• m ∈ MethodsOf (c)

∧ NameOfMethod(m) 6∈ IgnoredMethods

∧ ∃ s : StatementsIn(m)

• IsMethodInvocation(s) = True

LocOfExternalMethodCall : ClassDeclaration→ ClassDeclaration

250

BuildMCBEnvs : SCJProgram 7→MCBEnv

dom BuildMCBEnvs = TranslatablePrograms

∀ scjProg : dom BuildMCBEnvs

• ∀ c : ClassesIn(scjProg)

• ∃ calledClass : ClassDeclaration

| calledClass = LocOfExternalMethodCall(c)

• BuildMCBEnvs(scjProg) =

{bme : BinderMethodEnv

| bme ∈ ClassMethodMap(calledClass)

• AddCaller(bme,ClassName(c))}

ThreadEnv == (ThreadIds × Priority)

LockingEnv

Threads : FThreadEnv

Objects : FObjectIds

Empty : B

Empty = True⇔ Threads = ∅ ∧ Objects = ∅

BuildThreads : FClassDeclaration→ F(ThreadIds × Priority)

BuildObjects : FClassDeclaration→ FObjectIds

BuildLockEnv : SCJProgram 7→ LockingEnv

dom BuildLockEnv = TranslatablePrograms

∀ scjProg : SCJProgram

• ∃ progClasses : FClassDeclaration; threads : FThreadEnv ;

objects : FObjectIds; empty : B
• progClasses = ClassesIn(scjProg)

∧ threads = BuildThreads(progClasses)

∧ objects = BuildObjects(progClasses)

∧ (threads = ∅ ∧ objects = ∅)⇒ empty = True

∧ (threads 6= ∅ ∨ objects 6= ∅)⇒ empty = False

∧ BuildLockEnv(scjProg) =

〈|Threads == threads, Objects == objects,

Empty == empty |〉

251

Generate Phase

This section presents the functions constituting the generate phase, which use the information

in the environments to generate the Circus model for each component.

section GeneratePhase parents scj prelude,Framework ,BuildPhase

procNameOf : Process →N

ControlTierSync : CSExpression

MissionSync : CSExpression

SchedulablesSync : CSExpression

TierSync : TierEnv × TierEnv → CSExpression

∀ t1, t2 : TierEnv

• ∃m : seq N

• TierSync(t) = cs(m)

GetMissionID : ClusterEnv →N

GenerateTiersFWProc : ClusterEnv → Process

252

GenerateClusterFWProcs : seq ClusterEnv → Process

∀ clusters : seq ClusterEnv

• # clusters = 1

⇒ GenerateClusterFWProcs(clusters) =

procPar(

procName(GetMissionID(head clusters)),

MissionSync,

GenerateTiersFWProc(head clusters)

)

∧ # clusters ≥ 1

⇒ GenerateClusterFWProcs(clusters) =

procPar(

procPar(

procName(GetMissionID(head clusters)),

MissionSync,

GenerateTiersFWProc(head clusters)),

SchedulablesSync,

GenerateClusterFWProcs(tail clusters)

)

GenerateTierFWProcs : seq TierEnv → seq Process

∀ tiers : seq TierEnv

• # tiers = 1⇒
GenerateTierFWProcs(tiers) = 〈GenerateClusterFWProcs((head tiers).Clusters)〉

∧ # tiers ≥ 1⇒
GenerateTierFWProcs(tiers) =

〈GenerateClusterFWProcs((head tiers).Clusters)〉
aGenerateTierFWProcs(tail tiers)

GenerateTierFWProc : seq TierEnv → Process

ControlTier : N

TopLevelMissionSequencerFWName : N

GetParams : Identifier → seq Expression

253

GenerateFWProcs : FWEnv → seq Process

∀ env : FWEnv

• ∃ fwProc : Process; controlTierProc : Process; tierProcs : seq Process

| fwProc = procPar(

procName(ControlTier),

TierSync(head env .Tiers),

GenerateTierFWProc(env .Tiers)

)

∧ controlTierProc = procPar(

procName(SafeletFWName),

ControlTierSync,

procInstP(procName(TopLevelMissionSequencerFWName),

GetParams(env .TopLevelMS))

)

∧ tierProcs = GenerateTierFWProcs(env .Tiers)

• GenerateFWProcs(env) = 〈fwProc〉a 〈controlTierProc〉a tierProcs

GenerateAppTierProcs : seq TierAppEnv → Process

GenerateAppProc : AppProcEnv → Process

∀ appProcEnv : AppProcEnv

• ∃ sfAppEnv : AppEnv ; tlmsAppEnv : AppEnv ; tiersAppEnvs : seq TierAppEnv

| sfAppEnv = GetSafeletAppEnv(appProcEnv)

∧ tlmsAppEnv = GetTLMSAppEnv(appProcEnv)

∧ tiersAppEnvs = GetTiersAppEnv(appProcEnv)

• GenerateAppProc(appProcEnv) =

procInter(

procInter(

procInstP(procName(sfAppEnv .Name), sfAppEnv .Parameters),

procInstP(procName(tlmsAppEnv .Name), tlmsAppEnv .Parameters)

),

GenerateAppTierProcs(tiersAppEnvs)

)

Locking : N

Threads : N

ThreadSync : CSExpression

Objects : N

254

BinderCallChan : N → seq N

NaturalCallChan : N → seq N

NaturalRetChan : N → seq N

BindeRetChan : N → seq N

MCBParams : seq Type→ Expression

GenerateMCBChan : BinderMethodEnv → CircusParagraph

∀ bme : BinderMethodEnv

• GenerateMCBChan(bme) = chanDef (

multiDecl(chanNameWithType(NaturalCallChan(bme.MethodName),

MCBParams(bme.Params)),

scDecl(chanNameWithType(NaturalRetChan(bme.MethodName),

MCBParams(bme.Params))))

)

MethodCallBinderSync : N

GenerateMethodCallBinderSync : PBinderMethodEnv → CircusParagraph

GenerateMCBChans : PBinderMethodEnv → seq CircusParagraph

∀ bEnvs : PBinderMethodEnv

| bEnvs 6= ∅
• ∃ seqCP : seq CircusParagraph

| ∀ bme : bEnvs • GenerateMCBChan(bme) ∈ ran seqCP

• GenerateMCBChans(bEnvs) = seqCP

BinderCallComm : N →N

NaturalCallComm : N →N

255

NaturalRetComm : N →N

BindeRetComm : N →N

GenerateMCBName : N →N

BinderCallParams : seq Type→ seq CParameter

NaturalCallParams : seq Type→ seq CParameter

NaturalRetParams : seq Type→ seq CParameter

BinderRetParams : seq Type→ seq CParameter

BinderActions : N

DoneTLS : Communication

NoState : SchemaExp

MethodCallBinder : N

GenerateMCBAction : BinderMethodEnv → PParagraph

∀ bme : BinderMethodEnv

• GenerateMCBAction(bme) = actDef (GenerateMCBName(bme.MethodName),

prefixExp((BinderCallComm(bme.MethodName),

BinderCallParams(bme.Params)),

prefixExp((NaturalCallComm(bme.MethodName),

BinderCallParams(bme.Params)),

prefixExp((NaturalRetComm(bme.MethodName),

BinderCallParams(bme.Params)),

prefixExp((BindeRetComm(bme.MethodName),

BinderCallParams(bme.Params)),

actName(GenerateMCBName(bme.MethodName))

)

)

)

)

)

256

GenerateMCBActions : PBinderMethodEnv → seq PParagraph

∀ bEnvs : FBinderMethodEnv

• ∃ seqPP : seq PParagraph

| ∀ bme : bEnvs • GenerateMCBAction(bme) ∈ ran seqPP

• GenerateMCBActions(bEnvs) = seqPP

GenerateMCBProc : PBinderMethodEnv → CircusParagraph

∀ bmes : PBinderMethodEnv

• GenerateMCBProc(bmes) =

procDef (pd(MethodCallBinder ,

proc(

〈〉,
NoState,

GenerateMCBActions(bmes),

actInterupt(actName(BinderActions), prefixExp(DoneTLS , skip))

)

))

GenerateMCBModel : MCBEnv → seq CircusParagraph

∀ bEnvs : MCBEnv

• bEnvs = ∅⇒ GenerateMCBModel(bEnvs) = 〈〉
∧ bEnvs 6= ∅⇒

GenerateMCBModel(bEnvs) = GenerateMCBChans(bEnvs)a

〈GenerateMethodCallBinderSync(bEnvs),GenerateMCBProc(bEnvs)〉

GenerateThreadProc : P(ThreadIds × Priority)→ Process

GenerateObjectProc : PObjectIds → Process

257

GenerateLockModel : LockingEnv → seq CircusParagraph

∀ lEnv : LockingEnv

• lEnv .Empty = True

⇒ GenerateLockModel(lEnv) = 〈〉
∧ lEnv .Empty = False

⇒ GenerateLockModel(lEnv) =

〈
procDef (pd(Locking , procPar(procName(Threads),

ThreadSync,

procName(Objects)))

),

procDef (pd(Threads,GenerateThreadProc(lEnv .Threads))),

procDef (pd(Objects,GenerateObjectProc(lEnv .Objects)))

〉

Translate SCJ Program

This section presents the TransSCJProg function, which translates an SCJ program into

Circus using the functions defined in the previous sections.

section TransSCJProg parents scj prelude,SCJBNFEncoding ,CircusBNFEncoding ,

BuildPhase,GeneratePhase,Framework

ProcessID : N → ID

TransClasses : SCJProgram→ CircusProgram

FWName : N

AppName : N

MCBName : N

LockName : N

ProgName : Identifier 7→N

appComms : CSExpression

mcbComms : CSExpression

lockComms : CSExpression

258

TransSCJProg : Identifier × SCJProgram 7→ CircusProgram

dom TransSCJProg = Identifier × TranslatablePrograms

∀name : Identifier ; scjProg : SCJProgram

• ∃ app : CircusProgram; program : CircusProgram;

fwProcs : seq Process; appProc : Process; lockModel : seq CircusParagraph;

mcbModel : seq CircusParagraph; fwEnv : FWEnv ;

appEnv : AppProcEnv ; mcbEnvs : MCBEnv ; lockEnv : LockingEnv |
fwEnv = BuildFWEnv(scjProg)

appEnv = BuildAppProcEnv(scjProg)

mcbEnvs = BuildMCBEnvs(scjProg)

lockEnv = BuildLockEnv(scjProg)

app = TransClasses(scjProg)

∧ fwProcs = GenerateFWProcs(fwEnv)

∧ appProc = GenerateAppProc(appEnv)

∧ mcbModel = GenerateMCBModel(mcbEnvs)

∧ lockModel = GenerateLockModel(lockEnv)

∧ program = 〈procDef (pd(ProgName(name),

procHide(procPar(

procHide(

procPar(

procName(FWName),

appComms,

procHide(

procPar(procName(AppName),

mcbComms,

procName(MCBName)),

mcbComms)),

appComms),

lockComms,

procName(LockName)),

lockComms)))〉 •
TransSCJProg(name, scjProg) =

framework a 〈procDef (pd(FWName, head fwProcs))〉
aapp a 〈procDef (pd(AppName, appProc))〉
amcbModel a lockModel a program

259

260

Appendix F

Translated Application 1: Shared

Buffer

This appendix contains the full model of the aircraft application (described in Sect. 2.1.2).

Section F.1 contains the definitions of the process identifiers. Section F.2 contains the def-

inition of top-level network processes and channels. Then we present the models of the

paradigm objects: Sect. F.3 contains the safelet, Sect. F.4 contains the top-level mission

sequencer, Sect. F.5 contains the mission, and Sect. F.5.1 contains its schedulables.

