This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.Iboro.ac.uk/) under the following Creative Commons Licence conditions.

(c) creative

C O M M O N S D E E D

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY Attribution. You must attribute the work in the manner specified by the author or licensor

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Leqal Code (the full license).
Disclaimer $\left.{ }^{[}\right]$

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

HIGH-SPEED PATTERN CUTTING USING REAL-TIME COMPUTER VISION TECHNIQUES

by
Li Guo Tao
B.Eng., M.Sc.

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of
Doctor of Philosophy
of the Loughborough University of Technology

November, 1994
© by Li Guo Tao, 1994

This thesis dedicated in loving memory to my grandmother, Zhang-Fu.

SYNOPSIS

This thesis presents a study of computer vision for guiding cutting tools to perform high-speed pattern cutting on deformable materials. Several new concepts on establishing a computer vision system to guide a CO_{2} laser beam to separate lace are presented.

The aim of this study is to determine a cutting path on lace in real-time by using computer vision techniques, which is part of an automatic lace separation project. The purpose of this project is to replace the current lace separation process which uses a mechanical knife or scissors.

The research on computer vision has concentrated on the following aspects:

1. A weighted incremental tracking algorithm based on a reference map is proposed, examined and implemented. This is essential for tracking an arbitrarily defined path across the surface of a patterned deformable material such as lace. Two methods, a weighting function and infinite impulse response filter, are used to cope with lateral distortions of the input image. Three consecutive map lines matching with one image line is introduced to cope with longitudinal distortion. A software and hardware hybrid approach boosts the tracking speed to $1 \mathrm{~m} / \mathrm{s}$ that is $2 \sim 4$ times faster than the current mechanical method.
2. A modified Hough transform and the weighted incremental tracking algorithm to find the start point for tracking are proposed and investigated to enable the tracking to start from the correct position on the map.
3. In order to maintain consistent working conditions for the vision system, the light source, camera threshold and camera scan rate synchronisation with lace movement are studied.

Two test rigs combining the vision and cutting system have been built and used to cut lace successfully.

ACKNOWLEDGEMENTS

I would like to thank;

Dr. M. R. Jackson, my Supervisor, Professor M. E. Preston, my Director of Research for their support and advice of my study, both of The University of Technology at Loughborough.

Professor T. G. King of the School of Manufacturing and Mechanical Engineering of the University of Birmingham, who was the supervisor of my first two year study, for discussion, advice and support throughout my study.

The UK Science and Engineering Research Council through its ACME Directorate, under grant number GR/F 92084 -'Vision Control of Progressive Operations on Textile Fabrics Leading to High Speed Adaptive Automation'.

Guy Birkin and Co. Ltd. for supplying lace samples and technical support.

Many Department staff members, Mr. P. A. Green, Mr. J. A. Guy, Mr. T. A. Middleton, Mr. D. Powdrill, Mr. S. G. Retter, Mr. V. Roulstone, Mr. K. W. Topley, Mr. A. Wood, for their technical support.

Finally my wife, Wei, and daughter, Ying, for their encouragement, patience and support throughout my study.

CONTENTS

CERTIFICATE OF ORIGINALITY II
SYNOPSIS III
ACKNOWLEDGEMENTS IV
CONTENTS V
LIST OF FIGURES XI
LIST OF TABLES XV
TERMINOLOGY XVI
Chapter 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 Basic Problem of Mechanical Guddance System of Existing Scalloping Machine 2
1.3 An Automatic Lace Separation Project 5
1.4 COMPUTER-VISIon to Locate CUTTING Path for Lace Separation 7
Chapter 2 REVIEW OF COMPUTER VISION 12
2.1 Overview 12
2.2 COMputer Vision 12
2.2.1 Human Visual System 12
2.2.2 Ambiguities in Visual Object Recognition 14
2.2.3 Development of Computer Vision Systems 14
2.2.4 Computer Vision Versus Human Vision 15
2.3 BASIC APPROACHES TO OBJECT LOCATION AND SCENE ANALYSIS 16
2.3.1 Object Location 17
2.3.2 Scene Analysis 19
2.4 COMPUTER VISION SYSTEMS IN THE TEXTILE INDUSTRY 20
2.4.1 Inspection - 20
2.4.2 Automation 21
2.5 COMPUTER VISION IN THE LACE INDUSTRY 22
Chapter 3 RESEARCH APPROACH, STRATEGY AND EXPERIMENTAL RIGS 25
3.1 INTRODUCTION 25
3.2 FUNDAMENTAL CHOICES OF THE VISION SYSTEM 25
3.2.1 Area Scan Camera versus Line Scan Camera 25
3.2.2 Choice of Image Processing Hardware and Development of Image Processing Software 27
3.2.3 Finding a Cutting Path on Lace by a Reference Map 29
3.3 RESEARCH STRATEGY 30
3.4^{*} RESEARCH CONSIDERATIONS 31
3.4.1 Image Resolution 32
3.4.2 Speed 33
3.4.3 Optical Arrangement 36
3.4.4 Host Computer and Its Operating System 37
3.4.5 Light Source Arrangement 37
3.4.6 Making a Reference Map 37
3.5 RESEARCH OBJECTIVES OF EACH STAGE 38
3.5.1 Objectives for the First Stage 38
3.5.2 Objectives for the Second Stage 38
3.5.3 Objectives for the Third Stage 39
3.5.4 Objectives for the Fourth Stage 39
3.5.5 Objectives for the Fifth Stage 39
3.6 VISION SYSTEM 39
3.6.1 Vision System One 39
3.6.2 Vision System Two 40
3.6.3 Vision System Three 40
3.6.4 Vision System Four 40
3.7 EXPERIMENTAL RIGS 40
3.7.1 Rig One 41
3.7.2 Rig Two 41
3.7.3 Rig Three 41
3.7.4 Prototype 41
Chapter 4 AN INCREMENTAL REAL-TIME PATTERN TRACKING ALGORITHM 53
4.1 INTRODUCTION 53
4.2 BASIC ALGORITHM 54
4.2.1 Terminology for the Algorithm 54
4.2.2 One-Dimensional Binary Cross-Correlation 55
4.2.3 Incremental Tracking by Using Weighted One Dimensional Binary Cross Correlation and IIR Filter 56
4.3 MATCHING ALGORITHM FOR X-DIRECTIONAL DISTORTION 62
4.3.1 The Best Matching Selection 63
4.3.2 The Forced Matching Selection 63
4.4 EXPERIMENTAL TESTS ON PC 64
4.5 IMPLEMENTATION OF TRACKING ON DSP 67
4.5.1 Forming an Image Segment 68
4.5.2 One-Dimensional Correlation 69
4.5.3 Match in Longitudinal Direction 72
4.6 CONCLUDING REMARKS 75
Chapter 5 METHODS TO FIND THE START POINT 88
5.1 INTRODUCTION 88
5.2 MODIFIED HOUGH TRANSFORM FOR FINDING THE START POINT 90
5.2.1 Sub-Feature Model for Hough Transform 90
5.2.2 Building a Vector Table for a Set of Sub-Features 93
5.2.3 Experimental Tests of Modified Hough Transform 95
5.2.4 Analysis of Tests 97
5.2.5 Possibility to Implement Hough Transform 98
5.3 TRACKING ALGORITHM FOR FINDING THE START POINT 99
5.3.1 Principle and Simulation 99
5.3.1.1 'Finding the Start Point' 100
5.3.1.2 Preconditions for Using Tracking 101
5.3.1.3 Confidence Level 102
5.3.1.4 Simulation 104
5.3.2 Modification of Tracking Algorithm to Suit the Requirement of Finding the Start Point 105
5.3.3 Experimental Tests of Tracking for Finding the Start Point 106
5.4 CONCLUDING REMARKS 106
Chapter 6 STABILISED WORKING CONDITIONS 122
6.1 INTRODUCTION 122
6.2 LIGHT SOURCE 124
6.2.1 Lamp Tests 125
6.2.1.1 Fluorescent Tube with an Inductive Ballast 125
6.2.1.2 Fluorescent Tube with an Electronic Ballast 126
6.2.1.3 LED Array 126
6.2.2 Combined Light Intensity of LEDs 127
6.3 DECIDING THE THRESHOLD LEVEL FOR BINARY IMAGING 128
6.3.1 Principle of Determining Light Intensity Variation and Determining the Threshold Level 130
6.3.1.1 Grey Level Image 131
6.3.1.2 Two Methods for Deciding the Threshold Level 132
6.3.2 Threshold Test 135
6.3.3 Discussion 137
6.4 SYNCHRONISING THE CAMERA WITH THE MOVEMENT OF THE LACE 138
6.4.1 Synchronising Problems 138
6.4.2 Monitoring Lace Movement 139
6.4.3 Maintaining a Constant Integration Period 141
6.4.4 Triggering the Camera Directly from the DSP 144
6.4.5 Valid Scanning Rate 144
6.5 CONCLUDING REMARKS 145
Chapter 7 ENHANCED PATTERN TRACKING SPEED 157
7.1 INTRODUCTION 157
7.2 TRACKING SPEED 157
7.3 OPTIMISING THE DSP CODING 159
7.3.1 DSP Architecture 160
7.3.2 Key Points of Optimising Tracking Coding 160
7.4 IMPLEMENTING TRACKING BY USING FRONT END CORRELATORS 161
7.4.1 Working Principle of the Card 161
7.4.2 Primary Test 163
7.4.3 Hybrid Tracking Coding 165
7.4.3.1 Weighting Function 166
7.4.3.2 Map Buffer 166
7.4.4 Performance of Hybrid Tracking 167
7.5 CONCLUDING REMARKS 167
Chapter 8 PERFORMANCE ANALYSIS 174
8.1 INTRODUCTION 174
8.2 MULTIPLE TRACKING 175
8.2.1 Configuration of the Vision System for Twin Beam Cutting 175
8.2.2 Multiple Tracking by Using Multiple DSPs 178
8.3 TRACKING RESULT TRANSFORM 179
8.4 CUTTING TESTS, TRACKING ERROR AND CUTTING ERROR 184
8.5 EXAMINATION OF CUTTING ERROR 186
8.5.1 Lateral Distortion of the Lace 187
8.5.2 Variation of Illumination 187
8.5.3 Longitudinal Variation of the Lace 187
8.5.4 Encoder Error 188
8.5.5 Variation of Laser Spot 188
8.5.6 Driving Method of Galvanometer to Produce Step Effect 188
8.5.7 Dynamic Response, Non-linearity of Galvanometer 189
8.5.8 Parallelism between Camera and Galvanometer 190
8.5.9 Surface Ripple of the Lace 190
8.5.10 Lateral Movement of the Lace 191
8.5.11 Thermal Drift of Rig Frame 192
8.5.12 Thermal Drift of Galvanometer 193
8.5.13 Summary of Cutting Errors 193
8.6 CONCLUDING REMARKS 194
Chapter 9 CONCLUSIONS AND FURTHER RESEARCH 209
9.1 CONCLUSIONS 209
9.2 FURTHER RESEARCH 210
9.2.1 Reference Map Production 210
9.2.2 Parallelisation of Tracking Algorithm 210
9.2.3 Combination of Cutting and Inspection 211
REFERENCES 212
APPENDIXES 218
Appendix 1 Published Papers and Patent 218
Appendix 2 Experiment on Tracking 219
Appendix 3 Experiment on Threshold Decision 226
Appendix 4 Interface between Camera and DSP Board 235
Appendix 5 Synchronisation Board 237
Appendix 6 Correlator Board 239
Appendix 7 Flowchart for Vision System 241
Appendix 8 Tracking Accuracy 242
Appendix 9 Encoder Error Test 275

LIST OF FIGURES

1.1 Lace separating positions 9
1.2 Schematic drawing of the mechanical guidance system 9
1.3 Operator assisted machine scalloping 10
1.4 Rotary press knife approach 10
1.5 Blueprint of new lace separation machine 11
2.1 The impossible triangle 23
2.2 The vase-face 23
2.3 Tracking and cutting a lace with a continuous curve 24
3.1 Timing for a frame grabber vision system 42
3.2 Research evolution 43
3.3 Loss of fine information 44
3.4 Effect of spatial quantisation 44
3.5a Lace imaged at 2.3 pixels per mm 45
$3.5 \mathrm{~b} \quad$ Lace imaged at 4 pixels per mm 45
3.5c Lace imaged at 11 pixels per mm 46
3.6 Stable optical image with different integrating periods 46
3.7a Moving optical image with short integrating period 47
3.7 b Moving optical image with long integrating period 47
3.8 Different view angles by using different lengths of films on the same focusing plane 48
3.9 Narrower film, longer object-lens distance 48
3.10 Vision system two 49
3.11 DSP code development system 49
3.12 Vision system three 49
3.13 Vision system four 50
3.14 Rig one 50
3.15 Rig two 51
3.16 Rig three 51
3.17 Prototype 52
4.1 Coordinate system of image and map 76
$4.2 \quad$ Prediction of $Y^{\prime}(i)$ 76
4.3 One-dimensional cross-correlation 77
4.4 Tracking error σ^{2} (pixels ${ }^{2}$) with different weighting tables 77
4.5 Test procedure 78
4.6 The map and predetermined path 78
4.7a Tracking error across a hole with $\beta=0$ 79
$4.7 \mathrm{~b} \quad \beta=0$, image and cutting path 79
4.8a Tracking error across a hole with $\beta=0.9$ 80
4.8b $\quad \beta=0.9$, image and cutting path 80
4.9 One line of incoming image matching with three consecutive lines of the map 81
4.10 Image matching maps with different length 82
4.11 Two 'waits' in succession 83
4.12 Two 'waits' changing to 'wait-step' 83
4.13 Two 'jumps' in succession 83
4.14 Two 'jumps' changing to 'jump-step' 84
4.15 Two 'waits' after jump 84
4.16 Two 'jumps' after wait 84
4.17 Lace test pattern 1 (scalloping) 85
4.18 Lace test pattern 2 (centre-cutting) 85
4.19 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern 1 85
4.20 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern 1 with 2\% noise 86
4.21 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern 2 86
4.22 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern 2 with 2% noise 87
$5.1 \quad$ Finding a feature by sub-features and vectors 108
5.2 Finding a feature in a stretched image by sub-features 109
5.3a Selected feature for 'T-shaped' feature 110
5.3b Set of sub-feature for Figure 5.3a 110
5.4a Selected feature for 'flower' feature 110
5.4b Boundary of the feature in Figure 5.4a 110
5.4 c Two lines parallel to the boundary of Figure 5.4b 111
$5.4 \mathrm{~d} \quad$ Sub-feature of Figure 5.4a 111
5.4e Mirrored sub-feature of Figure 5.4a 111
$5.5 \quad$ Search result by using a sub-feature of Figure 5.3b 112
5.6 Search result by using a sub-feature of Figure 5.4e 112
5.7 Searching width and centre for finding the start point 113
5.8 Finding the start point and tracking 113
5.9 Finding the start point by 20 line tracking all over the map 114
5.10 Finding the start point by 30 line tracking all over the map 115
5.11 Finding the start point by 40 line tracking all over the map 116
5.12 Finding the start point by 50 line tracking all over the map 117
5.13 Finding the start point by 60 line tracking all over the map 118
5.14
Finding the start point by 70 line tracking all over the map 119
5.15 Finding the start point by 80 line tracking all over the map 120
5.16 Finding the start point by 90 line tracking all over the map 121
6.1 Layout of lamp test 147
6.2 Fluorescent tube with a normal ballast 147
6.3 Fluorescent tube with an electronic ballast driven by AC power 148
6.4 Light intensity of tube driven by DC and AC 148
6.5 Structures of LED array 149
6.6 LED light intensity distribution 149
6.7 LED with and without round head 150
6.8 Light intensity distribution of single LEDs 150
6.9 Uniformity vs. change of distance between two LEDs 151
6.10 Change of uniformity 151
6.11 Light intensity change with time 152
6.12 Grey level for one line of lace 152
6.13 Edge curve 153
6.14 Test positions 153
6.15 Test voltages 154
6.16 Relation between encoder and lace 154
6.17 Variation of the image caused by integration 155
6.18 Timing of the double signal generator 155
6.19 Principle of synchronising board 156
6.20 Timing of synchronising board 156
7.1 Functional blocks of the vision system 169
7.2 Bus organisation 169
7.3 Diagram of one correlator 170
7.4 Correlation 170
7.5 Timing diagram for correlation 171
7.6 Experiment layout 171
7.7 Functional blocks of hybrid tracking algorithm 171
7.8 Weighting function 172
7.9 Map buffer 172
7.10 Map buffer after action 173
8.1 Front view of the prototype 196
8.2 Cutting error definition 196
8.3a Two sets of camera and DSP 197
8.3b Two cameras and one set of DSP 197
8.3c One set of camera and DSP 198
8.4 Data streams 198
8.5 Ideal bus and memory for vision system 199
8.6 Three coordinate systems 199
8.7 Coordinate transform 200
8.8 Calibration mask 200
$8.9 \quad D(x)$ definition 201
8.10 Twin beam cut result at $250 \mathrm{~mm} / \mathrm{s}$ 201
8.11 Single beam cut result at $1070 \mathrm{~mm} / \mathrm{s}$ 202
8.12 Ideal cutting position 202
8.13 Different side of edge using different offset 203
8.14 Step effect 203
8.15 Frequency versus amplitude 204
8.16 Non parallel between scan zone and cutting zone 204
8.17 Ripple effect 205
8.18 Lateral drift 205
8.19 Thermal drift of frame and simplified model on Figure 8.20 206
8.20 Three cases of thermal drift of frame 206
8.21 Case 1 of thermal drift of frame 207
8.22 Case 2 of thermal drift of frame 207
8.23 Case 3 of thermal drift of frame 207
8.24 Example of cutting errors 208

LIST OF TABLES

4.1 Look-up tables used for line centre-weighting (shown for 64 pixel matching width) 58
4.2 First-order IIR filter transmissions for a range of β values 61
4.3 Summary of test conditions for tracking algorithm 66
4.4 Three consecutive actions before forced decision 72
4.5 Three consecutive actions after forced decision 73
4.6 Combinations of two best matchings 73
5.1 'T-shaped' vector for sub-feature 94
5.2 'Flower' vector for sub-feature 95
5.3 Test conditions for Hough transform 96
$5.4 \quad$ Feature detecting results for 'T-shaped' feature 96
$5.5 \quad$ Feature detecting results of 'flower' 97
6.1 Grey level image 132
6.2 Test results of method one for threshold determination 136
6.3 Test results of method two for threshold determination 136
8.1 Comparison of three configuration for tracking twin paths 177
8.2 Timing of software function blocks for two beam cutting 180
8.3 Non-linear error due to angle of galvanometer mirror 189
8.4 Cutting error due to setting of camera and galvanometers 190
8.5 Cutting error caused by a lateral movement 191
8.6 Frame thermal drift 192
8.7 Galvanometer thermal drift 193
8.8 Worst cases of cutting errors 194

TERMINOLOGY

Breadth refers to a strip of lace with single pattern width. The breadth also repeats itself across the width of the knitted web at regular intervals determined at the design stage.
Centre cutting refers to a separation of a pair of the symmetrical patterns (see figure 1.1), done by cutting the waste between the mirror-image patterns.
Cutting path refers to a path on the image, which is used to guide the laser beam to cut lace.
Finding the start point refers to a search action between an image and a map to make sure that the tracking will start from the correct position on the global area.
Image refers to a digital signal of the lace to be cut.
Line scan is one image acquisition method in which a single line of photoelectronic elements of the camera is exposed by a very narrow linear image area at the same time and then digitised and stored into the memory serially.
Map refers to a reference digital signal of the lace.
Pattern refers to the unrepeated single figure on the lace required by the customer. The design of the pattern makes itself repeatable in the longitudinal direction without any visual discontinuity and has two edges in the lateral direction.
Pixel is the term used to represent a picture element in CCD camera, and digital image.
Purls refer to small projecting loops on the fringe of some lace for decoration purposes (see the area near the arrows of the scalloping 1 and scalloping 2 on the Figure 1.1).
Reference path refers to a predetermined path related to the map.
Rigid lace is made from relatively inelastic yarns and extends little as the tension is increased.
Scalloping refers to the cutting process to separate the edge or fringe of the lace from the waste (see Figure 1.1) without cutting inside of the pattern, which will cause the lace to fray when it is washed, and without leaving too much waste on the finished lace which will impair its quality.

normal lace

skewed lace

Skew is one of the lace deformations where the line linking two identical points of adjacent breaths of lace is not perpendicular to the longitudinal axis of the lace (see above figure).
Stretch lace, made from elastic yarns, can be easily extended when an external pulling force is applied to it, and will recover if the force is removed.
Tracking refers to following a predetermined (cutting) path on lace by finding proper position on the image progressively and locally.
Waste refers to the backing net between two contiguous breadths. It should be cut off during the lace separation.
$W e b$ refers to the bulk lace before being scalloped or centre cut.

Chapter 1:

INTRODUCTION

1.1 BACKGROUND

This thesis describes a high-speed computer vision system, developed to guide a laser cutting system for rapid pattern cutting. The research work for this project has been carried out in the Department of Mechanical Engineering at Loughborough University of Technology (LUT) with industrial collaboration from a textile machine builder and a machine user.

Pattern cutting, in this context, refers to the separation process by which the cutting path on a piece of patterned material is determined taking into account the pattern on the material itself and a predetermined separation scheme. The separation of a breadth of lace from the bulk material is a typical example of the process. It may be either along a single edge or down the centre of a double width to form a product which is defined by a previous manufacturing process. In this thesis lace separation will be the research example of pattern cutting.

Lace is generally a knitted patterned fabric that is often used as decoration for garments, furniture and many other consumer goods. It is primarily used in the manufacture of underwear. Potential ancestors of lace are the cross stitch articles, which existed in Egypt approximate 2000 years ago (Spencer 1983). From around 1560 AD lace, as we know, became an increasingly important feature of fashionable dress in most European countries. Early lace was made by hand with simple tools. In the last quarter of the eighteenth-century the machine-made lace industry was developed (Levey 1983) and lace manufacturing came into the new era of mass production by machines. In the early 1980's computers were introduced into the lace manufacturing process. Computer aided design and computer controlled knitting machines have made the lace industry more dynamic and flexible (Spencer 1983). A customer became able to see a lace sample within a week of selecting a design (Lowe 1984). This would have taken several weeks, or even months, in the precomputerised era. Currently, machine made lace dominates the market. This is
due to its higher productivity, quality, wider range of patterns, and relatively low cost. Figure 1.1 shows a lace sample made by machine, indicating three breadths of lace. Breadth 1 and breadth 3 are the same lace pattern. Breadth 2 is a mirror-image of breadth 1 , with a horizontal offset to make the two breadths interlock. Throughout the remainder of this thesis the lace referred to will be machine made.

The manufacture of lace by machine involves many processes. The cycle of lace making starts with the requirements of the customer. Then design, draughting, knitting, setting, dyeing, dressing, separating, inspection and delivery to the customer follow. For each new design, it is necessary to carry out tests to determine the ease of breadth separation and the associated overall final quality. These results must be determined before each pattern is put into large scale production. Sometimes modification of the design will be needed if the separating test fails. In order to maintain high productivity, lace for garments is knitted in continuous lengths, with a design pattern running the full length of the web and repeated at intervals across its width. The full width of the lace is retained throughout the setting, dyeing and dressing processes. The web is then cut into individual breadths or pair of interlocked breadths according to the requirement of the customer. After final inspection they are sent to customer.

In the garment making industry the single breadth or pair of breadths will be further cut into short pieces to suit the requirement of the garments. In this thesis lace separation refers to the operation to cut lace from the whole width of the web into a single breadth.

The world market for separated lace fabric was around 5 billion metres annually and the turnover of lace separation was in the region of $£ 1$ billion annually (Preston 1989).

1.2 BASIC PROBLEM OF THE MECHANICAL GUIDANCE System of Existing Scalloping Machine

There are two different forms of lace separating process, scalloping and centre cutting. Figure 1.1 shows examples of both processes. Currently the centre
cutting is mainly done by hand using scissors, while the scalloping process is carried out on some simple but ingenious mechanical machines. A mechanical thickness guiding system and a rotary or band knife are used, but under the intensive supervision of the operators. The guiding system detects the scalloping position and presents the lace to the moving knife for cutting.

In the guiding system a contact head acts as a thickness gate to distinguish the pattern from the backing net. When lace is knitted, the distribution of the thicker and thinner threads will be determined by its design to produce a desired visual pattern and its ability to be scalloped. The visual pattern also can be interpreted into a thickness pattern if the lace is touched. The thickness pattern is important to the scalloping. The scalloping position is usually on one edge of the visual pattern and also is on the transition between thick and thin parts in the thickness pattern. The thickness differences between thicker parts and thinner parts, called thickness contrast in the lace industry, is the principle of the mechanical guidance system for detecting and guiding the scalloping position. In the scalloping process, the thin backing net passes through a slot between the contact head and a plate, the thick part of the lace pattern is stopped by the slot. The thicker side of the scalloping edge, or transition, touches precisely one side of the head, and the moving edge of the knife is positioned close to the contact head to carry out the cutting function (see Figure 1.2).

During scalloping the positions of the contact head and the knife do not move relatively to each other, and since most scalloping edges are not straight lines, the lace must move relative to the guidance and cutting station. There is a risk of scalloping at the wrong position if the lace moves naturally. The scalloping machine deliberately moves the lace laterally to keep the knife, and the contact head along the scalloping edge. The lateral movement of lace is determined by the profile of the edge. Often the lace cannot move laterally as scalloping requires because of the handling tension. So an operator uses his or her hand to guide the thick side of the scalloping edge against the contact head (Figure 1.3) to help the mechanical guidance system to keep the scalloping edge in the correct cutting position.

The mechanical guiding system requires that the thickness contrast at the scalloping positions is made deliberately large and kept consistent. Also the width of the backing net between any two adjacent breadths must be wide enough for the head to pass in between.

The lateral movement, and consistency of the thickness contrast of the lace are the key factors in making the mechanical scalloping machine work, but they also set several limitations to this mechanical approach.

- Firstly, the forces from the mechanical guiding system and knife will cause a considerable deformation of a stretch (or elasticated) lace, that can easily be extended by external forces, when it travels from the guiding system to the knife and thus make scalloping more difficult. This requires the scalloping speed to be reduced and the use of more skilled operators. Currently the market for stretch lace has increased dramatically.
- Secondly, the mechanical guiding system needs quite a wide gap between the breadths thus increases the waste and hence production costs.
- Thirdly, the mechanical machine cannot cut both edges of a single breadth of lace simultaneously. This is because the distance between two edges varies from one section of lace to another, which requires a varying distance between two sets of mechanical guiding and cutting systems. In addition the forces of the guiding systems and knives will interact with each other. So it is impossible to put two mechanical systems side by side to produce a single breadth. It is also difficult to arrange two systems in the pipeline (this approach has been tested in a factory but failed).
- The fourth limitation is that the pattern design is restricted with regard to the consistent thickness differential (or contrast) at the cutting position and the geometry of the permissible curves of the edges because of the low response speed of the mechanical system.
- The fifth limitation is that the edge scalloped by a knife will unravel, even when only slight damage is caused by the knife (Jackson 1993).
- Finally, this mechanical method cannot carry out centre cutting. Most of the centre cutting designs have a narrow gap between the breadths. Some of them contain crossed thick threads and some confuse the mechanical guiding system so separation has to be conducted by using scissors. This is a costly process.

In short, lace separation is one of the labour-intensive operations in the lace industry. It can be seen as one of the potential problems preventing further expansion of the lace market.

1.3 AN AUTOMATIC LACE SEPARATION PROJECT

Automation of the separation process is the answer to the problems of mechanical lace scalloping. In order to find how to apply automation to lace cutting, let us analysis different automation approaches.

The basic processes for lace scalloping can be divided into three parts: finding the cutting path, cutting it along that path and handling the lace. One approach to automate scalloping is to add an automatic lace handling device to the existing machine. This would replace the operator and compensate for the interference between the guiding and cutting devices. This poses problems: how to detect the interference, and how to establish the compensation model for the lace? If these problems were solved, this approach would help to scallop the stretched lace. But this approach does not allow the machine to do centre cutting. All these problems are due to the principles of mechanical scalloping; inherent lateral movement of the lace and critical thickness contrast.

The second approach is to use a roller on which a press knife is mounted with the contour for the scalloping or centre cutting (see Figure 1.4). When the lace passes over, it will be separated by the rotating roller. In order to cut lace accurately this approach needs some method to detect the cutting position with respect to the deformation of lace and to compensate the lace variation. The advantage is that the lace does not need to have a forced lateral movement. The problem of this approach is that the cutting force can easily distort the lace.

The third approach is to find a new arrangement in which there are no external detection and cutting forces applied to the lace which cause lateral movement when it is separated. Zero cutting, detection forces and zero lateral movement will minimise the interference between cutting and finding the cut path. This approach led to the automatic lace separation project at LUT.

The aim of the project is to replace traditionally labour-intensive lace separation operations by a real-time computer-vision guided laser cutting system. This will give higher productivity, a greater degree of responsiveness to product change, greater competitive value of the product and more flexibility of the pattern design and material choice. This will lead to just-intime manufacture with reduced work-in-progress, while retaining or improving the high quality associated with the product and providing an economical rate of production.

The project falls into three parts,

- cutting path determination
- cutting system
- material handling.

Cutting Path Determination

An ideal cutting path determination system should find the cutting path in real time according to its pattern and predetermined position and allow for lace deformation with an industrial acceptable standard. This should not apply any external forces to the lace. A vision system will be a good candidate for this task compared with other approaches, such as contact probes, because no guiding force is applied to the lace. As computer vision systems (or elements of computer vision systems, such as camera, computer) become faster and lower cost they have been increasingly applied to the lace industry.

Cutting System

In order to avoid the problems of the existing mechanical system, a laser based high speed cutting system is proposed. The laser is one cutting tool that does not apply cutting force to the lace except the internal stresses released by the cutting (Jackson 1993). A galvanometer controlled mirror enables the laser
beam to move to a required position, which eliminates one problem in the mechanical cutting process: forced lateral movement. This provides the following advantages:

- Zero cutting force, reducing web deformation.
- High speed low inertia flexible cutting point.
- Thermo sealing of the cut edge to prevent fraying.

Material Handling

The material handling system will provide a smooth lace movement with even tension. This is very important for the whole project especially at higher speed.

Visual guidance, laser cutting, and constant tension material handling systems are seen as possible components of a solution to the problem of lace separation. The combination of these has been envisaged at an early stage as Figure 1.5 , in which multi edge scalloping would be possible.

How to use a laser effectively to cut lace and how to handle lace with even tension are other research topics in the overall separation project and these have been investigated by other members of the research team. The appropriate method for finding the cutting path on lace utilising a visual approach is the objective of this thesis.

1.4 COMPUTER-VISION TO LOCATE CUTTING PATH FOR Lace Separation

The methods to find the cutting path on the lace can be divided into two types: contact and non-contact. The mechanical thickness detector used on the scalloping machine is one of the contact methods. The primary disadvantage of contact method is the force to be applied to lace. In the most contact methods a probe should usually contact one of the surfaces of the object to be measured and a contact force, combined with a friction force due to the relative movement between the probe and the object, will be applied to the object. In order to relax the requirement for consistency of the thickness contrast and avoid forced lateral movement, a larger area is needed to be monitored rather then just the cutting point. This can be achieved by using a
probe array with sub-millimetre resolution to detect the transition position on the edge of the breadth. But the probe array still applies force to lace so that contact methods have been excluded from this research.

Typical non-contact methods are X-ray, ultrasonic and computer vision. X-ray and ultrasonic methods are widely used for non-destructive inspection inside an object. Typical applications are medical inspection or mechanical component defect inspection. Since the lace pattern is visible, computer vision is obviously the best candidate among the non-contact methods. Furthermore computer vision can get information other than the cutting position so it provides the opportunity to find a cutting path without the critical requirement for consistency of the thickness contrast, which will be useful for the centre cutting and could lead to a relaxation of the requirement for the thickness contrast along the scalloped edge.

The areas of investigation of a vision system for cutting path determination for lace separation are:

- Software development and testing for the visual guidance,
- Hardware development and testing for the visual guidance,
- Vision related developments such as optical arrangement, resolution, lighting source, processing speed.

Figure 1.1 Lace separating positions

Figure 1.2 Schematic drawing of the mechanical guidance system

Figure 1.3 Operator assisted machine scalloping

Figure 1.4 Rotary press knife approach

Figure 1.5 Blueprint of new lace separation machine

Chapter 2

REVIEW OF COMPUTER VISION

2.1 OVERVIEW

This chapter reviews the field of computer vision relevant to this thesis. It gives an introduction outlining the current state of computer vision. Then three major areas of research are reviewed. The first is about basic approaches to object location and scene analysis, the second related to applied work in the textile industry, and the last area details its applications in the lace industry.

2.2 COMPUTER VISION

Computer vision is one of the human being's attempts to mimic or improve upon his or her own performance. The performance of computer vision systems has been judged and will be continuously judged by comparing it with the one of the human visual system. So a short description of the human visual system is helpful to an understanding of the current state of typical computer vision systems.

2.2.1 Human Visual System

Over millions of years human beings have evolved five senses - vision, hearing, smell, taste and touch. It is undoubted that vision provides more external information than the other senses and human beings are used to processing this visual information very quickly without intellectual effort. Normally, a human can instantly pick out an object among other objects from a scene using a symbolic description such as the name of the object. This identification process of visual object recognition occurs very quickly, "with such apparently effortless alacrity that it is indeed difficult to realise the complexity of the processes involved and what an unbelievable visual processing ability human beings have" (Humphreys 1987). Yet such is the complexity of the processes involved that, even after more than a century of careful investigation, our knowledge of visual recognition and of how it is implemented in the brain remains all too incomplete. We are still some way from achieving the kind of detailed knowledge that would, for instance, allow
a machine to see and recognise objects in the manner that humans do (Humphreys 1987).

What is certainly true is that eyes and brain form the major part of the human visual system and that visual object recognition is done mainly inside this system. The eyes control and provide the focused image on the inside wall or 'retina' of the eye, where the light energy is transferred into coded electrical energy. The brain processes the coded electrical energy to produce symbolic signals such as; what the object is, where and what size it is. The data received by eyes may exceed 10 megabits per second if a computer term is used (Davies 1990). The coded output signal associated with a particular optical pattern is a sequence of frequency-modulated pulses. Many coded signals are sent to the brain simultaneously to be processed (Stubbs 1979). Inside the brain there are some areas associated with vision (Levine 1985) but there is no evidence to show that the rest of the brain has no link to the visual object recognition process. Based on current knowledge the human visual system does not appear uniform in resolution density nor does it perceive light intensity absolutely. Rather it is an adaptive system that compensates for optical anomalies by processing the raw optic nerve signal to produce a uniform density, regular light intensity image (Gibbons 1992). We do not know how these compensations take place. Common sense suggests that some of these compensations have been done subconsciously. If you stand at a road and stare at a passing car, when the car moves far away and becomes smaller and smaller, your eyes will automatically focus on this car.

If one looks at the human visual system and uses computer terms to describe it, one of the ways in which the human visual system gains over the machine vision system is that the brain appears to work like an immense parallel computer with perhaps 10^{10} processing units (Davies 1990), with many interconnections among them. The parallelism of the brain makes its vision process very fast and more sophisticated than a computer system even though a single unit in the brain works far slower than a single processor in a computer. Clearly, the architecture of data processing in the human visual system is better than any digital one currently realisable and the whole human visual system is not only hard-wired by millions of years of evolution but also programmable by training and active use. There are still many unsolved
puzzles about the human visual system from a computer vision point of view. For example, how many processing levels in the human visual system are used to recognise an object and what kind of functions are there for each level. In fact, today's computer technology is far below the human visual system's level. There is no chance of building a computer vision system with all the processing abilities of the human visual system using a personal computer with 10^{10} processing units in the near future and it is therefore not surprising that a computer vision system cannot yet do most of the complex tasks carried out by the human visual system.

2.2.2 Ambiguities in Visual Object Recognition

Even the human visual system is not always perfect for recognising an object from visual information. One example is the impossible triangle (Figure 2.1) where the human visual system makes 2D projections of 3D objects thus leading to confusion. Another example is the vase-face figure (Figure 2.2) that can be recognised as either two profiles of faces or the silhouette of a vase depending on what you want to see. In the real world, camouflage serves precisely to make it difficult to separate an object such as a chameleon from its background.

All of these illustrate clearly that visual object recognition by computer vision with the same performance as, or better than, the human visual system, must be one of the most difficult problems for researchers to tackle.

2.2.3 Development of Computer Vision Systems

Over the last three decades, many efforts have been put into building machine vision systems to be used in some specific cases such as dangerous working areas, and full inspection for food products. According to the image signal processing methods, machine vision systems can be roughly divided into digital machine vision systems and optical machine vision systems. A basic digital machine vision system includes :

- A photoelectric sensor that transfers an optical image to a coded electrical signal array;
- An analogue to digital converter that provides an interface between a digital image signal processing unit and an image sensor;
- A digital image signal processing unit that can be either a computer or a dedicated hardware circuit board which extracts the desired information from the input image for the purpose of further processing.

If a computer is used as a digital image signal processing unit, image processing software used inside the computer should be included in the basic machine vision system. Recently the optical coherence of the laser beam and the advantages of high-speed signal processing based on the laser-optical development have encouraged researchers to bring laser optical and digital techniques together to build a hybrid machine-vision system (Kamemaru 1992, Mao 1992). The hybrid machine-vision system will be an attractive one in which the high processing speed of the optical elements and easy use of the digital part work together to obtain the best performance. Due to the physical bulk of the optical system, its sensitivity to noise, and the technique being mainly laboratory based, the optical part is more difficult to use than the digital part, hence very few systems have been used in the real world. Here only digital vision systems are discussed so the term 'machine-vision' will generally refer to digital machine vision. In most cases a computer will be used as an image processing unit or a host supplying a human machine interface to talk to a dedicated hardware board. So the term 'computer vision' will be used to refer to machine vision.

Although the digital machine vision is the most mature system among man made vision systems, no one will doubt that it is only an infant when compared to the human visual system. In the next section the problems and advantages associated with the computer vision system will be discussed.

2.2.4 Computer Vision Versus Human Vision

The basic limitations and advantages of computer vision systems, based on current technology should be taken into account when a vision system is going to be used to solve a real world problem.

Main limitations of the computer vision system:

1. The highest number of pixels currently available for an area scan type camera is 4096×4096, and for a line scan camera is 12000 (Fairchild 1990). The number of brighter photo sensors, or cones, in a human eye is about 10 million, and the number of dark photo sensors, or rods, is about 200 million (Gregory 1990). The image quality of most computer vision systems is poor and discrete when compared to the human visual system.
2. A computer has limited processing and reasoning capacity compared with 10^{10} processing units in the brain.
3. There is no clear model that describes how the human visual system works so far. One computer vision system may work well in a special case but no computer vision system can work well in various cases like human visual systems.

Advantages of the computer vision system:

1. Human operatives are subject to fatigue and boredom which of course do not apply to a machine vision system which may be put to productive work for 24 hours a day.
2. The sensory range of wavelengths of a computer vision systems can be bigger than that of the human eyes.
3. Processing speed of a single CPU is higher than a single brain cell so that Computer vision may be able to do simpler jobs faster.

These key points are the basis of research into computer vision. Most of the research effort is directed to achieve vision tasks by using available technology.

2.3 BASIC APPROACHES TO ObJECT LOCATION AND SCENE ANALYSIS

Object location and scene analysis are two basic topics of computer vision. They discuss how to extract the information about the object and its surrounding environment from images and lead to further manipulation of the object.

2.3.1 Object Location

Object location refers to finding a desired object, or objects, in a given image, and describing their position. There are several ways to locate an object.

One way of achieving this is to move a suitable "template" of size $n \times n$ over the whole image, of size $N \times N$, and to find where a match occurs. This is called correlation matching. A match can be defined as a position where there is exact agreement between the template and the local portion of the image but in most real cases a best match will be pursued if the exact agreement cannot be achieved. The template defined as an object contains intensity values of pixels of size $n \times n$, and relating to the features of the defined object and geometric relationships between the features. This approach is most suited to the case in which the image can be acquired under almost identical viewing conditions as the "template" and the geometric relationships between the features do not change. The advantage of this approach is that it can be implemented in hardware to achieve high processing rates. In an automatic wafer inspection system (Yoda 1988) defects on memory devices such as 1Mbit DRAM's and 256 Kbit SRAM's were detected by using autocorrelation, pixel-to-pixel comparison, and morphology. Inside memory devices memory cells are laid out repetitively and some of them are mirrored. A 1024 pixel CCD linear sensor was run at 7 MHz data rate, and the video signal from the CCD was converted to an 8 bit digital signal. The inspecting device was laid on an $\mathrm{X}-\mathrm{Y}$ moving stage controlled by a computer to keep the position correct when it was being scanned. Real-time correlation circuits matched a memory cell against a previous cell then pixel-to-pixel comparison found the difference between two cells that could be defects in the cells. The inspection speed of the system was 30 times faster than humans. In this case the viewing conditions can be controlled to be kept almost constant during the whole process. Image processing was done by dedicated hardware.

Object location can be achieved by "segmenting" it from its background if either object or background has a high level of uniformity and high level of contrast in some parameters such as brightness, colour or texture. Usually this
is called region based segmentation. This method is more suitable in the case when the shape of an object can change but some parameters remain fixed. The segmented portion of an image according to the parameters will be the desired object or part of a desired object for further processing. A vision system for autonomous land vehicle navigation has used colour to segment the road from background in the outdoor case (Turk 1988). A high level reasoning subsystem is used to cope with some occasional segment failures in the vision system caused by changes in the weather on the test track.

If there are several objects with different shapes but the same brightness, colour or texture, the region based segmentation method cannot be used to segment a desired object from others directly. One of the methods used in this case is to locate a desired object by using its edge information. There are several ways to detect the edges of objects in an image (Canny 1986, Lyvers 1988). In order to inspect all leads of the high volume surface mount device (SMD) resistor packages, an automatic inspection station was formed by a mechanical delivery system and a machine vision system (Chapman 1990). The SMDs were back-lit to present a profile of the leads to a camera. A ledge algorithm returned the position, magnitude and direction of all the edges between two predefined positions in an image. A program found the tips of all the leads of a SMD. Then, the tip information was used to judge the quality of a SMD, according to user defined specifications, and to signal the mechanical system to deliver the parts to good or bad shipping tubes. The inspection cycle time was less than 140 ms .

Another approach to object location is to use the "Hough transform". The Hough transform was originally invented (Hough 1966) to detect straight lines in an image. In 1972, Duda and Hart developed a Hough transform method to locate circles (Duda 1972). In 1981, Ballond developed the Hough transform to the Generalised Hough transform (GHT) to locate an arbitrary shaped object (Ballard 1981). The basic principle of the Hough transform is to reconstruct the image in a parameter space and every pixel in the image will provide its own vote to the parameter space. Then the parameter space is searched for peaks that correspond to either centres of objects or angle and a distance of a line from an origin. This method has been successfully used to locate the centres of round biscuits (Davies 1984). It is reported that the
method is highly robust, in that if part of the object is obscured or has disappeared, the object centre is still located accurately. In order to speed up the processing only the edge pixels on the image are used and it took 2-3 seconds to perform within a 128×128 image on a DEC PDP-11/73. Later a similar method was used to achieve eleven rectangular biscuits per second inspection rate by using bit-slice processors (Edmonds 1991).

2.3.2 Scene Analysis

The ultimate purpose of a vision system is to provide the information that allows an organism or man-made mechanism to interact with its surrounding environment in order to achieve some set of goals. For example walking around in a building to find an office, or moving the computer mouse to point to a desired point on a screen. Scenes contain several objects, and their geometry interrelationships. In scene analysis relative positions among the objects are at least as important as the objects themselves. A typical environmental model for scene analysis usually includes what objects are and what the interrelationships among them are in terms of space and time. There is no general answer as to how to establish an environmental model and the model will vary from case to case. On the basis of the model and an image or sequence of images a machine vision system will be able to answer questions such as where a desired object is and, by combination with some kind of space inference mechanism, to provide direction information for the desired move, for instance, to guide a robot.

Several databases and inference processes formed a terrain model for an autonomous land vehicle (Lawton 1986) to move in the outdoor world. There are three databases, short term memory, long term memory, and generic models. The short term memory is used to record dynamically the incoming image from sensors, middle image results of image processing, such as curves, regions, and surfaces, and hypotheses about objects and terrain in the world. The long term memory stores a priori terrain representation (concerning elevation and terrain type information, as well as knowledge of landmarks) and the hypotheses with enough associated evidence to be worth remembering. The generic models are generic schemes, the inheritance relations of the (model) schema network, and a set of image structure,
grouping processes and rules for evaluating image structure interest. The five inference processes are perceptual inference, location inference, schema instantiation, long term memory/short term memory instantiation, and the task interface to deal with image analysis, to resolve ambiguities in the location of the vehicle, to define tasks for the perceptual processes, and to relate the image and knowledge base items.

2.4 COMPUTER VISION SYSTEMS IN THE TEXTILE INDUSTRY

To date, textile manufacturing has not adopted large scale automation. Labour is intensively involved at many stages of the manufacturing process, although there is evidence that there is now changing e.g. lace CAD/CAM up to the knitting stage. Few computer vision systems can be found.

The labour is there because the products are flexible even elastic material and difficult to manipulate and assemble automatically. In the textile industry the labour skills also well developed to deal with the products are very difficult to replace by techniques that have been developed in the other industries such as computer aided manufacturing. The existing computer vision techniques developed to deal with rigid or semi-rigid material face a new challenge from the textile world. With the development of computer vision technology and the rapid price decline of computer systems, more and more computer vision systems will find their way into the textile industry. In this section application of computer vision to the textile industry will be reviewed in inspection and automation.

2.4.1 Inspection

Inspection is the area to which most applications of computer vision systems belong. In (Karkanis 1989) a computer-vision based quality inspection system that can be applied to textile inspection was presented. A local smoothing of small areas and histogram classification were used to identify the defects on the roll of fabric. A monochrome CCD camera was used and the size of the digitised image was 256×256 pixels. The article did not mention the performance of the system. In (Norton-Wayne 1989) progress in a project to use computer vision to measure the dimensions of knitted garments was
described. The image format is 512×512 pixels with 8 bits per pixel. The row by row scanning method is used to find essential nodes on a garment then the measurement is based on the node positions. Carpet texture measurement has provided another example of using computer vision (Wood 1989). Appearance retention is a key performance attribute of a carpet, frequently regarded as being more important than long-term durability. A localised intensity variation (LIV) technique is used based on a VAX image processing system (VIPS) to assess the appearance and texture of carpets. The VIPS system generates a 512×512 - pixel (maximum) 8 -bit image. The system can have an important role in the objective measurement of carpet appearance. A surface inspection system (ERA 1993) employed CCD line scan cameras, DSP and transputers to detect the existence of anomalies, classify the anomalies and show them as faults. The inspection speed for complex woven fabrics was 1-2 metres per second.

2.4.2 Automation

Automation applications of vision systems in the textile industry are rare. A printed motif on household linen was detected by a computer vision system then cut (Ameziane 1985). Every motif is a group of connected pixels with similar grey level that is different from the grey level of the surrounding background and global grey level thresholding was used to separate motifs from the background. The contour of a motif was encoded by chain code then the centre of the contour was computed for the cutting tool. In (Khoury 1991) a PC-based vision system and a laser were used to cut upholstery fabrics. This was a semi-automatic cutting system. The vision system helps an operator to move a pattern template around the fabric and get the best pattern matching. On 1991 Hanover 11th International Exhibition of Textile Machinery only one machine used computer vision and a laser to cut emblems, embroidery, motifs, printed and woven labels. A 512×512 pixel camera was used to take an image of the label fabric. The cutting speed was 5 cm per second. Because of the commercial confidentiality of the product there was no other information except a brochure (Hanover 1991).

2.5 COMPUTER VISION IN THE LACE INDUSTRY

Use of computer vision for lace work operations also falls into two major categories, computer vision inspection tasks, and computer vision for control, where the vision system is used for passing control parameters to an actuator. So far there is one inspection application (Skilton 1988, Norton-Wayne 1991) and two control applications (Russell 1989, Kimoto 1986) on lace. In (Russell 1989) a 256×64 DRAM typed sensor, and an Intel 8051 microprocessor were used to find a cutting position in a single breath of lace, then cut into a shorter length before it was sewn onto a garment. This was a low cost system and the operation time to find the cutting position was below 3 seconds. A CCD camera of 256×256 pixels and a laser were used to track and cut a curve on embroidered lace (Kimoto 1986). The principle of tracking was to find the boundaries of the black pixels along the x direction, then to locate the centre of the black pixels while the lace was fed in y direction (see Figure 2.3). The system was able to cut at $100 \mathrm{~mm} / \mathrm{s}$. Obviously it could be a problem that cutting is required on a predetermined arbitrary position related to a more complicated pattern than a continuous curve.

Figure 2.1 The impossible triangle

Figure 2.2 The vase-face

Figure 2.3 Tracking and cutting a lace with a continuous curve

Chapter 3

RESEARCH APPROACH, STRATEGY AND EXPERIMENTAL RIGS

3.1 INTRODUCTION

This chapter outlines the research approach, strategy, and the experimental rigs that have been developed for the task of vision guided lace separation. It covers the philosophy behind the choice of process structures and the design.

3.2 FUNDAMENTAL CHOICES OF THE VISION SYSTEM

The type of camera, vision processing hardware and technique used to track a moving lace web will determine the overall characteristics of a vision system, such as reliability, processing speed, development time. They are fundamental factors of the research approach, and are discussed in this section.

3.2.1 Area Scan Camera versus Line Scan Camera

Most vision systems on the market are based on area scan cameras, similar to TV cameras, producing the image in frames. This leads most commercial software to process image, which is from area scan cameras, frame by frame. In order to distinguish this kind vision system from others, it is called as a frame grabber vision system.

In an area scan camera every pixel has equal exposure time, or integration time, to experience light. This time can be controlled by a built-in shutter or/and a high speed strobe light to avoid blurring when the camera is used to film a moving object. But in a low-cost industrial camera this time equals the frame time. Therefore blurring is one of the problems of applying this camera to a moving object. In order to simplify the discussion, the blurring problem is ignored temporarily in the rest of this section.

Although the frame grabber vision system is an off-the-shelf answer to some applications such as surveillance, it cannot be used to find the cutting path on lace in real time because of the limitation of the frame speed and the
unpredictable distortion of lace. The frame speed of most vision systems is 25-30 frames per second at which the display of the image seems continuous for the eyes. Typical values for computer image processing are 512×512 pixels for each frame and eight bits per pixel. If the image uses grey scale and the frame rate is 25 frames $/ \mathrm{s}$, at least $512 \times 512 \times 25$ bytes data (for a colour image the data will be tripled) should be processed every second to produce the control information for lace separation. Computer capacity for these data is from 40MIPs (Million Instructions Per second) to 200MIPs if the average instruction count in processing each pixel is from 6 to 30 . But the major drawback of frame grabber vision systems is that the time interval between the frames is too long to cope with any changes occurring in the lace during this period and so the results of the image processing are inaccurate and can not to be used for lace separation.

Assuming that the lace moves at $1 \mathrm{~m} / \mathrm{s}, 25$ frames are taken per second and there is no overlap between adjacent frames, every frame covers a 40 mm length of the lace. The time interval between the frames is 40 ms . If the frame grabbing, image processing and cutting are carried out independently and pipe-lined (Figure 3.1), the shortest time interval between image grabbing and cutting is 80 ms and in the following 40 ms period the information for cutting will be drawn from the image without considering any subsequent change in the lace such as release of tension as it is cut. Any change taking less than 40 ms will be ignored. This is a dead reckoning method and might produce incorrect information for lace separation because the last separation information uses the image taken 120 ms ago and the portion of lace corresponding to the image will be changed. Furthermore, any discontinuity between two successive frames that is caused by positional drift or stretch of the lace will introduce new difficulties into the search for the cutting path on the image. One way to cope with change in the lace is to increase the frame rate and reduce the time interval between image grabbing and cutting. This might get more information from the lace change point of view, but more computing power is needed and the computing effort put into the overlapping parts of the image will be wasted. This option cannot be pursued since practically, most frame grabber systems offer little chance for the end user to increase their frame rates.

