9,472 research outputs found

    High-speed pattern cutting using real-time computer vision techniques

    Get PDF
    This thesis presents a study of computer vision for guiding cutting tools to perform high-speed pattern cutting on deformable materials. Several new concepts on establishing a computer vision system to guide a C02 laser beam to separate lace are presented. The aim of this study is to determine a cutting path on lace in real-time by using computer vision techniques, which is part of an automatic lace separation project. The purpose of this project is to replace the current lace separation process which uses a mechanical knife or scissors. The research on computer vision has concentrated on the following aspects: 1. A weighted incremental tracking algorithm based on a reference map is proposed, examined and implemented. This is essential for tracking an arbitrarily defined path across the surface of a patterned deformable material such as lace. Two methods, a weighting function and infinite impulse response filter, are used to cope with lateral distortions of the input image. Three consecutive map lines matching with one image line is introduced to cope with longitudinal distortion. A software and hardware hybrid approach boosts the tracking speed to hnls that is 2-4 times faster than the current mechanical method. 2. A modified Hough transform and the weighted incremental tracking algorithm to find the start point for tracking are proposed and investigated to enable the tracking to start from the correct position on the map. 3. In order to maintain consistent working conditions for the vision system, the light source, camera threshold and camera scan rate synchronisation with lace movement are studied. Two test rigs combining the vision and cutting system have been built and used to cut lace successfully

    Motion analysis report

    Get PDF
    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations

    Modelling and real-time control of a high performance rotary wood planing machine

    Get PDF
    Rotary planing is one of the most valuable machining operations in the timber processing industry. It has been established that cutting tool inaccuracy and forced vibration during the machining process are the primary causes of surface quality degradation. The main aim of this thesis is to design a control architecture that is suitable for adaptive operation of a wood planing machining in order to improve the quality of its surface finish. In order to achieve the stated goal, thorough understanding of the effects of machine deficiencies on surface finish quality is required. Therefore, a generic simulation model for synthesising the surface profiles produced by wood planing process is first developed. The model is used to simulate the combined effects of machining parameters, vibration and cutting tool inaccuracy on the resultant surface profiles. It has been postulated that online monitoring of surface finish quality can be used to provide feedback information for a secondary control loop for the machining process, which will lead to the production of consistently high quality surface finishes. There is an existing vision-based wood surface profile measurement technique, but the application of the technique has been limited to static wood samples. This thesis extends the application of the technique to moving wood samples. It is shown experimentally that the method is suitable for in-process surface profile measurements. The current industrial wood planing machines do not have the capability of measuring and adjusting process parameters in real-time. Therefore, knowledge of the causes of surface finish degradation would enable the operators to optimise the mechanical structure of the machines offline. For this reason, two novel approaches for characterising defects on planed timber surfaces have been created in this thesis using synthetic data. The output of this work is a software tool that can assist machine operators in inferring the causes of defects based on the waviness components of the workpiece surface finish. The main achievement in this research is the design of a new active wood planing technique that combines real-time cutter path optimisation (cutting tool inaccuracy compensation) with vibration disturbance rejection. The technique is based on real-time vertical displacements of the machine spindle. Simulation and experimental results obtained from a smart wood planing machine show significant improvements in the dynamic performance of the machine and the produced surface finish quality. Potential areas for future research include application of the defects characterisation techniques to real data and full integration of the dynamic surface profile measurements with the smart wood planing machine

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the V International Scientific Conference "Advanced Information Systems and Technologies, AIST-2017". The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing computer networking and telecomunications. They will be useful for students, graduate students, researchers who interested in computer science

    Advanced Information Systems and Technologies

    Get PDF
    This book comprises the proceedings of the V International Scientific Conference "Advanced Information Systems and Technologies, AIST-2017". The proceeding papers cover issues related to system analysis and modeling, project management, information system engineering, intelligent data processing computer networking and telecomunications. They will be useful for students, graduate students, researchers who interested in computer science

    Fixtureless automated incremental sheet metal forming

    Get PDF
    Die-based forming is a technology used by many industries to form metal panels. However, this method of forming lacks flexibility and cost effectiveness. In such cases, manual panel beating is typically undertaken for incremental forming of metal panels. Manual panel forming is a highly skilled operation with very little documentation and is disappearing due to non-observance and a lack of interest. Confederation of British Metal forming (CBM) and Institution of Sheet Metal Engineering (ISME) have realised the need for capturing and understanding manual skills used by panel beaters to preserve the knowledge. At the same time, industries seek for alternative panel forming solutions to produce high quality and cost-effective parts at low volume and reduce the repetitive, yet adaptive parts of the panel forming process to free up skilled workers to concentrate on the forming activities that are more difficult to automate. Incremental forming technologies, currently in practice, lack adaptability as they require substantial fixtures and dedicated tools. In this research a new proof-of-concept fixtureless automated sheet metal forming approach was developed on the basis of human skills captured from panel beaters. The proposed novel approach, named Mechatroforming®, consists of integrated mechanisms to form simple sheet metal parts by manipulating the workpiece using a robotic arm under a repetitive hammering tool. Predictive motion planning based on FEA was analysed and the manual forming skills were captured using a motion capture system. This facilitated the coordinated hammering and motion of the part to produce the intended shape accurately. A 3D measurement system with a vertical resolution of 50μm was also deployed to monitor the formation of the parts and make corrections to the forming path if needed. Therefore, the developed mechatronic system is highly adjustable by robotic motion and was closed loop via the 3D measurement system. The developed automated system has been tested rigorously, initially for bowl shape parts to prove the principle. The developed system which is 98% repeatable for depth and diameter, is able to produce targeted bowl shape parts with ±1% dimensional accuracy, high surface quality, and uniform material thickness of 0.95mm when tested with aluminium. It is envisaged that by further research, the proposed approach can be extended to form irregular and more complicated shapes that are highly in demand in various industries

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty
    corecore