F.1 ID Definitions

F.1.1 MissionIds

section MissionIds parents scj prelude,MissionId

MainMissionMID : MissionID

distinct〈nullMissionId ,MainMissionMID〉

F.1.2 SchedulablesIds

section SchedulableIds parents scj prelude,SchedulableId

MainMissionSequencerSID : SchedulableID

ProducerSID : SchedulableID

ConsumerSID : SchedulableID

distinct〈nullSequencerId ,nullSchedulableId ,MainMissionSequencerSID ,

ProducerSID ,ConsumerSID〉

261

F.1.3 NonParadignIds

section NonParadigmIds parents scj prelude,GlobalTypes

BufferID : NonParadigmID

distinct〈BufferID〉

F.2 Network

F.2.1 Network Channel Sets

section NetworkChan parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,TopLevelMissionSequencerFWChan,

FrameworkChan,SafeletChan,AperiodicEventHandlerChan,ManagedThreadChan,

OneShotEventHandlerChan,PeriodicEventHandlerChan,MissionSequencerMethChan

channelset TerminateSync ==

{| schedulables terminated , schedulables stopped , get activeSchedulables |}

channelset ControlTierSync ==

{| start toplevel sequencer , done toplevel sequencer , done safeletFW |}

channelset TierSync ==

{| start mission .PCMission, done mission .PCMission,

done safeletFW , done toplevel sequencer |}

channelset MissionSync ==

{| done safeletFW , done toplevel sequencer , register ,

signalTerminationCall , signalTerminationRet , activate schedulables, done schedulable,

cleanupSchedulableCall , cleanupSchedulableRet |}

channelset SchedulablesSync ==

{| activate schedulables, done safeletFW , done toplevel sequencer |}

channelset ClusterSync ==

{| done toplevel sequencer , done safeletFW |}

channelset SafeltAppSync =̂ {| getSequencerCall , getSequencerRet ,

initializeApplicationCall , initializeApplicationRet , end safelet app |}

channelset MissionSequencerAppSync ==

{| getNextMissionCall , getNextMissionRet , end sequencer app |}

262

channelset MissionAppSync ==

{| initializeCall , register , initializeRet , cleanupMissionCall , cleanupMissionRet |}

channelset AppSync ==⋃
{SafeltAppSync,MissionSequencerAppSync,MissionAppSync,

MTAppSync,OSEHSync,APEHSync,PEHSync,

{| getSequencer , end mission app, end managedThread app,

setCeilingPriority , requestTerminationCall ,

requestTerminationRet , terminationPendingCall ,

terminationPendingRet , handleAsyncEventCall , handleAsyncEventRet |}}

channelset ThreadSync ==

{| raise thread priority , lower thread priority ,

isInterruptedCall , isInterruptedRet , get priorityLevel |}

channelset LockingSync ==

{| lockAcquired , startSyncMeth, endSyncMeth,waitCall ,waitRet ,

notify , isInterruptedCall , isInterruptedRet , interruptedCall , interruptedRet ,

done toplevel sequencer , get priorityLevel |}

F.2.2 MethodCallBinder

section MethodCallBindingChannels parents scj prelude,GlobalTypes,

FrameworkChan,MissionId ,MissionIds,SchedulableId ,SchedulableIds,

ThreadIds,NonParadigmIds

channel binder readCall : NonParadigmID × SchedulableID × ThreadID

channel binder readRet : NonParadigmID × SchedulableID × ThreadID × Z

readLocs == {BufferID}
readCallers == {ConsumerSID}

channel binder writeCall : NonParadigmID × SchedulableID × ThreadID × Z
channel binder writeRet : NonParadigmID × SchedulableID × ThreadID

writeLocs == {BufferID}
writeCallers == {ProducerSID}

channelset MethodCallBinderSync == {| done toplevel sequencer , binder readCall ,

binder readRet , binder writeCall , binder writeRet |}

263

section NetworkMethodCallBinder parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,BuffeMethChan,

PCMissionMethChan

process MethodCallBinder =̂ begin

read MethodBinder =̂

binder readCall ? loc : (loc ∈ readLocs)

? caller : (caller ∈ readCallers) ? callingThread−→
readCall . loc . caller . callingThread−→
readRet . loc . caller . callingThread ? ret−→
binder readRet . loc . caller . callingThread ! ret−→
read MethodBinder


write MethodBinder =̂

binder writeCall ? loc : (loc ∈ writeLocs)

? caller : (caller ∈ writeCallers) ? callingThread ? p1−→
writeCall . loc . caller . callingThread ! p1−→
writeRet . loc . caller . callingThread−→
binder writeRet . loc . caller . callingThread −→
write MethodBinder


BinderActions =̂

read MethodBinder

9

write MethodBinder


• BinderActions 4 (done toplevel sequencer −→ Skip)

end

F.2.3 Locking

section NetworkLocking parents scj prelude,GlobalTypes,FrameworkChan,

MissionId ,MissionIds,ThreadIds,NetworkChannels,ObjectFW ,ThreadFW ,Priority

process Threads =̂(
ThreadFW (ProducerTID , 10) 9 ThreadFW (ConsumerTID , 10)

)
process Objects =̂(

ObjectFW (BufferOID)
)

process Locking =̂ (Threads J ThreadSync K Objects)4 (done toplevel sequencer −→ Skip)

264

F.2.4 Program

section NetworkProgram parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,SchedulableMethChan,MissionFW ,

SafeletFW ,TopLevelMissionSequencerFW ,NetworkChannels,ManagedThreadFW ,

SchedulableMissionSequencerFW ,PeriodicEventHandlerFW ,ObjectFW ,

AperiodicEventHandlerFW ,OneShotEventHandlerFW ,ThreadFW ,

PCSafeletApp,PCMissionSequencerApp,PCMissionApp,

ProducerApp,ConsumerApp

process ControlTier =̂
SafeletFW

JControlTierSyncK

TopLevelMissionSequencerFW (PCMissionSequencer)



process Tier0 =̂

MissionFW (PCMissionID)

JMissionSyncK
ManagedThreadFW (ProducerID)

JSchedulablesSyncK

ManagedThreadFW (ConsumerID)





process Framework =̂
ControlTier

JTierSyncK

Tier0



process Application =̂

PCSafeletApp

9

PCMissionSequencerApp

9

PCMissionApp

9

ProducerApp(PCMissionID)

9

ConsumerApp(PCMissionID)

9

BufferApp



265

section Network parents NetworkProgram,MethodCallBindingChannels,

NetworkMethodCallBinder ,NetworkChan,NetworkLocking

process Bound Application =̂ Application J MethodCallBinderSync K MethodCallBinder

process Program =̂
(

Framework J AppSync K Bound Application
)

J LockingSync K Locking

F.3 BSafelet

section BSafeletApp parents scj prelude,SchedulableId ,SchedulableIds,SafeletChan,

MethodCallBindingChannels

process BSafeletApp =̂ begin

InitializeApplication =̂
initializeApplicationCall−→
initializeApplicationRet−→
Skip



GetSequencer =̂
getSequencerCall−→
getSequencerRet ! MainMissionSequencerSID−→
Skip



Methods =̂
GetSequencer

@

InitializeApplication

 ; Methods

• (Methods)4 (end safelet app −→ Skip)

end

266

F.4 MainMissionSequencer

section MainMissionSequencerApp parents TopLevelMissionSequencerChan,

MissionId ,MissionIds,SchedulableId ,SchedulableIds,PCMissionSequencerClass,

MethodCallBindingChannels

process MainMissionSequencerApp =̂ begin

State

this : ref PCMissionSequencerClass

state State

Init

State ′

this ′ = circnewPCMissionSequencerClass()

GetNextMission =̂ var ret : MissionID •
getNextMissionCall .PCMissionSequencerSID−→
ret := this . getNextMission();

getNextMissionRet .PCMissionSequencerSID ! ret−→
Skip



Methods =̂(
GetNextMission

)
; Methods

• (Init ; Methods)4 (end sequencer app .PCMissionSequencerSID −→ Skip)

end

267

section MainMissionSequencerClass parents scj prelude,SchedulableId ,SchedulableIds,SafeletChan

,MethodCallBindingChannels,MissionId ,MissionIds

class MainMissionSequencerClass =̂ begin

state State

returnedMission : B

state State

initial Init

State ′

returnedMission ′ = False

protected getNextMission =̂

if (¬ returnedMission)−→(
returnedMission := True;

ret := PCMissionMID

)
8¬ (¬ returnedMission)−→(

ret := nullMissionId
)

fi



• Skip

end

268

F.5 MainMission

section MainMissionApp parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,SchedulableMethChan,

MethodCallBindingChannels

process MainMissionApp =̂ begin

InitializePhase =̂

initializeCall .PCMissionMID−→
register ! ProducerSID ! PCMissionMID−→
register ! ConsumerSID ! PCMissionMID−→
initializeRet .PCMissionMID−→
Skip



CleanupPhase =̂ var ret : B •
cleanupMissionCall .PCMissionMID−→(

ret := False
)
;

cleanupMissionRet .PCMissionMID ! ret−→
Skip



Methods =̂


InitializePhase

@

CleanupPhase

 ; Methods

• (Methods)4 (end mission app .PCMissionMID −→ Skip)

end

269

F.5.1 Schedulables of MainMission

section ProducerApp parents ManagedThreadChan,SchedulableId ,SchedulableIds,

MethodCallBindingChannels,MissionMethChan,BufferMethChan,ObjectIds,ThreadIds

process ProducerApp =̂

pcMission : MissionID • begin

Run =̂

runCall .ProducerSID−→

var i : Z • i := 1;

µX •

terminationPendingCall . pcMission−→
terminationPendingRet . pcMission ? terminationPending−→
var loopVar : B • loopVar := (¬ terminationPending);

if (loopVar = True)−→

binder writeCall .BufferID .ProducerSID .ProducerTID ! i−→
binder writeRet .BufferID .ProducerSID .ProducerTID−→
Skip;

i := i + 1;

if (i ≥ 5)−→
requestTerminationCall . pcMission .ProducerSID−→
requestTerminationRet . pcMission .ProducerSID ? rt−→
Skip


8¬ (i ≥ 5)−→ Skip

fi



; X

8 (loopVar = False)−→ Skip

fi





;

runRet .ProducerSID−→
Skip



Methods =̂(
Run

)
; Methods

• (Methods)4 (end managedThread app .ProducerSID −→ Skip)

end

270

section ConsumerApp parents ManagedThreadChan,SchedulableId ,SchedulableIds,

MethodCallBindingChannels,MissionMethChan,BufferMethChan,ObjectIds,ThreadIds

process ConsumerApp =̂

pcMission : MissionID • begin

Run =̂

runCall .ConsumerSID−→

µX •

terminationPendingCall . pcMission−→
terminationPendingRet . pcMission ? terminationPending−→
var loopVar : B • loopVar := (¬ terminationPending);

if (loopVar = True)−→
var result : Z • result := 999;

binder readCall .BufferID .ConsumerSID .ConsumerTID−→
binder readRet .BufferID .ConsumerSID .ConsumerTID ? b−→
Skip


; X

8 (loopVar = False)−→ Skip

fi





;

runRet .ConsumerSID−→
Skip



Methods =̂(
Run

)
; Methods

• (Methods)4 (end managedThread app .ConsumerSID −→ Skip)

end

271

272

Appendix G

Translated Application 2: Aircraft

This appendix contains the full model of the aircraft application (described in Sect. 2.1.3).

Section G.1 contains the definitions of the process identifiers. Section G.2 contains the defini-

tion of top-level network processes and channels. Then we present the models of the paradigm

objects: Sect. G.3 contains the safelet, Sect. G.4 contains the top-level mission sequencer,

and Sect. G.5 contains each of the missions followed by its schedulables.