Due to the flexibility of the lace it is important to monitor its geometric changes all the time. In order to monitor the change closely and use the computing power efficiently, a computer vision system based on a line scan camera has been investigated. A line scan camera is a one dimensional image sensor and the image data can be updated every line. If the line scan rate is 5000 lines per second and other conditions are the same as above, the time interval between the image being taken and cutting will be 0.4 ms . Any change taking longer than 0.4 millisecond can be detected and acted, which is better than any frame grabber system from the close monitoring point of view. Another advantage of the vision system with a line scan camera is that the data rate for image processing is reduced because there is no overlapping data. There is, therefore, a good chance of reducing the requirements for computing capacity. However, typical algorithms based on frame grabbing are unsuitable for processing the image data from a line scan camera. If these algorithms are used without modification all the advantages of the line scan system disappear. Therefore, the development of an image processing algorithm to find a cutting path on lace based on a line-scan vision system was identified as a basic research task of this project.

3.2.2 Choice of Image Processing Hardware and Development of Image Processing Software

There are three different basic pixel formats for images: binary, grey level and colour. Generally speaking, the binary format has the lowest memory requirement and the highest processing speed. The colour format needs the biggest memory requirement and has the slowest processing speed except that if an object can be located by its colour then colour processing may sometimes be the fastest. Usually the desired cutting path on lace has no colour differentiation from other parts of the lace and so a colour segmentation approach cannot be used to find a cutting path. The colour pixel format is, therefore, not discussed in this thesis. A grey level image contains richer image information than a binary image but the processing speed will be slower if similar hardware and software are used or the cost of hardware (even software development) will be higher to keep the same speed.

Due to the binary visual character of lace a back-lit technique (section 3.4.5) can be applied to produce a clear binary image (section 6.3). An initial trial of the reference map (section 3.2.3) concept and its further development (chapter 4) proved that the binary image provided enough information to determine the cutting path. Therefore all subsequent processing is based on binary images.

The development of an image processing algorithm has been carried out in two phases: (1) with a general purpose computer using high-level-language in off-line mode and (2) DSP (Digital Signal Processor) implementation in online mode. In the first phase, the C language was used to develop the image processing algorithm. Because of the flexibility of C various possibilities for image processing algorithms were easily explored. After it had been fully tested the developed algorithm was implemented on DSP to run in real-time.

DSP microprocessors are faster devices which enjoy all the advantages of traditional microprocessors: they are easy to use, flexible, and economical. DSP microprocessors are characterised by fast multiply instructions, reduced instruction sets, and specialised instructions to make DSP based algorithms execute fast and efficiently.

The choice of a DSP solution was determined by the balance of requirements between the algorithm execution speed, development time, and development cost. In fact, an image algorithm can be implemented by either DSP, bit-slice elements, digital logic circuits or analogue circuits if there is no restriction on development time. Each solution will achieve different real-time image processing speeds. The DSP implementation is the slowest (Chassaing 1990) among bit-slice elements, and digital logic circuits. Optical implementation is the fastest. The development time and cost of an implementation method are approximately inverse to its execution speed. Most DSPs and their development boards are commercially available and some of them have different versions to be hosted by specific computers. The bit-slice element implementation needs hardware and software system design starting with the implementation code design based on the bit-slice elements. Only then can the algorithm be implemented on this kind of system. The developing time for digital logic circuits and analogue circuits will be even longer because every change in the algorithm will require changing the circuits. The DSP vision
system can take advantage of any update of the DSP performance without major software change simply by upgrading the DSP board. Based on these considerations, DSP was chosen to implement the algorithm.

3.2.3 Finding a Cutting Path on Lace by a Reference Map

The lace separating process could be considered similar to that by which an autonomous "robot" might travel along a desired path in a terrain with a lot of landmarks that are formed by the altitude of the land. The "robot" only moves forwards with constant speed. One approach to the "robot" movement is that the path is defined by one of the transition positions of the land altitude or "edges", then the "robot" just follows the edges. In fact, the edges in a visual sense are similar to the transition between the thick and the thin parts, in a tactile sense, on lace. The "robot" is put at the start position along an edge and instructed as to the direction of movement. As soon as the "robot" moves, it only checks the edge and does not take any other land marks within the viewing range into account. If this approach is implemented in a vision system to guide a laser beam to scallop lace it is certainly better than the mechanical lace scalloping method since due to the non contact of the vision system there is no interference between finding the path and following it. But this approach cannot support the centre cutting because of similar reasons as with a mechanical contact head. Another approach to the "robot" movement could be that the "robot" has a map with a desired path. Before moving forwards the "robot" checks the map and its own local environment to find the corresponding point on map to the position where it is. The "robot" only checks the newest environment against a local area of map next to the last located position to find a current location. The map includes all necessary landmarks (in one repeated period since the lace 'landscape' is repetitive) and is arranged in the sequence of the landmarks appearing. This approach will treat thick threads along the path of the centre cutting the same as the other areas without thick treads and can, therefore, support centre cutting. This approach also gives operators a great deal of freedom to cut different profiles on the same lace by giving different guiding maps.

A real autonomous robot is looking at a 3-D world in which its movement will need not only image processing but also spatial reasoning such as scene
analysis. The lace image is a 2-D world and the thickness of the lace can be ignored in comparison to the other two dimensions. Another advantage in applying computer vision to lace is that the variation of the work environment, such as lighting, can be separated from the variation of the movement of the lace (this is difficult outdoors when using natural lighting). So the scene analysis for a lace image will be much simpler than for real robotics movement and may not need a complex inference mechanism to achieve failure-free lace cutting.

In order to implement the map-guided approach the research of the computer vision focuses on:

1. Finding the start point;
2. Tracking along a desired path;
3. Maintaining stable working conditions for the vision system.

3.3 RESEARCH STRATEGY

The whole research follows a strategy, from broad to focused, and from low speed of image processing to high speed. At the same time it also tries to achieve the optimum result from the available resource such as computing power.

At the beginning of this project an IBM compatible PC and a commercial area-scan frame grabber system were used to capture an image from a static lace sample (test rig 1, see Figure 3.14). This was carried out in order to determine suitable resolution for the image system, to simulate using a line scan camera, and to evaluate the possibility of developing a tracking algorithm for lace cutting based on a binary image.

An incremental lace pattern tracking algorithm based on the line scan camera vision system has been developed (see chapter 4). The research effort focused on building this vision system includes:

1) An interface board (see Appendix 4) between a line scan camera and a DBV56 DSP board.
2) DSP development software on a host computer (see Figure 3.11).

After the tracking algorithm had been implemented in the DSP, research to find the start point (chapter 5) and maintain stable working conditions (chapter 6) was carried out in parallel. The work carried out to speed up the tracking process is detailed in chapter 7.

The experimental tests for the vision system with a line scan camera have been carried out on three rigs:

1) a frame based on a linear moving table that holds a lace sample and moves backwards and forwards. A computer driven galvanometer mirror points a $\mathrm{He}-\mathrm{Ne}$ laser beam to the cutting position to mimic the whole procedure of tracking and cutting a desired path on patterned lace (see Figure 3.15);
2) an integration rig (see Figure 3.16) in which a $50 \mathrm{w} \mathrm{CO}_{2}$ laser beam is positioned coaxially with the $\mathrm{He}-\mathrm{Ne}$ laser beam to cut lace and the lace can travel further and faster than in the previous test rig. This test rig pushes the DSP to its processing speed limit;
3) a prototype machine (Figure 3.17) in which a 240 w CO 2 laser and a lace handling sub-system are used to test the higher speed and twin beam vision systems. The test was carried out both at LUT and one of our industrial collaboration.

The evolution of vision system and experimental rigs is shown in figure 3.2. The vision systems and experimental rigs have been developed in two parallel ways. The first vision system and rig formed the first stage of research. The second vision system has been combined with the second rig and the third rig to form the second and third stages of research. The third vision system and the third rig form the fourth research stage. The fourth vision system and the prototype form the last research stage.

3.4 RESEARCH CONSIDERATIONS

In this section some aspects that cannot be presented in an individual chapter later, but which are important to the whole research project are discussed. These are: image resolution, speed, optical arrangement, host computer and its
operating system, light source arrangement and making a reference map for tracking.

These different aspects provide an insight into the formulation of the objectives (section 3.5) containing the different stages of the research strategy.

3.4.1 Image Resolution

The spatial resolution of a vision system can be defined in terms of its number of pixels per mm. This is one of the key parameters that determine the performance of a vision system. Higher resolution means richer and more accurate local information contained in the image, but usually needs more computing power to process the image. If the number of pixels in every line from the camera is fixed, higher resolution will mean less global information. Usually the more global information taken into account, the lower risk of getting lost when one travels. If one wants to know exactly where he or she stands, more local information is needed. This is similar to the vision system. The resolution of the vision system should balance between the global and local information.

The resolution of an image from a camera is determined by its optical layout, the geometrical size of the photo detectors on the camera, and the A/D converter sampling rate. The optical layout that can make the image on the focused plane bigger or smaller will be discussed later. The photo detectors in a camera will transfer an optical image continuous in both time and spatial aspects, into an electrical image discrete in both time and spatial aspects. The discreteness in time will affect processing speed and is discussed in section 3.4.2. The spatial discreteness will affect the resolution of the image. Figure 3.3 shows how the fine information is lost when the image is transferred from optical to electronic form. Figure 3.4 shows that a single bar whose image is as large as a single photo detector has two different outputs when it overlays a single photo detector or two adjacent photo detectors. If a threshold method is used to detect the single bar, the detected result will depend on what threshold level is set. If the threshold level is set to see both cases, the width detected on the right output will be as twice big as on the left output. The detection error will be one pixel. The sampling rate of A / D converter will also affect the
resolution of image. If the sampling rate is half of the pixel rate of the camera, the resolution of the image after A / D conversion will be only half of the resolution before the conversion. But if the conversion rate rises above the pixel rate, the image detail lost (as Figure 3.3) in the photo detectors will not be recovered. What kind of resolution should be used is dependent on the imaging task. During the first stage of the research, various resolutions of lace sample were investigated to find a range of resolutions with which the finest landmarks (purls) can be sampled on any design without any doubt. Figure 3.5 shows three images with different resolutions taken from the same lace sample. Resolutions higher than 10 pixels per mm are able to image the fine detail, but this kind of detail could slow the image processing down when a cutting path is being searched for. Resolutions lower than 2.3 pixels per mm will lose some information useful for finding a cutting path. Resolutions between 3 and 4 pixels $/ \mathrm{mm}$ are suitable for finding a cutting path.

3.4.2 Speed

The target system speed of this research project is about $1 m$ per second, which is faster than the existing systems in the textile industry. The required processing power of the vision system corresponding to $1 \mathrm{~m} / \mathrm{s}$ lace movement is proportional to the vision resolution. The highest required longitudinal resolution of the vision system is around 10 pixels $/ \mathrm{mm}$ so the vision system should be able to process 10,000 lines of image per second. The camera and the interface between the camera and DSP board were chosen and designed to provide 10,000 lines $/ \mathrm{sec}$ at an early stage of the research. The camera chosen is a Fairchild 2048 pixel device and runs at up to 20 MHz pixel rate. If the camera runs at maximum speed, the number of lines of image from the camera is around 10,000 per second. As mentioned before, the camera also divides a continuous optical image into a discrete electronic image in time co-ordinates. All photons on a single photo detector during its integrating period are converted into electrons provided 100% conversion efficiency is achieved. If the object does not move, changing the camera integration period only changes the absolute electron number on every photo detector. It does not change relative electron numbers that represent the geometry relationship between the image elements on the electronic image, except that some photo detectors may become saturated because they experience too many photons.

In figure 3.6 the absolute image levels on each photo detector are reduced while the integration period is reduced, but the distances between two left sides of two bars are the same, $a^{\prime}=a$. If the object moves at a constant speed, and perpendicular to the CCD axis, different camera integrating periods will make different lengths of object pass under the camera (see Figure 3.7) during each integrating period, creating a 'blur effect'. The shapes of electron images are different. The shorter the integrating period of camera, the clearer the image.

The next speed related area is an interface for the line scan camera and the DSP. The choice was to buy one or build one. There was only one commercial interface board for this camera hosted on a PC at that time. On this board an output port for image acquisition is connected to the industry standard architecture (ISA) bus. The image from the line scan camera can pass to the host PC or another DSP board hosted on the same computer via the ISA bus. From the speed point of view, unfortunately this board would slow down the vision processing speed because the camera data and signal between PC and an embedded vision system will share the same PC bus. In order to separate the camera data channel from the data channel between a host computer and an embedded vision system, an interface board between the camera and vision system has been designed and built (see Appendix 4). This engineering work was an essential part of the research activity maintaining a constant exposure time for the camera (described in chapter 6).

The principle of the interface board (see Appendix 4) is that every pixel of video output from the line scan camera is converted into 1 bit digital (binary) signal and that the binary image is then sent to DSP for further processing. On the interface board there are two function blocks, analogue block and digital block. A 12 bit (only using the most significant 8 bits, other bits set to zero) D/A converter controlled by DSP sets the threshold level of an analogue comparator. A video signal from the camera is sent to comparator after a video amplifier. A binary image is produced by the comparator. Then the binary image is sent to DSP as 24 bit words which are the width of DSP input port. The interface also has two other connectors, one for a synchronising board (see chapter 6), one for a hardware correlator board (see chapter 7).

The criteria used in the selection of a processing unit was that it must be a development system, must have enough power to carry out the research at stage two and three, and must have separate data channels for both the camera and host computer. Choice of processing unit is discussed in section 3.2.2. The choice of fixed-point DSP or floating-point DSP for use with the vision system is decided after the tracking method has been successfully tested on the PC (see chapter 4). Most operations for tracking are logical and bitwise operations for which most fixed-point DSPs are adequate. The selection process indicated that the DBV56 DSP development system as the most suitable option.

The camera is not the limiting factor on speed (see beginning of this section). It is likely to be the image processing algorithm and or hardware.

The DBV56 board (Data β 1991) contains four Motorola DSP56001 microprocessors which operate at $27 \mathrm{MHz}, 64 \mathrm{~K}$ word (24bit) global on board data memory can be accessed by all processors. The DSP global memory can also be accessed by host computer via the VMEbus. Each processor has 64 k words (24bit) of private data memory divided into X and Y address spaces, and 32 k words (24 bit) of program RAM. The host port of each DSP processor can be accessed by the host computer via a short address of the VMEbus. One DSP is used to control the camera, to decide the right threshold level for the A/D converter, and to capture the image data from the line scan camera for further processing. Another DSP is used to implement the incremental tracking algorithm. The remaining DSPs on the board are in idle state. When twin beam cutting is implemented, one more DSP is used for extra tracking.

It was evident from the beginning of the project that the vision system should work at real-time speed. Therefore the strategy for algorithm development requires:
(1) a robust method to find the cutting path;
(2) the key part of the algorithm able to be implemented in hardware.

This was achieved by first looking for a robust method to find a cutting path using a general purpose computer and secondly transferring this method to a special purpose computer such as a DSP to implement a real cutting system at
a medium speed and then reviewing the whole problem again. If the tracking algorithm implemented on DSP processor was not fast enough, a dedicated hardware or a hybrid implementation of the tracking algorithm to speed up the whole process would be investigated.

3.4.3 Optical Arrangement

Although the Fairchild camera can take a standard 35 mm format camera lens, the view angle of the camera will be smaller than on the standard 35 mm camera because the width of the CCD chip is 26 mm (Fairchild 1990) which is shorter than the 50 mm diagonal length of 35 mm film (Figure 3.8). If both CCD chip and 35 mm film are on the same focal plane and the same lens is used for the two cameras, the CCD camera needs nearly double the object distance as the 35 mm camera to image the same area (Figure 3.9). In other words, the 50 mm focus lens is a 'standard' lens for 35 mm camera but is a 'telephoto' lens for the Fairchild CCD camera. Resulting in an object-image distance of 200 mm object view length with 3 or 4 pixels $/ \mathrm{mm}$ resolution is approximate 1000 mm . This 'telephoto' effect may be a problem for applications in which object-image space is restricted. We can take advantage of the 'telephoto' effect to reduce the wide-angle distortion that mostly exists near the edge of the image, and makes objects on the edge of the film larger than the same sized objects in the middle of the film (Reynolds 1984). However, whilst space is not restricted to any great extent on this vision application, an object-image distance of 1000 mm with a 50 mm focal length lens was considered too large, a wide angle lens ($\mathrm{F}=28 \mathrm{~mm}$) is used to keep the distance between the lace and lens of the camera in a range around 500 to 700 mm . The object-lens distance will be determined by equation 3.1 .
$d=\left(l_{f} \times w_{o}\right) /\left(n_{p} \times w_{p}\right)$

Where d stands for the distance between an object and the camera lens, l_{f} is the focal length, w_{o} the viewing width of the object, n_{p} the number of pixels to be used on the CCD chip, and w_{p} the width of each pixel.

3.4.4 Host Computer and Its Operating System

Obviously the host computer is not only used for the vision system but also for other control tasks such as mirror control and motor control. A multitasking real-time operating system is chosen for this purpose. The DBV56 system needs to interface to a VMEbus. The Syntel LC850 68020 20MHz based computer system is, therefore, an appropriate host computer to control the DSP board. It runs the OS9 real-time multi-user and multi-tasking operating system. Some DSP development software on the Syntel LC850 has been developed. The basic functions of the DSP development software are:

- Send a program or data from host to any DSP
- Get a program or data from any DSP to host
- Monitor the execution of a program on the DSP
- Display the image in the DSP memory
- Modify the data, program, or registers of any DSP.

3.4.5 Light Source Arrangement

There are two possible lighting techniques: front lit and back lit. Which arrangement should be used depends on the optical property of the object to be viewed and what kind of information is needed. For example, the front lighting technique is more likely to be used to view the surface of a solid object (Batchelor 1985). Back lighting will give a silhouette of the object. The thin part of the lace is more like a transparent material and the thick part of the lace is more like a solid material. The back lighting will give a clear contrast between the thin and thick parts of the lace. Although a lot of surface information of the lace will be lost by using the back lighting technique, this data is not a requirement for lace pattern tracking.

3.4.6 Making a Reference Map

At section 3.2.3, a map guided following method is discussed. There are two ways to make such a reference map. The first one is to use the CAD information which describes the lace geometry. This approach will require work to transform the CAD data to the right scale and to make the data look like the image from the camera. The second approach is to use the same
camera system to digitise the lace pattern repeat that is used for capturing the lace image during pattern tracking. The advantage of the latter approach is that this method can be used for lace without CAD data. A cutting path can be defined on the map by input to the computer from the operator using the cursor keys or a mouse.

3.5 Research Objectives of Each Stage

As mentioned in section 3.3 the whole research into the vision system was carried out via five stages. In order to investigate the problems of the vision system step by step, each research stage focused on different objectives. As the research project proceeded, the work focused more deeply on the problem.

3.5.1 Objectives for the First Stage

For the first research stage, the objectives are to find the correct resolution of the CCD camera for lace, to search for a robust method to find a cutting path on lace and to try different ways to find a starting point when lace is placed flat on a table. This will be achieved by using general purpose computer, area scan camera, frame grabber camera interface, and a test rig. Most commercial image processing software provides a link library to develop user algorithms This cannot be used to develop a line scan based algorithm for DSP code or hardware. Efforts were, therefore, made to simulate a line scan camera and develop a cutting path following algorithm.

3.5.2 Objectives for the Second Stage

In the second stage, the research objectives were to transfer the path following algorithm developed to the DSP assembler, to find a start point by using the following algorithm, and to keep the camera on a constant exposure time. Although the camera, the DSP board, and the computer were bought-in, they were not a complete development system (as mentioned before there was no such development system available on the market at that time). A lot of effort has been put in to establish a development system for the vision system on both software and hardware.

3.5.3 Objectives for the Third Stage

In the third stage, the main research objective was to find out the extent of any interference between cutting and finding the cutting path, by using a CO_{2} laser to cut the lace.

3.5.4 Objectives for the Fourth Stage

In this stage, the research was focused on how to make whole system work faster by using hardware correlators.

3.5.5 Objectives for the Fifth Stage

In this stage, the research was focused on how to configure whole system to work as a fast-single-beam version by using hardware correlators and as a slower twin-beam version by using multiple DSPs. The aim was also to investigate any problems encountered when the lace moves faster which were not apparent at the lower speed, and to study the effect of twin path cutting on the performance of the tracking system.

3.6 VISION SYSTEM

In figure 3.2 the development of the vision systems is related to different phases of development of the experimental rigs. It is, therefore, better to describe the development of the vision systems and the experimental rigs in different sections. In this section, the hardware and software for the different vision systems is presented.

3.6.1 Vision System One

The hardware of the first vision system was based on commercial products. The vision system comprised a JVC colour CCD area scan camera, a MicroEye frame grabber board, a monitor and a general purpose personal computer with a 386 processor running at 20 MHz . The camera can output 25 frames per second in full colour but the frame grabber board needs nearly 2
minutes to grab and convert a frame of video image to digital image. The monitor is used to help to adjust (focus) the lens of the camera. The bit map, in one of the colour image file formats, was easily converted to three simple monochrome images for further processing. A program written in ' C ' was used to develop the tracking algorithm.

3.6.2 Vision System Two

The second vision system is formed by a Fairchild 204820 MHz line scan camera, a Data β DBV56 DSP board, and a Motorola 6802020 MHz computer. An interface between the camera and DSP board has been built by the author to use one of the DSP processors to control the camera, convert the video data to digital form, and put it into global memory. Another DSP processor implements the tracking algorithm by using the image data from the global memory. The host computer controls the DSP board and a digital to analogue converter that drives a galvanometer to control a laser beam (Figure 3.10). A DSP code development system on the host computer has been built by the author to monitor and debug DSP code and to send data or code to the DSP from a disk file on the host computer or get data or code back from the DSP to disk file (Figure 3.11).

3.6.3 Vision System Three

The hardware arrangement of vision system three is similar to the second vision system except that a hardware correlator board is used to accelerate the tracking (Figure 3.12).

3.6.4 Vision System Four

This system combines twin tracking by the DSPs and single tracking by a hardware correlator board (Figure 3.13).

3.7 EXPERIMENTAL RIGS

The experimental rigs have evolved from merely keeping lace stable to actually cutting lace to suit the different research objectives.

3.7.1 Rig One

A lighting box and a frame form the first rig. The frame can hold a lace sample, with or without stretching and/or skewing, on top of the lighting box (Figure 3.14). Inside the lighting box four 20W fluorescent tubes driven by 240 V AC provide a back-lit light source for the camera.

3.7.2 Rig Two

A "U" shaped frame (Figure 3.15) holding lace between the line scan camera and the light source can be moved on a pair of slideways driven manually or by a computer controlled DC motor. A mirror mounted on the shaft of a galvanometer reflects a $\mathrm{He}-\mathrm{Ne}$ laser beam onto the lace to mimic the cutting process and make visual judgement of the system performance possible. An optical encoder sends a signal of the movement of the lace to the interface board between the camera and DSP board to synchronise the vision system with the movement of the lace. The length of the frame movement is about 600 mm .

3.7.3 Rig Three

An integration rig is formed by an " E " shaped frame, a vision system, a cutting system based on a CO_{2} laser, and a transportation system (Figure 3.16). A sample of lace is joined to form a belt which is driven by one friction roller downstream of the vision/cutting planes. Lace can travel at 1 m per second and the length of track is about 4 m .

3.7.4 Prototype

This rig (Figure 3.17) is formed by a removable lace handling sub-system, $240 w$ CO2 laser, and vision system four. The length of lace loop can be as long as 100 m . This uses edge sensors to track the lace within $\pm 5 \mathrm{~mm}$ for presentation to the vision and cutting planes. The vision and cutting planes are separated by 20 mm .

a processing path for a single frame of image
Figure 3.1 Timing for a frame grabber vision system

Chapter 3 RESEARCH APPROACH, STRATEGY AND EXPERIMENTAL RIGS

Figure 3.2 Research evolution

Figure 3.3 Loss of fine information

Figure 3.4 Effect of spatial quantisation

Figure 3.5a Lace imaged at 2.3 pixels per mm

Figure 3.5b Lace imaged at 4 pixels per mm

the details to be kept
Figure 3.5c Lace imaged at 11 pixels per mm
stable optical image

Figure 3.6 Stable optical image with different integrating periods

Figure 3.7a Moving optical image with short integrating period

Figure 3.7b Moving optical image with long integrating period

Figure 3.8 Different view angles by using different lengths of films on the same focusing plane

Figure 3.9 Narrower film, longer object-lens distance

Figure 3.10 Vision system two

Figure 3.11 DSP code development system

Figure 3.12 Vision system three

Figure 3.13 Vision system four

Figure 3.14 Rig one

Figure 3.15 Rig two

Figure 3.16 Rig three

Figure 3.17 Prototype

Chapter 4

AN INCREMENTAL REAL-TIME PATTERN TRACKING ALGORITHM

4.1 INTRODUCTION

The three image processing tasks of the vision system for lace cutting are 1) to find the best matched position between the actual position of the image and the mapped starting point, this is achieved by global searching; 2) to track a predetermined cutting path on the incoming image by local searching; 3) to maintain stable working conditions for the vision system. This chapter will deal with the second task. Chapter 5 will deal with the first task because one approach to finding the start point is to use the algorithm which is described in this chapter. Chapter 6 will deal with the third task.

The algorithm described in this chapter has been developed to allow pattern tracking on a web of lace scanned by a fixed line-scan camera with its line of scan perpendicular to the direction of web motion. It is assumed that the patterning is more or less continuous along the web, so that each line scanned will normally provide some information for tracking.

It is also assumed that the path to be tracked does not double back on itself, a constraint which follows anyway if the lace can only move in a forward direction whilst the mechanism following the tracked path moves only perpendicular to the direction of web motion. However, certain type of path that double back (re-entrant) could be tracked by an extension of this method. In theory a simple double backed path can be replaced by two or three nondouble backed paths with extra cutting information.

Since the patterns in this application are essentially binary, the video information is merely thresholded at a preset level. This considerably reduces the amount of data which has to be handled in real-time.

A further important requirement of the system is that it should be robust; i.e. it should be capable of maintaining tracking when presented with patterns which
are distorted and possibly flawed. In particular, the ability to cope with patterns which are stretched or compressed across and along the web is essential, since the web material is elastic, varies dimensionally as a consequence of its method of production by around $\pm 5 \%$, and its transport tension past the imaging system cannot be fully controlled. Tests have been performed to investigate the robustness of the approach when used with noisy signals and web patterns which are geometrically distorted from their nominal form, laterally and/or longitudinally, by up to 10%.

In section 4.2 a tracking algorithm based on centre-weighted one-dimensional binary cross-correlation is discussed. In section 4.3 a method to cope with longitudinal distortion is presented and results obtained from test rig 1 (Figure 3.12) and vision system 1 (section 3.6.1) are presented and discussed in section 4.4. Further discussions about DSP implementation is in section 4.5.

4.2 BASIC ALGORITHM

Essentially, this is a centre-weighted one-dimensional binary crosscorrelation. In section 4.2.1 the terms to be used to explain the algorithm are listed. The one-dimensional binary cross-correlation is presented in section 4.2.2. The algorithm is explained in section 4.2.3.

4.2.1 Terminology for the Algorithm

x----------- one axis of co-ordinate of the input image in the opposite direction to the motion of the lace. The unit increment of x is one line of the scanned image. x equals i.
y------------ the other axis of the input image perpendicular to the motion of the lace. The unit increment of y is one pixel in the line of the input image, x and y form a co-ordinate system in the input image, and the origin of the co-ordinate system is fixed to the input image.
$\xi, \psi--------$ the axes being used in the map corresponding with those of $x_{y} y$, in the input image respectively (Figure 4.1). ξ equals j.
q----------- displacement of one-dimensional cross-correlation search.
$H(i, j, q)-----$ the historical matching result, produced by using an infinite impulse response (IIR) filter.
$\operatorname{Ig}(x, y)$------ the image of the patterned lace to be tracked, being called an input image.
$L \operatorname{corr}(i, j, q)$--the weighted cross-correlation between the i th line of the input image and the j th line of the map at position q.
$\operatorname{Ma}(\xi, \psi)$.-.-- the image of lace with nominally the same pattern as the input image to be used as a reference in the tracking, being called a map.
$P(i)$---------- the correct cutting position on line i of the input image.
$\operatorname{Pma}(\xi)$----- the path to be followed, predefined across the map, being called a reference path.
$\operatorname{Pim}(x)-----$ - the path to be found across the input image, being called a found path, or cutting path.
$W(y)$-------- the weighting function.
$Y(i)$---------- the predicted point for the cutting path on the line i of the input image.
$\beta-----------$ the coefficient of the first order IIR filter.
$\sigma---------$ - the tracking error in pixels.
$\sigma^{2}---------$ the tracking deviation.

4.2.2 One-Dimensional Binary Cross-Correlation

Using a method similar to that in (Jain 1989), an equation for one dimensional cross-correlation can be derived. The presence of a known signal Signal $l_{l}(y)$ in an input signal $\operatorname{Signal}_{2}(y)$ can be detected by searching for the location of match between $\operatorname{Signal}_{1}(y)$ and $\operatorname{Signal}_{2}(y)$. The matching can be conducted by searching the displacement of $\operatorname{Signal}_{2}(y)$, where the mismatch energy is minimum. For a displacement (q), the mismatch energy, Ω, is defined as

$$
\begin{align*}
& \Omega(q) \propto \sum_{y}\left[\operatorname{Signal}_{1}(y)-\operatorname{Signal}_{2}(y-q)\right]^{2} \\
& =\sum_{y}|\operatorname{Signal}(y)|^{2}+\sum_{y}\left|\operatorname{Signal}_{2}(y)\right|^{2}-2 \sum_{y} \operatorname{Signal}_{1}(y) \operatorname{Signal}_{2}(y-q)
\end{align*}
$$

For the mismatch energy to achieve its minimum, it is sufficient to maximise the last term of equation 4.1, the cross correlation
$\operatorname{Corr}(q)=\sum_{y} \operatorname{Signal1}(y) \operatorname{Signal2}(y-q)$
Although the image and map are two dimensional signals in the human visual system, they can be represented in one dimension inside the computer. For example, if $z=x \times l+y$, where the l is the length of the image in y direction, the two dimensional image $\operatorname{Ig}(x, y)$ equals a one dimensional image $\operatorname{Ig}(z)$. Actually the image from a line scan camera is formed from one line image after another. If we fix the value of x, namely i, vary the value of y, the z satisfies i $x l \leq z<(i+1) \times l$. In other words, the $\operatorname{Ig}(i, y)(i=0,1,2, \ldots)$ is part of the one dimensional image $\operatorname{Ig}(z)$. If $\operatorname{Signal}_{l}(y)$ equals $M a(j, y)$, and $\operatorname{Signal}_{2}(y)$ equals $I g(i, y)$, where i and j are fixed, equation 4.2 will be changed to equation 4.3.
$\operatorname{Corr}(i, j, q)=\sum_{y} M a(j, y) \operatorname{Ig}(i, y-q)$
What equation 4.3 points out is that if to search for the maximum crosscorrelation between map and image in one direction, and if the i and j in the map and image are known beforehand, search can be carried out in a limited range of positions in one direction to find the maximum instead of searching two directions or the whole range.

When the data is binary equation 4.3 will be equivalent to the equation 4.4.

$$
\operatorname{Corr}(i, j, q)=\sum_{y} \overline{M a(j, y) \oplus \operatorname{Ig}(i, y-q)}
$$

In this case, it is sufficient to search for the maximum of the total binary agreement between $M a(j, y)$ and $I g(i, y)$.

4.2.3 Incremental Tracking by Using Weighted One Dimensional Binary Cross-Correlation and IIR Filter

Initially, consider that the image and map are scanned with the same rate in x and ξ directions and that the image has the same pattern repeat length in x direction as the map in ξ direction. Suppose before tracking begins a best matched position between the map and the input image around a relatively small area of the reference path has been found by methods described in chapters 5 . In this case, ξ for the map is determined according to the input
image $\operatorname{Ig}(0, y)$; and $\operatorname{Pim}(0)$ is found according to the $\operatorname{Pma}(\xi)$. This is similar to the 'steady state' case in the middle of the tracking operation. The start point of the path on the input image can be expressed as
$y=\operatorname{Pim}(x) \quad(x=0,1 \ldots \ldots)$
where y is the pixel number and x the line number of the input image. For the start point of the path $x=0$.

In general, x equals $i-1$, where i is the line number of the current line of input image.

Similarly, the start point of the path on the map can be expressed as

$$
\psi=P m a(\xi)
$$

Generally, ξ equals $j-1$, where j is the line number of the current line of the map.

The first stage in the tracking process is to calculate a weighted crosscorrelation between a sub-section of n pixels (the 'matching length') of the i th line of the input image and the j th line of the map;
$L c o r r(i, j, q)=\sum_{Y(i)-n / 2}^{Y(i)+n / 2} W(y-Y(i)+n / 2) \overline{\{M a(j, y-Y(i)+P m a(j)) \oplus \operatorname{Ig}(i, y-q)\}}$

Equation 4.7 is similar to equation 4.4 except a weighting value $W(y-Y(i)+n / 2)$ is applied. Because the segment of the input image used for the cross correlation is nominally centred on the (most recently) found path the use of a centre-weighting function reduces errors due to distortion and mismatch of scale between input image and reference map data.

The centre of the sub-section of the j th line of map for which the weighted cross-correlation is computed is $P m a(j)$. The centre of the matching length of the i th line of the input image is predicted by:
$Y(i)=\operatorname{Pim}(i-1)+\operatorname{Pma}(j)-P m a(j-1)$
eq.4.8

Figure 4.2 shows the relationships of $\operatorname{Pma}(j-1), P m a(j), \operatorname{Pim}(i-1)$ and $Y(i)$. Assuming that the $\Delta \xi$ equals the Δx and $\Delta \psi$ equals Δy, we can get equation 4.8 according to the linearization and standard linear approximation (Thomas 1988). Assuming the first differentials of $\operatorname{Pma}(j-1)$ and $\operatorname{Pim}(i-1)$ are $P^{\prime} m a(j-1)$ and $P^{\prime} i m(i-1)$. The only difference between the linear approximation and equation 4.8 is that the differential form of the $P^{\prime} i m(i-1)$ is replaced by the $P^{\prime} m a(j-1)$ because we do know that the $P^{\prime} m a(j-1)$ is similar to the $P^{\prime} i m(i-1)$. The purpose to predict the $Y(i)$ is not to determine the $\operatorname{Pim}(i)$, the cutting path, on line i of the input image but to form a sub-section on line i of the input image in which the Pim(i) will be searched. The length of the sub-section of the input image is $n+q$ and it is centred at $Y(i)$. Figure 4.3 shows how to match map with the image.

Table A - 'linear ramps':
12345678910111213141516171819202122
2324252627282930313232313029282726252423
22212019181716151413121110987654321

Table B - '4 steps':
1111111122222222333333344444444
4444444433333333222222211111111

Table C - '2 steps':
11111111111111112222222222222
22222222222221111111111111111

Table D - 'all ones':
11111111111111111111111111111111
11111111111111111111111111111111

Table 4.1 Look-up tables used for line centre-weighting (shown for 64 pixel matching width)

The matching length, n, used needs to be large enough to ensure that a representative portion of the pattern is used in the cross-correlation. Restricting the cross-correlation to a sub-section of the image line, rather than using the whole line, allows a wide image line (and hence a large amplitude of tracking path excursions) independent of the requirement to minimise the matching length to achieve maximum computational speed. Similarly, the weighted cross-correlation must be computed for sufficient lag (pixel shift) values, q, to ensure that the maximum cross-correlation will be found. This depends on the maximum change of path position from one line to the next. For the lace patterns tested here correlations were computed for 32 lags ($-16<q<=16$ pixels). Weighted cross-correlations for lag values above and below this range are not computed but are set equal to the values at the maximum positive and negative lags respectively (for use by the x-directional matching algorithm described in section 4.3).

Four types of centre-weighting function were evaluated with the algorithm as shown in table 4.1. A linear taper (weighting table A) was used in initial trials and it was found that this could be replaced by a stepped function with 4 steps (table B) to speed computation without significant degradation of tracking performance. Another stepped function with 2 steps (table C) and a function without weighting were tested. The test results are shown in Figure 4.4 where variation of tracking error shown against the lateral scaling error of the image relative to the reference map.

In Figure 4.4 the tracking error is calculated as σ^{2} defined as:

$$
\begin{equation*}
\sigma^{2}=\frac{1}{n} \sum_{i=0}^{n}\{\operatorname{Pim}(i)-P(i)\}^{2} \tag{eq. 4.9}
\end{equation*}
$$

where $P(i)$ is the correct cutting path on the i th line of the image (Figure 4.5), and n is the number of the lines of the image being tracked.

The bigger σ^{2}, the greater the tracking error. When the distortion (i.e. lateral scaling mismatch between image and map) is 0%, the tracking errors produced by the four weighting functions are the same. As the distortion increases, the tracking errors of all weighting functions are increased.

Comparing different weighting functions, that in Table D has the biggest error and Table A has the smallest error. The functions in Table B and C give intermediate results.

In the real world, the map and image are acquired separately and some localised mismatches, caused by noise and distortion within the crosscorrelation, are inevitable. For example, the map (Figure 4.6) is 12% bigger than image (Figure 4.7 b). In Figure 4.7 b there is a 'hole' 20 by 35 pixels. The equation 4.7 is directly used to find cutting path. On the area of the 'hole' the cutting path is broken. Figure 4.7a shows the tracking error across the hole.

One approach to overcome the localised mismatches is to apply redundant trackings to the patterned material and to use a sophisticated decision making mechanism. At lest two paths are tracked in parallel. One is the real cutting path, another is the back-up path. If one of paths loses its tracking, the decision based on another path can keep the real cutting path on the correct position. But if both paths lose their way, it needs another back-up tracking path or other method to keep the real cutting path on the correct position. Obviously it needs double or triple computing power.

A first-order infinite impulse response (IIR) filter (Johnson 1989, Proakis 1988) function used to combine the output from the line currently being processed with historical data from previous lines is another approach to tackle localised mismatches;
$H(i, j, q)=\operatorname{Lcorr}(i, j, q)+\beta\{H(i-1, j-1, q)\}$
where $H(i-1, j-1, q)$ represents the previous filter output.

It is necessary to find the range of β to ensure that the $H(i, j, q)$ is convergent. If we only consider the positive range due to the addition of the historical data, the equation 4.10 can be rewritten to equation 4.11. The $H(q)$ stands for $H(i, j, q)$, and the $\ln (q)$ for $\operatorname{lcorr}(i, j, q)$.

$$
\begin{align*}
H_{n}(q) & =l_{n}(q)+l_{n-1}(q) \times \beta+l_{n-2}(q) \times \beta^{2}+\ldots . . \\
& =\sum_{i=1}^{n} l_{i} \times \beta^{n-i} \leq l_{\max } \sum_{i=1}^{n} \beta^{n-i}=l_{\max } \sum_{i=1}^{n} \beta=l_{\max } \frac{1-\beta^{n}}{1-\beta} \tag{eq. 4.11}
\end{align*}
$$

where $l_{\max }(q)=\operatorname{Max}\left\{l_{i}(q) \quad(i=0,1, \ldots \ldots, n)\right\}$. When n goes to infinity, the condition for $H_{n}(q)$ to be convergent is $0 \leq \beta<1$. Then we have equation 4.12 as follows:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} H n(q) \leq \lim _{n \rightarrow \infty}\left\{l_{\max }(q) \times \frac{1-\beta^{n}}{1-\beta}\right\}=l_{\max }(q) \times \frac{1}{1-\beta} \tag{eq. 4.12}
\end{equation*}
$$

coeff.B	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
line 1	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95
line 2	0.36	0.42	0.49	0.56	0.64	0.72	0.81	0.90
line 3	0.21	0.27	0.34	0.42	0.51	0.61	0.73	0.86
line 4	0.13	0.18	0.24	0.32	0.41	0.52	0.66	0.81
line 5	0.08	0.12	0.17	0.24	0.33	0.44	0.59	0.77
line 6	0.05	0.08	0.12	0.18	0.26	0.38	0.53	0.74
line 7	0.03	0.05	0.08	0.13	0.21	0.32	0.48	0.70
line 8	0.02	0.03	0.06	0.10	0.17	0.27	0.43	0.66
line 9	0.01	0.02	0.04	0.08	0.13	0.23	0.39	0.63
line10	0.01	0.01	0.03	0.06	0.11	0.20	0.35	0.60
line11	0.00	0.01	0.02	0.04	0.09	0.17	0.31	0.57
			$\ldots \ldots$.					
line15	0.00	0.00	0.00	0.01	0.04	0.09	0.21	0.46
line20	0.00	0.00	0.00	0.00	0.01	0.04	0.12	0.36
line22	0.00	0.00	0.00	0.00	0.01	0.03	0.10	0.32
line45	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.10

Table 4.2 First-order IIR filter transmissions for a range of β values

The position of the found path at the i th line of the input image is decided by;
$P_{i m}(i)=Y(i)+q^{i}-q / 2$
where $H\left(i, j, q^{\prime}\right)=\operatorname{Max}\{H(i, j, k)\} \quad 0 \leq k \leq q$

Tests were undertaken to show how the value of β affects the tracking behaviour across a 'hole' (i.e. a localised defective area of the input image). The map (Figure 4.6) is 12% wider than the images (Figure 4.8b). In Figure 4.8 b there is a hole that is 35 by 20 pixels. In Figure 4.8 the cutting path is continued due to the integrating effect of β. The tracking errors in Figure 4.7a and 4.8a are as follows:
$\sigma=P_{i m}(i)-P(i)$

The use of the IIR filter allows a degree of two-dimensionality to be achieved in the matching process, rather than a simple line-by-line comparison, but without greatly increasing the computational complexity. The value of the parameter β determines the rate at which the historical data 'fades-away' from the matching process.

Table 4.2 shows the 'fade out' effect for an appropriate range of values of the coefficient β.

4.3 MATCHING ALGORITHM FOR X-DIRECTIONAL DISTORTION

The discussion so far has assumed line by line synchronisation between the map and image in the x (and ξ) direction. This cannot be guaranteed in practice, not only because of sampling quantisation but also due to unavoidable sampling rate differences (in lines $/ \mathrm{mm}$ of map or image) which may be due to transport velocity or tension related longitudinal scale differences between map and image. These result in the length of the map not matching that of the image. Matching between different lengths of map and image is, therefore, now considered.

Following are the two steps of the strategy of x directional matching:

4.3.1 The Best Matching Selection

Assuming the $(j-1)$ th line of map and the ($i-1$)th line of image have previously been matched with each other, the matching of the i th line of input image is considered. The i th line of input image is compared with the $(j-1)$ th, j th and $(j+1)$ th lines of the map respectively (Figure 4.9). In other words, the values of matching for three pairs, $\operatorname{Lcorr}(i, j-1, q), \operatorname{Lcorr}(i, j, q)$ and $\operatorname{Lcorr}(i, j+1, q)$, are calculated and the best value is chosen among the three pairs. Then this line matching value is fed into the IIR filter using equation 4.10.

The explanations for the line matching results are as follows. If the i th line of image best matches the ($j-1$)th line of map, this means the image is longer than (or 'ahead of') the map in the longitudinal direction at this point (Figure 4.10a). If the i th line of the image best matches the j th line of map, that means the image is synchronised with the map at this point (Figure 4.9). If the i th line of the image best matches the $(j+1)$ th line of the map, it means the image is shorter than (or 'behind') the map at this point (Figure 4.10b). If the distortion is even all over the patterned material, this approach can only suit three cases; 1) map and image have the same pattern repeat length, the i th line of the image always matches the j th line of the map; 2) the pattern repeat length of the image is the half length of the map. The i th line of the image always matches the $(j+1)$ th line the map; 3) the pattern repeat length of the image is infinity so the i th line of the image always matches the $(j-1)$ th line of the map.

4.3.2 The Forced Matching Selection

There are various cases in the real world so two forced decisions in tracking are required. Firstly the possibility of requiring a forced decision in tracking may result if matching results are the same for two consecutive match pairs. For example, if the i th line of image can match both the $(j-1)$ th and the j th lines of map or both the j th and the $(j+1)$ th lines of map. In this case the j th line of map is chosen as the matched line to keep the synchronisation between map and image. If the i th line of image can match both the $(j-1)$ th and the $(j+1)$ th lines of map, the $(j+1)$ th line of map is chosen to keep the map moving forwards.

For convenience of description, a 'wait' is defined if the i th line of the input image matches the ($j-1$)th line of the map; a 'step' is defined if i th line of the input image matches the j th line of the map; and a 'jump' is defined if the i th line of the image matches the $(j+1)$ th line of the map. The 'wait' and 'jump' are the exceptional tracking actions.

The second forced decision may need to be taken if an exceptional tracking condition has occurred twice in sequence. If a 'wait' is required twice in sequence after a step, that indicates that the image length from $(i-1)$ to $(i+2)$ is three times longer than the map length from ($j-1$) to j (Figure 4.11). The real image cannot be three times longer than the map so the algorithm forces a 'step' once without any match condition. After that action, the length of the image at that point is one and half times longer the length of the map (Figure 4.12).

If it 'jumps' twice in sequence after a step, it means that the image length from (i-1) to (i+2) is three-fifths of the length of the map (Figure 4.13). The real lace cannot be such a short length so that the algorithm forces a 'step' once without any match condition. After that action the length of the image at that point is three-quarters of the map length (Figure 4.14). This step of matching also provides for the cases that the match can 'wait' twice after a 'jump' (Figure 4.15) and the match can 'jump' twice after a 'wait' (Figure 4.16).

All these keep the performance of the algorithm correct when the length of the image is within the range from one and half times longer than the length of the map to three-quarters shorter than the map. The working range of the algorithm is over $\pm 10 \%$ larger than the real lace variation.

4.4 EXPERIMENTAL TESTS ON PC

In order to test the algorithm, several experiments have been conducted. Initial non real-time testing was performed on an IBM PC-AT compatible computer using stored data obtained from an area-scan CCD camera (vision system 1, chapter 3) and static lace samples (test rig 1, chapter 3).

Scaling and distortion errors in the input image were introduced by manually stretching (or relaxing) the lace fabric laterally and/or longitudinally between capturing the image used as the reference map and the image to be tracked. The path to be tracked was referenced to the map data by manual input using the keyboard. To simulate noise in the images the captured image data was degraded by applying 'white-noise' by modifying a set percentage of individual image pixels selected by a random number generator.

Figure 4.17 is computer output from tracking a lace sample with a fine pattern (pattern p 1) with a resolution of 10 pixels $/ \mathrm{mm}$. The black pattern is the image of the figuring threads in the lace. The thin black line running from top to bottom close to the centre of the picture is the reference path to be tracked; it represents a cutting path which will separate the lace figuring from its background mesh (not visible here) without damaging the scalloping edge. The grey area to each side of the found path shows the extent of the matching width.

Figure 4.18 is from another lace sample with a large pattern (pattern p2). The resolution is again 10 pixels $/ \mathrm{mm}$. The cutting line here is for a 'centre-cut'.

A summary of some of the tests conducted for two lace patterns is given in table 4.3. Distortion of the pattern by stretching in the y direction was applied in 1% steps, while the coefficient β of the IIR filter was varied between the limits shown in table 4.3 in increments of 0.05 . All the tracking tests were performed with and without simulated noise. Detailed results for tracking pattern p1 are shown in Figures 4.19-4.20. Figure 4.19 shows the maximum tracking error, over a whole pattern repeat, for differing levels of stretch and filter coefficient. Less than two pixels maximum path error is achieved at up to 10% stretch across a range of values of β. Figure 4.20 shows the maximum tracking error with 2% random noise in the image (but not in the reference map) for the same test series as Figure 4.19. (Average tracking errors of less than 0.2 pixels are achievable under realisable operating conditions.) Figures 4.21 and 4.22 show the similar performance for tracking pattern p 2 . Performance of tracking with 2% random noise in the image is slightly degraded but is still quite acceptable for the intended application. Space does not permit the inclusion of detailed results for all the tests (see Appendix 2)
but in all cases maximum tracking error at 10% stretch was 3 pixels or less, with or without simulated noise, when β values of $0.8-0.9$ were used.

A summary of the experiments is given in table 4.3.

The test results show several things. Firstly, as might be expected, the performance of the algorithm is sensitive to the pattern. In general, the matching results on p 2 are better than p 1 . The minimum width of match pixels required for successful matches with p 2 is lower than for p 1 , so less computation time is used for p 2 . The range of distortion permissible in the y direction in matching p 2 is also bigger than that permissible in matching p 1. Secondly, for a particular pattern, the lower the image resolution, the lower minimum matching width that can be used. The third observation is that the bigger IIR filter coefficient (β) values generally give better tracking, but, predictably, excessive values prevent the tracking from following sharp deviations in the reference path. For the lace patterns and cutting paths tested, coefficients between 0.75 and 0.85 performed well. Degradation of the image data by superimposing 2% random noise had no significant effect on the matching results of pattern p 2 , but was significant for p 1 with the lower resolution of 2 pixels $/ \mathrm{mm}$. Finally, increasing the matching width does not necessarily improve the match result on pattern p 1 .

pattern	p 1	p 2	p 1	p 2	p 1
resolution (pixels/mm)	10	10	4	4	4
matching width, pixels	128	96	96	64	128
no noise:					
coefficient β, y distortion \%	$0.4-0.90$	$0.4-0.90$	$0.4-0.90$	$0.4-0.90$	$0.4-0.90$
$1-15$	$1-15$	$1-11$	$1-15$	$1-11$	
coefficient β,					
y distortion \%					

Table 4.3 Summary of test conditions for the tracking algorithm.

4.5 IMPLEMENTATION OF PATTERN TRACKING ON DSP

There are two program languages for DSP56001 coding, assembly and C. Normally C programming language is more friendly to programmers than assembly language, but would be slower in operation. Due to the real-time requirement of pattern tracking, assembly language is used to implement the code for DSP56001. Also assembly level programming allows detailed knowledge of the DSP architecture and instruction set to be exploited at the optimisation stage of the algorithm software research (see chapter 7).

In order to explain the DSP implementation clearly and not to involve too much detail of the DSP assembly instruction set, a pseudo code is used in this section.