G.1 ID Files

G.1.1 MissionIds

section MissionIds parents scj prelude,MissionId

MainMissionMID : MissionID

TakeOffMissionMID : MissionID

CruiseMissionMID : MissionID

LandMissionMID : MissionID

distinct〈nullMissionId ,MainMissionMID ,TakeOffMissionMID ,

CruiseMissionMID ,LandMissionMID〉

273

G.1.2 SchedulablesIds

section SchedulableIds parents scj prelude,SchedulableId

MainMissionSequencerSID : SchedulableID

ACModeChangerSID : SchedulableID

EnvironmentMonitorSID : SchedulableID

ControlHandlerSID : SchedulableID

FlightSensorsMonitorSID : SchedulableID

CommunicationsHandlerSID : SchedulableID

AperiodicSimulatorSID : SchedulableID

LandingGearHandlerTakeOffSID : SchedulableID

TakeOffMonitorSID : SchedulableID

TakeOffFailureHandlerSID : SchedulableID

BeginLandingHandlerSID : SchedulableID

NavigationMonitorSID : SchedulableID

GroundDistanceMonitorSID : SchedulableID

LandingGearHandlerLandSID : SchedulableID

InstrumentLandingSystemMonitorSID : SchedulableID

SafeLandingHandlerSID : SchedulableID

distinct〈nullSequencerId ,nullSchedulableId ,MainMissionSequencerSID ,

ACModeChangerSID ,EnvironmentMonitorSID ,

ControlHandlerSID ,FlightSensorsMonitorSID ,

CommunicationsHandlerSID ,AperiodicSimulatorSID ,

LandingGearHandlerTakeOffSID ,TakeOffMonitorSID ,

TakeOffFailureHandlerSID ,BeginLandingHandlerSID ,

NavigationMonitorSID ,GroundDistanceMonitorSID ,

LandingGearHandlerLandSID , InstrumentLandingSystemMonitorSID ,

SafeLandingHandlerSID〉

274

G.1.3 ThreadIds

section ThreadIds parents scj prelude,GlobalTypes

InstrumentLandingSystemMonitorTID : ThreadID

SafeLandingHandlerTID : ThreadID

GroundDistanceMonitorTID : ThreadID

CommunicationsHandlerTID : ThreadID

ControlHandlerTID : ThreadID

AperiodicSimulatorTID : ThreadID

TakeOffFailureHandlerTID : ThreadID

LandingGearHandlerLandTID : ThreadID

EnvironmentMonitorTID : ThreadID

FlightSensorsMonitorTID : ThreadID

NavigationMonitorTID : ThreadID

ACModeChangerTID : ThreadID

BeginLandingHandlerTID : ThreadID

LandingGearHandlerTakeOffTID : ThreadID

TakeOffMonitorTID : ThreadID

distinct〈SafeletTId ,nullThreadId ,

InstrumentLandingSystemMonitorTID ,SafeLandingHandlerTID ,

GroundDistanceMonitorTID ,CommunicationsHandlerTID ,

ControlHandlerTID ,AperiodicSimulatorTID ,

TakeOffFailureHandlerTID ,LandingGearHandlerLandTID ,

EnvironmentMonitorTID ,FlightSensorsMonitorTID ,

NavigationMonitorTID ,ACModeChangerTID ,

BeginLandingHandlerTID ,LandingGearHandlerTakeOffTID ,

TakeOffMonitorTID〉

G.1.4 ObjectIds

section ObjectIds parents scj prelude,GlobalTypes

TakeOffMissionOID : ObjectID

LandMissionOID : ObjectID

distinct〈TakeOffMissionOID ,LandMissionOID〉

275

G.2 Network

G.2.1 Network Channel Sets

section NetworkChan parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,TopLevelMissionSequencerFWChan,

FrameworkChan,SafeletChan,AperiodicEventHandlerChan,ManagedThreadChan,

OneShotEventHandlerChan,PeriodicEventHandlerChan,MissionSequencerMethChan

channelset TerminateSync ==

{| schedulables terminated , schedulables stopped , get activeSchedulables |}

channelset ControlTierSync ==

{| start toplevel sequencer , done toplevel sequencer , done safeletFW |}

channelset TierSync ==

{| start mission .MainMission, done mission .MainMission,

done safeletFW , done toplevel sequencer |}

channelset MissionSync ==

{| done safeletFW , done toplevel sequencer , register ,

signalTerminationCall , signalTerminationRet , activate schedulables, done schedulable,

cleanupSchedulableCall , cleanupSchedulableRet |}

channelset SchedulablesSync ==

{| activate schedulables, done safeletFW , done toplevel sequencer |}

channelset ClusterSync ==

{| done toplevel sequencer , done safeletFW |}

channelset SafeltAppSync =̂ {| getSequencerCall , getSequencerRet ,

initializeApplicationCall , initializeApplicationRet , end safelet app |}

channelset MissionSequencerAppSync ==

{| getNextMissionCall , getNextMissionRet , end sequencer app |}

channelset MissionAppSync ==

{| initializeCall , register , initializeRet , cleanupMissionCall , cleanupMissionRet |}

channelset AppSync ==⋃
{SafeltAppSync,MissionSequencerAppSync,MissionAppSync,

MTAppSync,OSEHSync,APEHSync,PEHSync,

{| getSequencer , end mission app, end managedThread app,

setCeilingPriority , requestTerminationCall ,

requestTerminationRet , terminationPendingCall ,

terminationPendingRet , handleAsyncEventCall , handleAsyncEventRet |}}

276

channelset ThreadSync ==

{| raise thread priority , lower thread priority ,

isInterruptedCall , isInterruptedRet , get priorityLevel |}

channelset LockingSync ==

{| lockAcquired , startSyncMeth, endSyncMeth,waitCall ,waitRet ,

notify , isInterruptedCall , isInterruptedRet , interruptedCall , interruptedRet ,

done toplevel sequencer , get priorityLevel |}

channelset Tier0Sync == {| done toplevel sequencer , done safeletFW ,

start mission .TakeOffMission, done mission .TakeOffMission,

initializeRet .TakeOffMission,

requestTermination .TakeOffMission .MainMissionSequencer ,

start mission .CruiseMission, done mission .CruiseMission,

initializeRet .CruiseMission,

requestTermination .CruiseMission .MainMissionSequencer ,

start mission .LandMission, done mission .LandMission,

initializeRet .LandMission,

requestTermination .LandMission .MainMissionSequencer |}

277

G.2.2 MethodCallBinder

section MethodCallBindingChannels parents scj prelude,GlobalTypes,FrameworkChan,

MissionId ,MissionIds,SchedulableId ,SchedulableIds,ThreadIds

channel binder setCabinPressureCall : MissionID × SchedulableID × R
channel binder setCabinPressureRet : MissionID × SchedulableID

setCabinPressureLocs == {MainMissionMID}
setCabinPressureCallers == {EnvironmentMonitorSID}

channel binder setFuelRemainingCall : MissionID × SchedulableID × R
channel binder setFuelRemainingRet : MissionID × SchedulableID

setFuelRemainingLocs == {MainMissionMID}
setFuelRemainingCallers == {EnvironmentMonitorSID}

channel binder getAltitudeCall : MissionID × SchedulableID

channel binder getAltitudeRet : MissionID × SchedulableID × R

getAltitudeLocs == {MainMissionMID}
getAltitudeCallers == {NavigationMonitorSID ,TakeOffMonitorSID ,

GroundDistanceMonitorSID ,SafeLandingHandlerSID}

channel binder setHeadingCall : MissionID × SchedulableID × R
channel binder setHeadingRet : MissionID × SchedulableID

setHeadingLocs == {MainMissionMID}
setHeadingCallers == {FlightSensorsMonitorSID}

channel binder stowLandingGearCall : MissionID × SchedulableID

channel binder stowLandingGearRet : MissionID × SchedulableID

stowLandingGearLocs == {TakeOffMissionMID ,LandMissionMID}
stowLandingGearCallers == {LandingGearHandlerSID ,LandingGearHandlerLandSID}

278

channel binder takeOffAbortCall : MissionID × SchedulableID

channel binder takeOffAbortRet : MissionID × SchedulableID

takeOffAbortLocs == {TakeOffMissionMID}
takeOffAbortCallers == {TakeOffFailureHandlerSID}

channel binder setAltitudeCall : MissionID × SchedulableID × R
channel binder setAltitudeRet : MissionID × SchedulableID

setAltitudeLocs == {MainMissionMID}
setAltitudeCallers == {FlightSensorsMonitorSID}

channel binder getHeadingCall : MissionID × SchedulableID

channel binder getHeadingRet : MissionID × SchedulableID × R

getHeadingLocs == {MainMissionMID}
getHeadingCallers == {NavigationMonitorSID}

channel binder getAirSpeedCall : MissionID × SchedulableID

channel binder getAirSpeedRet : MissionID × SchedulableID × R

getAirSpeedLocs == {MainMissionMID}
getAirSpeedCallers == {NavigationMonitorSID ,TakeOffFailureHandlerSID}

channel binder deployLandingGearCall : MissionID × SchedulableID

channel binder deployLandingGearRet : MissionID × SchedulableID

deployLandingGearLocs == {TakeOffMissionMID ,LandMissionMID}
deployLandingGearCallers == {LandingGearHandlerSID ,

LandingGearHandlerLandSID}

channel binder setEmergencyOxygenCall : MissionID × SchedulableID × R
channel binder setEmergencyOxygenRet : MissionID × SchedulableID

setEmergencyOxygenLocs == {MainMissionMID}
setEmergencyOxygenCallers == {EnvironmentMonitorSID}

279

channel binder setAirSpeedCall : MissionID × SchedulableID × R
channel binder setAirSpeedRet : MissionID × SchedulableID

setAirSpeedLocs == {MainMissionMID}
setAirSpeedCallers == {FlightSensorsMonitorSID}

channel binder isLandingGearDeployedCall : MissionID × SchedulableID

channel binder isLandingGearDeployedRet : MissionID × SchedulableID × B

isLandingGearDeployedLocs == {TakeOffMissionMID ,LandMissionMID}
isLandingGearDeployedCallers == {LandingGearHandlerSID ,LandingGearHandlerLandSID}

channelset MethodCallBinderSync == {| done toplevel sequencer ,

binder setCabinPressureCall , binder setCabinPressureRet ,

binder setFuelRemainingCall , binder setFuelRemainingRet ,

binder getAltitudeCall , binder getAltitudeRet ,

binder setHeadingCall , binder setHeadingRet ,

binder stowLandingGearCall , binder stowLandingGearRet ,

binder takeOffAbortCall , binder takeOffAbortRet ,

binder setAltitudeCall , binder setAltitudeRet ,

binder getHeadingCall , binder getHeadingRet ,

binder getAirSpeedCall , binder getAirSpeedRet ,

binder deployLandingGearCall , binder deployLandingGearRet ,

binder setEmergencyOxygenCall , binder setEmergencyOxygenRet ,

binder setAirSpeedCall , binder setAirSpeedRet ,

binder isLandingGearDeployedCall , binder isLandingGearDeployedRet |}

280

section NetworkMethodCallBinder parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,

MainMissionMethChan,LandMissionMethChan

process MethodCallBinder =̂ begin

setCabinPressure MethodBinder =̂

binder setCabinPressureCall

? loc : (loc ∈ setCabinPressureLocs)

? caller : (caller ∈ setCabinPressureCallers) ? p1−→
setCabinPressureCall . loc . caller ! p1−→
setCabinPressureRet . loc . caller−→
binder setCabinPressureRet . loc . caller −→
setCabinPressure MethodBinder


setFuelRemaining MethodBinder =̂

binder setFuelRemainingCall

? loc : (loc ∈ setFuelRemainingLocs)

? caller : (caller ∈ setFuelRemainingCallers) ? p1−→
setFuelRemainingCall . loc . caller ! p1−→
setFuelRemainingRet . loc . caller−→
binder setFuelRemainingRet . loc . caller −→
setFuelRemaining MethodBinder


getAltitude MethodBinder =̂

binder getAltitudeCall

? loc : (loc ∈ getAltitudeLocs)

? caller : (caller ∈ getAltitudeCallers)−→
getAltitudeCall . loc . caller−→
getAltitudeRet . loc . caller ? ret−→
binder getAltitudeRet . loc . caller ! ret−→
getAltitude MethodBinder


setHeading MethodBinder =̂

binder setHeadingCall

? loc : (loc ∈ setHeadingLocs)

? caller : (caller ∈ setHeadingCallers) ? p1−→
setHeadingCall . loc . caller ! p1−→
setHeadingRet . loc . caller−→
binder setHeadingRet . loc . caller −→
setHeading MethodBinder


281

stowLandingGear MethodBinder =̂

binder stowLandingGearCall

? loc : (loc ∈ stowLandingGearLocs)

? caller : (caller ∈ stowLandingGearCallers)−→
stowLandingGearCall . loc . caller−→
stowLandingGearRet . loc . caller−→
binder stowLandingGearRet . loc . caller −→
stowLandingGear MethodBinder



takeOffAbort MethodBinder =̂

binder takeOffAbortCall

? loc : (loc ∈ takeOffAbortLocs)

? caller : (caller ∈ takeOffAbortCallers)−→
takeOffAbortCall . loc . caller−→
takeOffAbortRet . loc . caller−→
binder takeOffAbortRet . loc . caller −→
takeOffAbort MethodBinder



setAltitude MethodBinder =̂

binder setAltitudeCall ? loc : (loc ∈ setAltitudeLocs)

? caller : (caller ∈ setAltitudeCallers) ? p1−→
setAltitudeCall . loc . caller ! p1−→
setAltitudeRet . loc . caller−→
binder setAltitudeRet . loc . caller −→
setAltitude MethodBinder



getHeading MethodBinder =̂

binder getHeadingCall ? loc : (loc ∈ getHeadingLocs)

? caller : (caller ∈ getHeadingCallers)−→
getHeadingCall . loc . caller−→
getHeadingRet . loc . caller ? ret−→
binder getHeadingRet . loc . caller ! ret−→
getHeading MethodBinder



getAirSpeed MethodBinder =̂

binder getAirSpeedCall

? loc : (loc ∈ getAirSpeedLocs)

? caller : (caller ∈ getAirSpeedCallers)−→
getAirSpeedCall . loc . caller−→
getAirSpeedRet . loc . caller ? ret−→
binder getAirSpeedRet . loc . caller ! ret−→
getAirSpeed MethodBinder


282

deployLandingGear MethodBinder =̂

binder deployLandingGearCall

? loc : (loc ∈ deployLandingGearLocs)

? caller : (caller ∈ deployLandingGearCallers)−→
deployLandingGearCall . loc . caller−→
deployLandingGearRet . loc . caller−→
binder deployLandingGearRet . loc . caller −→
deployLandingGear MethodBinder



setEmergencyOxygen MethodBinder =̂

binder setEmergencyOxygenCall

? loc : (loc ∈ setEmergencyOxygenLocs)

? caller : (caller ∈ setEmergencyOxygenCallers) ? p1−→
setEmergencyOxygenCall . loc . caller ! p1−→
setEmergencyOxygenRet . loc . caller−→
binder setEmergencyOxygenRet . loc . caller −→
setEmergencyOxygen MethodBinder



setAirSpeed MethodBinder =̂

binder setAirSpeedCall

? loc : (loc ∈ setAirSpeedLocs)

? caller : (caller ∈ setAirSpeedCallers) ? p1−→
setAirSpeedCall . loc . caller ! p1−→
setAirSpeedRet . loc . caller−→
binder setAirSpeedRet . loc . caller −→
setAirSpeed MethodBinder



isLandingGearDeployed MethodBinder =̂

binder isLandingGearDeployedCall

? loc : (loc ∈ isLandingGearDeployedLocs)

? caller : (caller ∈ isLandingGearDeployedCallers)−→
isLandingGearDeployedCall . loc . caller−→
isLandingGearDeployedRet . loc . caller ? ret−→
binder isLandingGearDeployedRet . loc . caller ! ret−→
isLandingGearDeployed MethodBinder


283

BinderActions =̂

setCabinPressure MethodBinder

9

setFuelRemaining MethodBinder

9

getAltitude MethodBinder

9

setHeading MethodBinder

9

stowLandingGear MethodBinder

9

takeOffAbort MethodBinder

9

setAltitude MethodBinder

9

getHeading MethodBinder

9

getAirSpeed MethodBinder

9

deployLandingGear MethodBinder

9

setEmergencyOxygen MethodBinder

9

setAirSpeed MethodBinder

9

isLandingGearDeployed MethodBinder



• BinderActions 4 (done toplevel sequencer −→ Skip)

end

284

G.2.3 Program

section NetworkProgram parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,SchedulableMethChan,MissionFW ,

SafeletFW ,TopLevelMissionSequencerFW ,NetworkChannels,ManagedThreadFW ,

SchedulableMissionSequencerFW ,PeriodicEventHandlerFW ,

OneShotEventHandlerFW ,AperiodicEventHandlerFW ,ObjectFW ,ThreadFW ,

ACSafeletApp,MainMissionSequencerApp,MainMissionApp,ACModeChangerApp,

ControlHandlerApp,CommunicationsHandlerApp,EnvironmentMonitorApp,

FlightSensorsMonitorApp,TakeOffMissionApp,LandingGearHandlerApp,

TakeOffFailureHandlerApp,TakeOffMonitorApp,CruiseMissionApp,

BeginLandingHandlerApp,NavigationMonitorApp,LandMissionApp,

LandingGearHandlerLandApp,SafeLandingHandlerApp,

GroundDistanceMonitorApp, InstrumentLandingSystemMonitorApp

process ControlTier =̂
SafeletFW

JControlTierSyncK

TopLevelMissionSequencerFW (MainMissionSequencer)



process Tier0 =̂

MissionFW (MainMissionID)

JMissionSyncK

SchedulableMissionSequencerFW (ACModeChanger2ID)

JSchedulablesSyncK

AperiodicEventHandlerFW (ControlHandlerID , aperiodic,

(time(10, 0),nullSchedulableId))

JSchedulablesSyncK

AperiodicEventHandlerFW (CommunicationsHandlerID , aperiodic,

(NULL,nullSchedulableId))

JSchedulablesSyncK

PeriodicEventHandlerFW (EnvironmentMonitorID ,

(time(10, 0),NULL,NULL,nullSchedulableId))

JSchedulablesSyncK

PeriodicEventHandlerFW (FlightSensorsMonitorID ,

(time(10, 0),NULL,NULL,nullSchedulableId))




285

process Tier1 =̂

MissionFW (TakeOffMissionID)

JMissionSyncK

AperiodicEventHandlerFW (LandingGearHandlerID , aperiodic,

(NULL,nullSchedulableId))

JSchedulablesSyncK

AperiodicEventHandlerFW (TakeOffFailureHandlerID , aperiodic,

(NULL,nullSchedulableId))

JSchedulablesSyncK

PeriodicEventHandlerFW (TakeOffMonitorID ,

(time(0, 0), time(500, 0),NULL,nullSchedulableId))




JClusterSyncK

MissionFW (CruiseMissionID)

JMissionSyncK

AperiodicEventHandlerFW (BeginLandingHandlerID , aperiodic,

(NULL,nullSchedulableId))

JSchedulablesSyncK

PeriodicEventHandlerFW (NavigationMonitorID ,

(time(0, 0), time(10, 0),NULL,nullSchedulableId))




JClusterSyncK

MissionFW (LandMissionID)

JMissionSyncK

AperiodicEventHandlerFW (LandingGearHandlerLandID , aperiodic,

(NULL,nullSchedulableId))

JSchedulablesSyncK

AperiodicEventHandlerFW (SafeLandingHandlerID , aperiodic,

(NULL,nullSchedulableId))

JSchedulablesSyncK

PeriodicEventHandlerFW (GroundDistanceMonitorID ,

(time(0, 0), time(10, 0),NULL,nullSchedulableId))

JSchedulablesSyncK

PeriodicEventHandlerFW (InstrumentLandingSystemMonitorID ,

(time(0, 0), time(10, 0),NULL,nullSchedulableId))





process Framework =̂

ControlTier

JTierSyncK
Tier0

JTier0SyncK

Tier1




286

process Application =̂

ACSafeletApp

9

MainMissionSequencerApp

9

MainMissionApp

9

ACModeChanger2App(MainMissionID)

9

ControlHandlerApp

9

CommunicationsHandlerApp

9

EnvironmentMonitorApp(MainMissionID)

9

FlightSensorsMonitorApp(MainMissionID)

9

TakeOffMissionApp

9

LandingGearHandlerApp(TakeOffMissionID)

9

TakeOffFailureHandlerApp(TakeOffMissionID , 10.0)

9

TakeOffMonitorApp(TakeOffMissionID , 10.0, landingGearHandlerID)

9

CruiseMissionApp

9

BeginLandingHandlerApp

9

NavigationMonitorApp

9

LandMissionApp

9

LandingGearHandlerLandApp(LandMissionID)

9

SafeLandingHandlerApp(10.0)

9

GroundDistanceMonitorApp(0.0)

9

InstrumentLandingSystemMonitorApp(LandMissionID)



287

section Network parents NetworkProgram,MethodCallBindingChannels,

NetworkMethodCallBinder ,NetworkChan,NetworkLocking

process Bound Application =̂ Application J MethodCallBinderSync K MethodCallBinder

process Program =̂ Framework J AppSync K Bound Application

G.3 ACSafelet

section ACSafeletApp parents scj prelude,SchedulableId ,SchedulableIds,SafeletChan,

MethodCallBindingChannels

process ACSafeletApp =̂ begin

InitializeApplication =̂
initializeApplicationCall−→
initializeApplicationRet−→
Skip



GetSequencer =̂
getSequencerCall−→
getSequencerRet ! MainMissionSequencerSID−→
Skip



Methods =̂
GetSequencer

@

InitializeApplication

 ; Methods

• (Methods)4 (end safelet app −→ Skip)

end

288

G.4 MainMissionSequencer

section MainMissionSequencerApp parents TopLevelMissionSequencerChan,

MissionId ,MissionIds,SchedulableId ,SchedulableIds,MainMissionSequencerClass,

MethodCallBindingChannels

process MainMissionSequencerApp =̂ begin

State

this : ref MainMissionSequencerClass

state State

Init

State ′

this ′ = new MainMissionSequencerClass()

GetNextMission =̂ var ret : MissionID •
getNextMissionCall .MainMissionSequencerSID−→

ret := this . getNextMission();

getNextMissionRet .MainMissionSequencerSID ! ret−→
Skip





Methods =̂(
GetNextMission

)
; Methods

• (Init ; Methods)4 (end sequencer app .MainMissionSequencerSID −→ Skip)

end

289

section MainMissionSequencerClass parents scj prelude,SchedulableId ,

SchedulableIds,SafeletChan,MethodCallBindingChannels,MissionId ,MissionIds

class MainMissionSequencerClass =̂ begin

state State

returnedMission : B

state State

initial Init

State ′

returnedMission ′ = False

protected getNextMission =̂

if (¬ returnedMission)−→(
returnedMission := True;

ret := MainMissionMID

)
8¬ (¬ returnedMission)−→(

ret := nullMissionId
)

fi



• Skip

end

290

G.5 Missions

G.5.1 MainMission

section MainMissionApp parents scj prelude,GlobalTypes,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,SchedulableMethChan,

MainMissionMethChan,MainMissionClass,MethodCallBindingChannels

process MainMissionApp =̂ begin

State

this : ref MainMissionClass

state State

Init

State ′

this ′ = new MainMissionClass()

InitializePhase =̂

initializeCall .MainMissionMID−→
register ! ACModeChanger2SID ! MainMissionMID−→
register ! EnvironmentMonitorSID ! MainMissionMID−→
register ! ControlHandlerSID ! MainMissionMID−→
register ! FlightSensorsMonitorSID ! MainMissionMID−→
register ! CommunicationsHandlerSID ! MainMissionMID−→
initializeRet .MainMissionMID−→
Skip