The executive program of tracking by using DSP56001 can be described as follows:

```
Tracking(
{
    initialisation(i,j,H(i,j,q),Y(i),increment,increment p p;
    do {
        form_segment_image( (Ig,i,Y(i));
        one_dimensional_correlation(Ig,Ma}(j),\mp@subsup{L}{corr}{}(i,j,q))
        one_dimensional_correlation( (Ig,Ma}(j+1),\mp@subsup{L}{corr}{}(i,j+1,q))
        one_dimensional_correlation( ( }\mp@subsup{g}{,}{},\mp@subsup{M}{a}{}(j+2),\mp@subsup{L}{corr}{}(i,j+2,q))
        choice(increment,increment_p,L}\mp@subsup{L}{\mathrm{ corr }}{(i,j+increment,q), L_orr}(i,j,q)
            LCorr}(i,j+1,q),\mp@subsup{L}{\mathrm{ corr}}{}(i,j+2,q))
        for(k=0;k<q;k++)
            H(i,j+increment,k)=Lcorr(i,j+increment,k)+\beta\timesH(i,j,k);
        tracked_point_decision(Pim(i),Y(i),H(i,j+increment,q));
        i=i+1;
        j j j+increment;
        prediction_new_point(Pim(i),Y(i),Pma(j),Pma(j+1));
        } while(i<tracking_length);
}
```

The procedure 'tracked_point_decision $(\operatorname{Pim}(i), Y(i), H(i, j+i n c r e m e n t, q))$ ' is the eq. 4.13 and 'prediction_new_point $(\operatorname{Pim}(i), Y(i), P m a(j), P m a(j+I))$ ' is the eq. 4.8 so no further description. The procedure 'initialisation $(i, j, H(i, j, q), Y(i)$, increment, increment_p) is to set $i=0, j=0, \quad Y(i)=P m a(j), \quad H(i, j, q)=0$, increment $=1$, and increment $p=1 . .^{\prime} i=0$ ' means that the tracking starts from the beginning of the image. ' $j=0^{\prime}$ is similar to ' $i=0$ ' (in section 5.3 in order to find a start point by using tracking method the value of j is changed). ${ }^{\prime} Y(i)=P m a(j)$ means that the first predicting cutting position directly uses the first point of reference path without modification (in section 5.3.1.2 an analysis shows the limitation of $' Y(i)=P m a(j)$ '). The increment and increment p stand for the matching actions for X -direction (see section 4.3) and the increment_p is the action one step early than the increment. If increment or increment p equals zero, a 'wait' occurs; if 1, 'step'; if 2, 'jump'. At the beginning of tracking, no exceptional tracking actions are assumed so the increment and increment p equal one.

Section 4.5.1, 4.5.2 and 4.5.3 discuss respectively the procedures as follows:

- form_segment_image($\left.I_{g}, i, Y(i)\right)$;
- one_dimensional_correlation $\left(I_{g}, M_{a}(i), L_{c o r r}(i, j, q)\right)$;
- choice(increment, increment $p, L_{\text {corr }}(i, j+$ increment,$q), L_{\text {corr }}(i, j+2, q)$, $\left.L_{\text {corr }}(i, j+1, q), L_{\text {corr }}(i, j, q)\right)$.

4.5.1 Forming an Image Segment

The purpose of this procedure is to form a segment in the i th line of the image. The length of the segment is $n+q$ (matching_length $+l a g$) and centre of the segment is at $Y(i)$ (see Figure 4.3). Firstly an image format in the memory is introduced. In order to store and move the image data in memory efficiently, a word (24 bit) in memory stores 24 pixels of image (binary) from the most significant bit (MSB) to the lest significant bit (LSB). Successive 24 bit pixels of image are stored in the next word in ascendant memory address, and so on. The format of the image storage maintains the continuity of image in logical location of memory. For example, an image segment, '1111 0111 1110000111000011110000011111110000000011 ' (in binary) can be stored in 2 consecutive words, 0xf7elc3 and oxc1fc03 (in hexadecimal). Alternately the image can be stored in 24 bit word from LSB to MSB and
from high address of memory to low address, but this format is the same as the former format in principle and in this thesis the first format is used.

One problem in forming an image segment is how to transfer the beginning of the desired segment to the MSB of a 24bit word (that is convenient for the one-dimensional cross-correlation, section 4.5.2). The beginning point of the desired image segment, $B_{I g}(i)$, in image coordinate is defined as the equation 4.15 .
$B_{I_{8}}(i)=Y(i)-(n+q) / 2$

The value of $B_{I g}(i)$ can be within the width of the image. Then $B_{I g}(i) / 24$ is a displacement in words from the origin of the i th image and $B_{I g}(i) \% 24$, representing the first bit of the desired image, can be any number between 0 and 23 , because the image is stored in 24 bit words in successive memory locations. The concept for the procedure is as follows:

```
form_segment_image(Ig,i,Y(i))
{
    B
    word=}=\mp@subsup{B}{Ig}{(i)/24;
    bit=\mp@subsup{B}{Ig}{(i)%24;}
    for(j=0;j<(n+q)/24;j++)
    {
        double_word=((Image(i,word +j)<<24)|(Image(i,word + j +1)));
        double_word>>=(24-bit);
        Ig(j)=double_word&0xffffff;
    }
}
```


4.5.2 One-Dimensional Correlation

This procedure implements equation 4.7. In order to simplify the implementation the $I g$ and $M a$ start from the MSBs. Assuming $q<=48$, the procedure is as follows:

```
one_dimensional_correlation_1(Ig, Ma(i), L_Corr}(i,j,q)
{
    for(i=0;i<q;i++) Lcorr(i)=0;
    for(i=0;i<n/24;i++)
{
        triple_word=(Ig(i)<<48)|(Ig(i+1)<<24)|(Ig(i+2));
        word_map=Ma(i);
        for(j=0;j<q;j++)
        {
        word image=(triple_word>>48)&0xffffff;
        corr-word_image XOR word_map;
        for(k=0;k<24;k++)
        {
        if((corr&ox800000)==0x800000)
            Lcorr(j) += weightA(i*24+k);
            corr <<= 1;
        }
        triple_word<<=1;
    }
}
}
```

There are three loops, i, j, k, in the above procedure. The loop k is a time consuming task. If $q=48$ and $n=96$, there are 4608 actions of ' $\mathrm{if}(($ corr\&ox800000) $=0 \times 800000)$ ' in the procedure. One way to speed up is to use a look-up table. The test in table 4.1 shows that if using a 4 step weighting table instead of a linear taper weighting table, the difference in result between the two is small. The 4 step weighting table implies that a group of XOR bits with the same weighting value can be summed up before the weighting value calculation. The sum of how many ' 1 ' bits in a group can be done by using the group of XOR bits as a pointer to a look-up table. The elements in the look-up table are the sum of the ' 1 ' bits in each of the pointer. For example, using a look-up table to count the ' 1 ' bits in any of 4 bit number. The set of 4 bit number is $(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)$ in decimal or ($0000,0001,0010,0011,0100,0101,0110,0111,1000,1001,1010,1011$, $1100,1101,1110,1111$) in binary. Then a look-up table for counting ' 1 ' in
any 4 bit number is table($0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4$) in decimal or $\operatorname{table}(0000,0001,0001,0010,0001,0010,0010,0011,0001,0010,0010$, $0011,0010,0011,0011,0100$) in binary. If looking for the number of ' 1 ' bits in 12, the sum is table(12)=2. The procedure to use the look-up table is as follows:

```
one_dimensional_correlation_2(Ig, Ma(i), Lcorr(i,j,q))
{
    weightB()}=(1,2,3,4,4,3,2,1)
    for(i=0;i<q;i++) Lcorr(i)=0;
    for(i=0;i<n/24;i++)
    {
        triple_word=(\operatorname{lg}(\textrm{i})<<48)|(\operatorname{Ig}(\textrm{i}+1)<<24)|(\operatorname{Ig}(\textrm{i}+2));
        word_map =}=\textrm{Ma}(\mathbf{i})
        for(j=0;j<q; j++)
        {
        word_image=(triple_word>>48)&0xffffff;
        corr=word_image XOR word_map;
        corr1=(corr>>12)|oxfff;
        Lcorr(j) += Look_up(corrl)\timesweightB(i\times2);
        corrl=corr|oxfff;
        Lcorr(j) += Look_up(corrl) xweightB(i\times2+1);
        triple_word<<=1;
        }
    }
}
```

With this approach, the execution time of the tracking reduced to one-sixth of the time for the previous tracking concept. Further optimisation of this procedure is discussed in chapter 7. The corr variable contains 24 bit XOR result but the corrl is 12 bit. The reasons behind this are 1) the biggest number of a group of XOR result bits with the same weighting value is 12 because the 4 step weighting table is used (if $n=96, n / 8=12$); 2) a single DSP56001 has only $3 \times 64 \mathrm{k}$ word memory accessing ability (including program memory, see Motorola 1989). A 24 bit address pointer look-up table has $16,777,216$ elements, or 16 M words, which is far bigger than the memory
capacity of DSP56001, although the 24 bit table is faster than the 12 bit table. A 12 bit look-up table only has 4,096 , or 4 K words, which is small enough to allow DSP56001 to store the map, image and look-up table within its memory at the same time.

4.5.3 Match in Longitudinal Direction

The idea of how to choose 'wait', 'step' and 'jump' is discussed in section 4.3. In order to describe how to make the forced decisions, two variables ' s ' and ' t ' are introduced. The s is the sum of three consecutive X -dimension matching actions, that is current, previous and one before the previous. The t is the sum of two previous X-dimension matching actions. Before the forced decision the current action results from the best matching of three one-dimensional correlations (see section 4.3.1 and 4.5.2). All possibilities of three consecutive X -dimension matching actions before a force decision are listed in table 4.4. Then the current X -dimension matching action will or will not be changed according to the section 4.3.2. All possibilities of three consecutive matching actions after a forced decision are listed in table 4.5. The values of c that have been changed in table 4.5 are highlighted.

c	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
i	0	0	0	1	1	1	2	2	2	0	0	0	1	1	1	2	2	2
p	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
s	0	1	2	1	2	3	2	3	4	1	2	3	2	3	4	3	4	5
t	0	1	2	1	2	3	2	3	4	0	1	2	1	2	3	2	3	4

c	2	2	2	2	2	2	2	2	2
i	0	0	0	1	1	1	2	2	2
p	0	1	2	0	1	2	0	1	2
s	2	3	4	3	4	5	4	5	6
t	0	1	2	1	2	3	2	3	4

Note: c--current increment action;
i--previous increment action;
p --action before $\mathrm{i} ; \quad \mathrm{s}=\mathrm{c}+\mathrm{i}+\mathrm{p} ; \quad \mathrm{t}=\mathrm{i}+\mathrm{p}$.
Table 4.4 Three consecutive actions before forced decision.

Comparing the c, s, and t in table 4.4 and 4.5 the forced decisions on the c in table 4.5 are decided by the values of s and t in table 4.4 as follows:

- if $2 \leq s \leq 4$, no forced decision is needed;
- when $2>s$, the forced decision on c is determined by $c=2-t$;
- when $4<s$, the forced decision is determined by $c=4-t$.

If there are two best matchings in the different lines of map, a decision of which one is the matched result should be made. The table 4.6 shows all possibilities of two best matchings. If best 1 equals best 2 , the decision of best matching is the best I (see case 1,5 and 9 in table 4.6). If either best 1 or best 2 equals $j+1$, the decision is $j+1$ (see case $2,4,6$, and 8). The rest case 3 and 7 produce $j+2$ decision.

c	2	1	0	1	0	0	0	0	0	2	1	1	1	1	1	1	1	0
i	0	0	0	1	1	1	2	2	2	0	0	0	1	1	1	2	2	2
p	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
s	2	2	2	2	2	3	2	3	4	2	2	3	2	3	4	3	4	4
t	0	1	2	1	2	3	2	3	4	0	1	2	1	2	3	2	3	4

c	2	2	2	2	2	1	2	1	0
i	0	0	0	1	1	1	2	2	2
p	0	1	2	0	1	2	0	1	2
s	2	3	4	3	4	4	4	4	4
t	0	1	2	1	2	3	2	3	4

Note: the value on c row in italics is the result of forced decision.
Table 4.5 Three consecutive actions after forced decision on c .

case	1	2	3	4	5	6	7	8	9
best 1	j	$\mathrm{j}+1$	$\mathrm{j}+2$	j	$\mathrm{j}+1$	$\mathrm{j}+2$	j	$\mathrm{j}+1$	$\mathrm{j}+2$
best 2	j	j	j	$\mathrm{j}+1$	$\mathrm{j}+1$	$\mathrm{j}+1$	$\mathrm{j}+2$	$\mathrm{j}+2$	$\mathrm{j}+2$
decision	j	$\mathrm{j}+1$	$\mathrm{j}+2$	$\mathrm{j}+1$	$\mathrm{j}+1$	$\mathrm{j}+1$	$\mathrm{j}+2$	$\mathrm{j}+1$	$\mathrm{j}+2$

Table 4.6 Combinations of two best matchings.

The implementation is as follows:


```
{
for(i=0;i<q;i++) Lcorr(i)=0;
max=Lcorr_0(0);
max back=max;
c=0;
c_back=c;
for(i=0;i<q;i++)
{
    if(Lcorr_0(i)>=max)
    {
                max_back=max;
                    max=Lcorr_0(i);
                    c_back=c:
                c=0;
            }
        if(Lcorr_1(i)>=max)
        {
                max_back=max;
                max=Lcorr_1(i);
                c_back=c:
                c=1;
            }
        if(Lcorr_2(i)>=max)
        {
                max_back-max;
                max=Lcorr_2(i);
                c_back=c:
                c=2;
        }
    }
if(max=max_back)
        if(c!=c_back)
```

```
        if((c==1)|(c_back=1)) c=1;
            else c=2;
    s=c+increment+increment_p;
    t=increment+increment_p;
    if(s>4) c=4-t;
    else if(s<2) c=2-t;
    increment_p=increment;
    increment=c;
    if(c=0) for(i=0;i<q;i++) Lcorr(i)=Lcorr_0(i);
    else if(c==1) for(i=0;i<q;i++) Lcorr(i)=Lcorr_l(i);
        else for(i=0;i<q;i++) Lcorr(i)=Lcorr_2(i);
    }
}
```


4.6 CONCLUDING REMARKS

The off-line tests described here have enabled suitable values of the IIR β coefficient and centre-weighting function for line matching to be investigated. The results were sufficiently encouraging for the algorithm to be transferred to DSP based hardware for real-time tracking tests.

For the experimental patterned surfaces tested the algorithm is capable of dealing with degrees of lateral distortion of more than 10% and even greater longitudinal distortions.

The algorithm can cope with an arbitrary geometric relationship between a patterned surface and the path to be followed across it.

The foregoing properties make the algorithm suitable for centre-cutting and scalloping textile lace. It is envisaged that the algorithm can be used in other applications in which a continuous pattern in one direction can be found.

The minimised computational requirements of the algorithm described make it suitable for use in the real-time tracking of high resolution images and also make it possible to be implemented in relatively simple correlation type hardware to achieve higher processing speed (see chapter 7).

input image

map

Figure 4.1 Coordinate system of image and map

Figure 4.2 Prediction of $Y(i)$

Figure 4.3 One-dimentional cross-correlation

Figure 4.4 Tracking error σ^{2} (pixels ${ }^{2}$) with different weighting tables

Figure 4.5 Test procedure

Figure 4.6 The map and predetermined path

Figure 4.7a Tracking error across a hole with $\beta=0$

Figure $4.7 \mathrm{~b} \beta=0$, image and cutting path

Figure 4.8a Tracking error cross a hole with $\beta=0.90$

Figure $4.8 \mathrm{~b} \beta=0.9$, image and cutting path

Figure 4.9 One line of incoming image matching with three consecutive lines of the map

Chapter 4 AN INCREMENTAL REAL-TIME PATTERN TRACKING ALGORITHM

action	image line	matched map line
step	$i-1$	$j-1$
wait	i	j
wait	$i+1$	j
intervals	$i+2$	j
	3	1

Figure 4.11 Two 'waits' in succession

action	image line	matched map line
step	$i-1$	$j-1$
wait	i	j
forced step	$i+1$	j
intervals	$i+2$	$j+1$
	3	2

Figure 4.12 Two 'waits' changing to 'wait - step'

action	image line	matched map line
step	$i-1$	$j-1$
jump	i	j
jump	$i+1$	$j+2$
intervals	$i+2$	$j+4$

Figure 4.13 Two 'jumps' in succession

Chapter 4 AN INCREMENTAL REAL-TIME PATTERN TRACKING ALGORITHM

action	image line	matched map line
step	$i-1$	$j-1$
jump	i	j
forced step	$i+1$	$j+2$
intervals	$i+2$	$j+3$
	3	4

Figure 4.14 Two 'jumps' changing to 'jump - step'

action	image line	matched map line
jump	$i-1$	$j-1$
	i	$j+1$
wait	$i+1$	$j+1$
intervals	$i+2$	$j+1$

Figure 4.15 Two 'waits' after jump

action	image line	matched map line
wait	$i-1$	$j-1$
jump	i	$j-1$
jump	$i+1$	$j+1$
intervals	$i+2$	$j+3$
	3	4

Figure 4.16 Two 'jumps' after wait

Figure 4.17 Lace test pattern 1 (scalloping)

Figure 4.18 Lace test pattern 2 (centre-cutting)

Figure 4.19 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern p1(test conditions as given in column 1 of Table 4.3)

Figure 4.20 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern pl with 2% noise (test conditions as given in column 1 of Table 4.3)

Figure 4.21 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern p2 (test conditions as given in column 2 of Table 4.3)

Figure 4.22 Maximum tracking error as a function of pattern y-distortion and IIR filter coefficient β for pattern p 2 with 2% noise (test conditions as given in column 2 of Table 4.3)

Chapter 5

METHODS TO FIND THE START POINT

5.1 INTRODUCTION

Finding the start point is basically to find a position on the map corresponding to with the first part of the incoming image, this registering the two images, before the beginning of further tracking. The basic approach to finding the start point is to find desired features on the incoming image.

Feature finding (or segmentation) is one of the basic topics of computer vision. The features to be found on the detected image differ from the model features on the reference image for various reasons such as acquisition errors, different distortions of the material when images are taken. If the differences are much smaller than the dimensions of the features, they can be ignored as is typically the case with interchangeable rigid mechanical components in mass-production. When applied to this kind of subject, feature recognition can be carried out without considering the effect of deformation of the materials. The techniques of feature recognition in this area have been well developed and are now the subject of established academic texts (Davies 1990). There are, however, other situations in which the differences from the reference model are too big to be ignored because the materials on which the features are to be recognised are flexible or elastic. For instance, the appearance of features on knitted fabric varies considerably with knitting tension and level of stretch at the time of imaging, and the human organs on computer tomography charts differ because of the different postures of the patient.

In the situation where the acquired image may differ by rotation, scale and translation (RST) from the reference, solutions have been presented based on invariance kernels. Rubinstein et. al. (Rubinstein 1990) describe a general theoretical approach to distorted or deformed pattern recognition. They show how invariance kernels can be obtained for distortions generated by Lie transformation groups. The most important invariance kernels they report (for rotation and dilation generators) they call the Mellin-Fourier kernel, because it is based on Mellin and Fourier transforms. A practical pattern recognition implementation based on Mellin and Fourier transforms, has been reported by

Hall and Matias (Hall 1993). They attempted to recognise images of viruses, with variable RST, using a template matching algorithm implemented on a powerful array of Transputers (27 T800 devices). Matching of small objects such as keys in their 256×256 pixel images was successfully achieved quickly (around 10 seconds) when the image quality was good, but the noisy images of real viruses could not be distinguished from one another.

A different approach to registering images with varying RST has been presented by Zheng and Chellappa (Zheng 1993) motivated by a requirement for image processing based wind velocity measurement for the Mars '94 project. They have successfully registered aerial images from a balloon mounted camera. Rotation is first estimated by examining illuminant direction information. A small number of feature points are then located, based on a Gabor wavelet model for detecting discontinuities in local curvatures. These are pairwise matched to provide estimates of scale and translation. More accurate estimates of RST are then obtained by hierarchical (coarse to fine) correlation matching.

Distorted feature finding has also been reported by Burr (Burr 1981) who makes use of a 'rubber sheet transform' to find the matched feature pair. The application of this method has been reported by Moshfeghi (Moshfeghi 1991). All edges of the features on an image can be represented by polygonal or polynomial approximations. Similarities between the approximate representations on the images of the reference object and deformed object can then be checked and the features on the image of the deformed object can be detected. This method seems sensitive to noise (Maitre 1989).

The Hough transform offers an alternative approach to feature finding. In principle, the Hough transform is a statistical method of recognizing features. The ordinary Hough transform describes a feature with an analytical model, as in the example of line detection (Hough 1963); or with a list of boundary points that make up a template, as in the generalized version (referred to as GHT) (Ballard 1981). Then, each image point of interest transforms to a parameter space (e.g. line parameters used in such space for line detection) to make an occurrence ('vote') on every possible position according to the model description. A further analysis of the parameter space is employed to find the
points in the parameter space which have the highest votes and at which there is therefore the greatest likelihood of locating a desired feature. The positions and the number of features on the image can thus be decided. This method can cope with some occlusions if the vote on the desired position is still higher than the vote on other undesirable areas.

Normally the Hough transform is applied to recognizing a feature on a nondeformable material in which the model of the feature is defined as a set of boundary points or a set of boundary formulae (referred to as a Hough transform with a boundary model). Examples have been reported in biscuit inspection (Davies 1984) and IC inspection (Albanesi 1990). If the Hough transform is directly applied to feature recognition on deformable patterned materials it will fail, because the relationship of the boundary points on the acquired image established by the boundary model does not stay the same for differing degrees of stretch in the material.

In section 5.2 a sub-feature model for Hough transform is proposed and studied. In section 5.3 another method of finding the start point based on the tracking algorithm concept of chapter 4 is investigated.

5.2 MODIFIEd HOUGH TRANSFORM FOR FINDING THE START POINT

To cope with feature recognition on deformable patterned materials a sub-feature model is therefore introduced to the Hough transform.

5.2.1 Sub-Feature Model for Hough Transform

Consider an expected feature on an image where the feature is composed of a set of contiguous elements, such as might be the case for a flower on a textile fabric. The feature is divided into several sub-features according to the similarity of texture on a relatively small area. If binary images are considered, a sub-feature will be a small area with the same feature character, black or white.

The sub-feature can be described by a set of pixels within a predetermined area of the feature, $s(i)$. The i is the number of sub-feature. If one point on each sub-feature is chosen as a reference for vectors between the sub-features, the vectors and the sets of pixels for every sub-feature can be used to describe the feature. If i and j are the numbers of the sub-features for a feature, the vector $v(i, j)$ represents the geometric relationship between sub-features i and j. A feature can now be described by sub-features $s(i)$ and the vectors $v(i, j)$.

For feature recognition on non-deformable materials the applications of the Hough transform with the sub-feature model gives the same results as the Hough transform with the boundary model. Suppose that there is an image with a feature of interest; the sub-feature model for the feature from the sample image can be made as above, but the reference points for the vectors on the sub-feature are chosen to be on the edge of each feature. The sub-feature model is now equal to the boundary model and the vectors $v(i, j)$ can be easily changed into a reference table. However, it is not significantly different if the reference points for vectors are in the middle of the sub-features because the geometric relationship between the sub-features of the feature on the detected image remains the same as, or very similar to that on the sample image. Figure 5.1 is an example of using the sub-feature model Hough transform to detect a feature without any distortion. Figure 5.1a shows the feature which is described by vectors and sub-features, Figure 5.1 b is the input image with the feature described in Figure 5.1a and Figure 5.1c is the result after transformation.

The feature on the reference sample is usually different from the same feature on the image detected later because the image for the reference sample and for detection are from different parts of the deformable material or under different conditions. The vectors $v(i, j)$ and sets of pixels $s(i)$ are used to describe the model of the feature on the sample image. The vectors $v^{\prime}(i, j)$ and sets of pixels $s^{\prime}(i)$ are used to represent the corresponding feature on the detected image. The relationships between $v(i, j)$ and $v^{\prime}(i, j)$ can be written as

$$
v^{\prime}(i, j)=v\left(i_{2} j\right)+D v(i, j)
$$

and the relationship between any $s(i)$ and related $s^{\prime}(i)$ will be

The definition of $D v(i, j)$ and $D s(i)$ can be used for either a 'stretched' or 'squeezed' case. The effect of the $D v(i, j)$ and $D s(i)$ on the detection of the feature on the deformable material is discussed here. The effect of the $D v(i, j)$ on the detection of the feature is considered first. Suppose the points on every sub-feature for vectors are in the centres of the sub-features. If $D v(i, j)$ is small and the $v(i, j)$ still points to a pixel within the $s(j)$, some pixels of the set of pixels $s(j)$ on the detected image can still make a contribution to the vote on the parameter space (Figure 5.2). The feature still can be detected, although the position may change slightly. If $D v(i, j)$ is too big and causes the pixel pointed to by $v(i, j)$ to be outside the $s(j)$, the votes in the expected area will decrease. If the votes are the same as or below the levels of other undesired areas, this method will fail. It is envisaged that the effects of $D s(i)$ on the feature finding results would be similar to the effect of the $D v(i, j)$ from the 'vote' point of view. Because usually only boundary pixels are interesting for Hough transformation with the boundary model the parameter space in the GHT form is determined by equation 5.3:

$$
\begin{equation*}
A(i, j)=\sum_{k \text { calloundarics }} \alpha_{k}(i, j) \tag{eq. 5.3}
\end{equation*}
$$

The $\alpha_{K}(i, j)$ is the sub-parameter space for pixel k according to the reference table. The parameter space $A(i, j)$ will store the final votes for analysis later. This saves a lot of computing time.

When the Hough transform with sub-feature model is used, all image pixels are proposed to be used, including the edge pixels, to find features with a certain degree of deformation or elasticity (see equation 5.4).

$$
\begin{equation*}
A(i, j)=\sum_{k \in \text { all sub- features }} \omega_{0}(i, j) \tag{eq. 5.4}
\end{equation*}
$$

As proposed in (Merlin 1975), equation 5.4 can be re-written into equation 5.5.

$$
\begin{equation*}
A(i, j)=\sum_{\text {alldirections }} \operatorname{image}\left(i-x_{,} j-y\right) \tag{eq. 5.5}
\end{equation*}
$$

The image $(i-x, j-y)$ is the image shifted by the search direction (x, y). In this way, the Hough transform is divided into a sequence of movements of the image and addition of the moved image into a parameter space. The result of this sequence change is that more information than just the boundary can be used to determine the point on the parameter space with maximum vote.

5.2.2 Building a Vector Table for a Set of Sub-Features

The procedure to build a vector table is as follows:

1. Choose (manually) the desired feature from a sample.
2. Select a set of sub-features from the chosen feature. All pixels inside each sub-feature have the same image property, 1 or 0 for the binary images considered.
3. The vector table contains the coordinates of the centre and image property for each of the sub-features.

Selecting the sub-feature to be used to represent the chosen feature is a form of discreteness of the image at a larger-than-pixel scale. This needs to be done in such a way that the distinctive characteristics of the feature are suitably sampled but in such a way that distortion of the image tends not to lead to changes in the image property of the sub-features. This suggests that the subfeatures should be clusters of pixels of like property, but that they should be chosen throughout the feature to straddle boundaries.

Two methods have been used to select sets of sub-features for a chosen feature. A manual method was first employed for preliminary evaluation of the modified Hough transform approach. It was reasoned that if the approach could not be made to work with intelligent operator judgement in sub-feature selection stage there would be little point in developing an automatic subfeature selection algorithm. Results using this manual approach were encouraging and so an appropriate automated approach was developed.

In the manual approach the operator chooses points that are in the centres of groups of pixels with the same image property. Figure 5.3 shows an example of a selected 'T-shaped void' feature represented by manually chosen subfeatures. Figure 5.3a shows the feature and Figure 5.3 b the set of selected subfeatures. Table 5.1, gives the \mathbf{x} and y pixel co-ordinates (from the nominal feature centroid) and the image property for the sub-features.

```
43 Sub-feature co-ordinates in pixels relative to centre of feature ( \(\mathrm{x}, \mathrm{y}\), property)
        \((-48,7,0),(-39,-8,0),(-39,5,1),(-39,15,0),(-32,20,0),(-32,6,1)\),
    \((-32,-16,0),(-22,-20,0),(-22,-8,1),(-22,6,1),(-22,17,1),(-22,34,0)\),
    \((-22,43,0),(-12,45,0),(-12,34,1),(-12,23,1),(-12,5,1),(-12,-10,1)\),
    \((-12,-24,0),(0,-32,0),(0,-17,1),(0,-5,1),(0,7,1),(0,20,1),(0,32,1)\),
    \((0,45,0),(9,34,0),(9,12,1),(9,-9,1),(9,-21,1),(9,-32,0),(21,-32,0)\),
        \((21,-22,1),(21,-13,1),(21,1,0),(33,-6,0),(33,-20,1),(33,-31,0)\),
        \((45,-28,0),(45,-21,1),(45,-11,0),(53,-11,0),(53,-22,1)\)
```

Table 5.1 'T-shaped' vector for sub-feature

The automatic sub-feature selection method was implemented as follows:

1. Decide the boundary of the feature, (this was performed manually for these tests).
2. Calculate two lines parallel to the boundary, one inside it and one outside.
3. Select centre of a sub-feature, which is $n * n$ pixels. Ideally all pixels inside a sub-feature should have the same image property, but practically some random noise (such as electronic noise) should be accepted. 90% pixels inside of the sub-feature are required the same.

An illustration of sub-feature selection by this method is given in Figure 5.4 (and Table 5.2). Figure 5.4 a shows the feature selected from the sample. Figure 5.4 b is the boundary for the selected feature. Figure 5.4 c shows the two lines parallel with the boundary. The feature in Figure 5.4 a is represented by the set of the sub-features shown in Figure 5.4 d . Figure 5.4 e is a mirrored set of the sub-features in Figure 5.4 d which are used to search for a mirrored feature in the input image. Table 5.2 is the vector table for the set of subfeatures in Figure 5.4e.

$$
\begin{aligned}
& 123 \text { Sub-feature co-ordinates in pixels relative to centre of feature }(\mathrm{x}, \mathrm{y}, \text { property) } \\
& (-78,13,0),(-77,22,0),(-69,25,0),(-61,28,0),(-52,28,0),(-43,29,0) \text {, } \\
& (-34,31,0),(-27,36,1),(-21,42,0),(-4,47,1),(5,46,0),(14,45,0) \text {, } \\
& (23,45,0),(32,41,0),(41,37,0),(50,35,0),(59,34,0),(67,29,0), \\
& (61,24,0),(54,19,1),(63,14,0),(72,10,0),(79,3,0),(86,-3,0),(78,-4,0) \text {, } \\
& (76,-13,0),(69,-15,0),(62,-16,0),(56,-12,0),(51,-8,0),(45,-25,0) \text {, } \\
& (41,-32,0),(27,-36,1),(20,-39,0),(13,-40,0),(6,-40,0),(-1,-40,0), \\
& (-22,-42,0),(-29,-42,0),(-36,-41,0),(-41,-37,0),(-55,-34,0),(-60,-30,0) \text {, } \\
& (-60,-23,0),(-60,-16,0),(-67,-15,0),(-74,-13,0),(-81,-14,0),(-88,-15,0), \\
& (-85,-8,0),(-82,-1,0),(-80,6,0),(-92,33,1),(-83,36,1),(-75,39,1), \\
& (-67,42,1),(-60,46,1),(-51,47,1),(-42,49,1),(-35,54,1),(-26,56,1), \\
& (-18,59,1),(-10,62,1),(-2,66,1),(7,65,1),(17,64,1),(26,63,1),(35,63,1) \text {, } \\
& (43,58,1),(51,53,1),(60,52,1),(69,47,1),(78,49,1),(87,50,1),(97,49,1), \\
& (106,48,1),(109,39,1),(111,30,1),(104,29,1),(97,24,1),(90,21,1), \\
& (95,13,1),(102,6,1),(101,-3,1),(100,-12,1),(97,-20,1),(91,-26,1), \\
& (85,-31,1),(80,-38,0),(73,-39,0),(62,-48,1),(55,-50,1),(48,-52,1), \\
& (41,-53,1),(33,-54,1),(26,-56,1),(19,-57,1),(12,-61,1),(5,-64,1), \\
& (1,-58,1),(-6,-57,1),(-13,-59,1),(-20,-60,1),(-28,-61,1),(-35,-60,1), \\
& (-42,-58,1),(-48,-55,1),(-55,-56,1),(-61,-52,1),(-66,-48,1),(-71,-44,1), \\
& (-74,-38,1),(-78,-32,1),(-85,-33,1),(-93,-34,1),(-100,-35,1),(-107,-28,1), \\
& (-105,-14,1),(-102,-7,1),(-99,0,1),(-97,7,1),(-95,14,1),(-93,21,1)
\end{aligned}
$$

5.2.3 Experimental Tests of Modified Hough Transform

The tests were carried out on a lace samples under the test conditions shown in table 5.3.

The lace material was stretched manually in the longitudinal direction (this naturally also caused a degree of contraction in the lateral direction) by using test rig 1 (see section 3.7.1). The reference, Image 1 , and image 2 were taken from a normal fabric sample with approximately 10.5 degree of pattern skew and nearly 10% shorter (skew and shortness caused in manufacturing) than the normal sample in its 0% stretch condition. The Hough transform with subfeature model was then applied to the images. The data used to describe
features ' T shaped void' and 'flower' were taken from the reference image and applied to all images.

Reference	0% stretch	no skew
Imagel	10% stretch	no skew
Image2	20% stretch	no skew
Image3	0% stretch	skewed
Image4	10% stretch	skewed
Image5	20% stretch	skewed
Image6	30% stretch	skewed

Table 5.3 Test conditions for Hough transform

The results of detecting a feature described as 'T-shaped void' are given in table 5.4.

Image	Reference	Image1	Image2	Image3
First point	$x=96 \quad y=109$	$x=171 \quad y=115$	$x=181 y=118$	more than one
Second point	$x=390 \mathrm{y}=110$	$x=507 \quad y=117$	$x=540 \mathrm{y}=113$	more than one
distance between 2 points	294	336	359	-
stretch estimated from the image analysis	0%	14%	22%	-

Table 5.4 Feature detecting results for 'T-shaped' feature

The results of detecting a 'flower' feature are in table 5.5.

The Turbo C programming language was used to implement the algorithm on a PC compatible computer with a 20 MHz 80386 processor. The test images were binary image of 640×350 pixels and were acquired with a 'frame grabber' (see section 3.6.1 vision system one). The average computation time for the 'flower' feature was about 7 min 30 s .

Image	Reference image	Image1	Image2	Image3	Image4	Image5	Image6
first point	$x=197$ $y=133$	$x=111$ $y=265$	$x=107$ $y=266$	$x=156$ $y=244$	$x=136$ $y=240$	$x=131$ $y=239$	$x=168$ $y=235$
second points	$x=493$ $y=132$	$x=448$ $y=265$	$x=468$ $y=264$	$x=414$ $y=245$	$x=413$ $y=233$	$x=429$ $y=234$	$x=491$ $y=235$
distance between 2 points	296	337	351	258	277	298	323
stretch to Reference	0%	14%	19%	-13%	-6%	0%	9%
stretch to Image 3	-	-	-	0%	7%	16%	25%

Table 5.5 Feature detecting results of 'Flower'

5.2.4 Analysis of Tests

As Table 5.3, Table 5.4 and Table 5.5 show, the experimentally produced distortions of the materials and those found using the detection algorithm agree quite closely. The number of features found is the same as the number judged visually, and the test results using the 'flower' data show that this method can find a feature on an image with 20% stretch even when skewed. The results are sufficiently encouraging to warrant transferring this algorithm to high speed processing hardware.

The differences of distances obtained on Image 1-Image2 between 'T-shaped voids' and 'flowers' are mainly due to the statistical principle of the Hough transform and differing sample data. Methods of improving the feature locating accuracy would be an interesting topic for further research.

The tests show that the more data chosen, the wider range of elastic distortion can be dealt with. The 'flower' data can cope with a wider range than the 'Tshaped' data. The small scale and skew of Image3, and fewer data points are the main reasons why the 'T-shaped' data finds false features along with the correct features to match Image3 while the same data can deal with Image1-

Image2 successfully. But the results of matches may still be useful for identifying features that are to be further verified.

5.2.5 Possibility to Implement Hough Transform

The target vision system to implement Hough transform for finding the start point is vision system 2 or vision system 3 (see Figure 3.9 or 3.10) in which a host computer based on Motorola 68020 has 4 M byte memory and an embedded multiple Motorola DSP56001 board has $2 \times 32 \mathrm{~K}$ word (3bytes) private data memory for each DSP and has $2 \times 32 \mathrm{~K}$ word shared data memory for all DSPs and host computer. There are two possible ways to implement the Hough transform for finding the start point in vision system 2 or vision system 3. One is to be implemented on DSP; another is on host computer.

The major problem of implementation on the DSP is that the data memory on the DSP is not big enough to form a parameter space $A(i, j)$ (see section 5.2.1). The images for the tests on the PC are 640×350 pixels which require 224,000 byte memory as the parameter space. The size of real image must be bigger than the size of the test image on PC, which is restricted by the 'MicroEye' frame grabber board. If the resolution of real image taken by the line scan camera is $0.3 \mathrm{~mm} /$ pixel and the view size of lace is $300 \times 200 \mathrm{~mm}$, the image size is 1000×666 pixels and the size of parameter space will be 666,000 byte which is far larger than the variable memory for DSP56001.

In order to evaluate the implementation on the host computer, the author rewrote a C program combined with 68020 assembly under the OS-9 operating system to test same images tested on PC. The program took about 2 min 30 sec . to register the desired features which was faster than the program on the PC. The memory requirement of Hough transform is no longer a restriction on this implementation because 68020 has 4G byte memory accessing ability and there is no problem to extend the memory of the host computer up to several Mbyte by adding an extra memory card to host computer. Readers can envisage that for a real cutting machine the beginning a block of image data will transfer from an embedded DSP board to the host computer for finding the start point, then information about the start point will be sent back to a DSP, and the DSP will then start the tracking forwards.

5.3 TRACKING ALGORITHM FOR FINDING THE START POINT

Section 5.2 presented a modified Hough transform method to successfully find corresponding points between the input image and a map image stored in the computer. The results of the Hough transform carried out both on an IBM PC and on a machine based on a Motorola 68020 CPU (which is the host computer for the vision system based on a line scan camera and DSP) to process frame grabbed images were encouraging.

After the tracking algorithm described in chapter 4 had been implemented on one of the Motorola 56001 DSPs; another of the DSPs was used to control a line scan camera and get the image data from the camera. Initially it was assumed that the two different vision tasks, finding the start point and tracking the cutting path, would be carried out on two different CPUs, DSP 56001 and 68020 because of the different memory size requirement. The problem with this arrangement is that the enormous amounts of image data transfer from DSP memory to 68020 memory takes a large amount of time. This correspondingly increases the whole system working time. The second disadvantage is that the DSP for tracking the cutting path can only wait for this information. With this approach the vision system would work, but not efficiently.

The availability of the DSP's suggested an approach in which the start point can be found using DSP's. The concept of using the tracking algorithm to find the start point was thought worth considering. A number of tests were carried out to test this idea and these were in general successful. This method was considered better because a large working space is not needed. The two tasks of tracking the cutting path and finding the start point can be switched very quickly and easily within the DSP because they employ basically the same algorithm.

5.3.1 Principle and Simulation

The preconditions of using the tracking method to find the start point, the confidence level of finding the start point, and simulation of tracking are
described to prove how the tracking method can be used to find the start point. The simulation conditions are described at the end of this section.

5.3.1.1 'Finding the Start Point'

In chapter 4 an incremental tracking method has been investigated. One of the assumptions of this method is that before tracking, a corresponding point on the cutting path of the image, the 'start-point', has been found. In reality, the map, a prescanned one pattern length sample, is the same pattern as the image to be processed; the first portion of the image could correspond to one segment within the map. The objective of 'finding the start point' is to determine which position in the map is the most similar to the first portion of the image.

The basic principle in using the tracking algorithm to find a start point is that if the tracking results are measured by their 'mis-tracking' (which will be discussed later), the position on the map, from which the tracking starts and produces the lowest 'mis-tracking', might be the start point. In practice, there are two ways to implement this method. One is that the first line of the input image is used to match against all lines on the map to find a position on the map which has the highest match result for this single line. Then to try to track the cutting path from this position up to a certain number lines of image and calculate the confidence level (this is one of the 'mis-tracking' measurements) for this tracking process. This procedure is then applied to the next match result position to get another confidence level, and so on. After several searches, the position on the map with the highest confidence level is assumed to be the matching position corresponding to the input image. Another implementation is that the first line on the map is assumed to match the first line of the input image and is used as the start point to carry on the tracking for a certain number of lines and the confidence level of this tracking is calculated and stored. Then the second line of the map is used as the start point to carry out the whole process. After the last line of the map has been applied, the map line with maximum confidence level among all results is chosen as the real start point for the real tracking. Obviously the second method needs to search all the map to find the highest confidence level, while the first method (which is two step search) can control the search range for the
second step by setting threshold level to the result of the first search. The second method is suitable for use in the DSP because of its simplicity.

5.3.1.2 Preconditions for Using Tracking

If a portion of the map, the most similar to a given portion of image, exists, is it possible to find it by using the tracking algorithm? The answer is 'yes' if the lace to be imaged for finding the start point is put in a position in which the lace with the same pattern has been imaged for making a map originally.

Let us consider that a segment of the first line of the image is the most similar to the segment of the nth line of the map around the guiding line. The segment on the image can be described by its centre cenig(0) and width $W_{i g}$, and the segment, which is the most similar to the beginning of the image, on the map can be described by its centre cen map (n) and width $W_{m a p}$. The cen map (n) equals to the $\operatorname{Pma}(n)$ (equation 4.6). The maximum displacemant q is 2δ. According to the tracking method a segment on the first line of the image, the searching segment, to be used to compare the map will be formed at the centre $P_{m a}(n)$ (that is, also, used to determine the first predicted point $Y(0)$) and width $W_{\text {map }}+2 \delta$ because no a priori knowledge can be used to predict the centre of this segment. If $W_{i g}=W m a p$ and equation 5.6 is satisfied, the tracking method can certainly find out the centre cenig(0) of the most desirable segment on the image because the searching segment with centre cen map (n) and width $W_{\text {map }}+2 \delta$ includes the segment with centre cen $_{\text {ig }}(0)$ and width $W_{i g}$ (see Figure 5.7).
$\mid \operatorname{cen}_{\text {map }}(n)-$ cen $_{\text {ig }}(0) \mid \leq \delta$

In fact, the map and the image might be placed on the same test rig with displacement in x, the lace feeding direction, and in y, the lateral direction. The equation 5.6 tells us that in order to find the displacements in x, y directions between the image and the map by using tracking algorithm, the original position difference of the y direction between the image and map must be smaller than the maximum lag used in the cross-correlation calculation, if the resolution is 4 pixels $/ \mathrm{mm}$ for example, the original position of the lace for the image can be $\pm 6 \mathrm{~mm}$ around the original position for the
map in y direction. This kind of position accuracy can be easily achieved by aligning the lace to a line on the plate, on which the lace is placed, along the x direction. If we increase the value of δ, it reduces the requirement of the accuracy of the setup position but will increase the computation time.

5.3.1.3 Confidence Level

A confidence level is used to judge the success of finding the start point. The confidence level, which is determined by equation 5.7 and 5.8 , is used here to represent the similarity between a portion of the map and the first portion of the image. It can be actually calculated as a weighted cross-correlation which is produced during the tracking procedure (see chapter 4) as
confidence_level $(i, j)=\operatorname{Max}\{\operatorname{Lcorr}(i, j, q)\} \quad q \in(0,2 \delta)$

Here i is the number of the input image line and j is the number of the map line. The whole confidence level for a certain number of tracking steps should be
whole_confidence_level $(l)=\sum_{i=0}^{n}$ confidence_level (i, j)

Where n is the number of lines of the image to be tracked. The sum operation is used here because of the equal contribution of each confidence level to whole confidence level (l). Then the start point on the map can be decided
start_point $=l^{\prime}$
Max \{whole _confidence_level(l)\}
$l=l^{\prime}$
$\rho=\sum_{i=0}^{n}(Y(i)-\operatorname{Pim}(i))^{2}$

Equation 5.10 provides one way to judge the geometry difference ρ between the guiding line on the map and the cutting line on the image. The $Y(i)$ is the predicted cutting point for the i th line of the image and determined by the pervious tracking and the difference between the current guiding line position
and previous guiding line position (equation 4.8). The Pim(i) is the current cutting position determined by the result of the current tracking action. The difference between $Y(i)$ and $\operatorname{Pim}(i)$ reflects the difference between increment of the cutting line and increment of the guiding line at the current position.

The confidence level of the tracking function will first be judged by equation 5.9 , and if there is difficulty, such as there are two positions on the map with the same highest confidence level, then equation 5.10 will be used to choose one position with lower geometry difference ρ between the guiding line on the map and the cutting line on the image.

With the confidence level and the geometry error the performance assessment of the tracking function is similar to an area cross-correlation. In the area cross-correlation the geometry relationship between rows or columns of a template is fixed by the format of the template itself and the geometry relationship in an image is also fixed. When the cross-correlation is used the template is moved around the searching area as a whole and the crosscorrelation value is enough to judge the similarity of the image because the geometry relationships in both the template and the image do not change during the search. In tracking action a map, as a template in the crosscorrelation, has only fixed geometry relationships between pixels within one line to form a slice of landmarks. The geometry relationships between lines or slices of landmarks are determined by a guiding line. The found path, the cutting curve, in the image determined by the tracking function represents a geometry relationship of the landmarks in the image. The difference between the cutting curve and the guiding line is the geometry error. If the tracking is correct, the geometry errors are quite small (see chapter 4). In finding the start point, the tracking starts from every possible position in the map. When starting from a correct position in the map, the confidence level is high and geometry error is low. If the tracking starts from an incorrect position, the confidence level might be high because the tracking tends to follow a path with the highest historical value (equation 4.13), but the geometry error must be large because the found path has a different shape from the guiding line. If there are several peaks with the same or similar confidence level, the position with the lowest geometry error is the most likely correct position for the start point.

5.3.1.4 Simulation

The simulation of finding the start point by the tracking algorithm was carried out on a PC using Turbo C . The simulation was used to make sure there is one and only one position on the map to match the input image and decide the minimum number of lines necessary on the input image which ensure correct start point to be found with minimum search time. The pattern in Figure 5.8 was used to simulate finding the start point by the tracking algorithm. Figure 5.9 to Figure 5.16 show the confidence levels and errors by varying the number of lines of image to be tracked from 20 to 90 . When 20 lines of image are used to be tracked (in Figure 5.9), there are several peaks with similar heights including the correct matched position in the confidence level curve so that there is a danger of picking an incorrect one. As the number of lines of the image to be tracked increases, the height of the confidence level at the correct matching position becomes higher than others at the non-matched positions. When the number of lines of the image is 40 or 50 , the confidence level at the correct matched position is 16% to 18% higher than the nearest confidence levels at the non-correct positions. Observation of the tracking error illustrates that the correct matched position has a low error but not the lowest error through the whole map range. This suggest that the confidence level is more relevant to the correct match position, and that if more lines of the image are used in searching for the start point, there is less risk of picking up a incorrect matched position when using the maximum confidence level approach.

The result of the simulation suggests that there is one and only one position on the map to match the input image if a proper number of lines of input image are considered as a group. Forty lines of input image are enough to find the start point on the test patterns. The PC with 50 MHz 486 processor spent about 4 hours for each pattern's simulation.

5.3.2 Modification of Tracking Algorithm to Suit the Requirement of Finding the Start Point

The only modification required of the tracking algorithm is to calculate the confidence level, which is not a normal requirement of the tracking algorithm but is one of the intermediate results. The whole confidence level(l) can be found by modifying one of the calculations in the former tracking algorithm (equation 4.11 of chapter 4)
$H(i, j, q)=\operatorname{Lcorr}(i, j, q)+\beta \times H(i-1, j-1, q)$
$0 \leq \beta<1$ if normal tracking
$\beta=1$ if start point tracking

Then eq.5.8 is part of the eq.5.11 if $H(i, j, q)$ equals the whole_confidence level (l). Equation 5.11 can serve both normal tracking and start point tracking.

The algorithm is

```
main
{
    if every thing ready
    {
    do
    {/* finding the start point */
    \beta=1
    N=40
    for(start=0;start<last_map;start++)
        {
        tracking
        }
        decide start_point
        }
    do
        { /* normal tracking */
        \beta=coefficient
```

```
        length_input_image=N
        start=start point
        tracking
        }
        }
    else wait
}
```


5.3.3 Experimental Tests of Tracking for Finding the Start Point

Test rig 2 (Figure 3.13) and vision system 2 were used to test the algorithm. Tests were carried out on two different laces. One is a rather dark lace and another a lighter lace with centre cutting. The DSP took about 1 minute to find the start point on the map and the first line of the input image can start from anywhere. Then the DSP changes to the task of tracking the cutting path. The judgement of the test results is carried out visually by displaying the map, predefined path, input image and cutting path.

5.4 CONCLUDING REMARKS

It has been demonstrated that the modified Hough transform method proposed can find corresponding features between a searched image and a reference image to determine the start point on the deformable patterned materials considered. This method is computationally highly parallel, the basic operation being one of moving the input image according to the searching vectors, but the parameter space is large. It is foreseen that this method can be implemented advantageously using DSP or specific graphic processors to find a start point for the pattern cutting if they can access a wide range of memory, or the parameter space can be reduced.

A realistic way to implement the Hough transform is to use Motorola 68020 because of large memory available. It took 2 min 30 sec faster than the Hough transform method carried out on the PC. A possible way to implement a pattern cutting system is to find the start point on the 68020 and determine cutting path on DSP.

Another more efficient way to find start point is to employ the tracking function on DSP. The method works. It is faster than the Hough transform method. The tasks of tracking a cutting path and finding a start point can switch from one to another quickly and easily because the two tasks use the same algorithm inside the same DSP. The method also saves a lot of time by avoiding image transfer from DSP to 68020 memory which is required if the Hough transformation is used. It is envisaged that on the real lace cutting machine the switch between two tasks may be necessary and a basic operation to cope with some unexpected problems, such as loss of tracking due to major damage to the lace (e.g. big holes).

The confidence for finding the start point may be useful to cope with fault handling. It is evident that when tracking is lost the confidence level reduces. The confidence could be used as an index to monitor the tracking status.

Figure 5.1 Finding a feature by sub-features and vectors

Figure 5.2 Finding a feature in a stretched image by sub-features

Figure 5.3a Selected feature for 'T-shaped' feature

Figure 5.3b Set of sub feature for Figure 5.3a

Figure 5.4a Selected feature for 'flower' feature

Figure 5.4b Boundary of the feature in Figure 5.4a

Figure 5.4c Two lines parallel to the boundary of Figure 5.4b

Figure 5.4d Sub-feature of Figure 5.4a

Figure 5.4e Mirrored sub-feature of Figure 5.4a

Figure 5.5 Search result by using a sub-feature of Figure 5.3b

Figure 5.6 Search result by using a sub-feature of Figure 5.4 e

Note: \boldsymbol{z} is the searching width.
Figure 5.7 Search width and centre for finding the start point

Figure 5.8 Finding the start point and tracking

a: tracking confidence

b: tracking error
Figure 5.9 Find the start point by 20 line tracking all over the map

Figure 5.10 Find the start point by 30 line tracking all over the map

a: tracking confidence

b: tracking error
Figure 5.11 Find the start point by 40 line tracking all over the map

a: tracking confidence

One pattern length
b: tracking error
Figure 5.12 Find the start point by 50 line tracking all over the map

One pattern length
a: tracking confidence

Figure 5.13 Find the start point by 60 line tracking all over the map

a: relative tracking confidence

One pattern length
b: tracking error
Figure 5.14 Find the start point by 70 line tracking all over the map

a: tracking confidence

b: tracking error
Figure 5.15 Find the start point by 80 line tracking all over the map

One pattern length
a: tracking confidence

b: tracking error
Figure 5.16 Find the start point by 90 line tracking all over the map

Chapter 6

STABILISED WORKING CONDITIONS

6.1 INTRODUCTION

Maintaining stabilised working conditions for the vision system is the third research topic addressed in this thesis. Most vision systems have unique working parameters, such as lighting intensity, and an operational wavelenght range. When a working condition exceeds the working range of a vision system, its performance will deteriorate. For example, a land vehicle can be guided successfully by a vision system on the test road using a colour segmentation method when the sun is shining and there are no clouds in the sky, but when the road is shadowed by clouds the vision system cannot detect the road properly (Turk 1988) because of the change of object colour. When researchers face the fact that a vision system meet excessive working conditions, they should make a decision, whether to increase the working range of the vision system or to control the working condition or to do both. If a vision system is going to work outdoors and the working condition cannot be controlled fully, then increasing the working range is the preferred solution. In the land vehicle example, it is not possible to control the weather on the test road so not only a colour segment method but also other segment methods, such as an edge segment method, are needed to increase the working range of vision system. The working range of a vision system can broaden as technology is pushed forwards, but sooner or later the newly developed vision system will be faced with new limitations so working condition control for vision systems is an important area for research efforts, in order that vision systems can work successfully. In some indoor cases, a 'controlled' working condition will simplify a vision system. For example, a strip light (Batchelor 1985) can help a 2-D vision system to measure height and width of block in 3D. But it is important to keep the working conditions stable. In the block example, the angle between the block and the strip light should be the same for each measurement. Otherwise different angles will produce different results for the same block. The vision system studied in this thesis is working in 'controlled' conditions so how to keep working conditions stable has to be studied.