CleanupPhase =̂
cleanupMissionCall .MainMissionMID−→
cleanupMissionRet .MainMissionMID ! True−→
Skip



getAirSpeedMeth =̂ var ret : R •
getAirSpeedCall .MainMissionMID ? caller−→

ret := this . getAirSpeed();

getAirSpeedRet .MainMissionMID . caller ! ret−→
Skip




291

getAltitudeMeth =̂ var ret : R •
getAltitudeCall .MainMissionMID ? caller−→

ret := this . getAltitude();

getAltitudeRet .MainMissionMID . caller ! ret−→
Skip





getCabinPressureMeth =̂ var ret : R •
getCabinPressureCall .MainMissionMID−→

ret := this . getCabinPressure();

getCabinPressureRet .MainMissionMID ! ret−→
Skip





getEmergencyOxygenMeth =̂ var ret : R •
getEmergencyOxygenCall .MainMissionMID−→

ret := this . getEmergencyOxygen();

getEmergencyOxygenRet .MainMissionMID ! ret−→
Skip





getFuelRemainingMeth =̂ var ret : R •
getFuelRemainingCall .MainMissionMID−→

ret := this . getFuelRemaining();

getFuelRemainingRet .MainMissionMID ! ret−→
Skip





getHeadingMeth =̂ var ret : R •
getHeadingCall .MainMissionMID ? caller−→

ret := this . getHeading();

getHeadingRet .MainMissionMID . caller ! ret−→
Skip





292

setAirSpeedMeth =̂
setAirSpeedCall .MainMissionMID ? caller ? newAirSpeed−→
this . setAirSpeed(newAirSpeed);

setAirSpeedRet .MainMissionMID . caller−→
Skip



setAltitudeMeth =̂
setAltitudeCall .MainMissionMID ? caller ? newAltitude−→
this . setAltitude(newAltitude);

setAltitudeRet .MainMissionMID . caller−→
Skip



setCabinPressureMeth =̂
setCabinPressureCall .MainMissionMID ? caller ? newCabinPressure−→
this . setCabinPressure(newCabinPressure);

setCabinPressureRet .MainMissionMID . caller−→
Skip



setEmergencyOxygenMeth =̂

setEmergencyOxygenCall .MainMissionMID ? caller

? newEmergencyOxygen−→
this . setEmergencyOxygen(newEmergencyOxygen);

setEmergencyOxygenRet .MainMissionMID . caller−→
Skip



setFuelRemainingMeth =̂
setFuelRemainingCall .MainMissionMID ? caller ? newFuelRemaining−→
this . setFuelRemaining(newFuelRemaining);

setFuelRemainingRet .MainMissionMID . caller−→
Skip



setHeadingMeth =̂
setHeadingCall .MainMissionMID ? caller ? newHeading−→
this . setHeading(newHeading);

setHeadingRet .MainMissionMID . caller−→
Skip


293

Methods =̂



InitializePhase

@

CleanupPhase

@

getAirSpeedMeth

@

getAltitudeMeth

@

getCabinPressureMeth

@

getEmergencyOxygenMeth

@

getFuelRemainingMeth

@

getHeadingMeth

@

setAirSpeedMeth

@

setAltitudeMeth

@

setCabinPressureMeth

@

setEmergencyOxygenMeth

@

setFuelRemainingMeth

@

setHeadingMeth



; Methods

• (Init ; Methods)4 (end mission app .MainMissionMID −→ Skip)

end

294

section MainMissionClass parents scj prelude,SchedulableId ,SchedulableIds,

SafeletChan,MethodCallBindingChannels

class MainMissionClass =̂ begin

state State

cabinPressure : R
emergencyOxygen : R
fuelRemaining : R
altitude : R
airSpeed : R
heading : R

state State

initial Init

State ′

public getAirSpeed =̂(
ret := airSpeed

)

public getAltitude =̂(
ret := altitude

)

public getCabinPressure =̂(
ret := cabinPressure

)

public getEmergencyOxygen =̂(
ret := emergencyOxygen

)

public getFuelRemaining =̂(
ret := fuelRemaining

)

public getHeading =̂(
ret := heading

)
295

public setAirSpeed =̂ var newAirSpeed : R •(
airSpeed := newAirSpeed

)

public setAltitude =̂ var newAltitude : R •(
altitude := newAltitude

)

public setCabinPressure =̂ var newCabinPressure : R •(
cabinPressure := newCabinPressure

)

public setEmergencyOxygen =̂ var newEmergencyOxygen : R •(
emergencyOxygen := newEmergencyOxygen

)

public setFuelRemaining =̂ var newFuelRemaining : R •(
fuelRemaining := newFuelRemaining

)

public setHeading =̂ var newHeading : R •(
heading := newHeading

)

• Skip

end

296

section MainMissionMethChan parents GlobalTypes,MissionId ,SchedulableId

channel getAirSpeedCall : MissionID × SchedulableID

channel getAirSpeedRet : MissionID × SchedulableID × R
channel getAltitudeCall : MissionID × SchedulableID

channel getAltitudeRet : MissionID × SchedulableID × R
channel getCabinPressureCall : MissionID

channel getCabinPressureRet : MissionID × R
channel getEmergencyOxygenCall : MissionID

channel getEmergencyOxygenRet : MissionID × R
channel getFuelRemainingCall : MissionID

channel getFuelRemainingRet : MissionID × R
channel getHeadingCall : MissionID × SchedulableID

channel getHeadingRet : MissionID × SchedulableID × R
channel setAirSpeedCall : MissionID × SchedulableID × R
channel setAirSpeedRet : MissionID × SchedulableID

channel setAltitudeCall : MissionID × SchedulableID × R
channel setAltitudeRet : MissionID × SchedulableID

channel setCabinPressureCall : MissionID × SchedulableID × R
channel setCabinPressureRet : MissionID × SchedulableID

channel setEmergencyOxygenCall : MissionID × SchedulableID × R
channel setEmergencyOxygenRet : MissionID × SchedulableID

channel setFuelRemainingCall : MissionID × SchedulableID × R
channel setFuelRemainingRet : MissionID × SchedulableID

channel setHeadingCall : MissionID × SchedulableID × R
channel setHeadingRet : MissionID × SchedulableID

297

G.5.2 Schedulables of MainMission

section ACModeChangerApp parents TopLevelMissionSequencerChan,MissionId ,

MissionIds,SchedulableId ,SchedulableIds,ACModeChangerClass,MethodCallBindingChannels

process ACModeChangerApp =̂

controllingMission : MissionID • begin

GetNextMission =̂ var ret : MissionID •
getNextMissionCall .ACModeChangerSID−→
ret := this . getNextMission();

getNextMissionRet .ACModeChangerSID ! ret−→
Skip



Methods =̂(
GetNextMission

)
; Methods

• (Methods)4 (end sequencer app .ACModeChangerSID −→ Skip)

end

298

section ACModeChangerClass parents scj prelude,SchedulableId ,SchedulableIds,

SafeletChan,MethodCallBindingChannels,MissionId ,MissionIds

class ACModeChangerClass =̂ begin

state State

modesLeft : Z

state State

initial Init

State ′

modesLeft ′ = 3

protected getNextMission =̂ var ret : MissionID •

if (modesLeft = 3)−→(
modesLeft := modesLeft − 1;

ret := TakeOffMissionMID

)
8¬ (modesLeft = 3)−→

if (modesLeft = 2)−→(
modesLeft := modesLeft − 1;

ret := CruiseMissionMID

)
8¬ (modesLeft = 2)−→

if (modesLeft = 1)−→(
modesLeft := modesLeft − 1;

ret := LandMissionMID

)
8¬ (modesLeft = 1)−→(

ret := nullMissionId
)

fi

fi

fi



• Skip

end

299

section ControlHandlerApp parents AperiodicEventHandlerChan,SchedulableId ,

SchedulableIds,MethodCallBindingChannels

process ControlHandlerApp =̂ begin

handleAsyncEvent =̂
handleAsyncEventCall .ControlHandlerSID−→
handleAsyncEventRet .ControlHandlerSID−→
Skip


Methods =̂(

handleAsyncEvent
)
; Methods

• (Methods)4 (end aperiodic app .ControlHandlerSID −→ Skip)

end

section CommunicationsHandlerApp parents AperiodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels

process CommunicationsHandlerApp =̂ begin

handleAsyncEvent =̂
handleAsyncEventCall .CommunicationsHandlerSID−→
handleAsyncEventRet .CommunicationsHandlerSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end aperiodic app .CommunicationsHandlerSID −→ Skip)

end

300

section EnvironmentMonitorApp parents PeriodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels

process EnvironmentMonitorApp =̂

controllingMission : MissionID • begin

handleAsyncEvent =̂

handleAsyncEventCall .EnvironmentMonitorSID−→

binder setCabinPressureCall . controllingMission

.EnvironmentMonitorSID ! 0−→
binder setCabinPressureRet . controllingMission

.EnvironmentMonitorSID−→
binder setEmergencyOxygenCall . controllingMission

.EnvironmentMonitorSID ! 0−→
binder setEmergencyOxygenRet . controllingMission

.EnvironmentMonitorSID−→
binder setFuelRemainingCall . controllingMission

.EnvironmentMonitorSID ! 0−→
binder setFuelRemainingRet . controllingMission

.EnvironmentMonitorSID−→
Skip



;

handleAsyncEventRet .EnvironmentMonitorSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end periodic app .EnvironmentMonitorSID −→ Skip)

end

301

section FlightSensorsMonitorApp parents PeriodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels

process FlightSensorsMonitorApp =̂

controllingMission : MissionID • begin

handleAsyncEvent =̂

handleAsyncEventCall .FlightSensorsMonitorSID−→

binder setAirSpeedCall . controllingMission

.FlightSensorsMonitorSID ! 0−→
binder setAirSpeedRet . controllingMission .FlightSensorsMonitorSID−→
binder setAltitudeCall . controllingMission

.FlightSensorsMonitorSID ! 0−→
binder setAltitudeRet . controllingMission .FlightSensorsMonitorSID−→
binder setHeadingCall . controllingMission

.FlightSensorsMonitorSID ! 0−→
binder setHeadingRet . controllingMission .FlightSensorsMonitorSID−→
Skip



;

handleAsyncEventRet .FlightSensorsMonitorSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end periodic app .FlightSensorsMonitorSID −→ Skip)

end

302

G.5.3 TakeOffMission

section TakeOffMissionApp parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,SchedulableMethChan,

TakeOffMissionMethChan,TakeOffMissionClass,MethodCallBindingChannels,

LandingGearMethChan

process TakeOffMissionApp =̂

controllingMission : MissionID • begin

State

this : ref TakeOffMissionClass

state State

Init

State ′

this ′ = new TakeOffMissionClass()

InitializePhase =̂

initializeCall .TakeOffMissionMID−→
register ! LandingGearHandlerSID ! TakeOffMissionMID−→
register ! TakeOffMonitorSID ! TakeOffMissionMID−→
register ! TakeOffFailureHandlerSID ! TakeOffMissionMID−→
initializeRet .TakeOffMissionMID−→
Skip



CleanupPhase =̂ var ret : B •
cleanupMissionCall .TakeOffMissionMID−→

ret := (¬ this . abort);

cleanupMissionRet .TakeOffMissionMID ! ret−→
Skip





takeOffAbortMeth =̂
takeOffAbortCall .TakeOffMissionMID ? caller−→
this . takeOffAbort();

takeOffAbortRet .TakeOffMissionMID . caller−→
Skip


303

deployLandingGearMeth =̂
deployLandingGearCall .TakeOffMissionMID ? caller−→
this . deployLandingGear();

deployLandingGearRet .TakeOffMissionMID . caller−→
Skip



stowLandingGearMeth =̂
stowLandingGearCall .TakeOffMissionMID ? caller−→
this . stowLandingGear();

stowLandingGearRet .TakeOffMissionMID . caller−→
Skip



isLandingGearDeployedMeth =̂ var ret : B •
isLandingGearDeployedCall .TakeOffMissionMID ? caller−→

ret := this . isLandingGearDeployed();

; isLandingGearDeployedRet .TakeOffMissionMID . caller ! ret−→
Skip





Methods =̂



InitializePhase

@

CleanupPhase

@

takeOffAbortMeth

@

deployLandingGearMeth

@

stowLandingGearMeth

@

isLandingGearDeployedMeth



; Methods

• (Init ; Methods)4 (end mission app .TakeOffMissionMID −→ Skip)

end

304

section TakeOffMissionClass parents scj prelude,SchedulableId ,SchedulableIds,

SafeletChan,MethodCallBindingChannels

class TakeOffMissionClass =̂ begin

state State

SAFE AIRSPEED THRESHOLD : R
TAKEOFF ALTITUDE : R
abort : B
landingGearDeployed : B

state State

initial Init

State ′

SAFE AIRSPEED THRESHOLD ′ = 10.0

TAKEOFF ALTITUDE ′ = 10.0

abort ′ = false

public takeOffAbort =̂(
abort := True

)
public deployLandingGear =̂(

landingGearDeployed := True
)

public stowLandingGear =̂(
landingGearDeployed := False

)
public isLandingGearDeployed =̂(

ret := landingGearDeployed
)

• Skip

end

305

section TakeOffMissionMethChan parents GlobalTypes,MissionId ,SchedulableId

channel takeOffAbortCall : MissionID × SchedulableID

channel takeOffAbortRet : MissionID × SchedulableID

G.5.4 Schedulables of TakeOffMission

section LandingGearMethChan parents GlobalTypes,MissionId ,SchedulableId

channel deployLandingGearCall : MissionID × SchedulableID

channel deployLandingGearRet : MissionID × SchedulableID

channel stowLandingGearCall : MissionID × SchedulableID

channel stowLandingGearRet : MissionID × SchedulableID

channel isLandingGearDeployedCall : MissionID × SchedulableID

channel isLandingGearDeployedRet : MissionID × SchedulableID × B

306

section LandingGearHandlerTakeOffApp parents AperiodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels

process LandingGearHandlerApp =̂

mission : MissionID • begin

handleAsyncEvent =̂

handleAsyncEventCall .LandingGearHandlerSID−→

binder isLandingGearDeployedCall .mission .LandingGearHandlerSID−→
binder isLandingGearDeployedRet .mission .LandingGearHandlerSID

? isLandingGearDeployed−→
var landingGearIsDeployed : B •

landingGearIsDeployed := isLandingGearDeployed ;

if landingGearIsDeployed = True−→
binder stowLandingGearCall .mission .LandingGearHandlerSID−→
binder stowLandingGearRet .mission .LandingGearHandlerSID−→
Skip


8¬ landingGearIsDeployed = True−→

binder deployLandingGearCall .mission .LandingGearHandlerSID−→
binder deployLandingGearRet .mission .LandingGearHandlerSID−→
Skip


fi



;

handleAsyncEventRet .LandingGearHandlerSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end aperiodic app .LandingGearHandlerSID −→ Skip)

end

307

section TakeOffFailureHandlerApp parents AperiodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,

MainMissionMethChan,MissionMethChan

process TakeOffFailureHandlerApp =̂

mainMission : MissionID ;

takeoffMission : MissionID ;

threshold : R • begin

handleAsyncEvent =̂

handleAsyncEventCall .TakeOffFailureHandlerSID−→

binder getAirSpeedCall .mainMission

.TakeOffFailureHandlerSID−→
binder getAirSpeedRet .mainMission

.TakeOffFailureHandlerSID ? getAirSpeed−→
var currentSpeed : R • currentSpeed := getAirSpeed ;

if (currentSpeed < threshold)−→

binder takeOffAbortCall . takeoffMission

.TakeOffFailureHandlerSID−→
binder takeOffAbortRet . takeoffMission

.TakeOffFailureHandlerSID−→
requestTerminationCall . takeoffMission

.TakeOffFailureHandlerSID−→
requestTerminationRet . takeoffMission

.TakeOffFailureHandlerSID ? rt−→
Skip


8¬ (currentSpeed < threshold)−→

Skip

fi



;

handleAsyncEventRet .TakeOffFailureHandlerSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end aperiodic app .TakeOffFailureHandlerSID −→ Skip)

end

308

section TakeOffMonitorApp parents PeriodicEventHandlerChan,SchedulableId ,

SchedulableIds,MethodCallBindingChannels,

MainMissionMethChan,MissionMethChan

process TakeOffMonitorApp =̂

mainMission : MissionID ;

takeOffMission : MissionID ;

takeOffAltitude : R;

landingGearHandler : SchedulableID • begin

handleAsyncEvent =̂

handleAsyncEventCall .TakeOffMonitorSID−→

binder getAltitudeCall .mainMission .TakeOffMonitorSID−→
binder getAltitudeRet .mainMission .TakeOffMonitorSID ? getAltitude−→
var altitude : R • altitude := getAltitude;

if (altitude > takeOffAltitude)−→
release . landingGearHandler−→
requestTerminationCall . takeOffMission .TakeOffMonitorSID−→
requestTerminationRet . takeOffMission .TakeOffMonitorSID ? rt−→
Skip


8¬ (altitude > takeOffAltitude)−→ Skip

fi



;

handleAsyncEventRet .TakeOffMonitorSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end periodic app .TakeOffMonitorSID −→ Skip)

end

309

G.5.5 CruiseMission

section CruiseMissionApp parents scj prelude,MissionId ,MissionIds,

SchedulableId ,SchedulableIds,MissionChan,SchedulableMethChan,

MethodCallBindingChannels

process CruiseMissionApp =̂

controllingMission : MissionID • begin

InitializePhase =̂

initializeCall .CruiseMissionMID−→
register ! BeginLandingHandlerSID ! CruiseMissionMID−→
register ! NavigationMonitorSID ! CruiseMissionMID−→
initializeRet .CruiseMissionMID−→
Skip



CleanupPhase =̂
cleanupMissionCall .CruiseMissionMID−→
cleanupMissionRet .CruiseMissionMID ! True−→
Skip



Methods =̂


InitializePhase

@

CleanupPhase

 ; Methods

• (Methods)4 (end mission app .CruiseMissionMID −→ Skip)

end

310

G.5.6 Schedulables of CruiseMission

section BeginLandingHandlerApp parents AperiodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,MissionMethChan

process BeginLandingHandlerApp =̂

controllingMission : MissionID • begin

handleAsyncEvent =̂

handleAsyncEventCall .BeginLandingHandlerSID−→
requestTerminationCall . controllingMission .BeginLandingHandlerSID−→
requestTerminationRet . controllingMission .BeginLandingHandlerSID ? rt−→
Skip

 ;

handleAsyncEventRet .BeginLandingHandlerSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end aperiodic app .BeginLandingHandlerSID −→ Skip)

end

311

section NavigationMonitorApp parents PeriodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,

MainMissionMethChan

process NavigationMonitorApp =̂

mainMission : MissionID • begin

handleAsyncEvent =̂

handleAsyncEventCall .NavigationMonitorSID−→

binder getHeadingCall .mainMission .NavigationMonitorSID−→
binder getHeadingRet .mainMission

.NavigationMonitorSID ? getHeading−→
var heading : R • heading := getHeading;

binder getAirSpeedCall .mainMission .NavigationMonitorSID−→
binder getAirSpeedRet .mainMission

.NavigationMonitorSID ? getAirSpeed−→
var airSpeed : R • airSpeed := getAirSpeed ;

binder getAltitudeCall .mainMission .NavigationMonitorSID−→
binder getAltitudeRet .mainMission

.NavigationMonitorSID ? getAltitude−→
var altitude : R • altitude := getAltitude



;

handleAsyncEventRet .NavigationMonitorSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end periodic app .NavigationMonitorSID −→ Skip)

end

312

G.5.7 LandMission

section LandMissionApp parents scj prelude,MissionId ,MissionIds,SchedulableId ,

SchedulableIds,MissionChan,SchedulableMethChan,LandingGearMethChan,

LandMissionClass,MethodCallBindingChannels

process LandMissionApp =̂

controllingMission : MissionID • begin

State

this : ref LandMissionClass

state State

Init

State ′

this ′ = new LandMissionClass()

InitializePhase =̂

initializeCall .LandMissionMID−→
register ! GroundDistanceMonitorSID ! LandMissionMID−→
register ! LandingGearHandlerLandSID ! LandMissionMID−→
register ! InstrumentLandingSystemMonitorSID ! LandMissionMID−→
register ! SafeLandingHandlerSID ! LandMissionMID−→
initializeRet .LandMissionMID−→
Skip



CleanupPhase =̂ var ret : B •
cleanupMissionCall .LandMissionMID−→
ret := False;

cleanupMissionRet .LandMissionMID ! ret−→
Skip



deployLandingGearMeth =̂
deployLandingGearCall .LandMissionMID ? caller−→
this . deployLandingGear();

deployLandingGearRet .LandMissionMID . caller−→
Skip


313

stowLandingGearMeth =̂
stowLandingGearCall .LandMissionMID ? caller−→
this . stowLandingGear();

stowLandingGearRet .LandMissionMID . caller−→
Skip



isLandingGearDeployedMeth =̂ var ret : B •
isLandingGearDeployedCall .LandMissionMID ? caller−→
ret := this . isLandingGearDeployed();

isLandingGearDeployedRet .LandMissionMID . caller ! ret−→
Skip



Methods =̂



InitializePhase

@

CleanupPhase

@

deployLandingGearMeth

@

stowLandingGearMeth

@

isLandingGearDeployedMeth



; Methods

• (Methods)4 (end mission app .LandMissionMID −→ Skip)

end

314

section LandMissionClass parents scj prelude,SchedulableId ,SchedulableIds,

SafeletChan,MethodCallBindingChannels

class LandMissionClass =̂ begin

state State

SAFE LANDING ALTITUDE : R
ALTITUDE READING ON GROUND : R
abort : B
landingGearDeployed : B

state State

initial Init

State ′

SAFE LANDING ALTITUDE ′ = 10.0

ALTITUDE READING ON GROUND ′ = 0.0

abort ′ = false

public deployLandingGear =̂(
landingGearDeployed := True

)

public stowLandingGear =̂(
landingGearDeployed := False

)

public isLandingGearDeployed =̂(
ret := landingGearDeployed

)

• Skip

end

315

G.5.8 Schedulables of LandMission

section LandingGearHandlerLandApp parents AperiodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,LandMissionMethChan

process LandingGearHandlerLandApp =̂

mission : MissionID • begin

handleAsyncEvent =̂

handleAsyncEventCall .LandingGearHandlerLandSID−→

binder isLandingGearDeployedCall .mission .LandingGearHandlerLandSID−→
binder isLandingGearDeployedRet .mission .LandingGearHandlerLandSID

? isLandingGearDeployed−→
var landingGearIsDeployed : B •

landingGearIsDeployed := isLandingGearDeployed ;

if landingGearIsDeployed −→
binder stowLandingGearCall .mission .LandingGearHandlerLandSID−→
binder stowLandingGearRet .mission .LandingGearHandlerLandSID−→
Skip


8¬ landingGearIsDeployed −→

binder deployLandingGearCall .mission .LandingGearHandlerLandSID−→
binder deployLandingGearRet .mission .LandingGearHandlerLandSID−→
Skip


fi



;

handleAsyncEventRet .LandingGearHandlerLandSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end aperiodic app .LandingGearHandlerLandSID −→ Skip)

end

316

section SafeLandingHandlerApp parents AperiodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,MainMissionMethChan

process SafeLandingHandlerApp =̂

mainMission : MissionID ;

threshold : R • begin

handleAsyncEvent =̂

handleAsyncEventCall .SafeLandingHandlerSID−→

binder getAltitudeCall .mainMission .SafeLandingHandlerSID−→
binder getAltitudeRet .mainMission .SafeLandingHandlerSID

? getAltitude−→
var altitude : R • altitude := getAltitude;

if (altitude < threshold)−→
Skip

8¬ (altitude < threshold)−→
Skip

fi



;

handleAsyncEventRet .SafeLandingHandlerSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end aperiodic app .SafeLandingHandlerSID −→ Skip)

end

317

section GroundDistanceMonitorApp parents PeriodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels,MissionMethChan

process GroundDistanceMonitorApp =̂

mainMission : MissionID ;

readingOnGround : R • begin

handleAsyncEvent =̂

handleAsyncEventCall .GroundDistanceMonitorSID−→

binder getAltitudeCall .mainMission .GroundDistanceMonitorSID−→
binder getAltitudeRet .mainMission .GroundDistanceMonitorSID ? getAltitude−→
var distance : R • distance := getAltitude;

if (distance = readingOnGround)−→
requestTerminationCall .mainMission .GroundDistanceMonitorSID−→
requestTerminationRet .mainMission .GroundDistanceMonitorSID ? rt−→
Skip


8¬ (distance = readingOnGround)−→ Skip

fi



;

handleAsyncEventRet .GroundDistanceMonitorSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end periodic app .GroundDistanceMonitorSID −→ Skip)

end

318

section InstrumentLandingSystemMonitorApp parents PeriodicEventHandlerChan,

SchedulableId ,SchedulableIds,MethodCallBindingChannels

process InstrumentLandingSystemMonitorApp =̂

mission : MissionID • begin

handleAsyncEvent =̂
handleAsyncEventCall . InstrumentLandingSystemMonitorSID−→
handleAsyncEventRet . InstrumentLandingSystemMonitorSID−→
Skip



Methods =̂(
handleAsyncEvent

)
; Methods

• (Methods)4 (end periodic app . InstrumentLandingSystemMonitorSID −→ Skip)

end

319

320

Bibliography

[1] Abrial, J.R., Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge

University Press (3 Nov 2005)

[2] Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an Open Toolset for Modelling and Reasoning in Event-B. Int. J. Softw. Tools Technol.

Trans. 12(6), 447–466 (7 Apr 2010)

[3] Aicas: JamiacaVM. http://www.aicas.com/jamaica.html (2013)

[4] Andersen, J.L., Todberg, M., Dalsgaard, A.E., Hansen, R.R.: Worst-Case Memory Con-

sumption Analysis for SCJ. In: Proceedings of the 11th International Workshop on Java

Technologies for Real-time and Embedded Systems. pp. 2–10. JTRES ’13, ACM, New

York, NY, USA (2013)

[5] Beg, A., Butterfield, A.: Development of a Prototype Translator from Circus to CSPm.