The definition of 'stable working conditions' varies from vision system to vision system, and there is no universal way to keep stable working conditions for all vision systems. A systematic approach to maintain stable working conditions is to find which variables affect the performance of the vision system first, then to search for methods to stabilise them.

In this thesis there are four vision systems (see chapter 3). Vision system 1 is used to investigate various algorithms, such as tracking, Hough transform, and to evaluate the various parameters for vision system 2 and vision system 3, such as resolution, grey or binary image, at the beginning of the research. Since vision system 1 uses a stationary lace sample and longer conversion time (2 minutes) the requirement for stable working condition for this particular vision system was even light distribution. A light box for photograph provided a reasonable light distribution. Vision system 2 and vision system 3, which are virtually the same except a correlator board in vision system 3, are target systems for pattern cutting. Vision system 4 is used to evaluate both twin-beam and high-speed correlator tracking performances. The working conditions discussed in this chapter refer to vision system 2, 3 and 4.

The working conditions discussion will start form the working procedure of test rig 3 on which real lace is going to be cut. When a lace web passes under a camera, a vision system extracts information to determine the cutting path on the lace web. Then when the same part of lace web passes through the cutting zone, the laser beams cut lace at the required positions to scallop or centre cut. In chapter 4 and 5 the approaches to finding start point and tracking have been proposed and investigated. All discussions in chapter 4 and 5 imply that the incoming image for processing is similar to the map which is stored in DSP memory. The similarity of incoming image requires :

1. A lace sample positioned at any place in the light source working range will produce a similar image so that the vision system is not affected by variation in lighting intensity;
2. The digital image after the A / D conversion is similar to a digital image obtained previously if all other condition are the same;
3. The image is independent to the lace moving speed.

Additionally the sampling rate should be related to the lace movement, that is, the vision system should have feedback of the lace movement. All these parameters must be used to stabilise working conditions for the vision system.

The main issues for the stabilising the working conditions for the vision system are:

- an even and non-flickering lighting source;
- a threshold method to cope with lighting drift over a long time period;
- a synchronising method to sample lace in constant distance interval whilst maintaining a constant integration time for every sample.

In section 6.2 a study of the light source characteristics that produces suitable illumination for the vision system is presented. In section 6.3 research work on deciding the threshold to produce a consistent digital image is shown. The method for lace movement control of the vision system sample rate and maintain a consistent integration time for the camera are investigated in section 6.4 .

6.2 LIGHT SOURCE

The function of illumination is to provide a stable, clear image to the camera so the importance of correct illumination to the success of a vision system cannot be overemphasised. The definition of 'correct illumination' varies from system to system. For example, a strobe light synchronised with the shutter of a high speed camera can produce a sharp image when the speed of the moving object is very high (see analysis in section 3.4.2). Another example is that a normal TV camera, which runs at $25-30$ frames per second, works well without apparent lighting intensity change on the TV image with the lighting driven by AC, which produces 100 or 120 Hz ripples in illumination. The basic requirements of the illumination are that it must be stable in a period of time and uniform in the work region. How stable and how uniform will depend upon the vision system. In general, the requirement for a grey level vision system could be lower than for a binary vision system because the distribution of the brightness of the grey level image can be adjusted to some extent after acquisition (although this needs extra computation). The stability of illumination is more complicated than the uniformity problem. On the one
hand, the variation of grey levels between frames or lines can be eliminated in a grey level vision system (in a manner similar to correcting for non-uniform illumination); on the other hand, the higher the speed of a vision system, the more difficulty is encountered in achieving stability of the illumination.

For lace fabric scanning, the vision system is working at a high line scan frequency, say 10 KHz , and with binary image processing. The analogue voltage level of a single pixel in a camera is the integrated result of the input light intensity in the area of this pixel during a certain period of time (Horn 1986), the "integration time". The integration time is the reciprocal of the line scan frequency in the camera. The camera will be sensitive to any light change with a frequency lower than the line scan frequency. In order to make the system's task possible, a good light source must produce a relatively uniform light output both across the line scan camera's working region and over a period of time, and preferably at a reasonable price.

6.2.1 Lamp Tests

Three types of lamps were investigated; normal fluorescent tubes, high frequency fluorescent tubes, and light emitting diodes (LED). Most tests were carried out directly via the CCD line scan camera which is used in the vision system in order to get a workable solution. The outputs of the line scan camera were observed and recorded by a Hameg 408 oscilloscope. The arrangement of camera and light source is shown in Figure 6.1. The camera is working at 20 MHz pixel rate so the complete period to output 2048 pixels is $102.4 \mu \mathrm{~s}$. In order to give an approximate idea of the image length seen by the line scan camera corresponding to a time period on the oscilloscope, a filament lamp with 120 mm length, 290 mm from the mounting surface of the camera produces a $35 \mu \mathrm{~s}$ waveform.

6.2.1.1 Fluorescent Tube with an Inductive Ballast

As expected, a normal fluorescent tube has reasonably even light distribution along the tube but has big 100 Hz ripples, the ratio between maximum and minimum of the output of the camera is nearly $2: 1$, which could been seen by a line scan camera with scan rate higher than 100 Hz . This makes the output of
the comparator meaningless unless an extra control mechanism is introduced to compensate for the ripple effect. Figure 6.2 is the light distribution along the tube and the 100 Hz ripple. The $57 \mu \mathrm{~s}$ represents 195 mm length of light tube.

6.2.1.2 Fluorescent Tube with an Electronic Ballast

The fluorescent tube with an electronic ballast driven by 240 v AC main power is more suitable for the line scan camera than the normal fluorescent tube with an inductive ballast. The electronic ballast drives a lamp at $20-40 \mathrm{KHz}$ (Osram 1991, Philips 1991) frequency which is 2 to 4 times higher than the line scan frequency and any light variation caused by that frequency will be hardly detected by the line scan camera. The light distribution along the tube and the low frequency ripple are shown in Figure 6.3. The $36 \mu \mathrm{~s}$ represents 120 mm length of light tube. There is 25 mm length of tube with very low light intensity. The unevenness of the light intensity along the tube and the 100 Hz frequency ripple is still there but is lower than that produced by a tube with a normal ballast. A DC driven electronic ballast was therefore seen as a possible way to get rid of the low frequency ripples.

A test on a 12 v DC driven fluorescent tube with an electronic ballast proves that the low frequency ripple can be minimized but the light intensity of the output of the tube was not high enough for the high frequency line scan camera because integration period is reduced. In order to achieve the high light intensity output from the fluorescent tube and to avoid the low frequency ripple of the light intensity a 240 v DC power supply was used to drive a fluorescent tube with an electronic ballast. Its performance is better than the previous results (In Figure 6.4 a photodiode was used to obtain these curves of the light intensity).

6.2.1.3 LED Array

The light emitting diode (LED) is one of the possible light sources which is driven by DC power and the light distribution can be adjusted by changing the value of the current resistors. Two different types of LED were investigated. Firstly an integrated LED array that is the light source of a GS-4500 document
scanner shown in Figure 6.5a was tested. 48 LEDs are placed on the same plate which maintains their alignments, and a built-in half-cylindrical lens focuses all the LED's light in the same direction and the same distance. The light intensity distribution of the integrated LED array was recorded by shining it onto the camera (see Figure 6.6a). The light spots in Figure 6.6a are noticeable. But the LED array works well in the scanner and the bright spots are not seen in the scanned image because of the surface lit application. Secondly, a home-made ultra-bright LED array was tested as shown in Figure 6.5 b. The intensity is sufficient for our 10 KHz line scan requirement. The bright spots in Figure 6.6 b are still there even if the light intensity of single LEDs is adjusted carefully. Figure 6.6c is the record of the ultra-bright LED array which does not show significant low frequency ripples and which is better than the electronic ballast fluorescent tube driven by AC power or even the DC one in this respect. The main problem with the LED light source is how to get rid of the bright spots in the view field.

The ultra-bright LED tested here has a hemispherical head in front and a reflectional bowl behind the light emitting body to make light in a small area. Figure 6.7 is an attempt to broaden the area of the bright spot of a single LED and to improve the light intensity distribution of the LEDs by removing the head of the LED. There is, however, no significant difference in oscilloscope records, comparing the record in Figure 6.7 with the record Figure 6.6b.

In order to know the light intensity characteristics of the LED the light intensities of individual LED on the naked CCD chip (the camera without a lens) are shown on Figure 6.8. There were four LEDs tested. 'A' is the bright area on CCD. There are quite large difference among the ' A '. The ' B ' is the variation of brightness on the central area. Most LEDs give two peaks in their records of light intensities. The variation of the LEDs will cause significant problems if a uniform light source is to be made from LEDs.

6.2.2 Combined Light Intensity of LEDs

Non-uniformity along the line scan camera working region is the major problem for a LED array. In order to understand this problem a model for a LED array is presented here.

In this simple model, an area illuminated by a LED is a circle on a plane which is perpendicular to the LED axis and at a distance far from the LED. The light intensity in this area has a Gaussian distribution. If the light intensity levels are the same for every LED in the array, the vectors of beam centre from the LED for all LEDs are parallel, all LEDs lie on a line and the distances between every pair of adjacent LEDs are the same, there is a position along the vectors where a fairly uniform line can be found (Figure 6.9 is a two LEDs model, as the distance between two LEDs changes the combined light intensity is changed. The upper curve is the combined light intensity, the lower intersected curves are the individual light intensity output from individual LEDs. Position 3 shows the best uniformity of the combined light output judged visually).

If any of the factors, such as individual intensity, beam direction or intensity profile, change, the uniformity of light intensity will also change. Actually, small changes of any of these factors in a LED array will be likely when the array is made (Figure 6.10 is a six LEDs model but the distances between adjacent LEDs are slightly different from one another. The output of combined light intensity show the uniformity of light intensity is easily upset by a small distance change).

In practice, it is difficult to make every single LED perform in the same way. So bright spots will always be noticeable.

6.3 DECIDING THE THRESHOLD LEVEL FOR BINARY IMAGING

The video output from the camera varies with the light intensity of the lamp, the distance between the camera and lamp, the integration period of the camera and the pattern (or geometrical information) of the lace. From the pattern recognition or object location point of view, an ideal image for extracting the cutting path information on the lace only contains the geometrical information of the lace irrespective of variations of lamp intensity or voltage of power source within a certain range. But the light intensity of the lamp cannot be totally controlled because it is a function of the voltage of the
power supply, the temperature of the room and hence the temperature of the lamp itself and the age of the lamp (Atkinson 1944). There are two kinds of variations of the lamp intensity, which can be seen by the line scan camera run up to 10 KHz line scan action, 1) 100 Hz variation which is mainly caused by AC power; 2) the low frequency variation which is caused by the temperatures and age. The DC power supply described in section 6.2 has been used to eliminate the 100 Hz ripple of the light intensity from the fluorescent lamp which is caused by AC power supply. But the low frequency drift of the voltage cannot be controlled by the high voltage DC power supply; the temperature of room and lamp cannot be controlled or can only be controlled at high cost and the temperature control will introduce complexity to the whole system. The variation effect due to the age of the lamp is difficult to quantify. Is it possible to produce a stable binary image by considering all of the unwanted factors? This is an important question for a real vision system guided laser cutting machine.

Here only the factors which change at very low frequency (i.e. do not change within several minutes) are considered (see Figure 6.11). In the test (Figure 6.11) a DC powered high frequency fluorescent tube was used as a light source, a photo diode, A / D converter and a computer were used to record the variation of the light source. During the test, DC voltage was purposely not adjusted. This therefore shows a typical variation of the fluorescent tube. In the first 10 minutes, the intensity reaches the maximum. Then the intensity reduces. After one hour, the average intensity achieves a stable value with very few change.

Clearly a consistent image cannot be produced by using a fixed threshold throughout a four hour period when the intensity of the lamp is changing.

There are several possible ways to produce a consistent image for tracking in this case. One is to use a hardware closed loop controller which can be implemented by a variable gain operational amplifier or a group of operational amplifiers and a photo detector. The photo detector can be used to transduce the light intensity to a electronic signal. Then the image signal from the camera is sent to an input of an operational amplifier. The gain of this amplifier is controlled by the signal from the photo detector to maintain the
output of this amplifier consistent when the light intensity is changed. The system will produce a stable image if the whole system is carefully arranged and adjusted. But the positions of the camera, the lamp and the photo detector should be fixed or the whole system will need careful adjustment whenever the position of one of them is changed.

The second possible way is to utilise a photo detector, an analogue to digital converter (ADC) and software control. The function of the photo detector is the same as in the example above. An operational amplifier will be required if the electronic signal is too weak to be measured directly by the ADC. The ADC is used to convert the analogue signal from the photo detector to digital form to be read into a computer. Then the software decides a threshold level for the comparator according to the digital form of the light intensity. In a similar way to the hardware closed loop controller method, this approach will work if the positions of the lamp, the camera and the photo detector are fixed.

The first and second methods assume that there is a fixed relationship between the light level on the photo elements of the camera and the electronic signal level of the photo detector if the positions of the lamp, the camera and the photo detector are fixed. When even one of these positions is changed the relationship between the light level of the image and signal level of the photo detector will change. The relationship will be complicated if the light sensitivity of the camera and the photo detector are not the same.

A third method is to use the image signal from the camera to cope with the light intensity variations of the lamp directly and dynamically.

In this section, the principle of detecting intensity variations and the testing of the third method will be discussed and a study of deciding the threshold to produce a stable image will be presented.

6.3.1 Principle of Detecting Light Intensity Variation and Determining the Threshold Level

The output from the camera is a 'lace pattern modulated light intensity distribution' containing, 1) light intensity on the surface of the camera during
the previous integrating period, which reflects the variation of the light intensity; 2) the pattern of a section of a lace when the lace is placed between the light source and a line scan camera. The image used for start point finding and tracking should contain pattern information only. Therefore, the pattern information must be separated (or demodulated) from the light intensity variation in the video output of the camera. Since the lace pattern is modulated with a variable light intensity of a light source (see Figure 6.11), the lace pattern demodulation should ideally be achieved by setting the threshold in accordance with the variation of the lighting. The lighting variation can be found in a grey level image, but not directly in the binary image used for start point search and pattern tracking. Therefore, in section 6.3.1.1 one method to form a grey image from the binary image by changing the threshold systematically is described. Then in section 6.3.1.2 two methods to decide the threshold are investigated.

6.3.1.1 Grey Level Image

The information about average light intensity cannot be found in a binary image in an obvious way, but a grey level image could tell us more about average light intensity. We can build a grey level image based on our binary image acquisition as follows. The analogue levels of the image from the camera are converted to binary image data by setting an analogue threshold level of an analogue comparator. A digital value for the threshold is sent to the comparator via a DSP and a D/A converter. A grey level image from the camera can be produced if the threshold level can be varied between zero to 255 which is the digital form of the comparator range (Figure 6.12) while the lace is not moved. The horizontal axis of Figure 6.12 is the lateral direction of the lace. The vertical axis is the grey level.

After that, 256 lines of image are in the DSP memory, and each line of the image corresponds to one threshold level of the comparator. All these lines can logically form a matrix (see table 6.1). The rows of the matrix represent the threshold level, the columns represent the pixels, and the transition row of each column represents the grey level of this pixel. For example, the grey level of pixel 14 is 3 (above this position all elements in this column are 0).

	0	1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2
line0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
line1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
line2	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
line3	0	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	1	1	1	1
line4	0	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	1	1	0
line5	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0
line6	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	1	1	1	0	0
line7	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	1	1	0	0
line8	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0
line9	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
line10	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
line11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6.1 Grey level image

6.3.1.2 Two Methods for Deciding the Threshold Level

The grey level image from the camera at one scan position contains the information of light intensity and the pattern of the lace acquired by the photo elements of the camera. There are at least two approaches to determine the threshold according to grey level image. One approach is to separate the light intensity information from the pattern information in a grey level image. Then a threshold level is determined according to the intensity-threshold relation obtained previously to produce a binary image. Another approach is to determine threshold directly from the grey level image. The latter approach is discussed here because of its simplicity.

In fact, for a given lace, there are many possible scanning positions when the grey level image is produced. For example, the repeat length of the lace is 100 mm , and the resolution in longitudinal direction is 3 lines $/ \mathrm{mm}$. There are 300 different possible positions when a grey level image of this lace is produced. It is important to make the threshold level decision in one stationary
position from the production point of view. So a successful method applied to threshold decision should be independent of the scanning position on the lace.

There are several ways to decide the working threshold level by using the grey level image. One method is to find the ratio of black pixels and white pixels for each threshold level. This is a tangent law typed curve with a slow ratio change at one end of the curve and a rapid ratio change at another end. For example, in table 6.1 ' 1 ' represents the white pixel and ' 0 ' represents the black pixel. When threshold level is set on 0 (line 0), all pixels are white and black/white ratio is 0 for this threshold level. The black/white ratio increases as the threshold level increases. It is difficult to find one characteristic of the curve to set the threshold level which is independent of the lace position and light intensity. Two practical methods are discussed in this section.

The first way to decide the threshold level is to find the 'edges' along one scanning image and make a curve of the number of edges. For each grey level, the edge points at which the image is changed from black to white or from white to black are counted. All the counts are put together to form an edge curve. Then the region of the edge curve where its variation is less than a predetermined value, d, can be used to decide the working threshold level. Figure 6.13 is a typical edge curve. There are three different parts in this curve, flat part with zero edge level, part with little edge number change and part with rapid change. The flat parts with zero edge level indicates that there is no edge in the image (all white or all black). The part with rapid change of edge number means that the image is on a transition band between the stable image and the blank image (white or black). The part with little change of the edge number (not zero edge) implies that the image is stable if the threshold level change in this range. The edge number in this part also is, or is likely to approximate to, the number of edges of the pattern in the scanning area. This is a part of geometric information of the lace pattern. In order to suit the light intensity variation afterwards (see Figure 6.11) the threshold level should set in the middle of this part.

As the light intensity varies the edge curve for a particular part of the lace pattern will move along the threshold axis. There is little change in the profile in the desired part of the curve (see Appendix 3). In fact this profile reflects
the lace optical characteristics, the lace geometrical characteristics, and the optical characteristics of the whole vision system. All these characteristics are independent of the light intensity. But the position of the desired part of the curve is related to the light intensity. One characteristic of this profile is the variation of this part of the curve, or 'roughness'. We can use the 'roughness' to search the desired profile and to decide the threshold level that is related to the light intensity.

The ' d ' is the predefined 'roughness' of desired part of curve. If the flat part with zero edge number is ignored, the ' d ' can be used to search the flat part with a little edge number change in the curve. In Figure 6.13 the part of curve from 'begin' to 'end' is matching the ' d ' requirement. For a certain edge curve different 'd' can produce different 'begin' and 'end'.

If the same ' d ' is applied to different parts of the lace pattern (assuming that the thick and thin parts of threads are evenly distributed) under the same illuminating condition, the 'begin' and 'end' should have no difference from one part to another. But the illuminating conditions will not be the same, the sensitivities of CCD elements are the variables of the temperature, and the thick and thin threads are distributed with pattern. All these will cause the change of the edge number. So the 'begin' and 'end' will vary from one place to another and from time to time. The threshold level for a stable binary image should be decided by using equation 6.1 and 6.2. Equation 6.1 is used to get a common grey level range for whole pattern of lace.

```
begincom \(=\operatorname{Max}\left(\right.\) begin \(\left._{i}\right)\)
end \(_{\text {com }}=\operatorname{Min}\left(\right.\) end \(\left._{i}\right)\)
\(1 \leq i \leq n\)
```

The n is the number of scanning positions within a non-repeated pattern. If a threshold level is decided by equation 6.2, there is the biggest chance to keep the binary image stable when the light intensity is slightly changed.
threshold $=\left(\right.$ begincom + end $\left._{c o m}\right) / 2$
eq. 6.2

If the differences between 'begin's are small and the difference between 'end's are small from one position to another, the 'begin com' and 'end com' can be replaced by the 'begini' and 'end ${ }_{i}$ ' in equation 6.2 to decide the threshold level.

The second way to decide the threshold level is to find a range in which the whole line of the image is neither all zeros nor all ones. Then the working threshold level is decided at some position within this range. The position of transition from all ones to not-all-ones (which is the bottom line on Figure 6.12) of the image is decided by the optical characteristic of the thickest part of the lace. The position of transition from all zeros to not-all-zeros (which is the top line on Figure 6.12) is decided by the optical characteristic of the thinnest part of the lace. If the distribution of the thickness of lace is arranged in such a way that there is at least one spot of the thinnest part of the lace and one spot of the thickest part of the lace in one line scan range, the two transition positions should be independent of the geometrical information of the lace pattern and decided by the light intensity level and the thickness of the lace. Therefore, the geometrical information can be separated. Then the threshold level will be decided by equation 6.3.
threshold $=$ top $\times \alpha+$ bottom $\times \beta$

The α and β are determined by tests.

6.3.2 Threshold Test

Tests on three different scanning positions with different light intensity levels were carried out (Figure 6.14). Method 1 and method 2 for determining the threshold used. The data and curves for method 1 are listed in Appendix 3.

Table 6.2 lists the beginning and end grey levels for method 1.

The ' d ' is a arbitrary margin to decide the beginning and end of the flat part of the curve (see Figure 6.13).

In table 6.2 the middle of the flat part of the curve is stable for different scanning positions under the same illumination condition. This suggests that
the middle point of a scanning position may be used as a threshold level instead of the middle point of the common range without major problems. This improvement can save a lot of time to avoid scanning the whole nonrepeated pattern.

	170 v			185 v			200 v		
	b	m	e	b	m	e	b	m	e
position1	194	211	227	184	209	229	174	200	227
position2	194	214	234	184	207	229	174	200	226
position3	199	214	229	191	208	225	179	200	220

Note: b : begin m: middle e:end $\mathrm{d}=10$
Table 6.2 Test results of method one for threshold determination

Table 6.3 is the top and bottom grey levels for the method 2. P is determined by equation 6.4. The α and β for the lace are $5 / 8$ and $3 / 8$ decided by the test.

$$
\begin{equation*}
p=\text { top } * 5 / 8+\text { bottom } * 3 / 8 \tag{eq. 6.4}
\end{equation*}
$$

The values of α and β are taken to make the ' p ' as near as the ' m ' by using the method 1.

	170 v			185 v			200 v		
	b	p	t	b	p	t	b	p	t
position1	161	216	250	148	210	249	135	204	247
position2	162	216	251	149	211	250	135	204	247
position3	163	214	251	149	206	243	137	201	240

Note: b : bottom p : position t :top the p is obtained by equation 6.4.
Table 6.3 Test results of method two for threshold determination

Comparing method 2 and method 1 the maximum difference of the threshold level is 5 and the ' p ' positions chosen by method 2 within the desired part of the curve (see section 6.3.1.2) near the middle of it. Method 2 has been chosen because of its simplicity. The images produced by employing method 2 are successfully used for start point and track the cutting path when the voltage of the DC power supply varies from 170 v to 200 v which is bigger
than any voltage shift caused by the variation of the AC voltage (comparing Figure 6.11 with Figure 6.15). The working procedure is that the lace stays fixed in one position, the camera is driven by the DSP and the grey image data are processed by DSP. After that a threshold level is set by the DSP. Then the lace is moved, the camera is driven by an encoder and the binary images are sent to a DSP to find the start point and then track the cutting path.

6.3.3 Discussion

The implementation of method 2 in DSP code is simpler than that of method 1 , so method 2 has been used.

Deciding on the threshold level must be carried out at beginning of every run before start point finding and cutting path tracking. After the threshold level has been determined, the image processed by the vision system switches back to binary. One question is whether it is necessary to make threshold decisions during tracking, if the light intensity level could change by an intolerable amount during this working period. The interface board can only produce either grey scale image or binary image and the DSP can only deal with image data for either tracking or threshold decision at one time. It is impossible to use DSP for both tracking and to monitor the light intensity change at the same time.

An alternative way to monitor the light intensity change is to employ a photo detector and an ADC. When the DSP decides the threshold for the comparator, the photo detector and ADC also communicate the light intensity level to the host computer (the Syntel LC850 based on the Motorola 68020). When the DSP is doing the tracking task the computer looks at the output of the $A D C$ every minute or after a certain period of time. If the absolute difference of the current light intensity level and the stored light intensity level is bigger than a certain amount, the tracking will stop and threshold decision algorithm will execute to determine a new threshold.

6.4 SYNCHRONISING THE CAMERA WITH THE MOVEMENT OF THE LACE

The synchronisation between the scanning action of the line scan camera and the feeding of the lace is one of the important parts of the vision system and the whole lace cutting system not just to enable the start point search and tracking programs to work and but also to enable a CO_{2} laser beam to cut lace in the determined position.

6.4.1 Synchronising Problems

Due to the real-time application of the vision system, the synchronisation between the vision system and the feeding of the lace cannot be overemphasised. The image processing in the vision system will be meaningless if there is no synchronisation. If all other parts of the vision system are triggered by the output of the interface between the camera and the DSP, the synchronisation of the vision system with the movement of the lace can be considered as the synchronising of the camera action with the movement of the lace, which is discussed in this chapter.

Maintaining a constant physical distance between any two consecutive lines of the image is a basic requirement of the synchronisation. One approach used in the tracking program tests to achieve a constant distance between any two consecutive lines of the image was to feed the lace at a constant speed while the scanning action of the camera was kept at a fixed frequency. To achieve this a line scanning signal with fixed frequency was generated by the timer on one of the DSP chips. This arrangement cannot be used in the practical case because of the lace velocity changes during the operation. First the lace should move a short distance to feed enough image to DSP and let the DSP find the start point for tracking. After that the lace speed is increased from zero to maximum to track a predetermined path on the lace. Since the speed of lace varies, the travelling distance on the lace correspondent with two consecutive lines of the image will vary and the whole system will fail.

Another method to maintain the constant inter-line distance is to vary the scan rate of the camera as the speed of lace varies. In section 6.4.2 a method for maintaining a reasonably constant distance is discussed.

Whilst this latter approach offers a potential solution there is a further problem. As the scan rate of the camera varies with the variation of the lace movement, the exposure period, which is the same as the integration period, of the photo elements in the camera will be varied. The variation of the integration period will cause an inconsistency of the image being sent to the DSP. So in section 6.4.3 a method is presented to enable a constant integration period to be maintained when the lace speed varies.

Section 6.4.4 discusses a method of DSP control of the scanning action of the camera to produce a grey level image for determining the threshold level (see section 6.3).

6.4.2 Monitoring Lace Movement

There are two kinds of movement sensors, contacting and non-contacting. Sensors based on magnetic or electric field changes cannot be used to sense lace movement because of the physical characteristics of the lace. A line scanning camera is one possibility for a non-contacting sensor (Bretschi 1979). The principle of the line scan camera as a sensor would be that the movement of the lace is monitored by a camera and measured by matching several predetermined patterns of the lace. In this measurement procedure, the distance to be measured by a line scan camera should be bigger than the resolution of the measuring system itself, which needs to measure several positions on the lace across a predefined distance interval to produce a signal to trigger the tracking. The problem of using a camera as a movement sensor is that a vary large amount of image data would need to be processed, even more than the image data for tracking, and this makes such a vision system approach too complicated. Even if the computing speed were not a problem, there are still some problems that have not been solved yet by using line scan camera only, such as that whether the lace is actually stretched or whether it is moving at very slow speed when an apparently stretched image is acquired (the images are similar in these two cases). Maybe an area scan camera could
be used to estimate the speed of the lace, but there is no such high speed camera, say at least 5000 frames per second (at 256×256 pixels, the pixel rate for this kind of camera would be at least 330 MHz), on the market, and the computing power to process this kind of information will be higher than that required to track the cut path on the lace.

Optical measurement for the displacement or velocity based on Laser technology is another non-contacting method. Laser interferometers can measure the displacement with wavelength accuracy by comparing a laser beam reflected from the object to be measured with a reference beam. The direction of the reflection should be the same direction of the motion of the object (Dakin 1988). This method cannot, however, be used to measure movement in the direction perpendicular to the reflecting surface (furthermore the lace surface is not an idea reflecting surface) as with our lace movement (Figure 3.13). The Doppler Laser sensor has been used to measure the velocity of liquid (Dakin 1988), in which a laser beam can be directed into a liquid flow at an angle. But the liquid to be measured should have an isotropic character which is not the case with lace.

An optical encoder (Ruocco 1987) is one type of contacting sensor which is widely used in position and speed control applications because it is easy to interface to a computer. Optical encoders can be classified into two groups, linear encoders and angular encoders. The linear encoder is not suitable for measuring the displacement of an endless lace loop (or longer lace) due to its limited movement. An angular encoder with a very low movement moment of inertia can measure lace movement by using a rubber typed wheel mounted on the encoder shaft and running on the surface of the moving lace to drive the encoder directly. This is a straightforward way to detect the movement of the lace.

In theory there may be some loss of synchronisation between the lace surface and the rubber wheel during some period of the movement of the lace due to friction (Hannah 1984). In order to investigate this kind of behaviour, the author performed tests on test rig 2 in which the linear table was driven by a servo motor with a closed loop position control. The encoder output gives pulses at much finer distance increments than required for triggering the line-
scan camera. These are then divided down by a "distance counter". The line scan action of the camera is triggered by the output of the distance counter rather than the direct output of the encoder. The test result (see Figure 6.16) shows that there are initially no pulses output from the distance counter. After 3 mm of lace movement the ratio of pulses to lace movement is nearly constant. The reason for no outputs being produced at the beginning could be that the driving force on the wheel produced by the deformation of the lace is increased as the lace holder moves further; after 2.75 mm the driving force remains nearly constant as the lace holder moves. The first line scan action will be triggered at the 3 mm position then repeated at a quite constant increments of lace movement so that the image will be comprised of equispaced lines. It is no problem for an unidirectional transportation system. For bidirectional transportation system further study is needed.

In test rig 3, a pair of plastic strips are employed to increase the angle of wrap or contact angle, α, in order to increase the friction force on the wheel. The diameter of the wheel should be as small as possible. The smaller the wheel, the lower moment of inertia and the more rapid the response of the encoder. The lower moment of inertia of the wheel will also reduce the distortion of the lace caused by the encoder wheel because of low driven force from the lace. The more rapid response will provide a more accurate movement signal.

6.4.3 Maintaining a Constant Integration Period

A major problem associated with the synchronisation between camera scanning action and lace movement is how to keep a constant integration period for the line scan camera. This is one of the factors which determine the analogue level of the video signal from the camera. In general, the longer the integration period, the higher the analogue video output from the camera if other factors remain the same. The method of section 6.4.2 can keep the physical length of lace between any two consecutive scans constant while the speed of the lace movement varies but raises a problem about the variation of the integration period due to the variation of the speed of the lace. The worst case is that when the lace stops for any reason, the integration on the camera will cause saturation of its photo-sites (or photo elements). The method for converting an analogue video signal to a digital signal used in this thesis is to
employ an analogue comparator to produce a binary image using a preset threshold for the comparator (see Appendix 4). There are two methods to keep the binary image consistent: constant integration period or varying the threshold level. To implement the second method is quite difficult especially in real-time. If a time counter for the integration period is set independently of the distance counter but is triggered by the distance counter, the first method can be implemented.

In principle, a line scan CCD camera works in two different phases to produce a line of image. In the first phase, the CCD's photo elements collect photons which are converted into electronic charge. The level of electrons in one element is proportional to the number of the photons falling onto the element in this period of time, providing the electrons do not exceed the saturation level. This period is called the integrating period. Then, in the next phase, the CCD transfers the electrons, namely image data, from the photo elements to one or two shift registers in parallel and clocks the image data out from the shift registers in series. One line of image is produced during two phases that can be indicated by two line scanning signals. The first scanning signal starts the integration, the second signal ends the integration and starts the second phase. Because the integrating and clocking out are working on different areas of the CCD, one line of image data is clocked out while the next line of image data is being integrated. The output of the image seems synchronised with the line scanning signal, one line scanning signal for one line of image data. The longer the period of one line scan the higher the image level that is clocked out in the next line scanning period. If a signal from a distance counter, which maintains the constant intervals of the physical distance on the lace, is used as a line scan signal for the camera, the physical distance between the consecutive image lines will be constant. But this method will vary the integration period of the CCD and introduce further distortion to the image which will make the image processing task complicated. Figure 6.17 is an example. The $n, n+1, n+2$ are the scan positions that are of constant physical distance intervals. The pattern is a straight line. The time intervals of the scan positions are varied because of the speed so the video output is varied. A single threshold is used so two lines of the binary image are different but the pattern being scanned is the same.

One approach to solving this problem is to send two line scan signals (double pauses) to the camera for every signal from the distance counter. The image correspondent with the first line scan signal is thrown away. Only the image correspondent with the second line scan signal is sent to the DSP for further processing (Figure 6.18, Figure 6.19, Figure 6.20). The reason to throw the first part of the image is that the integration time to produce this part of image is not constant. It is important to keep the time interval between the two line scan signals constant by counting a system clock in spite of the variation of the time intervals between any two consecutive signals from the distance counter. Actually, the first line scan signal is synchronised with the movement of lace. The video signal from the camera after the first line scan signal is meaningless because it is integrated in the camera before the first line scan signal. The video signal from the camera after the second line scan signal is correct because it is integrated between the first and second line scan signals that are at a fixed time interval and the beginning of the integration is synchronised with the movement of the lace.

Another requirement is to avoid the saturation of photo elements in the camera due to a long time exposure, even if the light intensity does not change. Observation of the camera output after saturation showed that there are several saturated lines at the beginning of the image if line scanning signal is not active at normal operation frequency. The method of anti-saturation is that a line scanning signal with fixed frequency is used to drive the camera to clock out the image signal continuously but the image signal is not sent to the DSP if no synchronising signal is generated by the distance counter. When the synchronising signal arrives, double pulses are triggered. The second pulse will send the image integrated between the first and second pulses to the DSP for processing.

The images being taken at various lace speed from nearly zero to $1 \mathrm{~m} / \mathrm{sec}$ have been shown experimentally to have no significant differences using the methods that are discussed here.

6.4.4 Triggering the Camera Directly from the DSP

One case in which the camera needs to be triggered by the DSP is to produce a grey level image for threshold determination. In order to produce a grey image on a single position of the lace by using the method described in section 6.3 , the scanning action of the camera will repeat while the lace does not move. The encoder signal cannot be used in this case. The best way to control the scanning action is to use the DSP so that in producing the grey level image the DSP can control both threshold level and scanning signal and the threshold can be set before the next scanning signal is issued (the schematic diagram of the synchronising board is shown in the Appendix 5).

6.4.5 Valid Scanning Rate

The camera scanning rate, f, controlled by the DSP must satisfy inequality 6.5.
$f<\frac{1}{2 p}$
where p is the integration period of camera (see Figure 6.18). Since the double pauses are used to produce one line of image, the minimum time interval between two contiguous line scanning signals is $2 p$. The p is determined by equation 6.6 in this case.

$$
\begin{equation*}
p=\frac{n}{f_{p i x e l}} \tag{eq. 6.6}
\end{equation*}
$$

where $f_{\text {pixel }}$ is the pixel rate of the camera and n is the number of the pixels including delay pulses before valid video appears on the output pin of the camera. If $n=2100, f_{\text {pixel }}=20 \mathrm{MHz}, f$ must be lower than 4.76 KHz . The inequality 6.5 must also apply to the scanning rate issued by the distance counter.

6.5 CONCLUDING REMARKS

Several aspects of stabilising working conditions of the vision system, light source, threshold and synchronisation, have been investigated in this chapter.

The high frequency fluorescent tube driven by DC power will be the best choice from the even light distribution point of view. The line scan camera is not affected by high frequency ripple caused by an electronic ballast because the frequency of the tube is at lest 4 times higher than the frequency of the camera line scan action.

The LED array is bright enough for the 10 KHz line scan frequency of the line scan camera and the light intensity is quite stable, but bright spots in the field of view are a major problem.

Threshold determined by upper and lower bounds works when the DC voltage level is changed from 170 v to 200 v . If the working temperature is not changed quickly, the threshold decision algorithm can be used at the beginning of every use of the start point finding and cutting path tracking algorithms to cope adequately with the changes in illumination caused by tube ageing and the working temperature drift.

The encoder method can produce a scan signal for every constant incremental distance travelled by the lace, the double pulse method can keep the integration time constant and by switching between the distance counter and DSP the vision system can work in different modes for threshold decision, start point finding and tracking. These methods enable the image to be kept consistent regardless of variation of the lace speed. In order to avoid saturation of the photo elements of the camera due to longer exposure period caused by a lower lace feeding speed, an exposure control mechanism based on a time counter has been used; the camera works in a continuous scan mode with a fixed frequency and the image produced by the camera is not sent to the DSP to be processed until a synchronising signal from the distance counter arrives. The drawback of the double pulse method is that the maximum rate of system line scan action reduces from 10 KHz to 4.76 KHz . But this is not a problem for vision system 2 or vision system 3 because 4.76 KHz line scan
rate can produce the resolution as high as $4.76 \mathrm{pixel} / \mathrm{mm}$ when the lace moves at $1 \mathrm{~m} / \mathrm{s}$. It is certain that the vision system has sufficient resolution from stationary conditions up to $1 \mathrm{~m} / \mathrm{s}$.

Figure 6.1 Layout of lamp test

Figure 6.2 Fluorescent tube with a normal ballast

b)

The type of lamp is Osram Dulux EL 20W. The length of tube is 120 mm .
The light intensity distribution of the fluorescent tube with a electronic ballast was recorded by the oscilloscope.
a) recorded with 10us timebase to show the distribution along the tube.
b) recorded with 2 ms timebase to show the 100 Hz variation.

Figure 6.3 Fluorescent tube with an electronic ballast driven by AC power

Figure 6.4 a: Light intensity of tube driven by DC b: Light intensity of tube driven by AC

Figure 6.5 Structures of LED array

Figure 6.6 LED light intensity distribution

light intensity distribution of a singal LED without round head.

Figure 6.7 LED with and without round head

2

$\mathrm{A} 2=5.11 \mathrm{~mm} \mathrm{B2}=0.24 \mathrm{v}$

3

Test condition: distance between LED and CCD chip is 85 mm ; driving voltage is 5 v ; resistor is 200 RO .
Note: \mathbf{B} is the video output voltage.
Figure 6.8 Light intensity distribution of single LEDs

Figure 6.9 Uniformity vs. change of distance between two LEDs

Figure 6.10 Change of uniformity
light intensity variation (\%)

Figure 6.11 Light intensity change with time

Figure 6.12 Grey level for one line of lace
number of edges

threshold level

Figure 6.13 Edge curve

Figure 6.14 Test positions

Figure 6.15 Test voltages

Figure 6.16 Relation between encoder and lace

Figure 6.17 Variation of the image caused by integration

Figure 6.18 Timing of the double signal generator

Note: the number will correspond to the number on Figure 6.20.

A: decoder B: synchronizing with system clock
C: controller D : line scan signal generator
a: signal from encoder b: system clock
c: line scan from DSP d: line scan to camera
e: image from camera f: image for DSP

Figure 6.19 Principle of synchronising board

$5 \ldots \ldots$ 几ـ
6 MMMMMMMMMMMMMMMM
7 \qquad MM

Figure 6.20 Timing of synchronising board

Chapter 7

ENHANCED PATTERN TRACKING SPEED

7.1 INTRODUCTION

Pattern tracking is the key part of this high speed vision system. Therefore, improvement of the tracking speed is an important research task. Two approaches to speeding up the tracking, optimised code and a front end correlator, have been investigated.

In section 7.2 the influence of the speed of the tracking on the speed of the whole vision system is analysed. In section 7.3 an approach to optimise the tracking computer program code is presented. In section 7.4 a hardware correlator approach to speeding up the tracking is investigated. In section 7.5 conclusions about speeding up the tracking are listed.

7.2 TRACKING SPEED

Let us consider the second vision system (see Figure 3.10). The functions of DSP1, DSP2, and Motorola 68020 are as follows. The DSP1 looks after the line scan camera and puts the image data into the global memory which can be accessed by all DSPs. The DSP2 does the tracking and puts the tracking result at the end of a queue (a memory block between DSP2 and 68020) and the 68020 sends the first data in the queue to the galvanometer via a D / A to control the cutting beam position. The length of the queue, q, is generally determined by the physical distance d between the camera zone and cutting zone and resolution of vision system, r (determined by an encoder, see chapter 6).
$q=d / r$

If we follow a line of image on its "travel" through the vision system, we can get a travelling path which illustrates the relationship amongst the parts of the vision system (Figure 7.1).

When the lace feeds at a constant speed v, the time, tlace, taken for a particular part of the lace to travel from the scan zone to the cutting zone is given by equation 7.2.
$t_{l a c e}=d / v$
The whole processing time of a single image line in the vision system, $t_{\text {process }}$, is the sum of the processing times for the all functional blocks in Figure 7.1. There are q image lines between the camera zone and cutting zone, so the $q \times l_{\text {process }}$ must be less than $t_{\text {lace }}$ (inequality 7.3). Otherwise the cutting beam will never hit the correct point of the lace continuously (supposing there is only one direction of movement of the lace).
$q^{q} \boldsymbol{t}_{\text {process }}<t_{\text {lace }}$
As we discussed in chapter 3, the shorter the distance between scan zone and cutting zone, the less change of the lace after scanning. Unfortunately, the distance, d, will be constrained by the lace feeding speed v and the whole processing time of the vision system. If the $t_{\text {lace }}$ in inequality 7.3 is replaced by equation $7.2 d$ will be determined by inequality 7.4 a .

$$
d>t_{\text {process }} \times v \times q
$$

(The smoke in the cutting zone is another constraint for the shortest distance between cutting zone and scan zone. Firstly the cutting smoke is quite thick, which will blur the image if the two zones are too close to each other. Secondly any extraction hood employed to contain the cutting smoke will interfere with the scan zone due to its size.)

The inequality 7.4 a can be rewritten to inequality 7.4 b to see effect of the $t_{\text {process. }}$.
$v<d /\left(t_{\text {process }} \times q\right)=r / t_{\text {process }}$
In inequality 7.4 b we can see that the lace feeding speed v depends on the processing time $t_{\text {process }}$ and the system longitudinal resolution r. In order to
see which part of the vision system is the biggest time consumer in $t_{\text {process }}$, let us divide $t_{\text {process }}$ into $t_{\text {scan }}, t_{\text {data }}, t_{\text {tracking }}$ and $t_{\text {transform }}$.
$t_{\text {scan }}$ is the time between the trigger signal from a distance counter (see chapter 6) to the first image word sent to DSP1 which is $105.6 \mu \mathrm{~s}$. $t_{\text {data }}$ is the time from the input trigger of DSP1 to set the flag in global memory to broadcast the new line of image to DSP2 which is $200 \mu \mathrm{~s}$. $t_{\text {tracking }}$ is the time from getting a new line signal to putting the tracking result into the global memory which is 2450μ s. $t_{\text {transform }}$ is the time in which the 68020 gets tracking data in the DSP board, transforms it and sends it to the galvanometer, which is around $20 \mu \mathrm{~s}$. Up to now, the reader can clearly see that tracking is the biggest portion of the $t_{\text {process. }}$. Therefore $t_{\text {tracking }}$ dominates the lace feeding speed v.

Parallelization, one way to speed up the vision system, will be discussed in future work.

Investigations have been carried out to increase the speed of tracking. There are two approaches to speed up the tracking. One is to optimise the DSP code to make it faster but there is a limitation for a DSP; another is to employ a hardware correlator as a front end accelerator.

7.3 OPTIMISING THE DSP CODING

The tracking code for DSP_{2} can be functionally divided into two parts. One is to perform the binary cross correlation between map and image data; another is to do IIR filter and longitudinal registration decision. Of the $2450 \mu \mathrm{~s}$ execution time per line of input image, approximately $2250 \mu \mathrm{~s}$ is spent performing the cross correlation whilst the rest of the code consumes the remaining $200 \mu \mathrm{~s}^{\prime \prime}$.

Clearly, reducing the time taken by the cross correlation is the primary target for optimising the DSP coding.

[^0]Because there is no operating system on DSP board, the coding is a hardware dependent task. So before describing how to optimise the DSP coding, it is necessary to introduce the Motorola DSP 56001 and the DSP board.

7.3.1 DSP Architecture

DSP is a special microprocessor for digital filtering calculations. The typical calculations are multiply and add, which can be done in the same instruction cycle supported by its own hardware architecture (Cooling 1991).

Figure 7.2 shows the difference between the internal data, address bus and external bus in a DSP. The X, Y internal memory use different data buses but the X, Y external memory must share the same data bus. This difference affects the code execution time. For example the (MAC X1, Y1, A $\mathrm{X}:(\mathrm{R} 0), \mathrm{X} 1 \mathrm{Y}:(\mathrm{R} 4), \mathrm{Y} 1)$ is a parallel instruction set, which does $A=A+X 1{ }^{*} Y 1$, moves data from memory location pointed to by $\mathrm{X}:(\mathrm{RO})$ to a data register X 1 and moves data from memory $\mathrm{Y}:(\mathrm{R} 4)$ to another data register Y 1 in one instruction cycle. If R0, R4 point to the internal memory, the instruction execution time is 2 clock cycle because all internal memory sources can be accessed at the same time. But if R0, R4 point to the external memory, the execution time will be much longer because only one external memory access can occur per bus request (Motorola 1989).

7.3.2 Key Points for Optimising Tracking Coding

The main methods to be used to optimise the tracking coding on DSP are as follows:

1. Put the most frequently used data into the internal memory;
2. Use the parallelism of instructions;
3. Use reference registers (R0-R7) instead of immediate data transfer.

After applying these coding rules the execution time for the cross correlation is reduced to around $800 \mu \mathrm{~s}$. The total tracking execution time is of around $1 \mathrm{~ms} /$ line and hence tracking at $330 \mathrm{~mm} / \mathrm{s}$ (or very nearly $500 \mathrm{~mm} / \mathrm{s}$ with a 40 MHz DSP) is possible.

7.4 IMPLEMENTING TRACKING BY USING FRONT END CORRELATORS

After the DSP code for the incremental tracking has been optimised several times, the execution time for every incoming line of the video data is reduced from 2.5 ms to 1 ms using a 27 MHz Motorola DSP56001, and hence tracking at $330 \mathrm{~mm} /$ second with a line resolution of 3 lines $/ \mathrm{mm}$ is achieved.

In order to further increase the tracking speed, an approach based on the Harris HSP45256, binary correlator, has been investigated. The correlator card has been designed, built and tested and the DSP code to address the card has been written and debugged.

7.4.1 Working Principle of the Card

In order to describe the working principle of the card a simplified schematic diagram of the card with one HSP45256 correlator is shown in Figure7.3. There are three HSP45256 correlators on the complete card. The HSP45256 is capable of performing 256 stage binary correlations or 32 stage 8 -bit correlations (also other configurations in between) by suitably configuring its eight 32-bit registers via $\mathrm{A} 0-2$ and $\mathrm{DCON} 0-7$. Here the correlator is configured as a 128 stage 2-bit correlator (see Figure 7.4). The mask data, which determines the weighting table for correlation, is sent to HSP45256 via DCON0-7 pins. The map data is sent to DREF7 via a 24 bit latch and parallel-in-serial-out shift register. The video data is sent to DIN7 and DIN3 pins via an external serial-in-serial-out shift register. The result of correlation can be calculated by equation 7.5.

Correlation $=\sum_{i=0}^{127} \overline{D_{i} \otimes R_{i}} \times W_{i} \times M_{i}$
where the D_{i} is the video data in bit i of the data shift register, the R_{i} is the map data in bit i of the reference register, the M_{i} is the masking table in bit i of the mask register, and the W_{i} is the weighting function according to the configuration of the HSP45256 (Harris 1991). The Correlation will be
presented at the pin CASOUT0-7. In every clock pulse the data in the data shift register will be shifted one side step and a new video data pixel will be put into the last cell of the shift register. At the same time a new correlation result will be presented on the CASOUT0-7.

In practice there are two problems to be solved about how to interface to the Motorola DSP56001 before the HSP45256 can be used for the tracking. One problem is that the DSP cannot read correlation results, which are 8 -bit quantities at 20 MHz (i.e. the camera clock rate), another problem is how to pick up the required portion of the correlation results that is around the cutting path.

The maximum clock rates for the two available versions of the HSP45256 are 25 MHz and 33 MHz . The clock rate for the DSP is 27 MHz , therefore the map data will be clocked into the reference register of a correlator at this rate. The 33 MHz HSP45256 correlator is chosen to accommodate this data rate. The output rate of correlation results is the same as the video data rate, namely 20 MHz , but the highest data-in rate for the DSP is 5 MHz (Data $\beta 1991$). For this reason, a 'clock gear' is designed to let the card work in two phases. In the first phase, the video data is clocked into an external shift-register and the internal shift-register in the correlation chips at 20 MHz clock rate and no 'strobe' pulse is issued so that the correlation results being produced in this period are not sent to the DSP. In the second phase the correlator clock is reduced to a rate commensurate with the DSP ability to accept the results from the correlator and 'strobe' pulses are issued so the correlation results are sent to the DSP.

The 'clock gear' combined with a programmable counter has been used to choose the required portion of the correlation results of the current video line. According to the tracking algorithm, the centre of the interesting search area, Y, can be predicted by equation 4.8.

So the correct portion of the current line for the correlation can be described by equation 7.6 .
$Y-l / 2+d \leq y \leq Y+l / 2+d$
where Y is the predicted centre of the current line of the video data in the DSP memory, y is the portion of the current line of the video data, l is the length of the portion to be searched for, and d is the origin difference for a line of video data between that stored in the DSP memory and used for the correlator. The principle of using the 'clock gear' and programmable counter to choose the required portion of the current line is the following. The length of the effective internal shift register plus the external shift register equals l, and both internal and external shift registers are driven by the same clock from the 'clock gear'. Before the line scan pulse comes, the programmable counter has been set to $Y+l / 2+d$. Once the line scan pulse arrives, the counter is counted down and the output of the 'clock gear' is 20 MHz . As soon as the counter reaches 'zero', the 'clock gear' changes to low gear and at that moment the required portion of the current line just fills the whole area of the effective internal and external shift registers. At that time a first valid correlation result will be sent to the DSP. Then every following clock will shift one bit of video data in the external shift register into the correlator and produce a valid correlation result to be sent to the DSP until all the data, which has been stored inside the external shift register before the 'clock gear' changes from high to low, is shifted into the correlator.

The timing diagram for the correlator is shown in Figure7.5.

According to the tracking algorithm, a current line of the video data should be correlated with three consecutive lines of the map. For this reason in the real correlation card there are three correlators working in parallel. The schematic diagram is in the Appendix 6.