In: 2015 International Conference on Open Source Systems Technologies (ICOSST). pp.

16–23 (Dec 2015)

[6] Beg, A., Butterfield, A.: Linking a State-Rich Process Algebra to a State-Free Algebra

to Verify Software/Hardware Implementation. In: Proceedings of the 8th International

Conference on Frontiers of Information Technology. p. 47. ACM (21 Dec 2010)

[7] Bogholm, T., Thomsen, B., Larsen, K.G., Mycroft, A.: Schedulability Analysis Ab-

stractions for Safety Critical Java. In: Object/Component/Service-Oriented Real-Time

Distributed Computing (ISORC), 2012 IEEE 15th International Symposium on. pp.

71–78 (Apr 2012)

[8] Bollella, G., Brosgol, B., Gosling, J., Dibble, P., Furr, S., Turnbull, M.: The Real-Time

Specification for Java. Addison Wesley Longman (2000)

[9] Brosgol, B.M., Wellings, A.J.: A Comparison of Ada and Real-Time Java for Safety-

Critical Applications. In: Pinho, L., González Harbour, M. (eds.) Reliable Software

Technologies – Ada-Europe 2006, Lecture Notes in Computer Science, vol. 4006, pp.

13–26. Springer Berlin Heidelberg (5 Jun 2006)

[10] Bubel, R., Montoya, A.F., Hähnle, R.: Analysis of Executable Software Models. In:

Formal Methods for Executable Software Models, pp. 1–25. Lecture Notes in Computer

Science, Springer International Publishing (16 Jun 2014)

321

http://www.aicas.com/jamaica.html

[11] Burmyakov, A., Bini, E., Tovar, E.: The Generalized Multiprocessor Periodic Resource

Interface Model for Hierarchical Multiprocessor Scheduling. In: Proceedings of the 20th

International Conference on Real-Time and Network Systems. pp. 131–139 (2012)

[12] Burns, A., Wellings, A.J.: Real-Time Systems and Programming Languages: Ada 95,

Real-Time Java, and Real-Time POSIX. Addison Wesley (2009)

[13] Burns, A., Wellings, A.J.: Processing Group Parameters in the Real-Time Specification

for Java. In: On The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops.

pp. 360–370 (2003)

[14] Carré, B., Jennings, T.: SPARK: The SPADE Ada Kernal. Tech. rep., Department of

Electronic and Computer Sciecne, University of Southampton (Mar 1988)

[15] Carré, B., Garnsworthy, J.: SPARK – An Annotated Ada Subset for Safety-Critical

Programming. In: Proceedings of the conference on TRI-ADA ’90. pp. 392–402. ACM,

Baltimore, Maryland, United States (1990)

[16] Cavalcanti, A., Wellings, A.J., Woodcock, J.: The Safety-Critical Java Memory Model

Formalised. Formal Aspects of Computing 25(1), 37–57 (29 Jun 2012)

[17] Cavalcanti, A., Sampaio, A., Woodcock, J.: A Refinement Strategy for Circus. Form.

Asp. Comput. 15(2-3), 146–181 (Nov 2003)

[18] Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying Classes and Processes. Software

& Systems Modeling 4(3), 277–296 (7 Jun 2005)

[19] Cavalcanti, A., Wellings, A.J., Woodcock, J., Wei, K., Zeyda, F.: Safety-Critical Java

in Circus. In: Proceedings of the 9th International Workshop on Java Technologies for

Real-Time and Embedded Systems. pp. 20–29. JTRES ’11, ACM, New York, NY, USA

(26 Sep 2011)

[20] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,

J.F.: Maude: Specification and Programming in Rewriting Logic. Theor. Comput. Sci.

285(2), 187–243 (28 Aug 2002)

[21] Corsaro, A., Santoro, C.: Design Patterns for RTSJ Application Development. In: Meers-

man, R., Tari, Z., Corsaro, A. (eds.) On the Move to Meaningful Internet Systems 2004:

OTM 2004 Workshops, Lecture Notes in Computer Science, vol. 3292, pp. 394–405.

Springer Berlin Heidelberg (25 Oct 2004)

[22] Craigen, D., Saaltink, M., Michell, S.: Ada95 and Critical Systems: An analytical Ap-

proach. In: Strohmeier, A. (ed.) Reliable Software Technologies — Ada-Europe ’96,

Lecture Notes in Computer Science, vol. 1088, pp. 171–182. Springer Berlin / Heidel-

berg (10 Jun 1996)

[23] Cullyer, W.J., Goodenough, S.J., Wichmann, B.A.: The Choice of Computer Languages

for use in Safety-Critical Systems. Software Engineering Journal 6(2), 51–58 (Mar 1991)

322

[24] Dalsgaard, A.E., Hansen, R.R., Schoeberl, M.: Private Memory Allocation Analysis

for Safety-Critical Java. In: Proceedings of the 10th International Workshop on Java

Technologies for Real-time and Embedded Systems. pp. 9–17. JTRES ’12, ACM, New

York, NY, USA (24 Oct 2012)

[25] Davis, R., Burns, A.: An Investigation into Server Parameter Selection for Hierarchical

Fixed Priority Pre-Emptive Systems. In: 16th International Conference on Real-Time

and Network Systems (RTNS 2008). pp. 19–28 (2008)

[26] Davis, R.I., Burns, A.: Hierarchical Fixed Priority Pre-Emptive Scheduling. In: Real-

Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International. pp. 10–pp (2005)

[27] Davis, R.I., Burns, A.: A Survey of Hard Real-Time Scheduling for Multiprocessor

Systems. ACM Computing Surveys (CSUR) 43(4), 1–44 (2011)

[28] Dobbing, B., Burns, A.: The ravenscar tasking profile for high integrity Real-Time

programs. Ada Lett. XVIII(6), 1–6 (1998)

[29] EUROCAE and RTCA: Software Considerations in Airborne Systems and Equipment

Certification. Tech. Rep. DO-178B/ED-12B (1992)

[30] EUROCAE and RTCA: Software Considerations in Airborne Systems and Equipment

Certification. Tech. Rep. DO-178C/ED-12C, EUROCAE and RTCA (2012)

[31] Freitas, A., Cavalcanti, A.: Automatic Translation from Circus to Java. In: FM 2006:

Formal Methods, pp. 115–130. Lecture Notes in Computer Science, Springer Berlin Hei-

delberg (21 Aug 2006)

[32] Frost, C., Jensen, C.S., Luckow, K.S., Thomsen, B.: WCET Analysis of Java Byte-

code Featuring Common Execution Environments. In: Proceedings of the 9th Interna-

tional Workshop on Java Technologies for Real-Time and Embedded Systems. pp. 30–39.

JTRES ’11, ACM, New York, NY, USA (2011)

[33] Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — A Mod-

ern Refinement Checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) Tools and

Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer

Science, vol. 8413, pp. 187–201 (2014)

[34] Gosling, J., Joy, B., Steele, G.L., Bracha, G., Buckley, A.: The Java Language Specifi-

cation, Java SE 8 Edition. Addison-Wesley Professional, 1st edn. (2014)

[35] Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, a Specification Lan-

guage for SCJ with Support for WCET Specification. In: Proceedings of the 8th In-

ternational Workshop on Java Technologies for Real-Time and Embedded Systems. pp.

155–163. JTRES ’10, ACM, New York, NY, USA (19 Aug 2010)

[36] Halang, W.A., Zalewski, J.: Programming Languages for use in Safety-Related Appli-

cations. Annu. Rev. Control 27(1), 39–45 (2003)

323

[37] Hatton, L.: Safer C: Developing Software for in High-Integrity and Safety-Critical Sys-

tems. McGraw-Hill, Inc. (1995)

[38] Havelund, K., Pressburger, T.: Model Checking Java Programs using Java PathFinder.

Int. J. Softw. Tools Technol. Trans. 2(4), 366–381 (2000)

[39] Havelund, K., Roşu, G.: Monitoring java programs with java PathExplorer. Electron.

Notes Theor. Comput. Sci. 55(2), 200–217 (Oct 2001)

[40] Henties, T., Hunt, J.J., Locke, D., Nilsen, K., Schoeberl, M., Vitek, J.: Java for Safety-

Critical Applications. In: 2nd International Workshop on the Certification of Safety-

Critical Software Controlled Systems (SafeCert 2009) (2009)

[41] Hunt, J., Long, F.: Java’s Reliability: an Analysis of Software Defects in Java. Software,

IEEE Proceedings 145(2), 41–50 (1 Dec 1998)

[42] Hunt, J.J.: Realtime Java Technology in Avionics Systems. In: Proceedings of the 8th

International Workshop on Java Technologies for Real-Time and Embedded Systems.

pp. 138–147. JTRES ’10, ACM, New York, NY, USA (19 Aug 2010)

[43] Hunt, J.J., Nilsen, K.: Safety-Critical Java: The Mission Approach. In: Higuera-

Toledano, M.T., Wellings, A.J. (eds.) Distributed, Embedded and Real-time Java Sys-

tems, pp. 199–233. Springer US (2012)

[44] IBM: IBM WebSphere Real Time. http://www-03.ibm.com/software/products/us/

en/real-time (2013), accessed: 2017-2-4

[45] IBM: RTSJ Reference Implementation (RI) and Technology Compatibility Kit (TCK).

http://www.timesys.com (2013), accessed: 2017-2-4

[46] IceLab: IceLab. http://icelab.dk/, accessed: 2016-6-14

[47] ISO/IEC: Guidance for the use of the Ada Programming Language in High Integrity

Systems. Tech. rep., ISO/IEC (2000)

[48] J Kwon: Ravenscar-Java: Java Technology for High Integrity Real-Time Systems. Ph.D.

thesis, The University of York (2006)

[49] Jaffe, M.S., Busser, R., Daniels, D., Delseny, H., Romanski, G.: Progress Report on

Some Proposed Upgrades to the Conceptual Underpinnings of DO-178B/ED-12B. In:

System Safety, 2008 3rd IET International Conference on. pp. 1–6 (Oct 2008)

[50] James, P., Trumble, M., Treharne, H., Roggenbach, M., Schneider, S.: OnTrack: An

Open Tooling Environment for Railway Verification. In: Brat, G., Rungta, N., Venet,

A. (eds.) NASA Formal Methods, Lecture Notes in Computer Science, vol. 7871, pp.

435–440. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[51] Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive Testing of Safety-

Critical Java. In: Proceedings of the 8th International Workshop on Java Technologies

for Real-Time and Embedded Systems. pp. 164–174. JTRES ’10, ACM, New York, NY,

USA (19 Aug 2010)

324

http://www-03.ibm.com/software/products/us/en/real-time
http://www-03.ibm.com/software/products/us/en/real-time
http://www.timesys.com
http://icelab.dk/

[52] Kornecki, A., Zalewski, J.: Certification of Software for Real-Time Safety-Critical Sys-

tems: State of the Art. Innov. Syst. Softw. Eng. 5(2), 149–161 (2 Jun 2009)

[53] Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry,

J., Chalin, P., Zimmerman, D.M., Dietl, W.: JML Reference Manual (2003)

[54] Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S., Man-

drioli, D. (eds.) FME 2003: Formal Methods. pp. 855–874. Lecture Notes in Computer

Science, Springer Berlin Heidelberg (8 Sep 2003)

[55] Lindner, A.: ANSI-C in Safety Critical Applications Lessons-Learned from Software

Evaluation. In: Ehrenberger, W. (ed.) Computer Safety, Reliability and Security, Lecture

Notes in Computer Science, vol. 1516, pp. 209–217. Springer Berlin Heidelberg (5 Oct

1998)

[56] Luckcuck, M., Wellings, A.J., Cavalcanti, A.: Safety-Critical Java: Level 2 in Practice.

Concurr. Comput. (2016)

[57] Marriott, C.: Checking Memory Safety of Level 1 Safety-Critical Java Programs using

Static-Analysis without Annotations. Ph.D. thesis, University of York (Sep 2014)

[58] Marriott, C., Cavalcanti, A.: SCJ: Memory-Safety Checking without Annotations. In:

FM 2014: Formal Methods, pp. 465–480. Lecture Notes in Computer Science, Springer

International Publishing (12 May 2014)

[59] Miyazawa, A., Cavalcanti, A.: SCJ-Circus: a Refinement-Oriented Formal Notation for

Safety-Critical Java (7 Jun 2016)

[60] Motor Industry Software Reliability Association: MISRA C:2012: Guidelines for the Use

of the C Language in Critical Systems. Motor Industry Research Association (2013)

[61] Oliveira, M., Cavalcanti, A.: From Circus to JCSP. In: Formal Methods and Software

Engineering, pp. 320–340. Lecture Notes in Computer Science, Springer Berlin Heidel-

berg (8 Nov 2004)

[62] Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP Semantics for Circus. Form. Asp.

Comput. 21(1-2), 3–32 (4 Dec 2007)

[63] Pizlo, F., Fox, J.M., Holmes, D., Vitek, J.: Real-Time Java Scoped Memory: Design

Patterns and Semantics. In: Object-Oriented Real-Time Distributed Computing, 2004.

Proceedings. Seventh IEEE International Symposium on. pp. 101–110 (May 2004)

[64] Plsek, A., Zhao, L., Sahin, V.H., Tang, D., Kalibera, T., Vitek, J.: Developing Safety

Critical Java Applications with oSCJ/L0. In: Proceedings of the 8th International Work-

shop on Java Technologies for Real-Time and Embedded Systems. pp. 95–101. JTRES

’10, ACM, New York, NY, USA (19 Aug 2010)

[65] Project, C.Z.T.: Community Z Tools. http://czt.sourceforge.net/ (9 Apr 2016),

accessed: 2016-9-25

325

http://czt.sourceforge.net/

[66] Real, J., Crespo, A.: Mode Change Protocols for Real-Time Systems: A Survey and a

New Proposal. Real-Time Syst. 26(2), 161–197 (2004)

[67] Rios, J.R., Schoeberl, M.: Hardware Support for Safety-Critical Java Scope Checks.

In: 2012 IEEE 15th International Symposium on Object/Component/Service-Oriented

Real-Time Distributed Computing. pp. 31–38. ieeexplore.ieee.org (Apr 2012)

[68] RTCA: Formal Methods Supplement to DO-178C and DO-278A. Tech. rep. (2011)

[69] RTCA: Object-Oriented Technology and Related Techniques Supplement to DO-178C

and DO-278A. Tech. rep. (2011)

[70] Sandén, B.I.: Real-Time Programming Safety in Java and Ada. Ada User J XXIII(2),

105–113 (2003)

[71] Schoeberl, M.: Real-Time Garbage Collection for Java. In: Ninth IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing

(ISORC’06). pp. 9 pp.– (Apr 2006)

[72] Schoeberl, M.: A Java Processor Architecture for Embedded Real-Time Systems. Int. J.

High Perform. Syst. Archit. 54(1–2), 265–286 (Jan 2008)

[73] Siebert, F.: Hard Real-Time Garbage Collection in the Jamaica Virtual Machine. In:

Real-Time Computing Systems and Applications, 1999. RTCSA ’99. Sixth International

Conference on. pp. 96–102 (1999)

[74] Singh, N.K., Wellings, A.J., Cavalcanti, A.: The Cardiac Pacemaker Case Study and its

Implementation in Safety-critical Java and Ravenscar Ada. In: Proceedings of the 10th

International Workshop on Java Technologies for Real-time and Embedded Systems. pp.

62–71. JTRES ’12, ACM, New York, NY, USA (2012)

[75] Søndergaard, H., Korsholm, S.E., Ravn, A.P.: Safety-critical Java for Low-End Embed-

ded Platforms. In: Proceedings of the 10th International Workshop on Java Technologies

for Real-time and Embedded Systems. pp. 44–53. JTRES ’12, ACM, New York, NY, USA

(2012)

[76] Strøm, T.B., Schoeberl, M.: A Desktop 3D Printer in Safety-Critical Java. In: Pro-

ceedings of the 10th International Workshop on Java Technologies for Real-time and

Embedded Systems. pp. 72–79. JTRES ’12, ACM, New York, NY, USA (24 Oct 2012)

[77] Tang, D., Plsek, A., Vitek, J.: Static Checking of Safety Critical Java Annotations. In:

Proceedings of the 8th International Workshop on Java Technologies for Real-Time and

Embedded Systems. pp. 148–154. JTRES ’10, ACM, Prague, Czech Republic (2010)

[78] The Open Group: Safety-Critical Java Technology Specification v0.94. Tech. Rep. v0.94,

The Open Group (25 Jun 2013)

[79] The Open Group: Safety-Critical Java Technology Specification v0.100. Tech. Rep.

v0.100, The Open Group (27 Dec 2014)

326

[80] Thomsen, B., Luckow, K.S., Leth, L., Bøgholm, T.: From Safety Critical Java Programs

to Timed Process Models. In: Programming Languages with Applications to Biology

and Security, pp. 319–338. Lecture Notes in Computer Science, Springer International

Publishing (2015)

[81] Tindell, K.W., Burns, A., Wellings, A.J.: Mode Changes in Priority Preemptively Sched-

uled Systems. In: Real-Time Systems Symposium, 1992. pp. 100–109 (1992)

[82] Treharne, H., Schneider, S.: Using a Process Algebra to control B OPERATIONS. In:

Araki, K., Galloway, A., Taguchi, K. (eds.) IFM’99, pp. 437–456. Springer London (1999)

[83] Treharne, H., Turner, E., Paige, R.F., Kolovos, D.S.: Automatic Generation of Inte-

grated Formal Models Corresponding to UML System Models. In: Oriol, M., Meyer,

B. (eds.) Objects, Components, Models and Patterns, Lecture Notes in Business Infor-

mation Processing, vol. 33, pp. 357–367. Springer Berlin Heidelberg, Berlin, Heidelberg

(2009)

[84] U.S. Department of Defense: Department of Defense Requirements for High Order Com-

puting Programming Langauges: Steelman (1978)

[85] Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs. In:

Automated Software Engineering Journal. vol. 10, pp. 3–12 (2003)

[86] Wei, K., Woodcock, J., Cavalcanti, A.: New Circus Time. University of York, Tech. Rep.

, February (2012)

[87] Wellings, A.J., Kim, M.: Processing Group Parameters in the Real-Time Specification

for Java. In: Proceedings of the 6th international workshop on Java technologies for

real-time and embedded systems. pp. 3–9 (2008)

[88] Wellings, A.J.: Concurrent and Real-Time Programming in Java. John Wiley & Sons

(2005)

[89] Wellings, A.J., Luckcuck, M., Cavalcanti, A.: Safety-Critical Java Level 2: Motivations,

Example Applications and Issues. In: Proceedings of the 11th International Workshop on

Java Technologies for Real-time and Embedded Systems. pp. 48–57. JTRES ’13, ACM,

New York, NY, USA (9 Oct 2013)

[90] Wheeler, D.A.: Ada, C, C++, and Java vs. the Steelman. ACM SIGAda Ada Letters

XVII(4), 88–112 (1 Jul 1997)

[91] Ye, K., Woodcock, J.: Model Checking of State-Rich Formalism by Linking to CSP � B.

Int. J. Softw. Tools Technol. Trans. (3 Nov 2015)

[92] Zeyda, F., Cavalcanti, A., Wellings, A.J., Woodcock, J., Wei, K.: Refinement of the

Parallel CDx. Tech. rep., University of York (2012)

[93] Zeyda, F., Lalkhumsanga, L., Cavalcanti, A., Wellings, A.J.: Circus Models for Safety-

Critical Java Programs. Comput. J. 57(7), 1046–1091 (1 Jul 2014)

327

	Abstract
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Publications
	Introduction
	Motivation
	Aim, Objectives, and Thesis Statement
	Contributions
	Thesis Structure

	SCJ, Circus, and Verification
	Safety-Critical Java
	SCJ Overview
	Buffer: A Producer-Consumer Application
	Aircraft: a Multi-Mode Application

	Safety-Critical Standards and Language Assessment
	Standards and Guidelines
	Safety-Critical Language Assessment

	SCJ and Safety-Critical Standards
	Predictability and Reliability
	Analysability
	Pragmatic Design

	Circus Introduction
	Verification of Safety-Critical Java Programs
	Worst-Case Execution Time
	Worst-Case Memory Consumption
	Memory Safety
	Schedulability
	Functional Correctness

	Summary

	Applications and Evaluation of SCJ Level 2
	SCJ Level 2: Unique Features
	Nested Mission Sequencers
	Multiple-Mode Applications
	Independently Developed Subsystems

	Managed Threads and Suspension
	Extended Release Patterns
	Suspension-based Waiting
	Encapsulation of State Information

	SCJ Level 2 Challenges
	Managed Thread Termination
	Deadlines on Mission Sequencers
	Support for Compositional Timing Analysis

	Summary

	Safety-Critical Java Level 2 Modelling Approach
	Modelling Overview
	Model Structure
	Safelet
	Mission Sequencers
	Mission
	Schedulables

	Synchronisation and Suspension
	Inheritance and Polymorphism
	Simplifying the SCJ Termination Protocol
	Model of the Original Termination Protocol
	Model of Current Termination Protocol
	Comparison of Termination Protocols

	Summary

	SCJ Level 2 Translation
	Translation Strategy
	Analysis
	Build
	Generate

	Core Formalisation
	Automatic Translation
	Overview
	Analysis Phase
	Build Phase
	Generate Phase

	Translation Examples
	Summary

	Conclusion
	Summary
	Discussion
	Future Work

	Appendix
	Buffer Example Application
	BSafeletLauncher
	BSafelet
	MainMissionSequencer
	MainMission
	Buffer
	Producer
	Consumer

	Aircraft Example Application
	ACSafeletLauncher
	ACSafelet
	MainMissionSequencer
	MainMission
	ControlHandler
	FlightSensorsMonitor
	EnvironmentMonitor
	CommunicationsHandler
	ACModeChanger
	TakeOffMission
	LandingGearHandlerTakeOff
	TakeOffMonitor
	TakeOffFailureHandler
	CruiseMission
	BeginLandingHandler
	NavigationMonitor
	LandMission
	GroundDistanceMonitor
	LandingGearHandlerLand

	Framework Model
	GlobalTypes
	Priority
	Priority Queue
	Ids
	MissionId
	SchedulableId

	Channels
	FrameworkChan
	ServicesChan
	ObjectChan
	ObjectFWChan
	ObjectMethChan
	ThreadChan
	ThreadFWChan
	ThreadMethChan
	SafeletChan
	SafeletFWChan
	SafeletMethChan
	MissionSequencerChan
	MissionSequencerFWChan
	MissionSequencerMethChan
	TopLevelMissionSequencerChan
	TopLevelMissionSequencerFWChan
	MissionChan
	MissionFWChan
	MissionMethChan
	SchedulableChan
	SchedulableMethChan
	SchedulableFWChan
	SchedulableMissionSequencerChan
	SchedulableMissionSequencerFWChan
	HandlerChan
	HandlerFWChan
	HandlerMethChan
	AperiodicEventHandlerChan
	AperiodicLongEventHandlerMethChan
	OneShotEventHandlerChan
	OneShotEventHandlerFWChan
	OneShotEventHandlerMethChan
	PeriodicEventHandlerChan
	PeriodicEventHandlerFWChan
	ManagedThreadChan
	ManagedThreadFWChan
	ManagedThreadMethChan

	Thread
	Object
	SafeletFW
	TopLevelMissionSequencerFW
	MissionFW
	SchedulableMissionSequencerFW
	PeriodicEventHandlerFW
	AperiodicEventHandlerFW
	OneShotEventHandlerFW
	ManagedThreadFW

	Circus BNF Encoding
	Formal Translation Functions
	Translated Application 1: Shared Buffer
	ID Definitions
	MissionIds
	SchedulablesIds
	NonParadignIds

	Network
	Network Channel Sets
	MethodCallBinder
	Locking
	Program

	BSafelet
	MainMissionSequencer
	MainMission
	Schedulables of MainMission

	Translated Application 2: Aircraft
	ID Files
	MissionIds
	SchedulablesIds
	ThreadIds
	ObjectIds

	Network
	Network Channel Sets
	MethodCallBinder
	Program

	ACSafelet
	MainMissionSequencer
	Missions
	MainMission
	Schedulables of MainMission
	TakeOffMission
	Schedulables of TakeOffMission
	CruiseMission
	Schedulables of CruiseMission
	LandMission
	Schedulables of LandMission

	Bibliography