7.4.2 Primary Test

The experiment arrangement is as shown in Figure 7.6. The DSP1 is used to control the camera and the interface board, and the DSP4 is used to communicate with the correlators. The experiment sequence is as follows:

1. DSP4 sets the programmable counter, configures the correlators, and sends map data and weight table to the correlators. The DSP4 sets itself ready to accept the data from the correlators.
2. DSP1 sets the threshold level on the interface board. Then a single line scan signal is issued by DSP1.
3. As soon as the interface board gets the valid video data, the valid video data will be sent to the DSP1 and sent to the correlators individually.
4. After the line scan pulse has arrived, the correlator board will put the required portion of the current video data into the internal and external shift-register. Then the clock rate changes to lower rate and the correlation results are sent to DSP4.

The aim of the experiment is to test the functions of the correlation card. The following is one set of the experimental results, the data is presented in the hexadecimal format.

```
map in correlator0: 000000000000000000000000
map in correlatorl: ffffff ffffff ffffff ffffff
map in correlator2: 007 fd f fffffd 7 fffff 5 fff 5 d
weighting table (for all correlators):
```

$\begin{array}{llllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
video data in DSP memory

dd7fff	ffffff	d57d7d	d01555	57ffff	dfffff
fffffd	7f7fff	ffffff	ffffff	ffdfff	ffffff
ff7fff	ffffd5	555fff	ffffff	ffffff	fdffff
fffff5	$5557 f f$	ffffff	ffffff	ffffdf	f5ffff
ffffdf	ffffd5	$7 f f f f f ~$	fd7fff	f7fffd	000000

correlation data from the correlator0
0a 0909080807
07060605050404030302020101010101
correlation data from the correlator 1

correlation data from the correlator2
4b 43 4b $454 f 474 f 494 d 4 b 4 d 4 c 4 e 4 d 4 f 4 e$ $504 f 5150524 f 514 e 4 e 4 d$ 4d 4 c 4 c 4 c 4 c 4 c

The data of the video data in the DSP memory being highlighted, which is 128 bit wide, has been chosen to correlate with the maps in each correlator, which is 96 bit wide. The correlation results can be checked by equation 7.5. For example, the first 96 bits of the video data, ffd5 555 fff ffffff ffffff fd, is correlated with the map data, 007 fd 5 fffffd 7 ffffff 5 fffffsd in the correlator 2 to produce the first correlation result in the correlator 2 in the following way:

```
video data ffd5 555ffff fffffff fffffff fd
in binary
1111111111010101 010101010101111111111111
1111111111111111111111111111111111111111111111111111111101
map data 007fd5 fffffd 7fffff 5fff5d
in binary
000000000111111111010101 111111111111111111111101
011111111111111111111111010111111111111101011101
exclusive-nor
000000000101010101111111 010111111111111111111101
011111111111111111111111 0101111111111111101011111
correlation=\sum 1's = 0x4b
```

Then a program using the same method has been coded to calculate the correlation results from the video data being stored in the DSP memory and the map data being sent to the correlator, and the simulation results of the program are the same as the correlator results being sent to the DSP4.

7.4.3 Hybrid Tracking Coding

The tracking program contains several functional blocks (Figure 7.7).

Two things, the weighting function and map buffer, should be mentioned, while the other function codings are straightforward.

7.4.3.1 Weighting Function

The weighting function in chapter 4 can be implemented in the HSP 45256 by setting the mask register (see Figure 7.4). For example Figure 7.8 shows a setting of the mask registers to realise 96 bit matching width with weights 1-2-3-3-2-1.

The setting format of the mask register depends upon the configuration of HSP45265. As the 128 stage 2 bit correlator which is configured for tracking, the mask registers form 2 parallel 128bit mask registers and the mask settings for two mask registers are input from DCON7 so the same bit on two mask registers must have the same mask value 1 or 0 which cannot perform the weighting function in Figure 7.8a.

One way to set every bit individually in the mask registers is to take advantage that the change of configuration of the correlator will not change the contents in the registers. The method is as follows. Firstly the correlator is configured as a 8 row by 32 correlator in which each of the 8 correlators has its own mask input (see Figure 7.8b). The rows of the matrix in Figure 7.8 b represent the mask registers. The columns in the matrix represent the bits of the mask registers. Secondly each cell of the matrix is filled with 1 or 0 according to the requirement of weighting function (see Figure 7.8). Thirdly the data in Figure 7.8 b are seen as a hexadecimal data column by column and sent to DCON0DCON7. The DCON7 is the most significant bit (MSB) and the DCON0 is the lest significant bit (LSB). For example the data in column 0 is 01101100 , that is 6 c (Hex). Finally the correlator is configured as a 128 stage a 2 bit correlator in which the mask register will be the same as Figure 7.8a.

7.4.3.2 Map Buffer

One advantage of the HSP45256 is that the reference registers are double buffered (Harris 1991) which allows new reference data to be loaded while the current correlation is in progress. This can be used to preload map data into the correlators for future correlation.

The reason for this is that after the sequence of map lines in the correlators for current correlation has been decided the sequence for preloading map data is predictable whatever the decision which results from the correlation, such as "wait", "step", "jump". For example, Figure 7.9 shows the map in correlators before the correlation. Figure 7.10 shows the map in correlators after "wait", "step", "jump".

If this map preloading method is used directly, the problem of the program efficiency will arise because the DSP will control which correlator should be sent map data, and which correlator should be read from according to the previous map in the correlators. This takes time.

If the physical correlator0, correlator1, correlator2 are separated from the logical cor0, cor1 and cor2, the DSP is only interested in the logical correlator. A ring-counter is used to manage the physical correlators' input and output according to the logical correlator of the DSP, so the efficiency of the tracking can be improved. The logical correlator0 refers to a physical correlator that has the lowest sequence number of the map in its reference register, and so on. For example, in Figure 7.9, the logical correlator0 is the physical correlator0. In Figure 7.10 after "step" or "jump" action the logical correlator0 is the physical correlator1 or correlator2 respectively.

7.4.4 Performance of Hybrid Tracking

A Hewlett-Packed Automatic Synthesizer (HP3330A) was used to measure the execution time of the hybrid tracking program. The time from the start of 'make decision' block to the end of 'set counter send map' block is 120μ (see Figure 7.7). The fastest execution time for every new image line is $226 \mu \mathrm{~s}$ (DSP time + Correlator time), which is fast enough for $1 \mathrm{~m} / \mathrm{s}$ speed with 3 line per mm resolution. During the real lace cutting tests, the hybrid tracking demonstrated over $1 \mathrm{~m} / \mathrm{s}$ tracking capacity.

7.5 CONCLUDING REMARKS

The methods for speeding up the tracking have been studied in this chapter. The coding optimisation can push DSP to track near 1000 line/s. This should
be potentially very good because the operational speed of the microprocessor will increase dramatically in the near future. The cost to port the tracking algorithm to other microprocessors to speed up the tracking is smaller than the cost to design and make a hardware for the same purpose.

The correlator front end tracking is capable of tracking $1 \mathrm{~m} / \mathrm{s}$ lace movement speed and faster than the pure software tracking. The research and development cycle is still shorter than a pure hardware solution.
data in
tracking
transform
cut

Figure 7.1 Functional blocks of the vision system

Figure 7.2 Bus organisation

Figure 7.3 Diagram of one correlator

Figure 7.4 Correlation

Figure 7.5 Timing diagram for correlation

Figure 7.6 Experiment layout

Figure 7.7 Functional blocks of hybrid tracking algorithm

bit	0	16	32	48	64			DCON4(*2)
DCON7	O's	1's	1's	1's	1's	0's	O's	
DCON3	1's	O's	1's	1's	O's	1's	0 's	DCONO(*)
weight	1	2	3	3	2	1	0	

Figure 7.8 Weighting function

Figure 7.9 Map buffer

Figure 7.10 Map buffer after action

Chapter 8

PERFORMANCE ANALYSIS

8.1 INTRODUCTION

In addition to cutting lace which has pattern deformation, the speed of cutting and the capability to cut multiple paths are two other requirements of this research. Therefore, the latter requires parallel processing of separate tracking algorithms. The vision system must be able to track a single path or multiple paths in parallel. This ability needs to be integrated with the research into the laser, optics, and lace transportation system. The research work to increase the speed of tracking has been presented in chapter 7. The testing of the integrated system will be presented in this chapter, this is based around the testing of the prototype machine (Figure 3.17 \& Figure 8.1). The research work on multiple tracking will be described in section 8.2.

Cutting lace with the required accuracy is another requirement of this research. There are many factors affecting the final cut result; tracking error is one factor for consideration.

Let us consider the definition of cutting tolerance. Lace is a two dimensional object and the cutting path is a two dimensional curve hence the cutting tolerance is defined in two dimensions.

An ideal cutting path, $\operatorname{Pid}(x)$, lies in the x y coordinate plane. A circle with δ radius and centred at $\operatorname{Pid}(x)$ moves along the ideal cutting path; two parallel curves in both sides of the path produced by movement of the circle form the tolerance band; any cutting point within the tolerance band is acceptable (see Figure 8.2). The definition of tolerance, $T(x)$, band is given in equation 8.1.

$$
\begin{equation*}
T(x)=\operatorname{Pid}(x) \pm \Delta(x) \tag{eq. 8.1}
\end{equation*}
$$

where $\Delta(x)$ is determined by the curvature and gradient of the $\operatorname{Pid}(x)$ at point (x, y).

Lace is a deformable material so the ideal cutting path $\operatorname{Pid}(x)$ does not equal the reference path, $\operatorname{Pma}(\xi)$, in chapter 4. The ideal cutting path $\operatorname{Pid}(x)$ can be defined in two ways. One is to define it according to $\operatorname{Pma}(\xi)$, which can assess the difference between found path, $\operatorname{Pim}(x)$, and $\operatorname{Pid}(x)$, which is the tracking accuracy, within the vision system; another is to define it according to real lace, by which the cutting error includes all the other errors in the system. Since the magnitude of the tracking error is in the similar band of the magnitudes other errors, the latter method is difficulty to quantify the pure tracking error. But it is useful to judge the cutting error of the prototype.

In section 8.3 a method to transfer tracking results to D/A data used in test rig 3 (Figure 3.16) and the prototype (Figure $3.17 \&$ Figure 8.1) is presented for guiding laser to cut lace. Investigation of cutting error is discussed in section 8.4. Further analysis of cutting related errors is presented in section 8.5. Some conclusions are drawn in section 8.6.

8.2 MULTIPLE TRACKING

A lace cutting machine with a multiple beam cutting ability will be able to increase the production in direct relationship to the number of heads. The economic and technical advantages of a multiple beam machine are as follows:

1. Increase productivity;
2. Lead the machine development towards re-entrant cutting, a potential new market.

A vision system with twin-path-tracking ability is an example of multiple tracking. The research aim of multiple tracking is to establish how to configure the vision system to realise multiple tracking and how to solve the special problems that occur for the multiple tracking concept.

8.2.1 Configuration of the Vision System for Twin Beam Cutting

Vision system 2 and 3 (Figure $3.10 \& 3.12$) are for single beam cutting. These include a line scan camera, a DSP board on which one DSP acts as an image
processing engine, an interface board between the camera and DSP, and a host computer. There are several ways to configure a vision system to realise multiple tracking:

1. Duplicate the existing vision system (see Figure 8.3a);
2. Duplicate the camera and the interface board (see Figure 8.3b);
3. Use an extra DSP in the existing system (see Figure 8.3c).

The choice of the vision system configuration will depend upon the cost, the viewing range, and the software development.

If the distance between the two cutting paths is so large that a single camera cannot see both paths at the same time with a reasonable resolution or that two lighting sources must be used, the configuration of Figure 8.3a or Figure 8.3 b is better than the configuration of Figure 8.3 c in which the limitation of the camera viewing range and the single thresholding level for the analogue to digital conversion cannot cope with a large viewing range demand or two different illuminations unless some optical arrangement or extra control method is applied. If the two tracking paths are inside the viewing range of a single camera and the illumination is even across the viewing range, the configuration of Figure 8.3 c is more economical than the others as it requires less hardware.

To judge the three configurations from the software development point of view will mainly depend on how difficult it is to rewrite the DSP processing code to suit the multiple tracking. The vision software includes two parts: 1 . DSP code; 2. host processor code. Generally speaking, the software work to develop multiple tracking involves both DSP code and host processor code. Usually developing the code for the host processor can take advantage of the operating system and higher level language and software development facilities on the host computer, such as DOS, OS9, C, Debug. The researcher can put more efforts into the data structure and some key code to produce successful software.

Unfortunately development of DSP code for an embedded vision processor is more difficult than on the host computer. The DSP code development is at the
assembler coding level. Although there is a higher level language, such as C , on the market for the DSP, the fact is that the execution speed of the C code, which is important to the image processing task, is slower than that of the assembler code. This problem will get worse when multiple DSPs are working together. The DSP board with four Motorola DSP56001s, which has been used for the single tracking, is a simple DSP array without a well developed operating system to control the whole DSP array. There is only a simple monitor for each DSP. There is no evidence to suggest that the manufacturer of the DSP board will develop a real time operating system or a parallel higher level language for this board in the near future. Development of this kind of operating system or parallel higher level language is neither a simple nor a fast software task but it would certainly help the development of DSP code. Any change of the' DSP code in assembler to implement multiple tracking is not a simple task. The configuration of Figure 8.3a, in which there are two independent single track vision systems, needs only a modification to the code for the host microprocessor for the implementation of multiple tracking and does not involve any DSP code development. Therefore from the software development point of view this is the easiest configuration, but the hardware cost is higher.

The summary of comparison among three methods is presented on table 8.1.

	Figure 8.3a	Figure 8.3b	Figure 8.3c
Hardware cost	highest	middle	lowest
Viewing range	large	large	small
Software on DSP	easy	difficult	difficult

Table 8.1 Comparison of three configurations for tracking twin paths
The configuration on the Figure 8.3 c is chosen to implement the multiple tracking because the distances between two adjacent cutting paths of most lace samples are inside the single camera view range. This will prove the concept of multiple tracking by adding an extra DSP on the existing vision system and re-writing some parts of the code without any hardware change.

8.2.2 Multiple Tracking by Using Multiple DSPs

The vision system is a multiple micro-processor environment in which three DSPs and one host processor work together. The main data streams are image data and result data (see Figure 8.4). There are two things to be considered when the system is going to be built. One is the data stream and another is the software organisation.

There are two bottlenecks in the vision system. One is the host processor and another is the global memory on the DSP board, which can be accessed by all microprocessors. The tasks of the host microprocessor are as follows:

1. Provide an interface for a human operator;
2. Control three DSP processors;
3. Display the cutting path in real time;
4. Drive two galvanometers in real time;
5. Display images for system diagnosis.

A small amount of data is involved in the tasks 3 and 4; other tasks are not time critical.

Compared to the host microprocessor the global memory on the DSP board involves a large amount of data. The memory has one data bus and one address bus therefore only one microprocessor can access the memory at any one moment. Ideally the memories and buses should be arranged according to data streams and microprocessors, such as local bus and dual port memory between microprocessors (see Figure 8.5) to allow more microprocessors to access the same data or different data at one time. It is difficult to find this kind of product on the market. If this kind of board is built here, it will cause higher costs and a longer development cycle. As a realistic alternative to prove the concept of twin path cutting a master slave arrangement for microprocessors and an event driven mechanism are used based on the arrangement shown in Figure 8.4 to organise the data streams and actions between the microprocessors.

Comparing Figure 8.3a, 8.3b and 8.3c, the arrangement of Figure 8.3a has the slight advantage of less memory conflict than the other two due to two
separated memories on the DSP boards so Figure 8.3a has a chance to work faster in multiple path cutting than the other two, but will be limited to the same maximum speed as the vision system for single path cutting.

The host microprocessor acts as a master that controls the actions of all DSP processors. Three DSPs act as slaves that are switched on and off by the master processor.

The tasks of the vision system can be classified into setting up camera threshold level; taking the camera data into the memory; searching for a start point for tracking; tracking the cutting path; driving the galvanometers; interfacing to an operator; initialising the DSP. All these tasks are done on different microprocessors and operated in a sequence (see Table 8.2). The operation sequence of the tasks starts from the far left column and stops at the far right column. The tasks that fall into one column can operate in parallel. So every column can be seen as an event. The status board on the Figure 8.4 is used to display the current event. All microprocessors are looking at the status "board" to decide what task can be operated according to the sequence.

8.3 TRACKING RESULT TRANSFORM

The vision and cutting system (in rig 3 or prototype) works as follows.

The vision zone is upstream of the cutting zone by typically 20 mm . The linescan camera system acquires data for each strip of the pattern. As each strip of pattern moves towards the cutting zone, the DSP extracts the cutting information from the incoming image by using the tracking program. As the lace passes the cutting zone, the CO_{2} laser cuts the lace at the required point.

There are three different coordinate systems involved in the whole process:

1. System coordinate for the test rig, $X s, Y s$. The camera, galvanometer are fixed in this system and lace is fed into this system (Figure 8.6).
2. Image coordinate (see section 4.2), Xi, Yi. In this coordinate image of lace is described by pixel and line.
3. Cutting coordinate, $X c, Y c$ in which the cutting positions are described by units (for D/A converter) and line.

initiator	task	time 1	time 2	time 3	time 4	time 5	time 6
host	human interface	----------	---------	---------	----------	----------	----------
host	initialise DSP	----------					
host	driving G					----------	
host	terminat ion						-------
DSP1	setting camera		--------				
DSP1	get camera data		---------	---------	---------	---------	
DSP2	start point				---------		
DSP2	tracking					--------	
DSP3	start point				---------		
DSP3	tracking					---------	
operator	move lace			---------		---------	
operator	cut lace by using laser					---------	

Note: '--------' means processor in action. If there are more than one '----' in one column, that means more than one processor in action at the same time.

Table 8.2 Timing of software function blocks for two beam cutting

The geometry relationships between the three coordinate systems are fixed after the camera and galvanometers are fixed on the rig. The most important relationship is between the image coordinate and cutting coordinate systems. This is necessary in order to cut lace at the correct position according to the data from DSP. There is no direct theoretical geometric relationship between these two systems. Therefore experimental calibration is necessary. The following, details the calibration method. The system coordinate is used as a reference in this procedure.

First find the geometry relationship between system coordinate and image coordinate and relationship between system coordinate and cutting coordinate because camera and galvanometer are fixed in the system coordinate. Then find the geometry relationship between image coordinate and cutting coordinate.

In general, two right hand coordinate systems can be described by each other if they have a fixed geometric relationship. Let us consider a two dimensional system only (see Figure 8.7). For example, a point P in space can be described in an x, y coordinate as $P(x, y)$ and in another x^{\prime}, y^{\prime} coordinate system as $P\left(x^{\prime}\right.$, y^{\prime}). If the difference between origins of two coordinate systems, $X o$, and $Y o$, scale $S x$, and $S y$, and the angle of two systems, α are known, any point in $x y$ coordinate can be described by x^{\prime}, y^{\prime} coordinate using equation 8.2.
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{cc}S x & 0 \\ 0 & S y\end{array}\right] \times\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right] \times\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]+\left[\begin{array}{l}X o \\ Y o\end{array}\right]$
In our case, $\alpha=0$. If the origin of the system coordinate is set at the origin of the image coordinate, the eq. 8.2 can be simplified as equation 8.3. $X s, Y s$ are for system coordinate and $X i, Y i$ for the image coordinate. $S_{X s i}$ and $S_{y s i}$ are scale factors between the system coordinate and the image coordinate.
$\left[\begin{array}{l}X s \\ Y_{s}\end{array}\right]=\left[\begin{array}{l}S x_{s i} \times X i \\ S y_{s i} \times Y i\end{array}\right]$
eq. 8.3

Similarly, if the cutting coordinate is set parallel to the system coordinate, the relationship between the system coordinate and the cutting coordinate is equation 8.4. The subscript c represents the cutting coordinate.
$\left[\begin{array}{l}X s \\ Y S\end{array}\right]=\left[\begin{array}{l}S x_{s c} \times X c \\ S y_{s c} \times Y C\end{array}\right]+\left[\begin{array}{l}X o_{s c} \\ Y o_{s c}\end{array}\right]$
Then a geometrical relationship between the image coordinate and the cutting coordinate, equation 8.5, can be derived from equation 8.3 and 8.4.
$\left[\begin{array}{l}X c \\ Y c\end{array}\right]=\left[\begin{array}{l}\frac{S x_{s i}}{S x_{s c}} \times X i \\ \frac{S y_{s i}}{S y_{s c}} \times Y i\end{array}\right]+\left[\begin{array}{r}-\frac{X o_{s c}}{S x_{s c}} \\ -\frac{Y o_{s c}}{S y_{s c}}\end{array}\right]$

Equation 8.5 can be simplified into equation $8.5 b$.
$\left[\begin{array}{l}X c \\ Y c\end{array}\right]=\left[\begin{array}{l}A x \times X i \\ A y \times Y i\end{array}\right]+\left[\begin{array}{l}B x \\ B y\end{array}\right]$

If $X c$ and $X i$ use the same scale derived from the encoder (see chapter 6), $A x$ equals one and $B x$ is the number of lines equivalent to the distance between scan zone and cutting zone (relevant discussion of $B x$, queue length, in section 7.2). The $A y$ and By can be determined by test. The test procedure is as follows.

A template, printed on a transparency film using a laser printer, and consisting of a series of parallel bars, is placed on the lace registration surface in the camera field of view (scan zone) and over the laser beam cutting axis (cutting zone, see Figure 8.8). The width of all bars is 5 mm and the space between any two consecutive bars is 5 mm . The bar chart is fixed on the system coordinate, perpendicular to the scan zone and cutting zone. The camera acquires image of the bar chart, and a $\mathrm{He}-\mathrm{Ne}$ laser points to several different positions on the bar chart by feeding different data to the D/A converter, such as 0,2048 , 4095. Corresponding points are then found, $Y i$ in image coordinate with $Y c$. If two pairs of $\left(Y c_{1}, Y i_{l}\right)$ and $\left(Y c_{2}, Y i_{2}\right)$ are found, the $A y$ and $B y$ can be decided by using equation 8.6.

$$
\left[\begin{array}{l}
A y \tag{eq. 8.6}\\
B y
\end{array}\right]=\left[\begin{array}{c}
\frac{Y c_{2}-Y c_{1}}{Y i_{2}-Y i_{1}} \\
Y c_{1}-Y i_{1} \times \frac{Y c_{2}-Y c_{2}}{Y i_{2}-Y i_{1}}
\end{array}\right]
$$

The following is an example:

```
image of bar (in hexadecimal format, 720 pixel width)
ffffff ffffff ffffff fffff0 0001ff ff7000 01ffff
c00007 ffffc0 0007ff ff0000 0fffff 00001f fffe00
001fff fe0000 3ffffc 00007f fffc00 007fff fc0000
7ffffc 00007f fff800 007fff fc0000 7ffff8 00007f
ff7800 007fff
```

Every hexadecimal number in the image represents four binary pixels. For example '0001ff' means that there are 15 dark pixels on the left and there are 9 bright pixels on the right. A bar in the image is defined by two transition positions. One position is from bright to dark ('begin'), and another is from dark to bright ('end'). All bars in the image can be determined by searching the 'begin' and 'end' positions.
coordinate of bar in y direction ('begin' and 'end' in pixels)

1) 92110
2) 132150
3)170 188
4)209 228
5)248 267
6)288 306
7)327 346
8)367 385
9)406 424
10)446 464
11)486 506
12)526 544
13)565 584
14)606 624
15)646 664
16)685 704

After this the bar chart is registered in the camera co-ordinate system. Then the $\mathrm{He}-$ Ne points to two desired positions on the bar chart by sending data to D/A converter. If the pixel numbers of the two desired positions and the data sent to D/A converter are put into equation 8.6, A_{y} and B_{y} can be determined.
data pairs (D/A and Image)
$\left(\begin{array}{ll}\mathrm{Y}_{\mathrm{c} 1} & \left.\mathrm{Y}_{\mathrm{i} 1}\right) \quad\left(\mathrm{Y}_{\mathrm{c} 2}\right. \\ \mathrm{Y}_{\mathrm{i}} 2\end{array}\right)$
(1311 445) (2845 267)
$A y=-8.61797 \quad B y=5146$

The relation between the image coordinate and the cutting coordinate is as follows:
$Y c=5146-8.61797 \times Y i$

8.4 Cutting Tests, Tracking Error and Cutting ERROR

Vision system 4 (Figure 3.13) combines vision system 3 (Figure 3.12) with a twin beam vision system (Figure 8.3c). This system can switch between twin path tracking and high speed single path tracking by using different software. In the test programme this system was used to guide two laser beams for dual edge cutting at $250 \mathrm{~mm} / \mathrm{s}$, and also one laser beam for single edge cutting in excess of $1 \mathrm{~m} / \mathrm{s}$.

Two observations have been made during the test programme. One was about the host computer. According to chapter 7, the predicted speed for correlator implementation should be over $1 \mathrm{~m} / \mathrm{s}$. The test indicated that lace could be cut successfully at speeds below $850 \mathrm{~mm} / \mathrm{s}$. As soon as the lace feeding speed exceeded this value, the cutting path started to lose synchronisation with the lace pattern. The cause of this was that the display of cutting path on the graphic screen in real time (see section 8.2.3) took too long. After this function was disabled, the cutting speed functioned well at $1070 \mathrm{~mm} / \mathrm{s}$.

The second observation was about the cutting error. There are many factors that cause the cutting error in the test. Tracking error is one of them. Other factors will be analysed in the next section.

Several methods to evaluate the tracking error are discussed as follows:

1. Since the tracking error is defined as the difference between $\operatorname{Pim}(x)$ and $\operatorname{Pid}(x)$ in image coordinates, a natural way to assess the tracking error is to compare $\operatorname{Pim}(x)$ with $\operatorname{Pid}(x)$. The advantage of this method is that other errors, such as ripple on the lace affecting the cutting process, can be ignored. A difficulty of this method is to define $\operatorname{Pid}(x)$ in the image.
2. Two dimensional cross-correlation is one possible method to locate the best matched part on image against the map. After that the reference path $\operatorname{Pma}(x)$ can be located on the image as $\operatorname{Pid}(x)$. A major problem is that the method does not take account of any variation of lace and the $\operatorname{Pid}(x)$ defined by 2-D, so best match produced by cross-correlation might be
worse than $\operatorname{Pim}(x)$ that is produced by tracking because $\operatorname{Pim}(x)$ is designed to take account of the variation.
3. To define $\operatorname{Pid}(x)$ on incoming image manually, this is similar to the definition of $\operatorname{Pma}(x)$, is another possible way. The disadvantage of this method is that some of differences between $\operatorname{Pim}(x)$ and $\operatorname{Pid}(x)$ may be caused by the subjective judgement of the operator. In other words different operator may get different $\operatorname{Pid}(x)$ from the same image.

In order to avoid directly defining $\operatorname{Pid}(x)$ on incoming image, one method is developed to assess the difference, tracking error, between $\operatorname{Pma}(x)$ with $\operatorname{Pim}(x)$ as follows.

For a given curve, $G(x)$, and a given Feature, $F(x)$, there is difference, $D(x)$, between $G(x)$ and $F(x)$ in y direction (see Figure 8.9). Average of $D(x), \bar{D}$ (see equation 8.7), represents the statistical geometric relationship between $G(x)$ and $F(x)$. If equation 8.7 is applied to $\operatorname{Pma}(x), \operatorname{Pid}(x)$ and $\operatorname{Pim}(x)$, we can get Amap, Aid, and Aim (see equation 8.8). In theory Amap equals Aid so that statistically the difference between Amap and Aim is the average tracking error, σ_{A}, (see equation 8.9).
$\bar{D}=\frac{1}{n} \sum_{i=1}^{n} D(i)=\frac{1}{n} \sum_{i=1}^{n}(G(i)-F(i))$
$A m a p=\overline{D m a p}=\frac{1}{n} \sum_{i=1}^{n}(P m a(i)-F m a(i))$
Aid $=\overline{\operatorname{Did}}=\frac{1}{n} \sum_{i=1}^{n}(\operatorname{Pid}(i)-\operatorname{Fim}(i))$
$\operatorname{Aim}=\overline{\operatorname{Dim}}=\frac{1}{n} \sum_{i=1}^{n}(\operatorname{Pim}(i)-\operatorname{Fim}(i))$
$\sigma_{A}=$ Aid - Aim $=$ Amap - Aim

But the definition of $D(x)$ is a one dimensional error which is different from an ideal tracking error definition similar to Figure 8.2 in two dimensional form. When the rate of change of $G(x)$ is small, the two definitions exhibit
little difference; when the rate of change of $G(x)$ is higher, the $D(x)$ is bigger than the ideal tracking error.

The average tracking error of real lace on prototype and vision system 4 determined by equation 8.9 is less than 1 pixel (see Appendix 8).

Another method to assess the tracking error is to assess the cutting error. This method can only estimate the tracking error but further analysis of cutting error can help in the real machine design. The Pid(x) in this case should be defined according to real lace. For example if scalloping, $\operatorname{Pid}(x)$ is defined on the scalloping edge of lace.

Figure 8.10, and 8.11 show two cutting results of one lace design. The average cutting error is less than 0.5 mm . The biggest error is 1 mm from the edge. So the biggest tracking error will be to equal or less than 1 mm or 4 pixels (if lateral resolution is 0.25 mm per pixel). The next section examines possible factors that can produce cutting errors.

8.5 EXAMINATION OF CUTTING ERROR

A list of possible factors, which affect the cutting error, in test rig 3 and prototype are as follows.

1. Lateral distortion of the lace.
2. Variation of illumination.
3. Longitudinal variation of the lace.
4. Encoder error.
5. Variation of laser spot.
6. Driving method of galvanometer to produce step effect.
7. Dynamic response, non-linearity of galvanometer.
8. Parallelism between camera and galvanometer.
9. Surface ripple of the lace.
10. Lateral movement of the lace.
11. Thermal drift of the test rig frame.
12. Thermal drift of the galvanometer.

Factors 11 and 12 affect the cutting error in a longer time scale. Other factors cause cutting errors in a shorter time scale.

8.5.1 Lateral Distortion of the Lace

The first error has been examined in section 4.4. The maximum tracking error for all the tests at 10% stretch was 3 pixels or less, with or without simulated noise, when β values of $0.8-0.9$ were used. When the variation is less then 5%, the maximum tracking error is less than 2 pixels (0.5 mm).

8.5.2 Variation of Illumination

Two extreme cases of the second error are that, the incoming image is all ' 1 ' or all ' 0 ' (if illumination is too bright or too dark), in which case $\operatorname{Pim}(x)$ can be anywhere due to lack of landmarks to find reference to the current position (see section 3.2.3). The same conclusion can be drawn by putting all ' 1 ' or all ' 0 ' for $\operatorname{Ig}(i, y-q$) into equation 4.7. The image in between these two extremes contains the lace feature. When the image goes from bright to dark for whatever reason, the width (see section 6.3) of the feature becomes wider. This also affects the similarity between the image and the map. The tracking error due to this factor is similar to the error caused by factor one.

8.5.3 Longitudinal Variation of the Lace

The analysis of the third error is as follows. Assuming the lateral distance in the map between j th and $(j+l)$ th reference path is d and on the real lace the i th image is in the middle between j th and $(j+1)$ th map, the ideal cutting path, $\operatorname{Pid}(i)$, on the image is $P m a(j)+d / 2+$ offset (see Figure 8.12). But according to section 4.3, the Pim(i) will be Pma(j)+offset or Pma($j+1)+o f f s e t$ depending on best match or 'wait', 'step' actions. So the tracking error will be $d / 2$. If $d=0$, the tracking error due to longitudinal variation is zero. As d increases, the tracking error will get larger. If $d=1 \mathrm{~mm}$, the tracking error will be 0.5 mm .

8.5.4 Encoder Error

The encoder error will vary the distance between two consecutive lines of the image (as the third error), which affects tracking accuracy and which will affect $X c o$ in equation 8.4. A test of encoder error was carried out on test rig 2 (see Figure 3.15) in which an extra encoder was used to record the position of the table. The largest single pulse error of the encoder used to monitor the position of the lace is 2 pulses in 0.25 mm lace movement (average pulses for 0.25 mm is 13 pulses); and total error in 83 mm is 4 pulses (about 0.077 mm). The test indicated that most encoder error (97%) is within ± 1.335 pulses for every 13 pulses (see Appendix 9). This error has little effect on the cutting error.

8.5.5 Variation of Laser Spot

The next factor is the shape of the laser spot. If the shape of the spot is a circle when laser beam is perpendicular to the cutting surface, the spot changes from the circle to an ellipse as galvanometer changes its axis angle and the beam is no longer perpendicular to the cutting surface. Another factor is the spot size. As the laser output power increases and the lace speed does not change, the effective spot size increases, which will affect the cutting. Theoretically the spot shape of the laser under perfect condition should be circle. But in real world the shape is not a circle, the shape will vary the cutting edge. In one test, when D/A input changes from 2048 (perpendicular to the cutting surface) to 4095 (upper range of $\mathrm{D} / \mathrm{A}, 70 \mathrm{~mm}$ apart from the first position) the width of spot changes from 1 mm to 1.2 mm . The effect of the spot shape on the cutting accuracy is shown in Figure 8.13. It is analogues to the radius of a machine tool in mechanical cutting.

8.5.6 Driving Method of Galvanometer to Produce Step Effect

The driving method used for the galvanometer is another factor in the cutting error assessment. The program only changes the D/A value when new cutting data is extracted (see chapter 7). This method produces a real cutting path command with step of changes of D/A value with perfect positional accuracy. Figure 8.14 is an example. The circles represent positions for the laser spot,
the centre of laser spot moves as a series steps which will affect the cutting accuracy. Every D/A value change will cause high speed lateral movement of laser at that point which will reduce the cutting effectiveness. These steps can be eliminated by using a position control method to link any two consecutive cutting points. This continuous control can also improve cutting quality.

8.5.7 Dynamic Response, Non-linearity of Galvanometer

The dynamic response and non-linearity of a galvanometer are other factors which can cause the cutting error. The dynamic response concerns the execution delay and the difference between the required angle and actual angle of the galvanometer shaft when the frequency of the input command varies (Inman 1994). Figure 8.15 shows a result of a test. The galvanometer with a mirror was driven by a sinusoidal signal generator. A $\mathrm{He}-\mathrm{Ne}$ beam was reflected to a scaled plate by the mirror. During the test the frequency of the sinusoid wave was varied, while the amplitude of it was kept constant. The test shows that the width (or the amplitude of angle of the galvanometer) of the scanned $\mathrm{He}-\mathrm{Ne}$ beam on the scaled plate is varied with the input frequency. When the frequency changes from 10 Hz to 50 Hz , the width changes from 82 mm to 90 mm , which is 9.7% larger. For example, a cutting command is defined according to a map, which produces 10 Hz frequency when lace is fed at $100 \mathrm{~mm} / \mathrm{s}$ or 50 Hz when lace is fed at $500 \mathrm{~mm} / \mathrm{s}$. If this command is used to cut a lace well when lace feeding speed is $100 \mathrm{~mm} / \mathrm{s}$, it will cause 9.7% cutting error when lace is fed at $500 \mathrm{~mm} / \mathrm{s}$ due to the dynamic response of the galvanometer.

The error of non-linearity is defined by equation 8.10.
$\sigma=h \times(\tan \alpha-0.01745 \alpha)$

α	5°	10°	15°	20°
σ	0.00022 h	0.00179 h	0.006149 h	0.0149 h
$\sigma(\mathrm{~h}=250 \mathrm{~mm})$	0.055 mm	0.4485 mm	1.537 mm	3.725 mm

$\alpha--$ mirror angle in degree; $\mathrm{h}--$ distance from mirror to cutting plate.
Table 8.3 Non-linear error due to angle of galvanometer mirror

If $h=250 \mathrm{~mm}$, the table 8.3 shows the error with the angle.

The setting up error of the galvanometer, which causes additional angular movement of the laser beam, is similar to non-linearity discussed above.

8.5.8 Parallelism between Camera and Galvanometer

Let us consider the error caused by the case where camera plane is not parallel to the galvanometer plane. Ideally the camera scan zone and galvanometer cutting zone are parallel to each other and also perpendicular to the lace movement direction. This parallelism problem occurs when assembling the test rig. The parallelism can be measured by α in Figure 8.16. After assembly, the angle is fixed, $\Delta x, \Delta y$ (the cutting error) caused by this angle is a function of l (in cutting the l is changed). Equation 8.11 shows the relationship between 1 and $\Delta x, \Delta y$.

Let us see the effect of $\Delta x, \Delta y$ by showing an example.

Assuming $\alpha=1^{\circ}$, table 8.4 is result of $\Delta x, \Delta y$ with l.

$l(\mathrm{~mm})$	5	10	15	20	25	30	35	40	45	50
$\Delta x(\mathrm{~mm})$.087	.175	.262	.349	.436	.52	.611	.698	.785	.873
$\Delta y(\mathrm{~mm})$.0007	.0015	.002	.003	.0038	.0046	.0053	.006	.0068	.0076

Table 8.4 Cutting error due to setting of camera and galvanometers
Δx has greater effect on cutting accuracy than Δy in this case.
$\left[\begin{array}{c}\Delta x \\ \Delta y\end{array}\right]=\left[\begin{array}{c}l \times \sin \alpha \\ l \times(1-\cos \alpha)\end{array}\right]$

8.5.9 Surface Ripple of the Lace

Ripples, or creasing, on the surface of the lace can cause cutting errors. Ideally the lace should lie flat on the cutting plane, even when being transported. But ripples, caused by various reasons, will change the height of
viewing and cutting plane (see Figure 8.17). The difference between image and cutting, caused by ripple, is determined by equation 8.12.
$\Delta y_{1}=\Delta h \times \frac{l}{h_{1}}$
$\Delta y_{2}=\Delta h \times \frac{l}{h_{2}}$
$\Delta l=\Delta y_{1}-\Delta y_{2}=\Delta h \times l \times \frac{h_{2}-h_{1}}{h_{1} \times h_{2}}$
where h_{1} and h_{2} are the distances between galvanometer and cutting plane and between camera and cutting plane respectively. Δh is the height of ripple and l is the distance between ripple and centre of camera or galvanometer (if two centres on the same y of the system coordinate). If $h_{2}=580 \mathrm{~mm}, h_{1}=$ 200 mm and $l=50 \mathrm{~mm}, \Delta l=\Delta h \times 0.16$. If $\Delta h=2 \mathrm{~mm}, \Delta l=0.32 \mathrm{~mm}$. Some ripple is as high as 5 mm which can produce 0.8 mm cutting error.

8.5.10 Lateral Movement of the Lace

The lateral movement of lace, in y direction, is another factor of cutting error. The ideal lace movement is perpendicular to the scan and cutting zone. When the lace moves laterally, cutting error occurs (see Figure 8.18). The lateral movement Δv refers to cutting error. V is variation on a roller at one end of cutting plane. l is the length of cutting plane. l_{l} is the distance between scan zone and cutting zone. Then Δv is decided by equation 8.13.

For example, $1=500 \mathrm{~mm}$ and $1_{1}=30 \mathrm{~mm}$, a set of v and Δv are table 8.5.

$\nu \mathrm{mm}$	1	4	1	14	1	5	6	12	12	9	11	12	7	8
$\Delta v \mathrm{~mm}$.06	.24	.06	.84	.06	.3	.36	.72	.72	.54	.66	.72	.42	.48

Table 8.5 Cutting error caused by a lateral movement
$\Delta v=v \times \frac{l_{1}}{l}$

8.5.11 Thermal Drift of Rig Frame

Thermal effect can be divided into frame drift of test rig and electronic drift of galvanometer.

A linearly variable differential transducer (LVDT) is used to monitor the variation of distance between top frame, which holds camera and galvanometer, and middle frame, which holds a cutting plate and a lamp (see Figure 8.19). The resolution of LVDT is 0.001 mm . Table 8.6 is a test.

time	$2: 00$	$2: 08$	$2: 11$	$3: 30$	$4: 45$	$4: 55$	$5: 00$	$5: 10$	$5: 15$	$32: 50$
reading (mm)	0.349	0.40 7	0.490	0.852	0.84 6	0.856	0.51 5	0.428	0.390	0.314
T (point)	22°	22°	23°	31°	31°	31°	28°	27°	26°	19°
T(room)	22°	19°								
lamp	on	on	on	on	on	off	off	off	off	off

T------- temperature in Celsius.
Table 8.6 Frame thermal drift

In the table 8.6 the biggest drift in z direction of system coordinate is 0.51 mm . Because this drift makes top frame not parallel to the middle frame, this needs to be transferred to the y direction to the cutting error. There are three different cases in Figure 8.20. Figure 8.21 to 8.23 show each case.

Case 1:
$\Delta l=\Delta h^{2} / l$

If $\Delta \mathrm{h}=0.5$ and $\mathrm{l}=350, \Delta \mathrm{l}=7.14 \times 10^{-4} \mathrm{~mm}$.

Case 2:
$\Delta l=\Delta l_{1}+\Delta l_{2} \approx \Delta h^{2} / l+\Delta h \times \frac{\cos \beta}{\sin (\beta-\alpha)}$

If $\Delta \mathrm{h}=0.57 \mathrm{~mm}, \mathrm{l}=400 \mathrm{~mm}$ and $\beta=70^{\circ} \alpha=0.08^{\circ}, \Delta l \approx 0.208 \mathrm{~mm}$.

Case 3:
$\Delta l=\Delta l_{2}-\Delta l_{1}=\Delta h \times \frac{\cos \beta}{\sin (\beta+\alpha)}-\Delta h^{2} / l$

If $\Delta \mathrm{h}=0.42 \mathrm{~mm}, \mathrm{l}=300 \mathrm{~mm}$ and $\beta=70^{\circ} \alpha=0.08^{\circ}, \Delta l \approx 0.152 \mathrm{~mm}$

The cutting error in case 1 can be ignored due to small quantity. But in case 2 and case 3 the cutting error might be noticed.

8.5.12 Thermal Drift of Galvanometer

The second thermal drift is that of the galvanometer. Test in table 8.7 shows the drift in three hours.

D/A(in)	D/A(out)	Feedback	time	temperature
3072	4.992 v	1.3011 v	$2: 05$	22°
3072	5.000 v	1.315 v	$4: 55$	36°

Table 8.7 Galvanometer thermal drift

The feedback refers to the position of mirror which is mounted on the shaft of the galvanometer. The linear relation between feedback of galvanometer and movement in y direction of system coordinate is $0.043 \mathrm{v} / \mathrm{mm}$. The 0.014 v drift represents 0.325 mm drift in cutting error.

8.5.13 Summary of Cutting Errors

The Figure 8.24 shows an example of cutting error. The table 8.8 lists the worst case of cutting errors caused by the above factors based on quantitative analysis or test. Some errors related to the steep ratio between lateral and longitudinal resolutions, such as error 3 and 6, can be reduced by increasing the longitudinal resolution. Error 7 can be reduced by a well calibrated lookup table. Error 8 can be reduced by a carefully setup. Reduction of the distance between cutting and scan zone will decrease the cutting error caused by item 10 . The ripple can be reduced by using an even tension material handing system to flatten the lace.

1	Lateral variation of lace	0.5 mm (5\% variation)
2	Variation of illumination	no significant error with 5% voltage variation
3	Longitudinal variation of lace	$0.5 \mathrm{~mm}(8 / 1$ ratio)
4	Encoder error	less than 0.25 mm (constant and low lace feeding speed)
5	Variation of laser spot	0.2 mm
6	Driving method of galvanometer to produce step effect	$1 \mathrm{~mm} \mathrm{(8/1} \mathrm{ratio)}$
7	Dynamic response and non-linearity of galvanometer	$0.5 \mathrm{~mm}\left(\alpha=10^{\circ}\right)$
8	Parallel between camera and galvanometer	0.5 mm
9	Surface ripple of lace	0.8 mm
10	Lateral movement of lace	0.84 mm
11	Thermal drift of rig frame	0.2 mm
12	Thermal drift of galvanometer	0.325 mm

Table 8.8 Worst cases of cutting errors

8.6 CONCLUDING REMARKS

The hardware configuration of single camera plus multiple DSPs is sufficient to prove the concept of multiple tracking on the lace patterns with narrow width.

The software method of the master slave arrangement of the microprocessors and the event driven mechanism is one way to organise multiple microprocessors for the multiple tracking.

A reference bar chart can be used to calibrate vision system and transform the cutting data extracted by DSP to D/A data to drive the galvanometers.

Average $\mathrm{D}(\mathrm{x})$ method is one way to assess the tracking accuracy by comparing average $\operatorname{Dim}(x)$ and $\operatorname{Dma}(x)$. The average tracking error is less than 1 pixel. The cutting error by measuring the real cut lace is less than 1 mm .

The ripple on the lace surface and lateral movement of the lace produce the largest portion of the cutting error.

Figure 8.1 Front view of the prototype

Figure 8.2 Cutting error definition

Figure 8.3a Two sets of camera and DSP

Figure 8.3b Two cameras and one set of DSP

Figure 8.3c One set of camera and DSP

Note: galva. stans for galvanometer.

Figure 8.4 Data streams

Figure 8.5 Ideal bus and memory for vision system

Figure 8.6 Three coordinate systems

Figure 8.7 Coordinate transform

Figure 8.8 Calibration mask

Figure $8.9 D(x)$ definition

Figure 8.10 Twin beam cut result at $250 \mathrm{~mm} / \mathrm{s}$

Figure 8.11 Single beam cut result at $1070 \mathrm{~mm} / \mathrm{s}$

Figure 8.12 Ideal cutting position

Figure 8.13 Different side of edge using different offset

Figure 8.14 Step effect

Figure 8.15 Frequency versus amplitude

Figure 8.16 Non parallel between scan zone and cutting zone

Figure 8.17 Ripple effect

Figure 8.18 Lateral drift

Figure 8.19 Thermal drift of frame and simplified model on Figure 8.20

Notel:
a) top frame
b) middle frame before thremal drift
c) middle frame after thremal drift

Note2: The areas labelled by case1, case2 and case3 are presented in Figure 8.21-8.23.

Figure 8.20 Three cases of thermal drift of frame

Figure 8.21 Case 1 of thermal drift of frame

Figure 8.22 Case 2 of thermal drift of frame

Figure 8.23 Case 3 of thermal drift of frame

Figure 8.24 Example of cutting errors

Chapter 9
 CONCLUSIONS AND FURTHER RESEARCH

9.1 CONCLUSIONS

This thesis has addressed the question of pattern cutting on elastic material. A study of a computer vision system capable of finding a cutting path on a piece of patterned material has been given. Lace separation is an example of pattern cutting in this thesis. During the research, a map-guided approach to enable the vision system to find a predetermined cutting path on the lace has been investigated, developed and implemented. The research has focused on: start point finding; tracking along a desired path; maintaining stable working condition for the vision system.

The methods of finding the start point have enabled the vision system to register the parts of an incoming image from the lace to be cut with a prestored map for further tracking along a desired path on the lace. A modified Hough transform can find a desired feature on the image with up to 20% stretch in one direction, with or without a moderate degree of pattern skew. The method to find the start point by using the tracking algorithm has been proved to be faster than the Hough transform and with reduced memory requirement. Furthermore, the latter method has enabled the vision system to quickly switch from finding the start point to tracking a cutting path or vice versa because the two tasks use the same algorithm.

The weighted incremental tracking method can cope with an arbitrary geometric relationship between a patterned surface and the path to be followed across it. The minimised computational requirement of the tracking method has enabled it to track high resolution images in real-time and also made it possible to be implemented in front-end correlators to achieve higher processing speed.

In order to maintain stable working condition for the vision system, the areas of light source, threshold and synchronisation have been studied. A DC powered high frequency fluorescent tube has proved an ideal source for back illumination of the lace cutting process. A threshold selection method for the
comparator to produce binary images for pattern cutting has accommodated the illumination variations which are caused by tube ageing and working temperature drift. A distance counter and a double pulse generator have synchronised the scanning action of the line-scan camera with the movement of the lace and have enabled the image to be kept consistent regardless of variation of the lace speed.

The vision system based study in this thesis has successfully guided the laser beam to scallop and centre cut both rigid and stretch lace on test rig 3. Twin beam simultaneously cutting has been achieved at $250 \mathrm{~mm} / \mathrm{s}$ lace feed velocity and high speed single beam cutting using a front end hardware correlator has been achieved at speeds in excess of $1 \mathrm{~m} / \mathrm{s}$.

9.2 FURTHER RESEARCH

Further research will be in the following areas;

1. Automatic reference map production,
2. Parallelization of the tracking algorithm,
3. Combination of cutting and inspection.

9.2.1 Reference Map Production

The tracking and start point finding algorithm based on a reference map have pushed back the research frontier of the pattern cutting. A manual method for producing a reference map has been developed during the study for the purpose of studying the tracking and start point finding methods. When galvanometer performance is related to the frequency of the guiding line, it can be seen that more study is required to define the guiding line to consider the galvanometer performance. Automation of map production is another requirement.

9.2.2 Parallelization of the Tracking Algorithm

In some applications, higher processing speeds will be required. This means more computational capacity. One way to increase the capacity is parallel computing. The parallel nature of the tracking algorithm will allow this
technique to be fully exploited as multiprocessor systems become more powerful. There are at least two paths to make the tracking algorithm work in parallel. One is a parallel cross-correlation (eq.4.4). Another is to match one line of the incoming image in parallel with three consecutive lines of the map. More study of parallel computation is needed.

9.2.3 Combination of Cutting and Inspection

Most patterns on the patterned material in textile industry are produced by printing, knitting or weaving. The faults on the patterns should also be identified before the patterned material is sent to the customers. One way to inspect the patterned material might be to combine the pattern cutting and inspection together because the visual information of the pattern for the inspection has already been stored in the vision system for the pattern cutting. More study of how to share the information in the memory and how to identify the faults from the visual information is needed. The limitation of this approach is that cutting faults cannot be identified. Another approach is to put an inspection station downstream from the cutting station. Then the cutting faults as well as other faults can be identified and the inspection result of cutting faults can be fed back to cutting station for compensation.

REFERENCES

Albanesi, M G \& Ferretti, M(1990), 'A Space Saving Approach to the Hough Transform' 10th International Conference on Pattern Recognition, 16-21 June 1990, Atlantic IEEE Computer Society Press (C1990.0818620625) Vol 2 pp472-475.

Ameziane, M., bonnet, P. \& Postaire, J.G.(1985): 'Vision applied to a cutting process in the textile industry', Proceedings of the 7th International Conference on Automatic Inspection and Production Control, Birmingham, England, 26-28 March 1985, Publ by IFS(Publ) Ltd, Kempston, England, pp185-193.

Atkinson, A.D.S.(1944), 'Fluorescent Lighting', George Newnes Limited, London.

Batchelor,B.G., Hill,D.A., \& Hodgson, D.C.(1985), (Edt.) 'Automated Visual Inspection', IFS Ltd, North-Holland.

Ballard, D. H.(1981), 'Generalizing the Hough Transform to Detect Arbitrary Shapes', Pattern Recognition, Vol. 13, pp111-122.

Bretschi, J.(1979), 'Automated Inspection Systems for Industry', IFS Publications Ltd, UK.

Canny, J. F.(1986), 'A Computational Approach to Edge Detection', IEEE Trans. Pattern Anal. Machine Intell. Vol. PAMI-8, No.6, pp679-698.

Chapman, K. W., Johnson, W. C., \& McLean, T. J.(1990), 'A High Speed Statistical Process Control Application of Machine Vision to Electronics Manufacturing', Computer Industrial Engineering, Vol. 19, No. 1-4, pp. 234-238.

Chassaing, R, \& Horning D.W.(1990), Digital Signal Processing with the TMS320C25, John Wiley and Sons, Inc., Now York.

Cooling, J.E(1991), 'Software Design for Real-Time Systems', Chapman and Hall, London.

Data β (1991), 'DBV56 QUATTRO Hardware Users Guide', Data β, UK.

Dakin, J \& Culshaw, B. (ed)(1988), 'Optical Fibre Sensors: Principles and components', Artech House, Boston.

Davies, E. R.(1990), 'Machine Vision theory algorithms practicalities', Academic Press, London.

Davies, E.R.(1984), 'Design of Cost-effective System for the Inspection of Certain Food Products During Manufacture', In: Pugh, A.(ed.) Proceedings of the 4th International Conference on Robot Vision and Sensory Controls, London(9-11 October), IFS (Publications)Ltd, Bedford and North-Holland, Amsterdam, pp.437446.

Duda, R. O. \& Hart, P. E.(1972), Use of the Hough Transformation to Detect Lines and Curces in Pictures', Comm.ACM, Vol.15, pp 11-15.

Edmonds, J. M. \& Davies, E. R.(1991), High-Speed Processor for Realtime Visual Inspection', Microprocessors and Microsystems, Vol.15, No.1, pp.11-19, January/February.

ERA (1993), 'Surface Inspection', ERA Technology News, Winter.

Fairchild (1990), CCD manual.

Gibbons, R.(1992), 'Image Processing for Amorphous Foodstuffs', PhD thesis, Loughborough University of Technology.

Gregory, R.L.(1990), 'Eye and Brain The Psychology of Seeing', Fourth Edition, Weidenfeld and Nicolson, London.

Hall, G. \& Matias, A.(1993), 'otation, Scale and Translation Invariant Template Matching on a Transputer Network', Microprocessors and Microsystems, Vol. 17, No. 6, pp 333-340.

Hannah, J. \& Stephens, R. C.(1984), 'Mechanics of Machines', Edward Arnold, Scotland.

Hanover (1991), 'Intelligent Laser Cutter', Via Combattenti, the 11th International Exhibition of Textile Machinary.

Harris Corporation (1991), 'Data Sheet, HSP45256, file number 2814.1'.

Horn, B. K. P.(1986), 'Robot Vision', The MIT Press.

Hough, P. V. C.(1966), 'Method and Means for Recognising Complex Patterns', US Patent 3069654.

Humphreys, G.W. \& Riddoch, M. J.(1987), 'To See But Not To See A Case Study of Visual Agnosia', Lawrence Erlbaum Associates Ltd., London.

Inman, D. J. (1994), 'Engineering Vibration', Prentice-Hall International (UK) Limited, London.

Jackson, M.R., Preston, M.E. \& King, T.G.(1993), 'Integrated Vision and Laser Cutting System for Fabric Processing', Mechatronics in Textile Industries One-day Seminar, Loughborough, 22 March.

Jain, A. K.(1989), 'Fundamentals of Digital Image Processing', Prentice-Hall International Editions, US.

Johnson, J.R(1989), 'Introduction to Digital Signal Processing', Prentice-Hall International, Inc. London.

Kamemaru, S., Itoh, H., and Yano, J.(1992), 'Character Recognition by Feature Extraction Using Cross-Correlation Signals from a Matched Filter', Optical Engineering, Vol. 32, No. 1, pp26-32.

Karkanis, S., Metaxaki-Kossionides, C., \& Dimitriadis, B.(1989), 'A Machine-Vision Quality Inspection System for Textile industries supported by Parallel Multitransputer Architecture', Microprocessing and Microprogramming, No.28, pp.247-252.

Khoury, J.(1991), 'PC-based Vision in Laser Cutting of Upholstery Fabric', Photonics Spectra, August, pp123-124.

Kimoto, I., and Yamafuji, K.(1986), 'Automation of Sealant Painting and Lace Cutting Using Pattern Tracking Techniques', The International Journal of Advanced Manufacturing Technology, Vol. 1, No.4, pp101-107.

Lawton, D. T., Levitt, T. S., McConnell, C., \& Glicksman, J.(1986), 'Terrain Models for an Autonomous Land Vehicle', In Proc. 1986 IEEE International Conf. on Robotics and Automation. San Francisco, California, pp.2043-2051 (IEEE Cat. 86CH2282-2), April 7-10.

Levey, S.M.(1983), Lace A History', Victoria \& Albert Museum.

Levine, M. D.(1985), 'Vision in Man and Machine', McGraw-Hill Book Company.

Lowe, D., \& Richards, J.(1984), 'The lace Heritage', Nottingham Lace Centre Limited, Nottingham.

Lyvers, E.R. \& Mitchell, O. R.(1988), 'Precision edge contrast and Orientation estimation'. IEEE Trans. Pattern Anal. Machine Intell. Vol. PAMI-10, No., pp927937.

Maitre, H and $\mathrm{Wu}, \mathrm{Y}(1989)$, 'A Dynamic Programming Algorithmm for Elastic Registration of Distorted Pictures Based on Autoregressive Model' IEEE Trans. On Acoustic, Speech and Signal Processing Vol 37 No 2, pp288-296.

Mao, Z. Q. (1992), 'Optoelelctronic High Order Feedback Neural NETwork (HOFNET)', PhD thesis, Department of Electronic and Electrical Engineering, University College London, London, UK.

Merlin, P M \& Farber, D J(1975), 'A Parallel Mechanism for Detecting Curves in Pictures', IEEE Trans. on Computer, Vol C-24 pp96-98.

Moshfeghi, M.(1991), 'Elastic Matching of Multimodality Medical Images', Graphical Model and Image Processing, Vol 53 No 3 pp271-282.

Motorola (1989), 'DSP56000UM/AD, DSP56000/DSP56001 Digital Signal Processor User's Manual'.

Norton-Wayne, L., Machellar, A., \& Nicklin C.(1989), 'Measurement of Garment Dimensions Using Machine Vision', Third International Conference on Image Processing and Its Applicaitons, 18-20 July 1989, Warwick, UK, IEE conference publication No. 307, pp.197-201.

Norton-Wayne, L.(1991), 'Inspection of Lace Using Machine Vision', Computer Graphics Forum, Vol. 10, pp.113-119.

Osram Limited (1991), 'Perfect Lighting with Electronic Control Components'.

Philips Lighting Limited (1991), 'Philips Lighting'.

Preston, M.(1989), Lace separation project proposal to SERC'.

Proakis, J G \& Manolakis, D G(1988), 'Introduction to digital signal processing', Macmillan Publishing Company, New York.

Reynolds C.(1984), 'Lenses', Focal Press, London.

Rubinstein, J., Segman, J. and Zeevi, Y. (1990), 'Recognition of Distorted Patterns by Invariance Kernals', Proc. 10th ICPR, pp159-164, IEEE Computer Press.

Ruocco, S. R. (1987), 'Robot Sensors and Transducers', Open University Press, UK.

Russell, R.A., and Wong, P.(1989), 'An Application of Computer Vision to Lace Cutting', Robotics and Autonomous Systems, No. 5, pp.91-96.

Ryan, L. \& Hardaker, C.(1991), 'The CIMTEX Project: Part Three Vision Cell: A look at The Research Programme', Knitting International, pp68-69, June.

Skilton, J(1988), 'Automated Lace Inspection', Leicester Polytechnic, Report No. LRAJCS-1.

Spencer, D.J.(1983), 'Knitting Technology', Pergamon Press.

Stubbs,D.F.(1979), 'Frequency and the Brain', Life Sciences, Vol. 18, pp.345-394.

Thomas, G.B \& Ross, L.(1988), 'Calculus and Analytic Geometry', Assison-Wesley Pub. Co., US.

Tao, L.(1991), 'First Technical Report: Vision System', Department of Mechanical Engineering, Loughborough University of Technology, August.

Turk, M. A., Morgenthaler, D. G., Gremban, K. D., \& Marra, M.(1988), 'VITS- A Vision System for Autonomous Land Vehicle Navigation', IEEE Trans. Pattern Anal. Machine Intell. Vol. PAMI-10, No.3, pp342-361.

Wood, E. J. and Hodgson, R.M.(1989), 'Carpet Texture Measurement Using Image Analysis', Textile Research Institute, Jan, pp.1-12.

Yoda, H., Ohuchi, Y., Taniguchi,Y., \& Ejiri, M.(1988), 'An Automatic Wafer Inspection System Using Piplined Image Processing Techniques', IEEE Trans. Pattern Anal. Machine Intell. Vol. PAMI-10, No.1, pp4-15.

Zheng, Q. \& Chellappa, R.(1993), 'A Computational Approach to Image Registration', IEEE Trans. on Image Processing, Vol2, No.3, pp311-326.

APPENDIXES

Appendix 1 Published Papers and Patent

King, T.G., Tao, L.G., Jackson, M.R., Preston, M.E. \& Yang, S.(1993), "ComputerVision Controlled High-Speed Laser Cutting of Lace", Proc. 2nd. Int. Conf. on Computer Integrated Manufacturing (ICCIM '93), Sep. 6-10, Singapore, 1993. Vol.2, pp 929-936, World Scientific Publishing, Singapore.

King, T.G., Tao, L.G., Preston, M.E.and Jackson, M.R.(1993), "Real-Time Tracking of Patterns on Deformable Materials Using DSP", IEE SERTA '93, 13-14 Sept. 1993, Cirencester UK.

International Patent Publication No. WO 94/03301, "Automatic Operations on Materials', Filed 5 August 1993.

Preston, M.E., Jackson, M. R., Yang, S., Tao, L.G., and King, T.G, "The Design of a High-Speed Lace Cutting of Lace", Proc. Int. Conf. on Machine Automation (ICMA '94) pp473-486, Tampere, Finland, Feb 1994, ISBN 951-722-107-X.

Jackson, M.R., Preston, M.E., Yang, S. and Tao, L.G., "Laser Cutting Parameters for the High Speed Cutting of Net Fabrics", The European Symposium on Optics for Productivity in Manufacturing, Frankfurt/Main, FR Germany, 20-24 June 1994

Jackson, M.R., Preston, M.E., Tao, L.G., Yang, S. and King, T.G., "High Speed Laser Cutting of Lace", The European Symposium on Optics for Productivity in Manufacturing, Frankfurt/Main, FR Germany, 20-24 June 1994

King, T.G., Tao, L.G.(1994), "An Incremental Real-Time Pattern Tracking Algorithm for Line-Scan Camera Application", Mechatronics, Vol 4, pp503-516.

King, T.G., Tao, L.G., Jackson, M.R., Preston, M.E. \& Yang, S.(1994), "A Mechatronic Lace Scalloping Machine using Computer Vision", Proceedings Mechatronics and Machine Vision in Practice, Int. Conf. on Mechatronics and Machine Vision in Practice, Sep. 13-15, Toowoomba, Australia, 1994. pp 22-27, ISBN 0-8186-6300-6.

Appendix 2 Experiment on Tracking (Table 4.3)

Column 1

Source file: lac1.b m		Table file: Table B of Table 4.1			the Width of matching: 128 pixels			Curve file: lacl .gui			
Avaerage tracking error											
coefficient β, no noise	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	0.015	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
y-distortion 2\%	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01
y-distortion 3\%	0.135	0.125	0.115	0.105	0.105	0.095	0.095	0.105	0.085	0.075	0.055
y-distortion 4\%	0.105	0.085	0.085	0.085	0.075	0.065	0.065	0.055	0.045	0.045	0.035
y-distortion 5\%	0.19	0.17	0.17	0.17	0.15	0.15	0.11	0.09	0.09	0.06	0.06
y -distortion 6\%	0.185	0.205	0.185	0.155	0.165	0.135	0.135	0.125	0.125	0.105	0.075
y-distortion 7\%	0.215	0.205	0.205	0.175	0.145	0.145	0.105	0.115	0.105	0.075	0.075
y-distortion 8\%	0.27	0.24	0.24	0.23	0.22	0.23	0.19	0.17	0.16	0.14	0.09
y-distortion 9\%	0.265	0.265	0.235	0.205	0.195	0.185	0.195	0.175	0.145	0.115	0.095
y-distortion 10\%	0.37	0.35	0.33	0.31	0.29	0.26	0.26	0.235	0.195	0.145	0.115
y-distortion 11\%	0.34	0.3	0.31	0.27	0.25	0.24	0.19	0.16	0.14	0.12	0.11
y-distortion 12\%	0.355	0.345	0.335	0.305	0.295	0.265	0.265	0.225	0.185	0.185	0.155
y-distortion 13\%	0.34	0.33	0.33	0.31	0.31	0.27	0.26	0.25	0.23	0.2	0.17
y-distortion 14\%	0.43	0.4	0.38	0.35	0.35	0.31	0.33	0.30	0.22	0.22	0.16
y-distortion 15\%	0.415	0.405	0.415	0.365	0.365	0.345	0.265	0.255	0.225	0.175	0.165
$\begin{aligned} & \text { coefficient } \beta \text {, } \\ & 2 \% \text { noise } \end{aligned}$	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	0.025	0.025	0.025	0.025	0.025	0.015	0.005	0.005	0.005	0.005	0.005
y-distortion 2\%	0.06	0.06	0.06	0.05	0.05	0.04	0.03	0.03	0.03	0.03	0.01
y-distortion 3\%	0.145	0.145	0.145	0.145	0.145	0.145	0.095	0.105	0.085	0.065	0.045
y-distortion 4\%	0.145	0.135	0.135	0.115	0.105	0.095	0.075	0.055	0.045	0.035	0.035
y-distortion 5\%	0.21	0.21	0.2	0.2	0.18	0.17	0.15	0.12	0.09	0.08	0.06
y-distortion 6\%	0.225	0.175	0.155	0.165	0.165	0.145	0.125	0.125	0.105	0.105	0.06
y-distortion 7\%	0.245	0.245	0.225	0.175	0.185	0.155	0.135	0.145	0.095	0.075	0.065
y-distortion 8\%	0.29	0.28	0.25	0.25	0.26	0.25	0.23	0.20	0.15	0.14	0.09
y-distortion 9\%	0.295	0.265	0.255	0.235	0.225	0.205	0.205	0.195	0.175	0.115	0.095
y-distortion 10\%	0.46	0.40	0.34	0.33	0.33	0.3	0.265	0.225	0.195	0.135	0.125
y-distortion 11\%	0.34	0.35	0.3	0.31	0.26	0.22	0.22	0.19	0.14	0.11	0.09
y-distortion 12\%	0.405	0.365	0.345	0.355	0.345	0.305	0.275	0.265	0.215	0.165	0.125
y-distortion 13\%	0.41	0.41	0.41	0.38	0.34	0.32	0.30	0.28	0.25	0.22	0.15
y-distortion 14\%	0.45	0.44	0.43	0.4	0.39	0.36	0.34	0.30	0.28	0.24	0.15
y-distortion 15\%	0.485	0.455	0.475	0.465	0.425	0.345	0.335	0.305	0.255	0.225	0.145

Maxmum tracking error											
coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
no noise											
y-distortion 1\%	1	1	1	1	1	1	1	1	1	1	1
y-distortion 2\%	1	1	1	1	1	1	1	1	1	1	1
y-distortion 3\%	1	1	1	1	1	1	1	1	1		1
y-distortion 4\%	1	1	1	1	1	1	1	1	1	1	1
y-distortion 5\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 6\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 7\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 8\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 9\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 10\%	3	3	3	3	3	3	2	2	2	2	2

y-distortion 11\%	3	3	3	3	3	3	2	2	2	2	2
y-distortion 12\%	3	3	3	3	3	3	3	2	2	3	2
y-distortion 13\%	3	3	3	3	3	3	3	2	2	2	2
y-distortion 14\%	4	4	4	4	4	4	3	3	3	3	2
y-distortion 15\%	4	4	4	4	3	3	3	3	2	2	2
coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
2\% noise											
y-distortion 1\%	2	2	2	2	2	2	1	1	1	1	1
y-distortion 2\%	2	2	2	2	2	2	1	1	1	1	1
y-distortion 3\%	2	2	2	2	2	2	1	1	1	1	1
y-distortion 4\%	2	2	2	2	2	2	1	1	1	1	1
y-distortion 5\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 6\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 7\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 8\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 9\%	3	3	3	3	3	3	2	2	2	2	2
y-distortion 10\%	3	3	3	3	2	3	2	2	2	2	2
y-distortion 11\%	3	3	3	3	3	2	2	2	2	2	2
y-distortion 12\%	3	3	3	3	2	2	3	2	2	3	2
y-distortion 13\%	3	3	3	3	3	3	3	3	2	2	2
y-distortion 14\%	4	4	4	4	3	3	3	3	2	2	2
y-distortion 15\%	4	4	4	3	3	3	3	3	3	2	2

Column 2

Source file: lac2.b m	Table file: Table B of Table 4.1	the Width of matching: 96 pixels	Curve file: lac2.gui

Avaerage tracking error

coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
no noise											

coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
2\% noise											

y-distortion 6\%	0.24	0.19	0.19	0.185	0.175	0.175	0.13	0.13	0.14	0.12	0.1
y-distortion 7\%	0.26	0.25	0.25	0.21	0.185	0.225	0.21	0.2	0.2	0.12	0.06
y-distortion 8%	0.35	0.34	0.33	0.29	0.26	0.23	0.29	0.3	0.22	0.15	0.08
y-distortion 9\%	0.29	0.295	0.295	0.295	0.295	0.235	0.245	0.24	0.18	0.11	0.075
y-distortion 10\%	0.355	0.35	0.37	0.345	0.33	0.33	0.255	0.255	0.135	0.115	0.105
y-distortion 11\%	0.36	0.35	0.35	0.31	0.36	0.33	0.31	0.26	0.17	0.12	0.085
y-distortion 12\%	0.42	0.40	0.36	0.35	0.35	0.27	0.27	0.23	0.23	0.16	0.1
y-distortion 13\%	0.575	0.515	0.465	0.465	0.455	0.365	0.415	0.385	0.305	0.255	0.235
y-distortion 14\%	0.385	0.375	0.325	0.325	0.255	0.245	0.245	0.225	0.175	0.165	0.145
y-distortion 15\%	0.54	0.51	0.49	0.46	0.43	0.41	0.33	0.29	0.32	0.26	0.18

Maxmum tracking error

coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
no noise											

Column 3

Source file: lac3.b m	Table file: Table B of Table 4.1	the Width of matching: 96 pixels	Curve file: lac3.gui

Avaerage tracking error

coefficient β, no noise	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	0.165	0.165	0.125	0.085	0.085	0.085	0.085	0.065	0.005	0.005	0.005
y-distortion 2\%	0.165	0.165	0.125	0.085	0.085	0.085	0.085	0.065	0.005	0.005	0.005
y-distortion 3\%	0.12	0.12	0.1	0.1	0.07	0.03	0.01	0.01	0.01	0.01	0.01
y-distortion 4\%	0.17	0.14	0.14	0.12	0.1	0.09	0.08	0.04	0.01	0.01	0.01
y-distortion 5\%	0.17	0.15	0.1	0.09	0.07	0.07	0.04	0.03	0.01	0.01	0.01
y-distortion 6\%	0.225	0.195	0.145	0.145	0.115	0.095	0.075	0.085	0.055	0.045	0.03
y-distortion 7\%	0.245	0.225	0.215	0.205	0.145	0.125	0.105	0.075	0.045	0.045	0.045
y-distortion 8\%	0.355	0.245	0.255	0.215	0.175	0.105	0.105	0.065	0.025	0.025	0.025
y-distortion 9\%	0.41	0.35	0.26	0.22	0.22	0.19	0.14	0.1	0.07	0.04	0.045
y-distortion 10\%	0.48	0.5	0.46	0.31	0.29	0.28	0.16	0.16	0.12	0.07	0.06
y-distortion 11\%	0.5	0.49	0.47	0.46	0.31	0.29	0.27	0.27	0.15	0.09	0.05
y-distortion 12\%	0.795	0.755	0.655	0.645	0.535	0.515	0.445	0.425	0.285	0.115	0.06
y-distortion 13\%	0.935	0.755	0.715	0.655	0.455	0.345	0.395	0.395	0.315	0.145	0.115
y-distortion 14\%	0.89	0.85	0.73	0.73	0.67	0.5	0.31	0.3	0.3	0.3	0.245
y-distortion 15\%	0.8	0.7	0.79	0.66	0.55	0.51	0.42	0.39	0.37	0.26	0.245
coefficient	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
2\% noise											
y-distortion 1\%	0.145	0.125	0.105	0.085	0.065	0.065	0.105	0.065	0.045	0.025	0.005
y-distortion 2\%	0.145	0.125	0.105	0.085	0.065	0.065	0.105	0.065	0.045	0.025	0.005
y-distortion 3\%	0.11	0.1	0.09	0.05	0.02	0.02	0.05	0.03	0.01	0.01	0.01
y-distortion 4\%	0.14	0.12	0.1	0.08	0.08	0.05	0.06	0.06	0.05	0.01	0.01
y-distortion 5\%	0.12	0.12	0.08	0.05	0.03	0.03	0.07	0.06	0.04	0.02	0.02
y-distortion 6\%	0.225	0.215	0.165	0.145	0.105	0.095	0.095	0.105	0.075	0.045	0.03
y-distortion 7\%	0.245	0.215	0.185	0.175	0.105	0.095	0.125	0.095	0.065	0.045	0.065
y-distortion 8\%	0.315	0.215	0.185	0.165	0.105	0.075	0.135	0.075	0.065	0.025	0.025
y-distortion 9\%	0.42	0.37	0.22	0.14	0.13	0.13	0.13	0.14	0.12	0.08	0.045
y-distortion 10\%	0.56	0.47	0.41	0.27	0.26	0.23	0.27	0.14	0.11	0.1	0.05
y-distortion 11\%	0.59	0.59	0.55	0.46	0.83	0.29	0.31	0.22	0.2	0.11	0.08
y-distortion 12\%	0.775	0.925	0.745	0.735	0.675	0.515	0.345	0.325	0.395	0.145	0.07
y-distortion 13\%	0.915	0.985	0.775	0.675	0.665	0.495	0.385	0.365	0.335	0.275	0.105
y-distortion 14\%	0.92	0.75	0.75	0.73	0.57	0.43	0.41	0.33	0.38	0.365	0.185
y-distortion 15\%	0.96	0.72	0.66	0.72	0.67	0.63	0.6	0.48	0.36	0.425	0.205

Maxmum tracking error

coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
no noise											
y-distortion 1\%	2	2	2	2	2	2	2	2	1	1	1
y-distortion 2\%	2	2	2	2	2	2	2	2	1	1	1
y-distortion 3\%	2	2	2	2	2	2	1	1	1	1	1
y-distortion 4\%	2	2	2	2	2	2	2	2	1	1	,
y-distortion 5\%	2	2	2	2	2	2	2	2	1	1	1
y-distortion 6\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 7\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 8\%	8	2	2	2	2	2	2	2	2	2	2
y-distortion 9\%	8	8	2	2	2	2	2	2	2	2	2
y-distortion 10\%	11	11	11	8	8	8	2	2	2	2	2
y-distortion 11\%	10	10	10	11	8	8	8	8	2	2	2
y-distortion 12\%	16	9	10	9	8	8	8	8	8	3	3
y-distortion 13\%	16	16	9	9	8	8	8	8	8	3	3
y-distortion 14\%	16	16	16	16	16	16	8	8	8	8	8
y-distortion 15\%	9	9	16	9	9	9	8	8	8	8	8
coefficient β, 2\% noise	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	2	2	2	2	2	2	2	2	2	2	1

| y-distortion 2% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y-distortion 3% | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 |
| y-distortion 4% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| y-distortion 5% | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
| y-distortion 6% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| y-distortion 7% | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| y-distortion 8% | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| y-distortion 9% | 8 | 8 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| y-distortion 10% | 11 | 10 | 10 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 |
| y-distortion 11% | 11 | 11 | 11 | 10 | 10 | 8 | 10 | 8 | 8 | 2 | 2 |
| y-distortion 12% | 16 | 16 | 16 | 16 | 16 | 16 | 8 | 8 | 8 | 3 | 3 |
| y-distortion 13% | 16 | 16 | 16 | 16 | 16 | 16 | 8 | 8 | 8 | 8 | 3 |
| y-distortion 14% | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 8 | 8 | 8 | 8 |
| y-distortion 15% | 16 | 16 | 16 | 16 | 16 | 16 | 10 | 8 | 8 | 8 | 8 |

Column 4

Source file: lac4.b m		Table file: Table B of Table 4.1			the Width of matching: 64 pixels			Curve file: lac4.gui			
Avaerage tracking error											
coefficient β, no noise	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	0.045	0.045	0.045	0.045	0.045	0.045	0.025	0.025	0.025	0.025	0.025
y-distortion 2\%	0.075	0.065	0.065	0.065	0.065	0.065	0.045	0.045	0.035	0.035	0.045
y-distortion 3\%	0.07	0.07	0.07	0.06	0.06	0.06	0.04	- 0.04	0.04	0.04	0.04
y-distortion 4\%	0.1	0.08	0.09	0.06	0.06	0.06	0.04	0.04	0.04	0.04	0.04
y-distortion 5\%	0.12	0.12	0.12	0.12	0.12	0.12	0.1	0.07	0.08	0.05	0.02
y-distortion 6\%	0.125	0.095	0.085	0.075	0.075	0.065	0.075	0.055	0.055	0.045	0.025
y-distortion 7\%	0.165	0.165	0.165	0.155	0.145	0.125	0.095	0.085	0.075	0.085	0.065
y-distortion 8\%	0.185	0.175	0.175	0.155	0.135	0.115	0.075	0.085	0.075	0.065	0.06
y-distortion 9\%	0.18	0.18	0.18	0.16	0.18	0.15	0.13	0.11	0.1	0.09	0.07
y-distortion 10\%	0.2	0.2	0.18	0.18	0.16	0.15	0.12	0.08	0.11	0.08	0.05
y-distortion 11\%	0.195	0.205	0.185	0.185	0.175	0.175	0.135	0.115	0.125	0.105	0.045
y-distortion 12\%	0.235	0.215	0.215	0.195	0.185	0.165	0.115	0.115	0.115	0.115	0.055
y-distortion 13\%	0.25	0.225	0.215	0.215	0.155	0.145	0.135	0.135	0.145	0.115	0.08
y-distortion 14\%	0.28	0.28	0.27	0.24	0.18	0.17	0.15	0.15	0.14	0.14	0.13
y-distortion 15\%	0.26	0.25	0.2	0.2	0.2	0.17	0.17	0.16	0.14	0.13	0.07
coefficient β, 2\% noise	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	0.085	0.085	0.085	0.085	0.075	0.045	0.035	0.055	0.045	0.025	0.025
y-distortion 2\%	0.115	0.115	0.105	0.105	0.095	0.065	0.045	0.065	0.055	0.035	0.035
y-distortion 3\%	0.11	0.11	0.11	0.1	0.09	0.06	0.05	0.07	0.06	0.04	0.04
y-distortion 4\%	0.13	0.11	0.1	0.1	0.08	0.08	0.05	0.07	0.06	0.04	0.04
y-distortion 5\%	0.17	0.16	0.16	0.15	0.13	0.12	0.09	0.1	0.08	0.05	0.04
y-distortion 6\%	0.135	0.125	0.125	0.115	0.115	0.105	0.065	0.065	0.065	0.065	0.055
y-distortion 7\%	0.235	0.215	0.215	0.215	0.185	0.175	0.155	0.105	0.095	0.105	0.085
y-distortion 8\%	0.235	0.235	0.225	0.215	0.185	0.175	0.145	0.125	0.095	0.095	0.055
y-distortion 9\%	0.24	0.22	0.21	0.2	0.21	0.2	0.17	0.14	0.13	0.09	0.08
y-distortion 10\%	0.27	0.26	0.25	0.25	0.24	0.17	0.13	0.12	0.09	0.08	0.06
y-distortion 11\%	0.275	0.255	0.245	0.245	0.245	0.205	0.185	0.135	0.135	0.095	0.055
y-distortion 12\%	0.315	0.305	0.295	0.295	0.285	0.225	0.145	0.125	0.125	0.115	0.095
y-distortion 13\%	0.345	0.335	0.315	0.305	0.245	0.215	0.145	0.145	0.135	0.115	0.095
y-distortion 14\%	0.36	0.37	0.31	0.28	0.25	0.21	0.18	0.17	0.18	0.14	0.1
y-distortion 15\%	0.39	0.36	0.3	0.28	0.27	0.25	0.2	0.17	0.13	0.11	0.1

Maxmum tracking error

coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
no noise											
y-distortion 1\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 2\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 3\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 4\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 5\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 6\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 7\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 8\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 9\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 10\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 11\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 12\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 13\%	3	3	3	3	3	3	3	2	2	2	2
y-distortion 14\%	3	3	3	3	3	3	3	2	2	2	2
y-distortion 15\%	3	3	3	3	3	3	2	2	2	2	1
coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
2\% noise											
y-distortion 1\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 2\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 3\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 4\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 5\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 6\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 7\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 8\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 9\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 10\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 11\%	2	2	2	2	2	2	2	2	2	2	1
y-distortion 12\%	2	2	2	2	2	2	2	2	2	2	2
y-distortion 13\%	3	3	3	3	2	2	2	2	2	2	2
y-distortion 14\%	4	4	3	3	2	3	2	2	2	2	2
y-distortion 15\%	4	3	3	3	3	2	2	2	2	2	2

Column 5

Source file: lac3.b m		Table file: Table B of Table 4.1			the Width of matching: 128 pixels			Curve file: lac3.gui			
Avaerage tracking error											
coefficient β, no noise	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
y-distortion 1\%	0.045	0.025	0.025	0.025	0.025	0.005	0.005	0.005	0.005	0.005	0.005
y-distortion 2\%	0.035	0.025	0.025	0.025	0.025	0.005	0.005	0.005	0.005	0.005	0.005
y-distortion 3\%	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
y-distortion 4\%	0.1	0.09	0.08	0.06	0.05	0.05	0.05	0.03	0.03	0.03	0.01
y-distortion 5\%	0.095	0.065	0.065	0.065	0.055	0.055	0.045	0.045	0.035	0.02	0.02
y-distortion 6\%	0.125	0.095	0.095	0.085	0.085	0.075	0.075	0.075	0.075	0.065	0.055
y-distortion 7\%	0.2	0.18	0.17	0.16	0.145	0.135	0.115	0.085	0.065	0.045	0.035
y-distortion 8\%	0.305	0.255	0.235	0.205	0.115	0.125	0.105	0.075	0.065	0.045	0.035
y-distortion 9\%	0.44	0.38	0.33	0.32	0.27	0.18	0.16	0.15	0.04	0.03	0.03
y-distortion 10\%	0.465	0.42	0.39	0.33	0.31	0.3	0.21	0.19	0.07	0.07	0.07
y-distortion 11\%	0.7	0.61	0.51	0.5	0.41	0.39	0.35	0.32	0.16	0.07	0.06
y-distortion 12\%	0.775	0.735	0.635	0.625	0.535	0.435	0.305	0.195	0.185	0.085	0.055
y-distortion 13\%	0.815	0.72	0.725	0.665	0.645	0.365	0.355	0.315	0.175	0.095	0.065

y-distortion 14\%	1.01	0.92	0.8	0.8	0.77	0.63	0.52	0.49	0.48	0.36	0.19
y-distortion 15\%	0.92	0.91	0.89	0.72	0.69	0.69	0.49	0.48	0.45	0.41	0.24
coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
2\% noise											
y-distortion 1\%	0.065	0.065	0.065	0.045	0.025	0.025	0.005	0.005	0.005	0.005	0.005
y-distortion 2\%	0.075	0.065	0.045	0.045	0.025	0.025	0.005	0.005	0.005	0.005	0.005
y-distortion 3\%	0.05	0.05	0.01	0.01	0.01	0.01	0.03	0.03	0.02	0.01	0.01
y-distortion 4\%	0.14	0.11	0.11	0.11	0.11	0.07	0.05	0.03	0.03	0.03	0.03
y-distortion 5\%	0.155	0.125	0.105	0.085	0.075	0.055	0.055	0.045	0.045	0.02	0.02
y-distortion 6\%	0.195	0.155	0.115	0.115	0.115	0.095	0.115	0.095	0.085	0.085	0.075
y-distortion 7\%	0.285	0.265	0.235	0.215	0.225	0.185	0.145	0.125	0.125	0.085	0.065
y-distortion 8\%	0.515	0.425	0.335	0.315	0.205	0.165	0.085	0.065	0.055	0.055	0.035
y-distortion 9\%	0.52	0.5	0.47	0.39	0.38	0.24	0.19	0.17	0.08	0.03	0.03
y-distortion 10\%	0.585	0.545	0.5	0.41	0.4	0.39	0.23	0.23	0.12	0.09	0.06
y-distortion 11\%	0.73	0.69	0.68	0.67	0.56	0.34	0.42	0.27	0.18	0.05	0.05
y-distortion 12\%	0.995	0.955	0.935	0.995	0.925	0.705	0.455	0.315	0.215	0.095	0.075
y-distortion 13\%	0.94	0.92	0.885	0.965	0.865	0.685	0.335	0.305	0.185	0.105	0.085
y-distortion 14\%	1.18	1.01	0.98	0.87	0.74	0.61	0.64	0.58	0.58	0.55	0.265
y-distortion 15\%	1.17	1	0.88	0.66	0.72	0.68	0.67	0.66	0.63	0.51	0.295

Maxmum tracking error

coefficient β,	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
no noise											

Appendix 3 Experiment on Threshold Decision

The grey level is set from 255 to 0 during the test, so the data and curve should be red from the highest grey level to the lowest grey level.

170v position1
000 000 000 000 000 000 000 000 000000000000000000000000000000004020070100112136140114116 115089051026018030036038034044046046048050052054062058060 052046034032028030028028028026028028030028028028032030028 028028030028030032032032028026024026028032030028026024022 024028030030032036034044056056052046050058054038036028024 022008006000000000000000000

170v position2

000 000 000 000 000 000 000 000 000000000000000000000000000000000010066104112130140108110 109093059034030024028030038044054058056062056056052048046 040040042038036036034036036036034032030030034034038034032 032032034036036034036036036036034034036036036034034034032 034034032030034036046052052044036040034042044028018016010 012012008004000000000000000

170v position3

000 000 000 000 000 000 000 000 000000000000000000000000000000000000008090106164128102114 110102095065034028026022036044066072062064060048052052050 050054046050044042040036032030030030028028034032032032032 028028028032030030026030034032030028028028028030032034032 034042044042038036038052056060052050036032024008004002000 000000000000000000000000000

185v positionl

000 000 000 000 000 000 000 002002006 092092116116110088112100093087059034024034034034034038042 042046042046050050054056056058046040030030028030028028028 028026028028028030028028028032030030028028028028028028028 032032028026024024026028032030028026024022024026026030028 030034032036046058048050044048054052042036036034022022016 008006000000000000000000000

185 v position2
000 000 000 000 000 000 000 0008100 104118114104092098098085077042034032030026028034042046056 054058054054054044046044040034038040036036036032034036034 034032030030030032034036036032032030032034034034034036034 034034036034034034036036034034034032032032034034030034034 032046048052046036032036034034038042028014010008010012012 008004002000000000000000000

185 v position 3

000 000 000 000 000 000 000 0004028 082104114128130096106098089065056022022014022022028040050 066062056060048050048052052048048050048048046038040034036 030030030028028028030032032032032032028028028028032030030 026028034032032028028028028028030030032032032034040042040 038036030038044050056060054042024022008004002000000000000 000000000000000000000000000

200v positionl
000 000 000 000 000 000 000 000000000002002004032074110112094090000108098088077042034 022018026034034034038040042042040040048046050052054054058 044038030030028028030028028028028026026028028028028028028 028028032030028026028028030026028028032032028028022024024 026028028030028028026022022022024026030028030030030032034 040050050044046050048048052040028034024024016022010006006 000000000000000000000000000

grey level

200v position2
000 000 000 000 000 000 000 000000000020022072106108100094084094000087081030032024026 024026028030036040048052052046052052056042040042044036030 038040038036034032034034036034032034030030030030030034036 036034032030030032034034034038034036034034034034034034034 034034036036034034034034032032034030028032034034030044048 042038034030034030030036038034018014008010008012010006004 000000000000000000000000000

200v position3

000 000 000 000 000 000 000 000000000002000018064102114102088000104092090077054028020 022020018022022040050056062052056054044044038046052048040 046044048046044038038036036030030030030030028028028030032 032032032028028028028030030030030030026026032032032028028 028028028028030030030032032034036044038042038034032034038 046054052056040040034022020008004002000000000000000000000 000000000000000000000000000

Appendix 4 Interface between Camera and DSP Board

Appendix 5 Synchronisation Board

Appendix 6 Correlator Board

Appendix 8 Tracking Accuracy

Map:

curve 1

(x, y)	$D(x)$	map	Amap	σ^{2}
00000381	5	fffiff ffliff fffiff fc000f flffff 01d005	5.000000	0.000000
00010382	6	fffiff fflfff fffff fe000f fffffe 02002a	5.500000	0.250000
00020383	8	fffiff fffiff fffiff ff803f cffffc 000055	6.333333	1.555555
00030383	8	ffimff ffffff ffffff ff807e 07fff8 000014	6.750000	1.687500
00040382	8	ffiff ffifff ffifff ff803c 00fff 008208	7.000000	1.599998
00050382	6	ffffff fffff fffff fe00f8 00 ffe0 202800	6.833333	1.472218
00060381	6	fflfff fffmiff ffmfff fe00fc 001ff0 5e0054	6.714286	1.346935
00070380	7	fflfff ffffff ffffff froofe 000fe0 0f8000	6.750000	1.187500
00080380	6	fflfff fffiff fffiff fe00fe 000 fc 0 lfe000	6.666667	1.111115
00090379	7	ffffff ffffff ffffff ff00ff 0007c0 1ff00	6.700000	1.010004
00100379	7	fffiff fffmff ffffff ff01ff 000f04 $17 \mathrm{ff00}$	6.727273	0.925624
00110378	7	ffffff ffmff ffmff ffooff e00e00 0fffe0	6.750000	0.854168
00120377	7	fffmff ffffff ffffff fro07f f01f00 07fffic	6.769231	0.792901
00130376	7	fffiff ffifff ffiffi ff00ff e3ff80 03fffr	6.785714	0.739801
00140375	7	fffiff ffifff ffifff ff007f c3ff00 01fff	6.800000	0.693338
00150375	4	ffifff ffffff fffmff f8007c 03ff00 01fff	6.625000	1.109381

00700363	4	ffflff fflmf fflffr f807ff 007fff ffr87	5.436620	1.541757
00710363	4	ffmeff flmff ffmff f801fe 007fff ffldff	5.416667	1.548612
00720363	4	ffmmf ffmff fmmff f803fe 007fff fmmf	5.397261	1.554514
00730364	3	ffimf fimff fmfff f007f8 007fff fffbff	5.364865	1.610117
00740364	3	fffmf ffimf fffiff f003f8 007fff ffroff	5.333334	1.662221
00750364	3	ffimf fffimf ffmff f003f8 00 ffff ffe07f	5.302632	1.711043
00760365	3	fmmff fmmf fmmf f007f0 01 ffff fro07f	5.272728	1.756787
00770365	3	fffiff ffliff fflff f007fc 01ffff ff003f	5.243590	1.799636
00780365	3	ffffff fffff ffimf f007fc 01ffff fe001f	5.215190	1.839768
00790365	3	ffmff ffiff ffmeff f007fc 07ffff fc001f	5.187500	1.877343
00800365	4	ffmff ffliff ffmff f807ff d7ffff fc0007	5.172840	1.871358
00810366	3	ffffiff ffmff fifff f007ff fbbfff f8000f	5.146342	1.905409
00820366	4	ffimfif fflff fffiff f803ff f803ff f8000f	5.132531	1.898095
00830366	4	ffimf ffffff ffffff f8003f f003ff e00002	5.119048	1.890588
00840366	4	fffiff ffflff ffmiff fr001f f003ff e00000	5.105883	1.882906
00850367	5	ffmff ffmeff fmfff fc003f e003ff c00000	5.104651	1.861141
00860367	8	ffimf fifff fffiff fro3f C001ff e05400	5.137931	1.934997
00870368	7	fffiff fffiff ffliff ff007f 8003ff 83f802	5.159091	1.951964
00880369	7	fflifif fifff fifff ffooff 000fff 87f00	5.179775	1.967683
00890369	6	fffmf fmiff fimff fe00ff 801 fff c 7 fcld	5.188889	1.953210
00900370	4	fffmf fffiff fmimf f800ff 803fff bff9ff	5.175824	1.947109
00910370	5	fffmf ffmiff fflmff fc00ff e83fff fmbff	5.173913	1.926278
00920371	5	fffiff ffliff fflff fc007f fc007f fff7ff	5.172043	1.905889
00930371	6	ffffff ffliff ffimf fe001f flo01f ffdff	5.180851	1.892828
00940372	5	ffimff ffliff fiffif fc001f fe000f fe3ffe	5.178947	1.873242
00950373	5	fffiff fffiff fffiff fd001f fc001f 707ff0	5.177083	1.854058
00960374	8	ffmff ffmff ffffff ff803f f8001e 01ffc0	5.206186	1.916250
00970374	8	ffffff ffmiff ffmff ff801f f8003f 00fe00	5.234694	1.975531
00980375	9	ffffff ffffff ffliff ffc03f f8007c 01c004	5.272727	2.097335
00990376	8	ffleff ffmff ffffff ff803f $8803 \mathrm{f8}$ f800f8	5.300000	2.150000
01000377	7	fffmf ffmiff ffmff fl007f f007e7 f03ff	5.316832	2.157042
01010378	8	fffiff ffffff fffiff ff800f f80fff e0fffa	5.343138	2.205783
01020379	7	fffiff ffffff fflff fr0007 fdff7f e3fff0	5.359224	2.210761
01030380	6	ffifff ffifff fffiff fe0007 fbffff e3ffa0	5.365385	2.193415
01040381	9	fffiff fflfff ffmff ffcolf c7fffr 805d00	5.400001	2.297139
01050382	9	ffmff ffmeff fffff ffc03e 03fbfe 000000	5.433963	2.396580
01060382	8	ffffff fflfff ffiff ff8038 $00 \mathrm{fc} 28 \mathrm{f80000}$	5.457944	2.435147
01070382	4	ffimf fflff fflff f80078003e01 ff8000	5.444445	2.432095
01080381	5	ffimf ffffff fffmf fc007c 001f81 ff000	5.440368	2.411577
01090380	6	ffiff fiffff ffifff fe00fe 0007e0 7 ffe 00	5.445455	2.392479
01100379	7	ffffff ffiff fffff ff007e 0003df 1 fff00	5.459460	2.392503
01110378	8	ffffff ffimf ffmff ffr07f 8003ff efff80	5.482143	2.428251
01120377	9	ffimf ffmff ffmff ffc07f c001ff f7fc0	5.513275	2.515313
01130376	9	fffmf ffliff fflfff ffc03f e003ff fbffe0	5.543860	2.598956
01140375	8	ffifff fflfff ffiff ff801f f007ff fe7ffo	5.565217	2.628360
01150375	7	ffffff fifff fffiff ff003f clifff fe0150	5.577586	2.623298
01160374	8	fffimf ffliff fmiff fro3f 81mb ff0080	5.598290	2.650603
01170374	4	fflfff ffmff fffmf f8003e 00fff fe0000	5.584745	2.649608
01180373	5	ffmff fmff fmmf fc0010 007ff 740000	5.579832	2.630193
01190373	5	ffimff ffmfff fmimf fc01f0 007ff8 5c0000	5.575000	2.611050
01200372	6	fffiff ffliff ffffff fe03f0 003ff8 080000	5.578512	2.590952
01210372	4	fffiff fffiff ffimf f803f0 003ff8 000000	5.565574	2.589972
01220372	4	ffmff ffmmf ffmff f803f8 003 ff 0000e0	5.552845	2.588679
01230372	4	ffmeff fmmf fmeff f803f8 007ff8 0000f8	5.540322	2.587094

01240371	7	ffmff ffimf fffiff frolfe 007ffc 0001fe	5.552000	2.583306
01250371	7	ffifff ffiff ffffff frolff 007ffc 0001ff	5.563492	2.579309
01260370	7	fffiff fimff ffliff ff00ff 83fffe 0001ff	5.574803	2.575118
01270370	8	ffmiff ffmiff fffiff ff80ff ffmfl 0003ff	5.593750	2.600595
01280369	5	ffmeff ffmmf fmmf fcouff ffmemf 001 ff	5.589147	2.583149
01290369	4	fffmf flmff ffmff f803fd 1 ffiff c003ff	5.576922	2.582556
01300368	5	fffliff ffmff fflff fc03f8 03ffff f803ff	5.572518	2.565364
01310368	5	ffffff fflmf fflff fc07e0 03ffff fe07ff	5.568181	2.548396
01320367	5		5.563909	2.531644
01330366	6	ffliff fffiff flmff fe03e0 00fmf fffmf	5.567163	2.514160
01340366	6	fflmff fifff fflfff fe07e0 00ffff fffff	5.570370	2.496913
01350366	4	ffffiff fffiff ffleff f807e0 00ffff ffe3ff	5.558823	2.496550
01360365	4	fmimf ffmff fmiff f807f0 007fff fff07f	5.547445	2.495933
01370365	4	ffflff fffff fflfff f807f0 00ffff fflo7f	5.536232	2.495072
01380365	4	ffffff fflff ffliff f807f801ffff ffe01f	5.525179	2.493980
01390365	5	fffmef fmmf fmimf fc07fc 01 ffff ff 001	5.521428	2.478122
01400365	5	ffimf fmmf ffimf fc07ff 07ffff ffc000	5.517730	2.462459
01410365	5	fffmf ffmiff fflmf f007ff dfffff ffc000	5.514084	2.446993
01420365	5	ffmeff fffmf ffmff fc07ff ffmmf ff8000	5.510489	2.431717
01430365	4	ffffff ffliff ffmff f807fc liffiff fr000	5.500000	2.430565
01440364	4	ffifff ffifff fffff f803f8 07 ffff ffc000	5.489655	2.429213
01450364	4	fmimff ffmoff fmmeff f807e0 03ffff ffe00	5.479452	2.427665
01460363	5	fffiff ffliff fflef fc07f0 01ffff ffloou	5.476191	2.412704
01470363	5	fffmf fmmf ffmff fc07e0 $01 \mathrm{mfff} \mathrm{fff00}$	5.472973	2.397924
01480363	5	ffifff fflff ffleff fc07c0 01 ffff fffe00	5.469799	2.383321
01490362	6	ffffff ffffff fflff fe07e0 00ffff fffis0	5.473333	2.369293
01500362	6	ffmeff fffif fliff fe07e0 00 ffff fffr	5.476821	2.355425
01510362	4	fffmf ffffif fimfif f80fe0 03ffff fffro	5.467105	2.354186
01520362	4	ffmiff ffmff fmfff f80ff8 03ffff fffe0	5.457517	2.352772
01530362	4	ffmeff ffffff fmmf froffs 03ffff ffe00	5.448052	2.351199
01540362	5	ffiffif ffiff ffffiff fcoffe 0fffff fmm0	5.445162	2.337317
01550362	5	ffmiff ffmeff fmfimf fcofff bffiff ffflo	5.442308	2.323595
01560362	5	ffimf fffiff ffffff fc07ff bfffif fffe00	5.439491	2.310033
01570362	6	fffmff fffiff ffmmf fe07fe 0ffimf fffe00	5.443039	2.297386
01580362	6	fffimf fmmf ffiff fe07fe 03ffff fff00	5.446542	2.284876
01590362	6	fffmff fflmf ffiff fe07f803ffiff ffr80	5.450001	2.272500
01600362	6	ffffff ffimf fffff fe03f0 03ffff ffe000	5.453417	2.260252
01610362	6	ffffff fmmff ffmff fe07f0 01 ffff ffc000	5.456791	2.248133
01620362	5	fffmf ffimif ffifff fc0fe0 01 ffff ff000	5.453989	2.235612
01630362	5		5.451221	2.223228
01640362	5	ffffff ffifff ffliff fc0fe0 03ffff ff8000	5.448486	2.210980
01650362	4	ffimf fmiff ffmiff f80fe0 03sfff fe0000	5.439760	2.210223
01660362	3	ffmff ffmff fffff f00ff8 03 fffff fe0000	5.425151	2.232419
01670362	3	fmfff fmeff ffmff f00ff8 03ffff fc0000	5.410716	2.253929
01680362	4	ffmff fmmf ffmff f80ffe 0fffff f80000	5.402368	2.252299
01690362	5	fffiff fmiff fffiff f00fff affiff f80000	5.400001	2.239998
01700363	4	ffmeff fffiff ffmff frofff flmff f80000	5.391814	2.238294
01710363	4	fffiff fffiff ffiff f80fff c7ffff f00000	5.383722	2.236477
01720363	5	ffifff ffmeff flfiff f007ff c07fff f00000	5.381504	2.224398
01730364	4	ffliff ffimf ffffif f80ffe 00 ffff 800000	5.373564	2.222520
01740364	4	fflmf fffiff fffiff f803fe 00ffff 800000	5.365715	2.220537
01750364	4	ffmff fmmf fmmf r807fe 007ffe 000000	5.357955	2.218455
01760365	4	ffliff ffmff ffiff $\mathrm{f80ff0} 007 \mathrm{ffc} 000000$	5.350284	2.216279
01770365	4		5.342698	2.2140

01780365	5	fffiff ffmfff fffiff f007f0 00fffe 000000	5.340783	2.202299
01790365	3	ffimff ffffff ffifff f00ffc 01 fffc 000000	5.327779	2.220335
01800365	3	ffffff ffmiff fffiff f007fc $01 \mathrm{fff8} 000000$	5.314918	2.237841
01810365	3	ffffff ffiff fffiff f007fe 01fff0 000140	5.302199	2.254826
01820366	3	ffifff fffiff fflfff f00ffe 0fffro 000ff8	5.289618	2.271310
01830366	4	ffifff fffiff ffifff f80fff affifs 003fff	5.282609	2.267957
01840366	4	ffffff ffffff ffffff f80fff ffffr 003fif	5.275676	2.264544
01850366	4	ffifff fffiff fffmff f803ff f83ff8 000fff	5.268818	2.261069
01860367	4	ffffff ffffff fffiff f801ff f007f0 001ff	5.262033	2.257538
01870367	4	fffiff fflffi ffffff f8007f f001f8 001fff	5.255320	2.253956
01880368	4	fffiff ffffff fffiff f800ff e003f8 003fff	5.248678	2.250324
01890368	8	fffiff fffiff ffifff ff80ff c003f8 002fff	5.263159	2.278112
01900369	7	ffffiff ffimf ffffff fr00ff 0007f8 001fff	5.272252	2.281897
01910369	7	fffiff ffifff fffiff fr00ff 0007fc 0007ff	5.281251	2.285476
01920370	6	ffifff fffiff ffifff fe03ff 000ff8 000fff	5.284975	2.276297
01930370	5	fffimf ffffff fffiff fc03ff 801 lf 8000 fff	5.283506	2.264981
01940371	4	fffiff fffiff fffff f803ff c07ff 001 fff	5.276924	2.261773
01950372	4	fffiff fffifff ffifff f803ff e3fif8 003fff	5.270409	2.258512
01960372	5	ffifff fffiff ffffff fc00ff f82ff 003fff	5.269036	2.247418
01970373	4	fffiff ffiffi ffffff f8007f fc0050 007ffc	5.262627	2.244159
01980374	4	fffmff ffmmf fffiff f800ff f80038 00ffe0	5.256282	2.240851
01990374	8	fffiff fffiff fffiff ff80ff f8003e 007f80	5.270000	2.267098
02000375	7	fffiff fffiff fffiff ff007f f0007f 01fc00	5.278607	2.270635
02010375	7	ffffff ffifff fffiff ff007f f0007f clf050	5.287129	2.273994
02020376	8	ffffff fffff fffiff fr80ff e000ff 8283f8	5.300493	2.298869
02030377	7	ffifff ffifff ffffff fr00ff f007ff c0lfff	5.308824	2.301690
02040378	6	fffiff ffliff ffifff fe00ff e00fff 80ffff	5.312195	2.292780

curve 1: average offset is 5.312195 pixels from edge.
maximum offset is 9
curve 2

00000541	-2	0007d4	4001fc 07f007 fffiff ffifff fffiff	-2.000000	0.000000
00010542	-2	0002a2	8003fa bff807 ffmiff ffffff ffmfff	-2.000000	0.000000
00020542	-1	000 be 0	8003ff fff803 fffiff fffiff fffiff	-1.666667	0.222222
00030541	-1	00007d	0001 ff fffr03 ffffff fffffr ffffiff	-1.500000	0.250000
00040541	-1	c0007d	1001 ff fffe03 fffmff fffiff ffifff	-1.400000	0.240000
00050540	-1	f0003f	a8003f fffe03 ffffff fffiff ffffff	-1.333333	0.222222
00060539	0	fc0007	fc0000 07ff01 fffiff ffmff fffff	-1.142857	0.408163
00070539	0	ff0001	fr0000 07fe05 ffimff fffiff ffmiff	-1.000000	0.500000
00080539	0	ff0000	fro000 07fc01 ffifff ffifff fffiff	-0.888889	0.543210
00090539	0	f0000	ff0000 1 ffc 01 ffmfff ffffff fffmf	-0.800000	0.560000
00100539	0	$7 \mathrm{f8000}$	$7 \mathrm{fc} 000 \mathrm{lffc01} \mathrm{fffiff} \mathrm{ffiffr} \mathrm{ffffff}$	-0.727273	0.561984
00110539	-1	7 fc 000	7fc000 7ff003 ffffff ffifff fffiff	-0.750000	0.520833
00120539	-2	1ff000	7 fd 0007 fe 007 fffiff fflfff ffmffr	-0.846154	0.591716
00130538	-1	03 fc 00	00fa00 fff003 fffiff fffiff ffififf	-0.857143	0.551021
00140537	-1	01 ff 00	$007 \mathrm{f07}$ fff803 ffffff fffiff ffffff	-0.866667	0.515556
00150537	-1	$407 \mathrm{f80}$	00001f fff003 ffffff fffiff ffifff	-0.875000	0.484375
00160536	0	003 fc 0	00001f fff801 ffifff ffifff fffff	-0.823529	0.498270
00170536	-1	003 ff 8	00003f ff8003 ffffff fffff fffff	-0.833333	0.472222
00180535	0	01407f	00001f fe0001 ffffff ffffff fffiff	-0.789474	0.481995
00190535	-1	04001f	00001 f f00003 fffiff ffifff ffifff	-0.800000	0.460000
00200534	-1	080000	800000 a 00003 ffifff ffifff fimff	-0.809524	0.439909
00210533	-1	000000	700000000003 ffffff ffffff ffifff	-0.818182	0.421488
00220532	-1	002020	380000000003 ffffff fffiff ffifff	-0.826087	0.404537
00230531	-2	005400	100000000007 fffiff ffliffi ffffff	-0.875000	0.442708

00240530	-3	002a00 000000 00000f ffimif ffimf fimf	-0.960000	0.598400
00250529	-4	00000000000000001 f fmfff ffmff fffff	-1.076923	0.917160
00260527	-4	00000000010000001 f ffmfff ffmff fmffir	-1.185185	1.187929
00270524	-2	e00002 000000000007 ffmfff ffmfff ffimf	-1.214286	1.168368
00280522	0	f80080 000a80 000001 ffimff ffmff fmfff	-1.172414	1.177170
00290522	-1	f80000 003fe0 000f83 ffmiff ffmeff fffff	-1.166667	1.138889
00300521	0	f00000 007ff 0007 fl ffmff fffff ffmff	-1.129032	1.144641
00310521	0	f40000 01ffic 0007fl ffffff fflfff ffiff	-1.093750	1.147461
00320521	0	f00000 01 fffc 0001 fl ffmimf fffiff ffifff	-1.060606	1.147842
00330521	0	f003fc 01 lfff 000041 fffifff ffmiff ffiff	-1.029412	1.146194
00340521	0	f005ff 005fff c00001 fffiff fffiff ffiff	-1.000000	1.142857
00350521	0	d001ff e01fff f00001 fffiff fmmf flmff	-0.972222	1.138117
00360521	0	4001ff f017ff f00001 ffmeff ffffff fflff	-0.945946	1.132213
00370521	0	00007f fc07ff 540001 ffmff ffimff fflfff	-0.921053	1.125346
00380521	-1	00007f fc07ff fc0003 fmmff fmmff fffiff	-0.923077	1.096647
00390521	-1	00005f fe015f f00003 fmmf ffmff ffmf	-0.925000	1.069375
00400522	-1	00003f fe03af e00003 mmfff fffiff fmffif	-0.926829	1.043427
00410522	-2	00000f fe0000 800007 ffifff ffffff fifff	-0.952381	1.045351
00420522	-1	00002 f fe0000 000003 ffffff ffmiff ffiff	-0.953488	1.021093
00430523	-2	00007 ff 00000000007 fmifff ffifff ffifff	-0.977273	1.022211
00440523	-1	00007 ff f 0001500003 mmmff ffimff ffmf	-0.977778	0.999506
00450523	-1	0001 ff fd0000 404003 ffmfff fffmf fffmf	-0.978261	0.977788
00460523	-1	00007 fc f 0000000003 fflifff fmffff ffffff	-0.978723	0.956994
00470522	-1	00023 f fe 0000000003 fff fff ffimff ffimf	-0.979167	0.937066
00480521	0	000017 fro000 000001 fffiff fffilf fffiff	-0.959184	0.937110
00490521	-2	00001f fd0000 000007 ffmff fffiff fffff	-0.980000	0.939600
00500520	-1	00000f fe2000 002003 ffmff fmmff fmmf	-0.980392	0.921184
00510520	-1	00802 f faa000 002003 ffmff fffiff fffff	-0.980769	0.903477
00520520	-1	00002 f fa8000 000003 ffffff fmifff flifif	-0.981132	0.886437
00530519	0	000010014000000001 ffmfff flmff fmmf	-0.962963	0.887517
00540519	-2	000000014000000007 ffff ff ffmff fmiff	-0.981818	0.890579
00550518	-2	000000002000000007 ffffff fffmf fffff	-1.000000	0.892857
00560517	-2	000000000000000007 fffmf ffmiff ffmff	-1.017544	0.894429
00570515	-2	000000000000000007 fffmff fflfff ffmff	-1.034483	0.895363
00580514	-3	038000000000 le000f fmmff fmmff ffmff	-1.067797	0.944556
00590512	-3	$03 \mathrm{f000} 000000$ Ofe00f fffiff fffiff fffiff	-1.100000	0.990000
00600510	-5	03 f 00002000007 e 03 f fflfff fffiff ffiff	-1.163934	1.219027
00610508	-7	03 ff 8000000001 O (ff ffmiff fffiff fffiff	-1.258065	1.739854
00620505	-7	$01 \mathrm{fff0} 0000000000$ ff fffmf fiffif ffimf	-1.349206	2.227261
00630500	-5	000 fff 00000000003 f ffliff fffiff fffff	-1.406250	2.397461
00640498	-5	0007ff f80000 00003f fflfff ffmff fffff	-1.461538	2.556213
00650494	-3	0000 ff ffe 00000000 f ffmimf fffiff fimff	-1.484848	2.552800
00660492	-3	80003f ffr800 00000f ffmff mmff fmmf	-1.507463	2.548451
00670490	-2	f0003f fffe00 000007 fmmff ffffff ffliff	-1.514706	2.514489
00680489	-2	fc01ff fffic0 000007 ffmimf ffmiff ffmff	-1.521739	2.481411
00690488	-1	fe03ff ffmf 000003 fmfff fmmf ffmff	-1.514286	2.449795
00700487	-2	ff87ff ffffic 000007 fffiff fflfff fffiff	-1.521127	2.418567
00710487	-2	ffdfff ffifc 000007 ffmfff fffiff fimf	-1.527778	2.388116
00720485	-2	ffmiff fiffic 000007 fffiff ffmimf fffiff	-1.534247	2.358415
00730484	-3	fffbeff ffme 0f800f ffmff flmff fmfff	-1.554054	2.355186
00740483	-2	ffrr7f ffffic 3f0007 fmmff ffmeff fffff	-1.560000	2.326400
00750482	-1		-1.552631	2.299861
00760481	-2		-1.558442	2.272558
00770480	-1	fff01 ffffe8 3f0003 fffiff fflfff fffiff	-1.551282	2.247369

00780479	-2	ff800	$7 \mathrm{ffc00}$	7 fe 007	ffmff ffmiff ffmff	-1.556962	2.221438
00790478	-1	ffl800	3ff800	74003 f	fmfff fmmff ffmff	-1.550000	2.197500
00800477	-2	fff00	078800	$7 \mathrm{ff007}$	fmfiff fmfff fmmf	-1.555555	2.172839
00810476	-1	fffe00	038800	$7 \mathrm{ff003}$	ffimff ffimf fflff	-1.548780	2.150059
00820475	-1	$7 \mathrm{fff00}$	$01 \mathrm{f000}$	3ff003	fffiff fmfff fmimf	-1.542169	2.127739
00830474	-1	3 ffe 00	002000	$1 \mathrm{ff8} 83$	ffimff ffliff fffiff	-1.535714	2.105867
00840473	0	1 fff00	000000	Offcol	ffmiff fffmf ffmff	-1.517647	2.108511
00850473	0	0 Off00	000000	0 ff801	ffifff fffiff fmifff	-1.500000	2.110464
00860473	-2	$07 \mathrm{ff1}$	500100	0 Off007	7 fmffff fffiff ffliff	-1.505747	2.089046
00870472	-1	$03 \mathrm{ff83}$	880280	0 ff003	ffmiff ffmff fflfff	-1.500000	2.068181
00880472	-1	07 ffc 3	fe0000	Ofe003	fffiff ffifff fffff	-1.494382	2.047720
00890471	-1	$07 \mathrm{fff1}$	f10740	07e003	fmmf ffmff fmff	-1.488889	2.027654
00900470	-1	03 fffb	f99f8 0	03 e 003 fm	fffff ffmff ffmf	-1.483516	2.007970
00910470	-1	83fff	ffoff 00	008003 ff	ffffff ffimf fffff	-1.478261	1.988657
0920469	-2	f001ff	ffdffc 0	000007 f	ffffff ffiff fimff	-1.48387	1.970169
00930468	-1	fe003f	ffoffe 0	000003	fffiff iffiff ffiff	-1.478723	1.951674
00940467	-1	ff0007	ff1ff 0	000003 f	ffffff ffimf fffiff	-1.473684	1.933517
00950466	-1	ff8003	ce0ffe	000003	fffiff ffimf ffffff	-1.468750	1.915689
00960466	-1	ff8001	e01ff	000003	fffiff ffmff ffmiff	-1.463917	1.898182
00970466	-1	$f 8003$	f00fe0	0a0003	ffffiff ffffff ffiff	-1.459184	1.880986
00980466	0	ffc003	e00e00	200001	1 fmmff ffffff ffiff	-1.444444	1.883277
00990466	0	ffe00f	e3e003	e00001	ffmff fflfff fffiff	-1.430000	1.885100
01000466	-1	ffe00f	cfe07f	880003 f	ffimff ffiff fimf	-1.425743	1.868248
01010466	-1	Off80f	ffe0ff fa	fa0003 ff	ffimf ffffff fffiff	-1.421569	1.851691
01020466	-1	03 feff	bfflff f8	$f 80003 \mathrm{ff}$	fffmf fmmff ffmff	-1.417476	1.835423
01030466	-1	01 feff	fffiff e8	80003 ff	ffffff ffmiff fffiff	-1.413461	1.819434
01040466	0	03 ffff	ffroob	a00001	flmff fffmff ffmff	-1.400000	1.820952
01050466	0	03 e 03 f	bfe000	000001	1 fflifff ffffff flmff	-1.386792	1.822090
01060466	-1	03800 f	c28f80	0000003		-1.383177	1.806446
01070466	-1	078003	e01ff8	8000003	flmff fmfff ffmff	-1.379629	1.791066
01080466	-1	$0 ¢ 8003$	f03ffe	000003	ffmff ffliff fflfff	-1.376147	1.775944
01090467	-2	$7 f 0003$	f03fff	000007	ffffiff fffiff fffiff	-1.381818	1.763305
01100467	-1	$7 \mathrm{C0003}$	df1fff	000003	3 ffffff ffffff ffimff	-1.378378	1.748721
01110467	0	fr0007	ffdfff	000001	ffimf fmfff ffmff	-1.366071	1.749920
01120467	0	ff0007	ffdfff	000001	ffmiff ffmff fffiff	-1.353982	1.750802
01130468	-1	fe003f	ffoffe	$00 f 003 \mathrm{f}$	ffimf ffiff fffiff	-1.350877	1.736534
01140469	-2	fc01ff	fr9ff 0	019007 ff	fflmf ffimf fffiff	-1.356522	1.725066
01150470	-2	e0ffff	ff00a8	03e007	fffmf fmiff fffiff	-1.362069	1.713733
01160471	-2	03 fff 7	fe0100	03e007	7 fffiff fflffi ffiff	-1.367521	1.702535
01170471	-2	01 ffe7	fc0000	$03 f 007$	7 fffiff ffmimf ffiff	-1.372881	1.691468
01180471	0	01 ffc 5	fc0000	$03 f 001$	1 fffiff ffffff fffiff	-1.361344	1.692959
01190472	-1	03 ffc 2	e00000	$07 f 003$	3 fffiff fffiff flifff	-1.358333	1.679930
01200473	-2	07 ff 01	000000	0707007	7 ffifff fffmff ffffff	-1.363636	1.669421
01210473	-2	$07 \mathrm{ff00}$	000000	004007	7 ffimf fffmff fimff	-1.368852	1.659029
01220474	-2	Offe00	003800	0 1fe007	7 fm ff fffmff ffiff	-1.373984	1.648754
01230476	-3	7 ff 800	$00 f 800$	3fc00f	ffifff ffliff fffff	-1.387097	1.656607
01240477	-4	ffr000	07f800	7fcolf	fffiff filfif fiffif	-1.408000	1.697536
01250477	0	fff00	07ff00	$7 \mathrm{fc001}$	fffiff fffff filiff	-1.396825	1.699672
01260478	-1	ffe000	$1 \mathrm{fmP8}$	3f0003	fffiff fmmf ffimf	-1.393701	1.687519
01270479	-2	ffe000	7 ffff	3 fc 007 f	fmfff fmfff ffmmf	-1.398437	1.677185
01280480	-1	ffe000	ffiff	$3 f 8003 \mathrm{ff}$	ffliff ffifff fffiff	-1.395349	1.665405
01290480	-1	ffe001	ffffe	Ofc003 ff	fmiff ffiff fffff	-1.392308	1.653787
01300481	-2	fff007	fffiff 0	070047 ff	ffmff ffmff ffmff	-1.396946	1.643960
01310482	-2	fffrlf	ffe 02	228007	ffimf ffmff fffimf	-1.401515	1.63424

01320483	-2	fffc7f ffleff 000007 ffifff ffmff fffiff	-1.406015	1.624625
01330484	-1	ffmeff fffffe 000003 ffimf fffiff ffmff	-1.402985	1.613722
01340485	-2	ffmiff fffiff 000007 fffiff fffmff fffimf	-1.407407	1.604389
01350485	-1	ffflff fimfi 000003 ffmff ffmff flmf	-1.404412	1.593804
01360486	-1	ffeoff ffffe 000003 ffmff fflfff ffmff	-1.401460	1.583355
01370487	-2	ffcliff fimfo 000007 fmmf fmmff fiffif	-1.405797	1.574459
01380489	-2	fe01ff fffl 80000007 ffffff ffmff ffimf	-1.410072	1.565654
01390490	-3	f8003f fffe00 00000f fffiff fffiff ffiff	-1.421428	1.572398
01400495	-6	0003ff ffc000 00007f fffff fifmff fflff	-1.453901	1.708868
01410496	-5	0003 ff ff8000 00003 ff fmffff ffmff fffff	-1.478873	1.784765
01420498	-3	000 fff f 8000000000 f ffffff ffmff fffff	-1.489510	1.788352
01430505	-8	$03 \mathrm{fff8} 0000000001 \mathrm{ff}$ fmmff ffmiff ffmf	-1.534722	2.068238
01440506	-7	$03 \mathrm{ffe0} 00000000 \mathrm{aOff} \mathrm{ffifff} \mathrm{ffffff}$ ffifff	-1.572414	2.258549
01450507	-2	007f00 000000015007 fffmff fmifff ffmff	-1.575342	2.244323
01460507	0	001 fc 0000000007001 fmmff fmimf mfmf	-1.564626	2.245823
01470508	-1	001880000000003 e 03 fflfff fflfff ffffff	-1.560811	2.232788
01480510	-3	003000000000 00f80f ffmff ffmfff ffimf	-1.570470	2.231611
01490512	-3	000000000000 00000f fiffiff fflfff fffiff	-1.580000	2.230267
01500514	-3	000000002 a 0000000 f ffimf fiffiff fffiff	-1.589404	2.228762
01510516	-3	00000000000000000 f fffmf fffff ffiff	-1.598684	2.227104
01520516	-1	a00000 000000 000003 ffmfff fffiff fffff	-1.594771	2.214875
01530516	-1	000000 ae8000 000003 fffmff ffmff fmmf	-1.590909	2.202775
01540517	-2	$0000007 \mathrm{f0000} 000007 \mathrm{fffiff}$ fflfiff fffff	-1.593548	2.189636
01550518	-2	$0000003 \mathrm{f8000} 000007 \mathrm{fffmff}$ ffffff ffmff	-1.596154	2.176652
01560518	-1		-1.592357	2.165037
01570518	-1	000000 ffe 800000003 fflfff fimff fffiff	-1.588607	2.153541
01580518	-1	$000000 \mathrm{fff800} 080003 \mathrm{ffmfff} \mathrm{ffmff} \mathrm{ffmf}$	-1.584906	2.142162
01590519	-2	000007 ffd 000050007 fmffff ffimf ffffff	-1.587500	2.129844
01600520	-2	00000 ff 8000080007 ffmff fffimf ffffff	-1.590062	2.117665
01610520	-1	000003 ffe 00 a 000003 ffffff ffffff ffffff	-1.586420	2.106729
01620521	-2	000003 ff 010400007 fflfff ffffff fffiff	-1.588957	2.094848
01630521	-1	000007 ff 000000003 fmmff ffffff fmfff	-1.585366	2.084176
01640522	-1	00002f fe0000 000003 ffifff fffiff ffffff	-1.581818	2.073609
01650522	-1	00003 fe f 002 aa 0003 fmffff ffliff fffff	-1.578313	2.063144
01660522	-2	00003f fe002f fa8007 ffimf fffiff flfiff	-1.580838	2.051848
01670521	-2	00001f fe005f f00007 ffmff fmmff ffmf	-1.583333	2.040674
01680520	-1	80000f fe00ff f80003 ffmff ffmff ffmff	-1.579882	2.030601
01690520	-1	80003f fe03ff fa0003 ffmff ffmff ffmff	-1.576471	2.020623
01700520	-1	e800ff f80mff f80003 fimff ffimf ffmff	-1.573099	2.010738
01710520	-2	fa00ff 803fff e00807 ffifff ffffff fffff	-1.575581	2.000101
01720520	-1	fa00fe 00 ffff e 00803 ffffff fffiff fffiff	-1.572254	1.990444
01730520	-1	fa00bc 01 ffff a 00003 ffmfff fffmff fflmf	-1.568966	1.980876
01740520	-1	fa0000 01ffff 800003 ffffff ffmff fffff	-1.565714	1.971396
01750520	-1	fe0000 00 fffe 800003 ffliff ffifff fffff	-1.562500	1.962003
01760520	-1	fe0000 003ffe 800003 ffmfff ffmiff ffiff	-1.559322	1.952696
01770520	-1	fe0000 003ffa 0003e3 ffmiff fmmff fffff	-1.556180	1.943473
01780520	0	ffo000 0003e0 000fel fmmff fmmff fmfff	-1.547486	1.946069
01790520	-1	fro000 000000000 e3 fmffff ffmff fffff	-1.544445	1.936913
01800520	-1	ff0020 020000000 e3 fmffff fmfff ffmff	-1.541437	1.927841
01810521	-2	fe0001 400000000107 fmfff ffffff ffmff	-1.543956	1.918397
01820522	-3	fc0200 03e000 00000 f flmff fflfff fmiff	-1.551913	1.919436
01830523	-4	f00010 lf0000 00001f ffmmf ffmff ffmf	-1.565217	1.941399
01840524	-3	e00000 ff8000 00000f ffmff fmmf ffmff	-1.572973	1.941972
01850524	-1	008003 fro000 000003 fflfff ffiff fifff	-1.569893	1.933287

01860524	-1	808003 fc 0000008003 fmfff ffffff ffifff	-1.566845	1.924676
01870525	-2	00001 f f00000 07c007 ffffff ffimff ffmiff	-1.569149	1.915431
01880526	-1	00003f 800000050003 ffffff fffiff fffiff	-1.566138	1.907001
01890527	-2	$00007 \mathrm{f} 000001 \mathrm{f00007} \mathrm{ffifff}$ ffffff fffiff	-1.568421	1.897950
01900529	-3	0507fc 00001f 00000f ffmiff ffmiff fififf	-1.575916	1.898687
01910530	-3	003ff8 0000f8 00000f ffffff ffffff fffff	-1.583333	1.899306
01920531	-2	01 ff 000003 fO 000007 ffifff ffifff ffffff	-1.585492	1.890360
01930532	-2	$03 \mathrm{ff} 00000 \mathrm{fC0} 000007$ ffifff fffiff ffffff	-1.587629	1.881497
01940533	-2	1ff000 007f00 000007 ffmmf fffif fiffif	-1.589744	1.872716
01950534	-3	bfc000 03f800 00000f ffmiff ffmffr fffiff	-1.596939	1.873256
01960535	-2	ff0000 $07 \mathrm{f001}$ ff4007 fiffif fffffr fffmf	-1.598985	1.864568
01970536	-3	800000 3fe00f fr800f fffiff ffifff ffimf	-1.606061	1.865014
01980537	-2	000001 ff 001 ff f0007 fffiff ffiff fifff	-1.608040	1.856418
01990537	-1	000007 fd001f fff003 fffiff ffffff ffffff	-1.605000	1.848976
02000538	-2	a0003f e8003f aff807 ffffiff fffiff fffiff	-1.606965	1.840549
02010538	-2	f800ff a000ff abfe07 ffifff fffmff fffff	-1.608911	1.832199
02020538	-1	f80ffe a000ff abfe03 ffmfff fffiff fffffr	-1.605911	1.824990
02030539	-2	707 ff 44001 fd 57 fc 07 ffmmf fffmf fffiff	-1.607843	1.816802
02040540	-2	003fa0 8003fa 8bf807 ffffff ffffff ffmff	-1.609756	1.808686

curve 2 : average offset is $\mathbf{- 1 . 6 0 9 7 5 6}$ pixels from edge.
maximum offset is 2

Image:

curve 1

(x, y)	$\mathrm{D}(\mathrm{x})$
00000344	5
00010343	3

[^1]| Aim | σ^{2} |
| :--- | :--- |
| 5.000000 | 0.000000 |
| 4.000000 | 1.000000 |

00020343	3	fffimf filfff ffimf f007f0 01ffff ffc07f	3.666667	0.888888
00030342	5	fffiff fffiff ffiff fc07fc 03ffff ffc003	4.000000	1.000000
00040342	6	fffmff ffimf ffmff fe07fe 0fffff ff000	4.400000	1.439998
00050343	5	ffmfff fimff fmmff f007ff ffiff ffoo01	4.500000	1.250000
00060343	4		4.428571	1.102042
00070341	5	fffmf ffmff fimff fc07f0 07 ffff ffe000	4.500000	1.000000
00080340	6	ffmff ffmiff flmff fe 330003 ffff ff 800	4.666667	1.111113
00090339	7	ffmeff fmfff fimff f03f0 01 ffff ffff00	4.900000	1.490004
00100339	7	fffiff ffffff fiffif f03e0 01ffff ffir 0	5.090909	1.719014
00110339	4	ffimff ffifff flmff f807f0 01fff fff00	5.000000	1.666673
00120339	4	ffmeff ffmff fmfff f8078803ffff fflo	4.923077	1.609472
00130340	5		4.928571	1.494901
00140339	5	ffimff fffff fffiff f007ff $7 \mathrm{ffifff} \mathrm{fiff00}$	4.933333	1.395560
00150339	6	ffimf ffimiff fffiff fe07ff 1 ffffff fffc00	5.000000	1.375005
00160339	6	fffmif fifff ffimf fe07ff 07ffff ffic00	5.058823	1.349486
00170339	6	fffiff fffff fffff fe07f8 01 fiff fflou0	5.111111	1.320992
00180339	5	ffmeff ffimf flifff fc07f0 01 lffff ffe000	5.105263	1.252082
00190339	5	fffmff fffmf ffmff fc07e0 $01 \mathrm{ffff} \mathrm{ffc000}$	5.099999	1.190007
00200339	5	ffimf ffiff ffifff fc07e0 01 ffff ff8000	5.095238	1.133792
00210339	3	fffiff fffiff fflff f00ff0 07ffff fr0000	5.000000	1.272733
00220339	5	fffiff ffiff ffifff fcoffc 07ffff fc0000	5.000000	1.217397
00230339	5	ffifff fimff flmff fcofff 07fff fc0000	5.000000	1.166673
00240340	4	fffiff fflff fififf f80fff flfiff f80000	4.960000	1.158406
00250340	5	ffffiff fffiff fflfff fc07ff e3ffff f00000	4.961538	1.113914
00260340	5	ffffff fffiff fffiff fc03ff 80 ffff e00000	4.962962	1.072713
00270341	5	fffiff fffff ffliff fc07fe 007fff 000000	4.964285	1.034449
00280342	4	ffifff fffiff fffiff f80ff 00 fffe 000280	4.931034	1.029737
00290342	4	ffmff fmfff ffmiff f80ff 00 fffe 00008a	4.899999	1.023343
00300342	3	ffmff ffmiff ffmff f00ff 00 fffe 00000a	4.838709	1.103027
00310342	4	ffifff flfiff ffliff f80ffe 03fff 0003 e 8	4.812499	1.089855
00320343	3	ffmiff ffimf ffifff f01ffc 07ffl 001 ffd	4.757575	1.153360
00330343	4	fffiff ffimf fffiff f807ff fiffc 041ff	4.735293	1.135821
00340343	5	ffmiff fimff ffmiff fc07ff fc7ffc 011 fff	4.742857	1.105313
00350344	4	ffmff fmfmf ffmff f800ff f803fc 003fff	4.722221	1.089515
00360344	4	ffimff ffifff ffmff f8007f f003fe 003fff	4.702702	1.073783
00370344	9	ffimff ffliff fimff ff03f e001fe 0003ff	4.815789	1.518706
00380345	7	ffliff fffiff ffmeff ff007f c003fc 0005ff	4.871794	1.598955
00390347	5	ffmff ffmff fmiff fc01ff 801 ffc 001 fff	4.875000	1.559380
00400348	4	ffflff ffmff fmmff f803ff 80 ffl 8003 fff	4.853658	1.539563
00410349	4	ffifff fffiff fffiff f8007f fc07f4 007ffe	4.833333	1.519845
00420350	3	ffmfff ffifff ffmff f000ff fe003800fff	4.790698	1.560846
00430350	8	ffmff ffmff fifff ff803f fe001f 80 ff8	4.863636	1.754132
00440351	7	ffmff ffffff fffff fl003f fc003f clfc10	4.911111	1.814320
00450354	6	ffimff fmmf fimff fe01ff 2003 ff 800 ff	4.934783	1.800091
00460355	5	fffimf fimf ffmimf fc01ff e00fff c07fff	4.936171	1.761879
00470355	7	fffmff ffiff fflmf fro01f fc7fff f07c05	4.979167	1.812062
00480354	8	fffmff ffiff fffiff fr8003 ffimff f80a80	5.040817	1.957512
00490353	15	ffimf ffimf ffifff fffl00 fflffr f00001	5.240000	3.862397
00500353	15	ffifff fliff ffimf ffl01 f007ff e00155	5.431373	5.617836
00510354	10	ffmff fmmf fimff ffe00f e007ff abe 3 ae	5.519231	5.903474
00520357	7	ffmff fmfff fimff fl007f 001ff1 788055	5.547170	5.832680
00530356	8	ffimf fffiff fffiff ff0iff 000fe0 3ffe0	5.592592	5.834019
00540356	8		5.636364	5.831401
00550354	9	ffimf ffmif fffiff fc0ff e00f80 2 ffff	5.696428	5.925701

00560353	9	ffffff ffffff ffffif ffc07f f01f00 47ffff	5.754385	6.009851
00570352	8	ffffiff ffffff ffffff ff807f c3ff80 03ffff	5.793103	5.991680
00580352	6	ffifff fmfiff ffifff fe007e 03ff80 03fffr	5.796609	5.890840
00590350	6	ffifff ffifff ffimf fe00f8003f80 03ffff	5.799999	5.793335
00600349	7	ffffiff ffimff ffffif fr01fc 001 fe 007 ffff	5.819671	5.721584
00610350	4	ffffff flifff fffiff f803f8 007f8a affff	5.790322	5.681844
00620349	5	fmfff fffiff ffmff fc07fe 007f85 57fff 7	5.777777	5.601410
00630348	8	ffimff ffffff ffimff ff81ff $803 \mathrm{f80} 8 \mathrm{fffeb}$	5.812500	5.589842
00640348	8	ffifff ffiffif ffffiff ff83ff 80ff00 0 fffab	5.846153	5.576330
00650347	8	ffffff fffiff ffffff ff81ff fffio 501540	5.878788	5.561062
00660346	5	fffiff ffiff ffifff fc03ff afff80 000800	5.865671	5.489417
00670345	5	ffimff ffimff ffmiff fc07f0 03ffc0 010000	5.852941	5.419551
00680345	5	fffmff ffmff ffffff fc07f0 03ffc0 014050	5.840579	5.351397
00690343	7	ffffif fffiff fffiff ff03f0 $007 \mathrm{ff8} 000051$	5.857142	5.293879
00700342	8	fffiff fffffr ffffff ff81f8 007 ffe 000080	5.887323	5.283082
00710342	6	fffiff fffiff ffmiff fe03fc 00fffe 000000	5.888888	5.209881
00720342	6	ffmmf ffffff ffffff fe03fe 00ffff 800002	5.890410	5.138680
00730342	8	fffmff fffiff fffifff ff83ff 8 fffff c 0000 a	5.918918	5.128563
00740342	7	fffiff fffiff ffffff ff03ff ffffff 00002	5.933332	5.075561
00750342	6	ffiffif fffiff ffifff fe03ff bffiff e00000	5.934210	5.008832
00760342	4	ffmffr ffffiff fffmff f807f8 0 ffffff e00000	5.909090	4.991739
00770342	5	fffmff fffmff fffiff fc0fe0 Offfff f80000	5.897435	4.938200
00780341	5	fffmff ffmfff fffiff fc07f0 03 ffiff fc0000	5.886075	4.885760
00790340	6	ffffff fffiff ffffff fe03e0 01 ffff ff 8000	5.887499	4.824852
00800340	6	ffimff ffififf fffiff fe07e0 03ffiff ffe000	5.888888	4.765439
00810340	5	ffififf fffiff fimff f0 $03 \mathrm{f8} 03 \mathrm{ffff} \mathrm{fffc00}$	5.878048	4.716840
00820340	6	fffiff fffiff fiffif fe07fc 07ffff fffe00	5.879517	4.660191
00830340	8	fffiff ffimf ffifff ff83ff fffiff fffe00	5.904761	4.657607
00840340	8	ffifff fimff ffiffif ff83ff bfffff fffe00	5.929411	4.653850
00850341	6	ffffff fffiff fffiff fe07fc 07ffff ffffoo	5.930232	4.599794
00860341	6	ffififf ffififf ffififf fe07f0 07 ffff fffc00	5.931034	4.546977
00870341	5	ffffff ffiffi fiffiff fc07e0 07 ffff fff000	5.920454	4.505046
00880341	5	ffifff ffiffi ffifff fc07c0 07ffff fff000	5.910111	4.463840
00890340	4	ffffff ffffff fffiff f807f0 03ffff fff000	5.888888	4.454331
00900340	4	ffifff ffmff ffifff f8078803ffff ffe00	5.868131	4.444162
00910340	6	ffifff ffififf fffiff fe07fe 0fffff fff000	5.869564	4.396042
00920340	6	ffimff ffmiff ffmfff fe07ff ffifff ffr803	5.870966	4.348957
00930341	5	fffiff fffiff ffifff fc07ff clffff fff0ff	5.861701	4.310673
00940341	4	fffiff fffiff fffiff f807ff 007fff fffdff	5.842104	4.301401
00950343	4	fimiff ffifff fffiff f807f8 01 ffff ffifff	5.822916	4.291573
00960343	4	ffifff fiffif fffiff f807f0 01ffff ffc3ff	5.804122	4.281237
00970343	4	ffffff ffmeff ffiff f807f0 01ffff ff01ff	5.785713	4.270422
00980343	3	ffffiff ffffiff fmfff f007f0 01ffff ff007f	5.757575	4.304883
00990343	3	ffimff ffffiff ffmmf f007fc 03ffff fc001f	5.729999	4.337118
01000343	5	ffimff ffifff ffimff fc07ff 07ffff fc000f	5.722771	4.299403
01010345	3	ffmiff fffiff fffmf f00fff ffifff f0001f	5.696077	4.329222
01020345	3	fffiff ffmff ffimff f007ff f007ff f4141c	5.669901	4.357075
01030345	4	fffiff fffiff fffiff f8007f f007ff c00100	5.653845	4.341732
01040345	5	fffiff ffifff ffiffr f0007f e007ff 007401	5.647618	4.304414
01050346	8	ffffff ffffff fifff ff807f 8007ff effe0e	5.669810	4.315516
01060346	8	ffffff ffffff fffff ff807f 800fff effe3f	5.691588	4.325454
01070347	5	fffiff fffiff fffiff fc00ff c07fff fffdff	5.685184	4.289788
01080348	4	ffimff fimmf fimiff f800ff e8ffff fffiff	5.669724	4.276246
01090349	5	ffififf ffifff fflfff fc001f ff0007 ffdfff	5.663636	4.241410

01100350	4	ffffff ffffff ffffff f8003f fe000f fe7ff8	5.648648	4.227910
01110352	8	fffimf fffiff ffifff ff803f f8003f 03fe02	5.669642	4.239086
01120353	7	fffiff ffffiff ffffiff ff007f f8007e 11f004	5.681415	4.217098
01130355	7	ffffiff fffmff fffmff fl007f f007f7 f01ffc	5.692982	4.195222
01140356	6	fffiff ffimff fffiff fe00ff e00fff e0fffa	5.695652	4.159552
01150357	7	ffmiff fffiff fffiff ff0007 ffffff f7ffd0	5.706896	4.138234
01160358	6	ffififf fiffiff fffiff fe0007 ffifff e3ffa8	5.709401	4.103590
01170361	9	fffmff ffffff ffffff ffc01e 07fdfc 000000	5.737288	4.159799
01180362	8	fffiff fffiff fffiff ff $802001 \mathrm{f803} \mathrm{fe} 0028$	5.756302	4.167506
01190360	5	fffiff fffif fffiff fc00fc $003 \mathrm{f83}$ ff800	5.750000	4.137502
01200359	6	fffff ffifff ffifff fe01fc 000fdl ffic0	5.752066	4.103819
01210357	7	ffffiff ffffiff fffiff ff007f 0007ff fff00	5.762295	4.082839
01220356	8	ffifff ffifff ffififf fr80ff c00fff fiffc0	5.780488	4.090023
01230354	8	fffiff fifmiff ffffff ff803f f83fff feffe0	5.798387	4.096443
01240353	8	ffffff fffiff fffiff ff801f flffff fe0750	5.816000	4.102138
01250352	5	fffmff fffiff fiffiff fc001e 00fff3 fe8008	5.809524	4.074826
01260351	6	fffiff fffiff fifmff fe003c 003ff9 7d0000	5.811023	4.043025
01270351	5	ffffff ffffff fffiff fc01f0 003ff0 017000	5.804687	4.016539
01280351	4	ffimff fffiff fffiff f801f0 003ff1 4551f0	5.790697	4.010457
01290350	6	fffff fffiff ffffff fe01fe 003ff 0001 fe	5.792307	3.979943
01300350	7	ffmff ffmfff ffmfff fr01fe 003ff8 0003ff	5.801526	3.960608
01310349	8	ffimff fffiff ffimf ff80ff dffffe 0007ff	5.818181	3.966942
01320348	8	ffmfff fffffr ffmff ff80ff fffmff 8003ff	5.834586	3.972640
01330346	6	fffmff ffffff fffiff fe00fe 03ffff e003ff	5.835820	3.943195
01340346	6	ffimff fffiff fififf fe01f8 03ffff f80fff	5.837036	3.914185
01350345	7	ffifff flmff ffffff fr01f0 00 ffff fffiff	5.845587	3.895276
01360345	7	ffimf ffiff fifff flolf0 00ffff ffiff	5.854013	3.876500
01370345	6	fffiff fifmiff fffiff fe03e0 00ffff ffcliff	5.855072	3.848562
01380345	4	fffiff fffiff fffiff f807f0 01 ffff ffclff	5.841726	3.845454
01390346	4	fflfff fflmff flffiff f807f0 07ffiff fe000f	5.828571	3.842040
01400346	6	ffffff ffimff fffmff fe07f8 3fffff fe0007	5.829787	3.814997
01410346	6	fffiff fffimf fffiff fe07fe fffiff fe0003	5.830986	3.788331
01420346	4	ffifff fimff ffifff f807f8 3 fffiff fc0001	5.818182	3.785116
01430345	5	flimf fffiff fffiff fc07c0 0 fffff fr0000	5.812500	3.763448
01440344	6	ffffff ffffff ffffff fe03e0 07ffff ffc000	5.813793	3.737732
01450343	6	ffiffif ffifff ffifff fe07c0 03ffiff fffc00	5.815068	3.712367
01460342	7	ffffiff ffifff ffffiff ff03e0 00 ffff fffe00	5.823129	3.696597
01470342	5	ffffff ffmff ffffff fc03e0 01 ffff fffe0	5.817567	3.676170
01480342	5	ffimff fffiff ffififf fc03f8 03ffff fffe00	5.812080	3.655951
01490342	8	ffifff fiffif fffiff ff83fe 0ffiff fffe00	5.826666	3.663282
01500342	8	fffiff fffiff ffifff ff81ff bfffff fffe0	5.841059	3.670098
01510343	7	ffifff fffiff fffiff ff03ff 0fffff fff000	5.848684	3.654729
01520343	7	ffimiff fffiff fffiff ff01fc 07ffiff ffio00	5.856209	3.639450
01530344	6	ffffff fffffr ffffff fe03f0 03ffff ff8000	5.857142	3.615952
01540344	6	fffiff ffifff fiffif fe03e0 03ffiff ff0000	5.858064	3.592752
01550344	6	fffiff fimff ffmff fe03e0 03ffff fe0000	5.858974	3.569850
01560344	6	ffimf fififf ffimf fe07e0 03ffiff fe0000	5.859872	3.547238
01570344	4	fffimf ffimff fffiff f807f8 07ffff f80000	5.848101	3.546539
01580344	5	fffiff ffifff ffiff fc07f8 0ffiff e00002	5.842767	3.528728
01590344	6	fffiff ffifff fflmff fe03ff fffiff e00000	5.843750	3.506824
01600344	6	fffffr ffimf fimff fe03ff fffiff e00000	5.844720	3.485194
01610346	4	fffiff fifffr fffiff f807ff 00 ffff 800000	5.833333	3.484559
01620346	4	ffifff ffffff ffffff f803fe 00fffe 000000	5.822085	3.483678
01630346	5	fffiff fffmff fffmff fc03fc 007ff8 000008	5.817073	3.466530

01640346	4
01650346	4
01660346	6
01670347	5
01680347	6
01690347	6
01700347	6
01710348	10
01720349	9
01730350	7
01740350	6
01750352	4
01760353	5
01770354	4
01780355	7
01790357	5
01800357	7
01810360	4
01820360	4
01830359	6
01840359	7
01850360	11
01860360	11
01870360	6
01880359	7
01890358	7
01900357	8
01910355	9
01920354	8
01930354	4
01940353	5
01950352	6
01960351	5
01970350	6
01980349	7
01990349	7
02000349	7
02010349	3
02020348	4
02030347	5
02040346	5
02050345	5
02060345	4
02070345	3
02080344	4
02090343	5
02100343	5
02110343	4
02120343	4
02130343	3
02140342	4
02150340	4
02160340	4
02170340	6

02180340	6	ffifff fffiff fimff feoffe 3 fffff fiffe	5.789955	3.480987
02190340	6	ffleff ffffff flfff fe07ff bflfff flflio	5.790909	3.465366
02200340	6	ffimff fffiff fiffif fe07fe 0ffiff fiffo	5.791855	3.449884
02210340	6	fffief ffiff ffiff fe07f8 03ffff fffle	5.792793	3.434541
02220340	6	ffmmf fimf ffimf fe07f8 03ffiff fffe00	5.793722	3.419329
02230340	6	fffimf ffiffi flimf fe0fe0 03 fffff fffe00	5.794643	3.404253
02240340	6	ffmmf fmmf fmfff fe0fe0 03 fffff fffc 00	5.795556	3.389311
02250340	4	fffmff ffmff fmmf f80ff8 03 ffff fff800	5.787611	3.388517
02260340	4	ffmiff ffifff fiffff f80ff8 07 ffff fff 800	5.779736	. 387606
02270340	5		5.776316	3.375403
02280340	5	ffliff fffiff fifmff f033ff ffimf fff07	5.772926	3.363280
02290341	4	ffimf ffffff fffiff f807ff c0ffff fffdff	5.765217	3.362264
02300342	4	ffffff fffff fifff f803fe 00ffff ffiff	5.757576	3.361143
02310343	5	ffmff fflfff fimff fc0780 01 ffff fff5ff	5.754310	3.349119
02320343	4	fffiff ffifff fiffiff f8070 00 ffff ffeoff	5.746781	3.347896
02330343	4	ffmmf ffmff ffmff f807f0 01ffff ff03f	5.739316	3.346572
02340343	3	fffmff ffmiff ffmff f007f801ffff floulf	5.727659	3.364128
02350343	3	ffimf fimm fimff f007fc 03 fflf fe0007	5.716101	3.381268
02360343	4	fffiff ffiff fliff f807ff 47 fffff fe 0003	5.708860	3.379372
02370344	2	ffifff fffiff ffiff e007ff f80fff f80002	5.693277	3.422727
02380344	4	ffifff fifff fmiff f800ff f803ff f80000	5.686192	3.420352
02390344	5	ffffiff fifff fmiff fc003ff f801ff f82a00	5.683333	3.408055
02400344	8	fffimf ffimf fimff ff803f f800ff f8ff 8	5.692945	3.416094
02410345	8	fffmf ffmiff ffmfff fr03f e001ff f7ff07	5.702479	3.423877
02420346	7	fffiff ffliff ffifff froo7f c00fff fffe3f	5.707819	3.416688
02430348	4	ffmeff ffffff ffffff f800ff 007 fff fffbff	5.700819	3.414592
02440348	5	ffifff fifff fimff fc00ff fe3fff fflff	5.697958	3.402650
02450350	4	ffffff fffiff fflfff f8003f fe000f be3ff	5.691056	3.400491
02460350	4	ffmff fmmf ffmff f8003f fe0007e07ff8	5.684210	3.398255
02470351	9	ffmiff ffimf fifmf ffcolf fc001f c07c00	5.697580	3.428709
02480352	8	fflfff ffffff flfff ff803f fc003e 3 e003e	5.706827	3.436142
02490355	7	fffimf fffiff fflfff fl007f f00777 f07ffc	5.711999	3.429059
02500355	7	fffiff ffifff fffiff ff007f f007ff f8ffic	5.717131	3.421984
02510357	7	ffmff ffifff fiffif floo07 ffimf flffo	5.722221	3.414908
02520358	6	ffliff fffiff ffliff fe000f fbfffc c00080	5.723320	3.401714
02530360	9	ffffff ffffff ffffff ff03e 00fe 38 fe8000	5.736220	3.430426
02540361	8	ffmff fffiff fimff ff8070 00 f007 ffc000	5.745098	3.436987
02550360	4	fmmff fmff ffmff f803f8003fa3 ffr800	5.738281	3.435411
02560358	6	ffmmf fimff flmff fe00fe 000 fff fffe00	5.739299	3.422306
02570356	8	ffmmf ffmff fmfff fr80ff 8007ff efffc0	5.748062	3.428774
02580355	9	fffiff ffifff ffimf ff007f c007ff fdfff0	5.760617	3.456211
02590353	9	ffffff ffifff fflfff ff03f f07fff fe0551	5.773077	3.483122
02600352	9	ffimff flifff fffiff ffc03f faffff fl0000	5.785440	3.509518
02610352	6	ffffff fffiff ffffff fe003e 00 ffeb f8002a	5.786259	3.496301
02620351	5	ffffff ffffff ffmff fc007c 007 ffc 7 d 4005	5.783269	3.485352
02630350	6	fflfff fffff ffliff fe03f0 003ff8 a2a880	5.784091	3.472325
02640350	4	ffffff ffiff fffiff f803f8 003ff8 0283f8	5.777358	3.471190
02650349	5	ffmff ffimf fimimf fc01fc 007ffc 0011ff	5.774436	3.460407
02660348	7	ffmimf ffmff ffmff frooff 003ffe 0001ff	5.779026	3.453053
02670347	9	flmiff ffiff ffimf ffcoff cliff c013ff	5.791044	3.478734
02680347	9	ffmimf ffimf ffmeff flcoff ffmim 0007 ff	5.802973	3.503941
02690345	5	fffmif ffifff fffiff fc007f c7ffff f807ff	5.799999	3.493344
02700345	5	ffmiff fmiff ffilff fc01fc 07ffff f07ff	5.797047	3.482806
02710344	6	ffffff fffiff flfff fe03e0 01 ffff ffmff	5.797793	3.470152

02720344	6		5.798534	3.457594
02730344	5	ffimff ffmff ffmff fc07c0 01 ffff ffe3ff	5.795619	3.447294
02740344	4	ffmmf fimff fffff f80f00 03ffff ffe0ff	5.789090	3.446438
02750343	4	ffffff fflmf fimff f807f0 01 ffff ffc007	5.782608	3.445504
02760343	5	ffliff fimilf ffifff fc07f8 07ffff ffc001	5.779783	3.435267
02770343	6	$\mathrm{ffilff}^{\text {filfiff fiffff fe07ff fimff ff8000 }}$	5.780575	3.423086
02780343	6	ffffff flifff ffffif fe07ff fflfff fro000	5.781361	3.410993
02790342	4	fffiff ffiff fimff f803f0 0fffff ffe000	5.774999	3.410104
02800342	4	fmmff fimff fmmf f80fe0 0ffmfffe000	5.768682	3.409139
02810342	4	ffmeff fmmf ffimf f80f80 0ffiff ffr80	5.762411	3.408103
02820341	5	ffimf fimif ffifff f00700 07 ffff fflfo	5.759717	3.398107
02830340	5	flfiff fimff ffifff fe0700 03fff ffflo	5.757041	3.388166
02840340	4	fffff fffff ffffff f807e0 03ffff fffe00	5.750876	3.387072
02850340	5	ffffff fffff ffiff fc07f8 07ffff fffe00	5.748251	3.377193
02860340	6	ffmff ffifff fimff fe0788 3 fffff fffe00	5.749128	3.365645
02870340	6	ffmff fimff ffmiff fe03ff ffmff fffe00	5.750000	3.354173
02880340	6	fffiff fflmf fimff fe07ff $3 \mathrm{ffffff} \mathrm{fff00}$	5.750865	3.342783
02890340	6	ffimf fimff flifff fe03f8 03 ffff ffe000	5.751724	3.331469
02900340	6	fffmff fffiff ffiff fe03f8 03 ffff ffe000	5.752577	3.320232
02910340	5		5.750000	3.310796
02920340	5		5.747440	3.301408
02930340	4	fffiff fffiff fifff f80fe0 03ffff fe0000	5.741496	3.300531
02940340	4	ffffff ffffff ffiff f80ff0 03 ffff fe0000	5.735593	3.299588
02950340	6	ffffff ffiff ffffff feoffl 0 fffff 880000	5.736486	3.288678
02960340	5	fimiff fliff fimiff fc0fff 8 ffiff f80000	5.734006	3.279423
02970341	5	ffmiff fmimf fimff fc0fff dffiff f00000	5.731543	3.270222
02980341	5	fmimf fimff ffmiff fcofff clffff e00000	5.729096	3.261069
02990342	4	ffmmf fffiff ffliff f807fe 00ffff 800000	5.723333	3.260131
03000343	4	ffmimf ffimf ffmiff f80ffc 01 ffe 000000	5.717607	3.259133
03010344	3	'fffiff fffiff ffiff folfe0 03fffc 000002	5.708609	3.272719
03020344	3	fflfff fffiff fmiff f01fe0 03fffc 0002aa	5.699669	3.286051
03030343	3	fffff fifff fimff f00ffc 01 ffP 000000	5.690789	3.299139
03040343	3	ffffff fffiff fmelff f007fc 01 fff8 0007 f 4	5.681966	3.311984
03050343	5	ffffff ffimf fffiff fc0fff c7fffc 001ff	5.679738	3.302677
03060343	5	fffiff ffimif fffiff fc07ff fflfc 0007ff	5.677524	3.293417
03070345	3	ffmff fimff ffmff f001ff f00770 001 fff	5.668830	3.305925
03080345	3	ffffff fffiff ffifff f000ff f003fc 001 fff	5.660193	3.318202
03090346	7	ffmff ffmff ffmff flooff c007f8000ff	5.664515	3.313270
03100347	6	ffliff flmff ffleff fe01ff 0007f8001fff	5.665594	3.302979
03110348	5	ffmiff ffmemf fmmff f003fe $000 \mathrm{ff8} 000 \mathrm{ff}$	5.663461	3.293808
03120349	3	ffmmf ffmff ffmff f007fe 007f0 007fff	5.654951	3.305879
03130350	,	ffmmf fimff flmff e00fff e3ff0 003ffe	5.643311	3.337760
03140350	4	ffifff fifff fflff f801ff f80bf8 003ffe	5.638094	3.335710
03150351	3	ffififf fimff filff f400ff fc003f 007fc0	5.629745	3.347107
03160351	7	fffiff flfiff fliff floolf fc001f c57f00	5.634068	3.342452
03170353	7	ffififf fimff flifff flooff f001ff c007ff	5.638363	3.337791
03180354	6	ffimf ffifff flffiff fe00ff f003ff 033 fff	5.639497	3.327740
03190355	6	ffffff fimff ffmff fe00ff f01fff e07f05	5.640624	3.317742
03200355	7	fffiff fimiff ffimf flooof ff ffff f01401	5.644858	3.313144
03210353	11	fffiff fflfff fffiff fff101 ffiff fc0001	5.661489	3.391642
03220354	15	ffffff ffmeff ffmff fff03 fe3fff e00a02	5.690401	3.650301
03230354	14	ffmiff ffmmf ffmff fffe07e007ff ab83ea	5.716047	3.851496
03240356	8	fffiff fimfi ffimf ff803f 800ffe 8fc2aa	5.723075	3.855644
03250357	7	fffiff ffmemf ffleff flolfe 001fel 1ff800	5.726992	3.848806

03260356	8
03270355	8
03280354	8
03290353	7
03300353	7
03310352	4
03320351	5
03330350	5
03340350	4
03350348	8
03360347	9
03370347	8
03380346	6
03390344	6
03400344	6
03410344	5
03420343	6
03430343	4
03440343	3
03450343	5
03460343	5
03470343	5
03480342	4
03490341	5
03500340	6
03510340	5
03520339	6
03530338	5
03540338	5
03550339	5
03560339	5
03570339	7
03580339	7
03590339	7
03600339	7
03610339	7
03620339	5
03630339	5
03640339	6
03650339	6
03660339	7
03670340	6
03680341	5
03690341	6
03700341	6
03710342	4
03720342	4
03730343	4
03740343	5
03750344	4
03760344	4
03770344	6
03780344	10
03790345	9

03800345	9	fffiff fiffiff fffiff ffc03f e007ff fmf7f	5.750657	3.641245
03810347	5	ffimf ffimf fimff fc007f fc3fff ffmff	5.748692	3.633183
03820348	5	ffififf fffiff fffmff fc007f fr003f fffiff	5.746737	3.625158
03830349	4	fffiff ffffff ffmfff f8001f ff8007 dflffe	5.742188	3.623646
03840350	4	ffffff ffimf ffmff f8003f fr000f c07ff0	5.737662	3.622097
03850352	8	ffimf ffffff ffimf ff803f fc003f 805802	5.743523	3.625941
03860353	9	fffiff fffiff ffffff ffc03f fc01fc 7c01ff	5.751938	3.643902
03870355	7	ffffff ffffff ffffff f007f f007f7 f87fff	5.755155	3.638514
03880356	6	fffmff ffffiff ffmiff fe007f f83fff f9ffis	5.755784	3.629316
03890358	6	ffififf ffifff fffiff fe0007 ffifff e02f88	5.756410	3.620163
03900359	11	fffiff ffifff fiffif ffloof e3ffff 800000	5.769821	3.681047
03910361	9	ffimf fimfl fifff ffc070 00fc01 ffc000	5.778061	3.698206
03920361	5	ffmmf fffmf flffff fd0078007f07 ffr000	5.776081	3.690331
03930359	6	ffffff ffifff ffifff fe01fc 001fd0 fffe00	5.776649	3.681091
03940358	7	ffifff ffffff fffff ff00fe 000fff bfff80	5.779747	3.675550
03950355	9	ffffiff ffmff fffiff ffc07f c007ff fffff0	5.787879	3.692387
03960354	10	fffiff fffiff ffifff ffe03f f003ff fffifs	5.798489	3.727662
03970354	8	ffmfff ffffff ffflff ff003f e3ffff fe0aaa	5.804020	3.730444
03980353	8	ffffff ffffff ffffif ff807f e7ffff ff0005	5.809524	3.733151
03990352	6	ffffff fffiff fffiff fe003c 00 fff 3 fe 0002	5.810000	3.723908
04000351	6	ffffff ffifff fffff fe0078007ff8 7d0000	5.810474	3.714707
04010350	6	ffifff ffimff fflfff fe03f8 003ff8 228ae0	5.810946	3.705553
04020350	5	ffimff fffiff fffiff fc03f8 $003 \mathrm{ff8} 020188$	5.808933	3.697987
04030350	5	ffffff fffiff fffiff fc03fe $007 \mathrm{ff8} 0003 \mathrm{ff}$	5.806931	3.690449
04040350	6	fffiff fffiff ffffff fe03fe 00fff8 0003ff	5.807408	3.681427
04050348	8	ffffff ffifff ffmiff ff80ff fffiff 8023ff	5.812809	3.684169
04060347	9	fffiff ffffff fffiff ffc07f ffffff cl01ff	5.820640	3.700011
04070346	5	ffifff ffffff ffffiff fc03fc 07ffff f803ff	5.818628	3.692587
04080346	6	fffmiff ffffff ffmiff fe07f0 03ffff fe0fff	5.819072	3.683638
04090344	6	ffffff fffmf ffimf fe03f0 00ffff fffff	5.819513	3.674736
04100344	6	ffimf ffffff ffffff fe03e0 00ffff fffff	5.819952	3.665874
04110344	4	ffffiff fflfff fffiff f803e0 00ffff ffe0ff	5.815535	3.664997
04120343	4	fflfff ffffff ffffif f803f8007fff fff01f	5.811139	3.664086
04130343	5	ffifff ffifff ffffff fc03fc 01 fffff ffc 000	5.809179	3.656821
04140343	7	ffifff ffifff ffififf ff03fe 07ffff ffc000	5.812049	3.651415
04150343	6	fffiff fffiff fffiff fe03ff ffffff ffc000	5.812501	3.642720
04160343	5	ffffif fimmf flmeff fc07ff 7ffmff ff8000	5.810553	3.635561
04170342	4	ffffff ffifff ffimff f807e0 07ffiff ffe000	5.806221	3.634687
04180341	5	ffifff fffiff fffiff fc03f0 03ffiff fff 00	5.804297	3.627558
04190340	6	ffififf ffifff fffiff fe03f0 00ffff ffme	5.804763	3.619014
04200341	5	ffififf fffiff ffifff fc07c0 01ffff ffff 0	5.802851	3.611952
04210339	6	fmfiff fffiff ffifff fe03f0 00ffff fiffc0	5.803319	3.603484
04220339	5	ffiffif ffimff ffffff fc03f8 01ffff ffm80	5.801419	3.596491
04230339	7	ffffff fffiff ffffff frolfe 07ffff ffffc0	5.804246	3.591392
04240339	7	ffmfff fiffiff fimiff fr01ff 1ffiff fimfc0	5.807059	3.586301
04250340	6	ffffff fffmff ffffff fe03ff bfffff fffe00	5.807512	3.577969
04260340	6	fififf ffffff ffffff fe03fe 07ffff fffe0	5.807963	3.569679
04270340	6	ffiffif ffffff fffiff fe03f8 03ffff fff800	5.808412	3.561423
04280340	7	ffiffif ffffff ffffff ff03f8 01 ffff fff000	5.811189	3.556424
04290340	6	ffmiff ffiffi ffifff fe03e0 01ffff ffe000	5.811628	3.548234
04300340	6	fffiff ffffff ffifff fe03e0 01ffff ff 8000	5.812066	3.540080
04310340	4	ffiffi fflmf ffffff f803f8 03fffff fi8000	5.807871	3.539472
04320340	5	fffiff fffiff ffffff fc03f8 03 ffff fe 0000	5.806005	3.532802
04330341	5	ffifff ffifff ffmmff fc07fc 1fffff fc0000	5.804148	3.526156

04340341	5	ffmimf ffifff fffiff fc07ff ffimff fc0000	5.802299	3.519533
04350341	5	fffiff ffimf ffmff fc07ff elffff fc0000	5.800459	3.512933
04360341	5	fffmff fimmf fmfff f001ff c07fff f00000	5.798627	3.506356
04370343	5	ffiff fffiff fffiff f007fc 007fff 000000	5.796804	3.499805
04380344	5	ffimf fififf fffiff fc0ff8 00 fffe 000000	5.794989	3.493274
04390344	4	ffmiff fmmiff fffiff f80ff 00fffe 000000	5.790910	3.492639
04400344	4	fmimf fimff fffiff f80ff 00 fffe 000000	5.786849	3.491979
04410344	3	ffmff ffmff fffiff f007fe $01 \mathrm{fff80003a8}$	5.780543	3.501613
04420345	3	ffffiff fffiff ffifff f00ffc $07 \mathrm{fff8} 001 \mathrm{ffd}$	5.774267	3.511123
04430345	4	ffmemf ffimf fmiff f807ff f7fffc 001 iff	5.770271	3.510287
04440345	5	ffmff ffimf ffmff fc07ff fclffc 0007ff	5.768540	3.503729
04450346	4	ffmeff ffmff fflmff f800ff f001fc 001 fff	5.764575	3.502869
04460346	5	fffiff fimff ffmff fc003f f001fe 003ff	5.762864	3.496337
04470347	8	ffimff ffifff fffiff fr807f c001fc 0007ff	5.767858	3.499680
04480347	8	ffimff ffififf flfiff ff807f c001fe 0501ff	5.772829	3.502955
04490349	5	ffmiff fffiff fflff fc01ff 801 ffc 001 fff	5.771111	3.496495
04500350	4		5.767184	3.495685
04510351	5	ffflff ffffff fffff fc01ff f007fc 005 fff	5.765487	3.489254
04520352	4	fmmff ffmff ffmeff f800ff fe003e 083ff	5.761590	3.488416
04530352	8	ffmff fffiff fffiff ff03f fe000f $\mathrm{e} 03 \mathrm{f80}$	5.766520	3.491742
04540352	9	ffmff fmff ffmff ffc01f fe 000 e e bf00	5.773627	3.506992
04550355	8	ffimf fimff ffimf fr807f f801ff 0007ff	5.778509	3.510150
04560357	6	fffiff ffimf fffiff fe01ff f00fff 07 7fff	5.778994	3.502578
04570358	6	$\mathrm{fflfff}^{\text {ffififf fffiff fe003f f83fff e0a002 }}$	5.779476	3.495036
04580358	7	fffiff ffliff fffiff ff0007 ffifff e0000a	5.782135	3.490657
04590356	15	ffffff ffiff fffff ffflol fe3fff e0022a	5.802174	3.667387
04600356	15		5.822126	3.842550
04610357	9	ffmff ffmff ffmff ffc007 007 ff 57 cl 104	5.829004	3.856045
04620359	7	fflmf fffiff ffmeff froo7f 001ff0 1fc000	5.831533	3.850670
04630359	7	ffmfff fmmf fffiff frolff 001fc0 1 ffc00	5.834052	3.845308
04640358	8	fffiff ffiff fliff ff80ff 800f80 0 fff 80	5.838709	3.847107
04650356	9	ffifff ffiff ffiff ficoff f00000 03fffe	5.845493	3.860249
04660355	9	fffiff ffiff fmimf ffc07f f07f00 07fff	5.852248	3.873246
04670354	9	ffmimf ffimf fmimf ff007f e3ff80 03fffr	5.858974	3.886100
04680353	7	ffmeff ffmeff fffiff fr007f 01ffc0 01 ffff	5.861407	3.880585
04690352	6	ffffff fffff ffifff fe01f8 003f80 0 ffff	5.861701	3.872370
04700352	6	ffffff ffffff fffff fe03f8 003f00 0 fffff	5.861995	3.864189
04710352	4	ffliff fiffif fffiff f80718007880 0ffef	5.858050	3.863330
04720351	5	ffiff fffimf ffmff fc07fe 007f80 17ffc 7	5.856236	3.856712
04730349		ffmmf fmmf ffmf ffclff 01 fc 007 ffcl	5.862869	3.869384
04740349	9	ffffff fffiff fffiff ffclff clff80 03ff00	5.869473	3.881912
04750347	6	fimimf fimf ffiff fe007f ffffe0 000000	5.869748	3.873791
04760347	5	fflmf fimff fflff fc01ff 07ffe0 000000	5.867924	3.867255
04770347	5	ffliff fimff ffiff fc07f0 07ffc0 010000	5.866108	3.860737
04780346	5	fffiff fmimf fffiff f 077003 ffe 002800	5.864300	3.854241
04790344	6	ffffff fffff ffmff fe03f8 007ffe 000800	5.864583	3.846248
04800344	6	fffiff fffiff fffiff fe03f8 00 fffe 000000	5.864864	3.838290
04810344		ffmfff ffffff ffiff f807fc 00ffff 000000	5.860995	3.837527
04820344	4	fflmf fffiff ffmff f807fe 00 ffff 800000	5.857142	3.836735
04830344	6	fffmf ffiff ffmff fe07ff 8 ffiff 00008	5.857438	3.828849
04840344	6	fffiff ffffff fffiff fe07ff ffiff 000000	5.857731	3.820998
04850343	5	fflmff fififf fflfff f007ff 1 fffff f00000	5.855967	3.814646
04860342	5	ffimf filfff ffimf f003fc 03ffff f0000	5.854209	3.808316
04870342	6	ffmff flfmf fffmf fe07f0 03ffff fe0000	5.854508	3.800554

04880342	6	ffimiff fmffif fffiff fe0fe0 03fffff ff0000	5.854805	3.792824
04890340	6	ffifff ffffff fffiff fe03f8 00 ffff fff800	5.855102	3.785130
04900340	4	ffffff fimiff ffffff 88038800 ffff fffe 00	5.851324	3.784412
04910340	4	ffifff ffffff ffifff f803fe 03ffff fffro0	5.847561	3.783670
04920340	6	ffimff fffiff fffeff fe03fe 03ffff fffr80	5.847870	3.776043
04930341	6	ffmfff ffifff fffiff fe07ff fmifff fffio	5.848178	3.768446
04940341	6	ffffff fffiff ffffff fe07ff dffiff ffff00	5.848485	3.760881
04950341	7	ffimff fffmff fffiff fr03fe 03ffff ffff80	5:850806	3.755966
04960341	7	fffiff ffffff ffifff f03f801ffff fff00	5.853118	3.751060
04970341	6	ffifff ffmfff fffmff fe07f0 01 fffff fffc00	5.853414	3.743569
04980341	6	ffffff ffifff ffffff fe07f0 $01 \mathrm{ffff} \mathrm{fff800}$	5.853707	3.736109
04990341	5	ffffff ffifff ffifff fc07f0 03ffff fff000	5.852000	3.730093
05000341	4	ffffff ffifff ffiffif $8807 \mathrm{f8} 07 \mathrm{ffff}$ ffi000	5.848303	3.729477
05010341	5	ffffiff ffffff ffffff fc07fc 07ffff fff000	5.846613	3.723480
05020341	6	fiffff ffifff fiffiff fe07ff dffiff fff801	5.846919	3.716120
05030341	6	fffiff fffiff ffmff fe03ff flffff fffclf	5.847222	3.708791
05040342	6	fffiff fffiff ffifff fe03ff 80ffff fffbff	5.847525	3.701494
05050342	6	ffifff fffiff fffiff fe01fe 007fff fffiff	5.847826	3.694224
05060343	6	ffffif fimff ffffff fe03fc 007fff ffflff	5.848126	3.686985
05070343	7	fffmf ffimff ffffiff ff01f8 007fff ffc07f	5.850393	3.682333
05080343	6	ffiffif ffifff ffifif fe01fc 007fff ffc01f	5.850687	3.675147
05090344	3	ffifff fflfff ffliff f003fc 03 fffff fe 000 f	5.845098	3.683841
05100344	4	ffiff ffiff fffiff f803fe 03 ffff fe000f	5.841487	3.683278
05110345	3	fffiff ffffff ffifff f007ff fffiff f0007	5.835937	3.691824
05120345	3	ffffff fffiff fflfff f003ff fc07ff f00007	5.830409	3.700273
05130345	5	ffmiff fffiff ffifff fc001f f003ff f40000	5.828794	3.694413
05140346	4	ffmfff ffifff fiffff f8003f e003ff e00000	5.825243	3.693720
05150347	8	fffimf fffmff ffifff ff807f c007ff c7fe00	5.829457	3.695708
05160347	8	fffiff ffifff ffifff ff807f 8007ff c7fflf	5.833656	3.697650
05170348	6	fffiff fffiff ffffff fe00ff 803fff fffeff	5.833977	3.690568
05180349	5	fffiff fffiff ffimf fc01ff c07fff fmfff	5.832370	3.684795
05190350	6	f升所 ffmemf fffiff fe003f fe000f fmmf	5.832692	3.677761
05200350	6	ffffff ffffff fiffff fe001f ff0007 fl9ffe	5.833013	3.670760
05210352	8	ffffff fffiff ffmiff ff803f fc000f 80 fr80	5.837164	3.672705
05220352	8	fffiff fffiff ffifff ff 01 f fe 000 \% 80 fe 00	5.841300	3.674609
05230355	8	fffiff ffifff ffifff ff807f f001f9 fclffc	5.845420	3.676472
05240356	7	ffimff ffmfff ffffff ff007f f003ef f87fff	5.847619	3.672005
05250358	6	ffimff ffifff ffifff fe0007 fcffff f3ffe0	5.847909	3.665066
05260359	6	ffffff ffiffi ffffff fe0007 fmmff cl5f44	5.848197	3.658156
05270361	9	fffiff ffififf fmffif ffc01e 01fc7e 100000	5.854167	3.670006
05280362	8	ffifff ffffff fiffff ff802000f003 ff8000	5.858223	3.671754
05290361	5	fffiff ffffff ffffff fc01fc $001 \mathrm{f01} \mathrm{ff} 000$	5.856604	3.666215
05300359	7	fffiff ffffiff fffifff ff007c 0007de 7fff00	5.858757	3.661766
05310357	8	ffffiff fffmff fffiff ff807f 8007ff ffff0	5.862782	3.663483
05320356	9	ffffiff ffifff fmmff ffc03f e007ff fbffe0	5.868669	3.675040
05330355	7	ffifff ffffff fffiff ff003f f07fff fc1551	5.870787	3.670550
05340354	8	ffmffi ffifff fffiff ff803f e3ffff fe0280	5.874767	3.672150
05350354	4	fffiff ffifff ffimff f80038 00 ffef fa0028	5.871269	3.671844
05360354	4	ffifff ffimff fiffiff f800e0 00ffe2 e80000	5.867785	3.671515
05370353	4	ffifff fififf fiffiff f807e0 007ff1 455504	5.864313	3.671162
05380353	3	fffiff ffffif ffffff f007f0 007ffl 1407c0	5.858998	3.679547
05390352	4	fffiff ffmiff ffifff f803fc 00ffi8 0007fe	5.855556	3.679121
05400351	7	ffmff ffffff ffififf ff01fe 007ffc 0147ff	5.857671	3.674738
05410351	6	ffffff fffiff fffiff fe01ff ffffic 001fff	5.857934	3.667994

05420350	7	fffiff ffififf fiffif flooff fimfe 000fff	5.860037	3.663634
05430348	5	ffimff ffiff fffiff fc03f8 0fffff e00fff	5.858456	3.658255
05440348	5	fffiff ffffff ffiff fc03e0 07fff fe3ff	5.856881	3.652891
05450346	6	ffmiff ffififf fimmf fe $03 \mathrm{f0} 000 \mathrm{ffff}$ flmfr	5.857143	3.646237
05460345	7	ffifff ffifff fififf frolfo 007fff fffiff	5.859233	3.641951
05470346	4	fffiff filff fflff f803e0 00 ffff ff83ff	5.855840	3.641600
05480345	5	fffmff fffff fffff fc01fc 00ffff ffc07f	5.854281	3.636298
05490345	7	ffmiff ffmiff fffiff ff01ff 07 fffff ff 003	5.856365	3.632066
05500345	7	ffliff ffliff fffiff ff01ff dffff ff8001	5.858440	3.627841
05510345	7	ffmff fimff fmfff ff01ff 5 fffff ff0000	5.860508	3.623626
05520345	5	fffiff fffiff fimfff fc01fc 07ffff f0000	5.858953	3.618407
05530345	5	fffmff ffleff ffimff fc0330 07ffff ff8000	5.857402	3.613207
05540344	6	fffiff ffiff flimf fe $03 \mathrm{f0} 0303 \mathrm{ffff} \mathrm{ffe} 000$	5.857659	3.606732
05550344	6	ffffff ffmff flmff fe $03 \mathrm{e} 003 \mathrm{ffff} \mathrm{ffr800}$	5.857915	3.600280
05560343	5	ffmeff ffmff fmmf fo01f0 01fff fffe0	5.856375	3.595136
05570343	4	ffmmf fimff fmfff f807fc 01 ffff fff 00	5.853048	3.594858
05580343	6	ffmimf ffmiff flmff fe07fc 03ffff fff00	5.853311	3.588468
05590343	7	ffffff ffffff fffiff flo3ff dfffiff fffc00	5.855358	3.584406
05600344	6	fmmff fimff fmeff fe07ff ffmmf ffr00	5.855616	3.578051
05610344	6	ffmff fmmf fimff fe 03 fc 0 0fffff ffe 000	5.855873	3.571719
05620344	6	fffiff fimff flimf fe $03 \mathrm{f8} 803 \mathrm{ffff} \mathrm{ffe} 000$	5.856129	3.565412
05630344	6	fffimf ffiff ffifff feoff0 03 ffff fr8000	5.856384	3.559128
05640344	5	ffemif ffleff ffmiff fc0fe0 03 ffff ff0000	5.854868	3.554127
05650344	2	ffliff fffiff fffff e00fe0 03ffff fe0000	5.848058	3.574055
05660344	2	fflmf ffmeff ffiff e01fe0 07 ffff fc 0000	5.841271	3.593822
05670344	4	ffmimf ffiff ffimff f81ff0 0fmff f80000	5.838029	3.593450
05680344	4	ffmimf fmmimf ffmeff f81ff 0 fffff e00000	5.834799	3.593060
05690344	4	fffiff ffifff flfiff f80fff fimf e00000	5.831580	3.592656
05700344	4	ffmeff ffmff ffmff f80fff fffffe e0,000	5.828372	3.592231
05710345	3	ffmff ffmff fmfff f007fc 01 fmff 800000	5.823428	3.599912
05720345	5	ffiff ffiff ffiff fc07fc 01 ffff 000000	5.821990	3.594814
05730346	4	ffimf fiffif ffiff f81f00 $03 \mathrm{fff8} 000000$	5.818816	3.594324
05740346	3	fflfff fffff ffmff f01ff0 03fff8 000000	5.813914	3.601867
05750345	3	fmimf ffmiff fmiff f01ff 01 fffc 000015	5.809029	3.609335
05760345	3	ffmiff ffmemf fmiff f00ffc 03fffc 000000	5.804160	3.616733
05770345	4	ffimf ffimf fmiff f80ffe 07ff0 001700	5.801039	3.616096
05780345	4	ffiff fifff fliff f80fff 07fff 001 ff 4	5.797928	3.615442
05790346	4	ffimf ffififf fififf f80fff ffifl 083ff	5.794828	3.614773
05800346	4	fffiff fffiff fffmf f801ff f83f8 083 ff	5.791739	3.614089
05810347	7	ffmmf ffmeff fflmf flooff e007f8 007ff	5.793815	3.610383
05820347	9	fffiff fffiff ffimf ffcoff c007fc 007fff	5.799314	3.621793
05830349	6	ffiff ffiff ffiff fe01ff 000 fro 001 fff	5.799658	3.615657
05840349	5		5.798291	3.610570
05850351	3	fffiff fffff fffiff f007fr 00 fff0 007fff	5.793516	3.617746
05860352	4	ffimf fimff ffiff f80fff 83 ffe 000 ffff	5.790461	3.617054
05870352	4	ffimf ffiff fflff f800ff f80fe0 00 fffe	5.787416	3.616345
05880353	3	ffmff ffmiff ffmiff f001ff f80170 $01 \mathrm{fff0}$	5.782683	3.623376
05890353	7	ffmmf fmifff fmimf f007f f8007f 15 ff00	5.784746	3.619742
05900354	7	fffiff ffimf ffmff frooff f000ff abf820	5.786802	3.616114
05910357	5	ffiff fimf ffiff fc03ff c00fff 003fff	5.785473	3.611050
05920357	5	ffmeff ffmff fmfff f001ff 011 fff 81 lfff	5.784149	3.606002
05930355	9	ffmff fflef ffimf ff 001 flifff f81d01	5.789563	3.617312
05940355	11	ffmmf ffimf ffifff ffl001 fffiff fcld01	5.798320	3.656781
05950355	15	fffiff ffmff fffiff fffol fc1fff f00401	5.813759	3.792474

05960355	15	ffimf fffiff ffifff ffli01 f007ff c00740	5.829146	3.927234
05970356	9	fffiff fffiff fififf ffc00f c007fe 2 fc 280	5.834449	3.937452
05980358	7	fffiff fffiff fffiff floofe 000ff8 $0 f 8000$	5.836395	3.933143
05990357	8	ffffff ffmiff ffffff ff807f 0007c0 0ffe00	5.840001	3.934378
06000356	8	fffiff fffiff fffiff ff80ff 80038007 ff 0	5.843595	3.935582
06010355	8	fffiff fffiff fliff ff807f f01f00 07fffc	5.847177	3.936759
06020354	8	ffmfff ffmmf ffffff ff80ff e0bf80 03ffff	5.850747	3.937904
06030353	5	fffiff fffiff ffmiff fc007e 01 fr 0001 ffff	5.849338	3.932579
06040352	6	ffifff ffifff ffmffr fe0078 00 ff80 03ffff	5.849587	3.926120
06050351	7	ffffif fffiff ffffff fr03f0 003fc0 07ffff	5.851485	3.921822
06060350	6	ffmff ffifff fimfff fe03f8003fe0 03ffff	5.851730	3.915396
06070349	7	ffffff ffffff ffffff fr01ff 001 fc 007 ffff	5.853619	3.911121
06080348	9	fffiff ffffff ffffff ffc0ff 801 fe 003 fffb	5.858785	3.920929
06090348	8	fffmff fffmff fffiff ff80ff e0ffc0 Obffea	5.862295	3.922009
06100348	8	ffffff ffffff ffffff ff80ff ebff80 83ffea	5.865794	3.923057
06110347	5	ffmiff ffmfff ffmmf fc01ff dfffc0 141d55	5.864379	3.917871
06120346	6	ffifff ffmiff fffiff fe03fe 07ffe0 000a20	5.864600	3.911511
06130345	7	ffffff fffiff fffiff ff07f0 01 ffe 0010000	5.866449	3.907236
06140345	5	fffiff fffiff fffiff fc07f0 01ffe0 015414	5.865040	3.902102
06150344	6	ffimff ffffff fffiff fe07f0 00fff8 002000	5.865259	3.895801
06160343	5	ffmmff ffmeff ffmfff fc07f8 007ffc 000100	5.863857	3.890696
06170343	5	ffifff fffff ffifff fc07fc 01ffff 000000	5.862459	3.885604
06180344	5	ffifff ffffff ffffff fc0ffc 03fffe 000002	5.861066	3.880527
06190343	6	ffffff ffffff ffffff fe07ff dfffff c00055	5.861290	3.874299
06200343	5	fffiff ffmiff ffmeff fc07ff fffiff c0000	5.859903	3.869256
06210342	4	fffmf fimff flffff f807f8 0 fffff e00000	5.856913	3.868587
06220342	4	fffiff fffimf fffiff f80ff0 0fffff f00000	5.853932	3.867906
06230341	5	ffffff ffffff ffifff fc07e0 07ffff fc0000	5.852563	3.862874
06240341	5	ffifff ffiffi ffifff fc0fc0 07ffff fc0000	5.851199	3.857856
06250340	4	ffffff ffffff ffffif f80fe0 03ffff ffe000	5.848242	3.857161
06260340	3	fffiff ffifff ffimff f00ff0 03ffff fff 00	5.843699	3.863931
06270340	5	ffifff ffifff ffifff fc0fr8 0 fffff fffc00	5.842356	3.858907
06280340	5	ffifff ffifff ffffff fc0ffc 3fffff fffe00	5.841016	3.853899
06290340	6	fffiff fffiff ffmff fe07ff bffiff fffe00	5.841269	3.847825
curve 1: average offset is 5.841269 pixels from edge. maximum offset is 15 curve 2				
00000461	-2	fffiff ffffff 000007 ffmeff fffiff ffifff	-2.000000	0.000000
00010462	-1	ffe0ff ffffic 000003 ffffff fffiff fffiff	-1.500000	0.250000
00020464	-2	ff80ff ffffe0 000007 ffffff ffiffff fiffff	-1.666667	0.222222
00030467	-2	f8007f fffc00 000007 fmffff ffffff fffff	-1.750000	0.187500
00040468	-1	f0003f fff800 000003 ffffff ffifff ffifff	-1.600000	0.240000
00050471	1	0001 ff ff0001 400000 ffifff ffimff ffffff	-1.166667	1.138889
00060472	2	0000 ff fc0002 0000007 fffff fiffiff fffff	-0.714286	2.204082
00070478	3	0003 ff 00800 a 000 fe 03 fffiff ffffff fffiff	-0.250000	3.437500
00080482	1	000ff0 0a8000 003f00 fffiff fffiff fffiff	-0.111111	3.209877
00090488	-3	08b000 02a800 00800f ffffff fffiff fffff	-0.400000	3.640000
00100490	-4	00002000280000001 f ffiffff fiffiff fiffiff	-0.727273	4.380166
00110490	0	$28000002 \mathrm{a800} 000001 \mathrm{ffmff}$ ffffff ffifff	-0.666667	4.055555
00120490	1	e80000 bff800 000000 ffffff fffiff fffiff	-0.538462	3.940828
00130492	0	0000203 fe 000000001 fffiff fiffiff fiffif	-0.500000	3.678571
00140492	1	a00020 3ff800 0a2800 ffffff fffiff ffffff	-0.400000	3.573333
00150495	-2	400147 fff000 050007 ffffff fffiff fffff	-0.500000	3.500000
00160495	-2	c00007 fff000 150007 fiffif ffffff fffiff	-0.588235	3.418685

00170496	-2	000007 ffe 00 a 280007 ff fiff fffiff fffiff	-0.666667	3.333333
00180496	-1	000003 ffe 028000003 ffffff fffiff fffiff	-0.684211	3.163435
00190498	-2	80000 f f8000 00a007 fffiff fffiff ffiff	-0.750000	3.087500
00200498	-2	80003f fe0000 2a8007 fffiff ffffiff fffiff	-0.809524	3.011338
00210497	-2	$50005 \mathrm{ff} \mathbf{f 0 0 7 f} \mathrm{f} 40007 \mathrm{ffffff}$ ffffff ffffff	-0.863636	2.935951
00220496	-1	a0028f ff82ff fe0003 ffimf ffiff ffimf	-0.869565	2.809074
00230496	-2	e802bf fe0fff f80007 ffiffi ffifff ffimf	-0.916667	2.743056
00240496	-2	fa00ff f80fff f82807 fffiff fffiff ffmff	-0.960000	2.678400
00250496	-2	fe03fe 00ffff eaa007 ffifff fffiff ffifff	-1.000000	2.615385
00260496	-1	fe000800ffff e82003 fffmff ffffff ffffff	-1.000000	2.518519
00270496	-1	ff8000 007fff aa8283 fffmff ffffff ffffff	-1.000000	2.428572
00280496	-1	ff8000 003ffe 000 fe 3 ffffff fffmff ffffff	-1.000000	2.344828
00290496	-1	ff8000 000020003 ffb fffiff ffffff fffiff	-1.000000	2.266667
00300496	-1	ff8080 000000 000fe3 fffiff fffiff ffffff	-1.000000	2.193549
00310497	-2	ff05cl 41 f000 000007 ffffff ffffff fffff	-1.031250	2.155274
00320498	-2	fe2802 07f000 000007 fmffff ffmfff ffffff	-1.060606	2.117539
00330499	-2	f00000 7fc000 000007 fffiff fffiff ffifff	-1.088235	2.080450
00340501	-2	c00007 fc0000 07c007 fffiff ffiffff fffmff	-1.114286	2.044082
00350503	-2	00017 fc 00001 fe 0007 ffffff ffffff ffmff	-1.138889	2.008488
00360504	-3	200bff 80000f e0000f fffiff ffffff fmmff	-1.189189	2.045289
00370507	-3	007ff0 0003f0 00000f fffiff fffiff fffffr	-1.236842	2.075485
00380508	-3	03 ffe 0000 fe 00000 f ffiffff ffifff ffffff	-1.282051	2.099935
00390510	-3	aff800 01fc00 00000f fffiff ffffiff fffff	-1.325000	2.119375
00400511	-3	7f0000 07f001 ff000f ffffff ffffff fffiff	-1.365854	2.134444
00410513	-2	000001 ffc 01 fffc 007 ffffff ffffff ffffff	-1.380952	2.092971
00420513	-2	000003 ffc01f ffi807 fiffff fiffff fffff	-1.395349	2.053002
00430514	-2	38003f f800ff affe07 ffffff ffifff fffff	-1.409091	2.014463
00440514	-1	fc00ff a000ff afff0 0 ffmff ffmiff fffiff	-1.400000	1.973334
00450517	-3	clfff 0007 fd 5 ff 00 f ffmfff ffffff ffiff	-1.434783	1.984878
00460517	-2	$007 \mathrm{fd0} 0003 \mathrm{fc} 1 \mathrm{ffc} 07 \mathrm{fffffff} \mathrm{fffmff} \mathrm{ffffff}$	-1.446809	1.949299
00470515	2	0001f4 00007f ffffc0 7fffif ffffff fffiff	-1.375000	2.151042
00480514	3	8000fe 80003f ffffe0 3fffff fffiff fffiff	-1.285714	2.489797
00490513	2	f80007 f0000f ffff0 7fffff fffiff fffff	-1.220000	2.651600
00500513	2	ff0007 f00005 07ffc0 7 fffff ffifff fffiff	-1.156863	2.798924
00510515	0	ff0007 ff0000 0 fff01 ffffff ffffff fffff	-1.134616	2.770341
00520515	-1	ff8001 ff8000 lffe03 ffffff ffffff fffff	-1.132076	2.718405
00530515	-2	ffc000 ff 0007 fr 007 ffffff ffffff ffifff	-1.148148	2.681756
00540515	-2	$7 \mathrm{fc} 0007 \mathrm{fd} 001 \mathrm{fff007ffimff} \mathrm{ffffff} \mathrm{fffiff}$	-1.163637	2.645950
00550513	-1	07ff00 01 ff 41 ffl 803 ffffff ffifff ffmff	-1.160715	2.599171
00560513	-2	$05 \mathrm{ff} 80007 \mathrm{f07} \mathrm{fff807ffmff} \mathrm{fffiff} \mathrm{ffiff}$	-1.175439	2.565713
00570512	-1	003fe0 00003f ffa003 fffiff ffifff fffiff	-1.172414	2.521998
00580511	0	005fff 00001f ff0001 ffffff ffliff ffiff	-1.152542	2.502155
00590511	-2	40401 f 00001 f f00007 ffmff ffimf fimff	-1.166667	2.472222
00600510	-2	a00002 e00000 000007 fffff fffff fffff	-1.180328	2.442892
00610508	-5	0200003 e 000000003 f ffffiff fffiff fffiff	-1.241935	2.635016
00620507	-4	00015004000000001 f fffiff ffifff fiffiff	-1.285714	2.712019
00630503	-5	c00000 000100 00003f ffffff ffffff fffiff	-1.343750	2.881836
00640501	-3	f00000 00015000000 f fffiff fffmff ffffff	-1.369231	2.879054
00650500	-3	f80000 003e80 003f8f ffifff flififf ffimf	-1.393939	2.875115
00660499	-2	f40000 007ff0 001fe7 ffffff ffffff ffffff	-1.402985	2.837604
00670498	-1	fa0000 00 fffe 0003 e 3 ffffff ffifff ffffff	-1.397059	2.798227
00680498	0	fa00a0 03fffe 000081 ffffff ffffff fffff	-1.376812	2.785550
00690498	0	f803ff 803fff e00001 ffmff fffiff fffiff	-1.357143	2.772449
00700497	0	f405ff f807ff f00001 ffffff ffffff fffff	-1.338028	2.758977

00710497	0	C0057f ff05ff fc5001 fffiff fffiff ffiff	-1.319444	2.745178
00720497	0	80057f ff01ff f 00001 fffimf fiflif filff	-1.301370	2.731095
00730500	-3	80203f fe02bf 80000f ffffff ffliff fffiff	-1.324324	2.732652
00740500	-3	00003 f fe002a 00000f ffffff ffliff ffiff	-1.346667	2.733156
00750501	-2	$00007 \mathrm{ff} \mathbf{f} 0155400007 \mathrm{ffmff} \mathrm{flffff} \mathrm{ffffff}$	-1.355263	2.702736
00760501	-2	0001 ff fc0005 004007 fffiff ffffff ffiff	-1.363636	2.672964
00770499	-2	00501 f ff0000 004007 ffmff ffmff ffimf	-1.371795	2.643820
00780498	-1	80000 f ff8000 822003 fmmf fmfff fffff	-1.367089	2.612082
00790497	0	000017 ff4000 005001 fmfff ffimf fffiff	-1.350000	2.602501
00800497	-1	$00001 \mathrm{ffd4000} 001003 \mathrm{ffmff}$ ffmfff ffmff	-1.345679	2.571865
00810497	-1	00555 f d 0000000003 ffmff fmmff fffff	-1.341463	2.541940
00820495	0	0005757 d 0000000001 fmmff fffiff ffmff	-1.325301	2.532734
00830495	-2	000500001400000007 fffmf ffffff ffmf	-1.333333	2.507937
00840494	-3	00000080 aa 000000 of fmmff ffmmf fimf	-1.352941	2.510727
00850491	-4	07c005 7000001 fc 01 f fmmff fimmf ffmff	-1.383721	2.562061
00860488	-3	$03 \mathrm{f} 0228000000 \mathrm{fr80}$ f ffmff fmfff flmff	-1.402299	2.562294
00870484	-7	01 ffe 0028000020 ff ffimf fimff fiffif	-1.465909	2.885202
00880479	-4	001 fff 80000000001 f ffiff ffimf fffiff	-1.494382	2.924127
00890471	-2	80007 fff 000000007 ffmff ffmiff ffmf	-1.500000	2.894445
00900469	-1	C0001f fffc 0000003 fffff fffiff ffiff	-1.494506	2.865355
00910467	-2	f8007f fflm0 000007 fffff fffff fmfff	-1.500000	2.836957
00920465	-2	fr007f fffmo 000007 ffifff ffffiff fffiff	-1.505376	2.809112
00930463	-1	ffc3ff ffiff 000003 fflfff flmff flfiff	-1.500000	2.781916
00940462	-1	fflbff fiffe 000003 fflfff fmfff fffiff	-1.494737	2.755236
00950460	-1	ffiff fiffe 3fe003 ffmmf ffmmf ffmff	-1.489583	2.729059
00960459	-2	fffc3f fflfe 3fe007 ffiff fflff fffiff	-1.494845	2.703583
00970457	-1	fflc07 fliff 3 fe003 ffiff ffifff fffiff	-1.489796	2.678469
00980456	-1		-1.484848	2.653812
00990454	-1	fffe 000 Offe 02 bffr 03 fffifff fffiff fffiff	-1.480000	2.629601
01000454	-2	fffe00 07f003 fflo07 ffffff fffiff ffffff	-1.485148	2.606217
01010452	-1		-1.480392	2.582951
01020451		$1 \mathrm{fffd} 507000 \mathrm{lff801} \mathrm{fffff} \mathrm{ffffff} \mathrm{ffiff}$	-1.466019	2.578944
01030450	-1	$0 \mathrm{ffr80} 0200000$ ffr 03 fffiff fffiff ffliff	-1.461538	2.556215
01040450	-1		-1.457143	2.533879
01050450	-3	07 ffef fe 0 ea 00 0e 00 f ffmmf ffmmf fmmf	-1.471698	2.532220
01060449	-3		-1.485981	2.530179
01070449	-4	1 ffiff ff7fto 07001 f ffmff ffimf fimf	-1.509259	2.564731
01080448	-4	8 fffiff ffffc 00001 l f fmfff fmmff fimff	-1.532110	2.597594
01090445	-2	ff0007 ffdfff 010007 ffffff ffmff fmmf	-1.536364	2.575952
01100444	-2	ffr003 floffe 03a007 ffimf fimff fimf	-1.540540	2.554665
01110444	-1	ff8003 f03fe0 220003 ffmff ffifff ffiff	-1.535714	2.534441
01120444	-1	ffc003 f08f80 220003 fffff ffifff fffiff	-1.530973	2.514529
01130444	-1	ffe00f efe03f f80003 ffifff ffiffi ffiff	-1.526316	2.494923
01140444	-2	ffe 0 of ffe 0 ff fa0007 fmPff fimff flimf	-1.530435	2.475162
01150444	-1	03 ffff fflbff e80003 ffffff ffffff fffiff	-1.525862	2.456229
01160444	-1	01 ffff fffeff ea0003 fffff ffiff fffiff	-1.521367	2.437579
01170444	-2	$00003 \mathrm{fefe000} 000007 \mathrm{ffliff} \mathrm{ffiff} \mathrm{flmf}$	-1.525424	2.418846
01180444	-3	008007 e00ff 00a00f fimff ffiff fifff	-1.537815	2.416638
01190445	-2	188007 f07fff 000007 ffimff fimff fifff	-1.541667	2.398265
01200445	-2	7 FO 003 f 47 fff 000007 ffimff mfmf fimff	-1.545455	2.380167
01210445	0	7 f 0007 ffffff 007001 ffffff ffffff fffiff	-1.532787	2.380074
01220446	-1	ff003f ffleff $00 f 803 \mathrm{ffmff} \mathrm{ffliff}$ ffliff	-1.528455	2.363013
01230448	-3		-1.540323	2.361279
01240449	-3	flffff fe0750 07f00f ffleff fffimf fffiff	-1.552000	2.359298

01250450	-1	03fcc fa0020 0 ff803 fffmff ffmiff fmffr	-1.547619	2.342972
01260451	-2	$03 \mathrm{fr97} \mathrm{~d} 000001 \mathrm{lf} 007 \mathrm{ffmfff} \mathrm{ffmfff} \mathrm{ffmff}$	-1.551181	2.326122
01270452	-3	07 fe 002 e 00003 fe 00 f fffmff ffmff fmmf	-1.562500	2.324220
01280453	-3	Offc51 547c00 7 fe 00 f ffmimf ffmiff ffimf	-1.573643	2.322097
01290455	-2		-1.576923	2.305622
01300455	0	$7 \mathrm{ff000} 07 \mathrm{ff} 407 \mathrm{ff001ffifff} \mathrm{fimff} \mathrm{fimff}$	-1.564885	2.306860
01310457	-1	ffe000 7 ffffc 3 f0003 ffimf ffifff fiffff	-1.560606	2.291783
01320458	-1	ffe000 ffffe 3 fe003 fffiff ffififf flfiff	-1.556391	2.276897
01330460	-3	ffr 00 f ffffe 0 Oe 00 f ffffff fffiff ffiff	-1.567164	2.275341
01340461	-3	ff0 07 f ffffiff 00000 f fffiff fimff fflff	-1.577778	2.273582
01350463	-2	ffmeff fmimf 000007 fffifff fffiff ffifff	-1.580882	2.258165
01360463	-2	fffmf fmmf 000007 ffmff fmmff ffmff	-1.583941	2.242955
01370464	-1		-1.579710	2.229155
01380466	-2	ff83ff fffe0 000007 fffiff fmfff fffff	-1.582734	2.214380
01390469	-2	f0007f fffc00 000007 fffifff ffffff ffifff	-1.585714	2.199797
01400470	-1	e0007f ffr800 000003 ffifff ffimf fflff	-1.581560	2.186611
01410473	2	0001 lff ff0000 0000007 ffiff fimff flfiff	-1.556338	2.260912
01420474	3	0001 lf f 000000000203 fffff ffliff fflfff	-1.524475	2.389262
01430484	0	$003 \mathrm{ff0} 00000000 \mathrm{fe} 01 \mathrm{ffffff}$ fffiff ffifff	-1.513889	2.388697
01440485	0	001 fc 0040000007 e 01 ffffff ffifff ffiff	-1.503448	2.387921
01450489	-2	041000001500000007 fmmfff fmfff ffffff	-1.506849	2.373242
01460492	-3	200000002 a 000000 f ffmiff ffimf fffiff	-1.517007	2.372161
01470494	-2	a00000 0a8000 000007 fmmf fffiff fffiff	-1.520270	2.357699
01480494	-1	000000 ffa 000000003 fffff ffffff fffff	-1.516778	2.343680
01490495	0	$0000007 \mathrm{ff000} 000001 \mathrm{ffffff}$ fffiff ffifff	-1.506667	2.343291
01500495	0	c00000 7 ff400 000001 ffffff fffff fflff	-1.496689	2.342706
01510496	-1	$000000 \mathrm{fff800} 000003 \mathrm{ffffff} \mathrm{ffffff} \mathrm{ffiff}$	-1.493421	2.328906
01520497	-2	000007 ffl000 000007 ffffff ffffff fffff	-1.496732	2.315351
01530499	-2	000007 ffc 014400007 fffiff fmffff fffff	-1.500000	2.301950
01540499	-2	000003 ffc005 400007 flfmff ffmiff ffmff	-1.503226	2.288701
01550500	-1	a0003f ff8000 2a0003 flfffr fmmf ffmff	-1.500000	2.275643
01560500	-2	80003f ffooof fa0007 flfiff fififf filff	-1.503185	2.262731
01570498	-1	0002af ffcoff fe8003 ffifff fffiff fffiff	-1.500000	2.250002
01580498	-1	a802af ffr3ff fe0003 fmimf fffimf fffiff	-1.496855	2.237413
01590498	-2	e800ff fe 0 fff f 00007 ffimff ffifff fimff	-1.500000	2.225002
01600498	-2	fa02ff e03fff f80007 ffiff fffiff fiffif	-1.503106	2.212725
01610498	-1	fe00fe 00 ffff e00003 fimff ffifff fififf	-1.500000	2.200619
01620498	-1	fe0000 00 ffff a 00003 ffffff fffiff ffiff	-1.496932	2.188643
01630498	-1	fr8000 003ffe a003e3 fffff fffiff ffiff	-1.493902	2.176794
01640498	-1	ff8038 000ffe 0007fb ffimff fifff ffmff	-1.490909	2.165070
01650498	-1	ff80a0 000000 001 lfb fifmf fiffif fifff	-1.487952	2.153470
01660498	-1	ff80a8 008000000 be3 fffiff ffiff ffliff	-1.485030	2.141992
01670499	-1	fro000 01fc00 000003 ffffff ffffiff ffimf	-1.482143	2.130634
01680500	-1	fe0800 aff 00000003 ffffff fffiff fmiff	-1.479290	2.119395
01690501	0	f00001 ff000 000001 fffifff fiffff ffiff	-1.470588	2.119724
01700503	-2	C01407 fc0000 030007 ffifff fflfff ffiff	-1.473684	2.108957
01710505	-2	0001 ff c $00001 \mathrm{f} \mathbf{0} 0007 \mathrm{ffffff} \mathrm{ffiff} \mathrm{fflff}$	-1.476744	2.098297
01720507	-3	0007 ff 00000 f 00000 f fiffff fffiff ffiff	-1.485549	2.099502
01730509	-2	107 ff0 0001f8 000007 ffiffif fiffff fffff	-1.488506	2.088948
01740510	-1	23 ffe 00007 e 000003 fmfff ffffff flfff	-1.485714	2.078368
01750512	-3	aff800 00 fe00 00000f ffffiff fimff ffiff	-1.494318	2.079514
01760513	-2	ff0000 07f800 ff4007 fffiff fiffff fffiff	-1.497175	2.069201
01770515	-1	000001 ffc 00 f ffl003 ffffff fffiff ffiff	-1.494382	2.058957
01780516	-1	000003 ff 03 f ffl803 ffffff fffiff ffifff	-1.491620	2.048813

01790518	-3	foooff e 000 ff aff80f ffmiff fimff ffiff	-1.500000	2.050000
01800518	-3	f80ffe a003fe affe0f fmfff fliff flmff	-1.508287	2.051036
01810520	-3	00 ffea 000 ffa bffr 0 f flmff ffifff fimff	-1.516484	2.051926
01820520	-2	003faa 0003fe bffc07 fffff fifff ffiff	-1.519126	2.041984
01830518	1	0000ea a000ff fifl 80 fffiff fimff fflff	-1.505435	2.065188
01840518	1	c000be a000ff fffmo fififf ffifff ffiff	-1.491892	2.087772
01850516	2	fc000f e 0000 f ffffc0 7 ffiff ffimf ffiff	-1.473118	2.141750
01860516	1	ff0003 fa0000 $03 \mathrm{ff80} \mathrm{fmmff} \mathrm{ffmff} \mathrm{ffmff}$	-1.459893	2.162830
01870517	0	fr8000 ffc000 0 fff01 fffmff ffmeff fffmf	-1.452128	2.162602
01880517	0	ff0000 7f0000 1 ffe 01 ffffff ffiff fmiff	-1.444445	2.162257
01890517	-1	$7 \mathrm{f} 00003 \mathrm{fc000} 7 \mathrm{ff003} \mathrm{fffiff} \mathrm{ffmff} \mathrm{ffmf}$	-1.442106	2.151911
01900517	-2	5 ff000 1ff000 $7 \mathrm{ff007ffffff} \mathrm{fffiff} \mathrm{fifff}$	-1.445026	2.142265
01910515	-1	$01 \mathrm{ff00} 003 \mathrm{FO1} \mathrm{fff0} 03 \mathrm{fffiff}$ fffiff fffiff	-1.442708	2.132134
01920515	-2	$007 \mathrm{fc} 0001107 \mathrm{fff0} 07 \mathrm{fmmff} \mathrm{fmfff} \mathrm{fimf}$	-1.445596	2.122688
01930514	-1	$00 \mathrm{ffr8} 00001 \mathrm{f}$ fr8003 ffimf fimff fimf	-1.443299	2.112764
01940513	0	01557f 80001 ff flo 01 fffiff fflfff ffiff	-1.435897	2.112558
01950512	-1	a80003 000002 a 00003 ffmff fffmf fimf	-1.433674	2.102744
01960511	-2	400000110000000007 ffiffff ffffiff ffmff	-1.436548	2.093690
01970509	-4	00040500000000001 f ffimf fimff ffiff	-1.449495	2.116136
01980507	-4	00400000000000001 f fmimf fffmff fifff	-1.462312	2.138027
01990502	-1	f80000 000028000003 ffffff ffffff fffff	-1.460000	2.128400
02000500	1	fe0000 000000000000 ffffff ffffff ffffff	-1.447761	2.147769
02010499	1	ff0000 000 ffc $0007 \mathrm{f8} \mathrm{fffiff} \mathrm{fmeff} \mathrm{flfff}$	-1.435644	2.166650
02020499	0	fc0000 $001 \mathrm{ffc} 0007 \mathrm{f9} 9 \mathrm{fflff} \mathrm{fflfff} \mathrm{ffiff}$	-1.428571	2.166080
02030499	1	f4007c 00 ffff 000040 ffliff fffiff fffiff	-1.416667	2.184232
02040499	1	fc01ff 007fff 00000 fffifff ffiff ffliff	-1.404878	2.201927
02050499	1	f401ff f807ff f01400 ffimf ffliff ffiff	-1.393204	2.219177
02060499	0	d0017f fc05ff fcliol fffiff ffimf fimf	-1.386474	2.217787
02070499	0	00005 f frolff f 60001 lfmff ffmff ffffff	-1.379808	2.216322
02080499	0	$00001 \mathrm{ff8} 017 \mathrm{fc} 0001 \mathrm{ffmff}$ ffimff fffiff	-1.373206	2.214784
02090501	-2	00005 f fro000 000007 ffmff fmfff fffff	-1.376191	2.206099
02100501	-2	00005f ff0000 000007 fmmff fimff fimf	-1.379147	2.197479
02110503	-2	0001 ff f 40000004007 ffifff ffififf fffiff	-1.382076	2.188923
02120503	-2	0001 ff fd 0000000007 fmifff fffiff fffff	-1.384977	2.180431
02130502	-3	00003 f f 000008800 f ffmff fmimf fffff	-1.392523	2.182374
02140501	-2	00001 ffd 0000040007 ffmff ffmff fffff	-1.395349	2.173932
02150498	-1	$00002 \mathrm{f} \mathrm{fea800} 002003 \mathrm{ffmfff} \mathrm{fmfff} \mathrm{fffiff}$	-1.393519	2.164587
02160498	-1	00202f fea800 000003 fffiff ffifff filff	-1.391705	2.155323
02170496	0	8002a2 faa800 000001 ffimf ffimf ffiff	-1.385321	2.154280
02180497	-2	000515155000000007 ffffff fffiff fffiff	-1.388128	2.146160
02190494	-3	00000200000000000 f ffmmf fimff fifmf	-1.395455	2.148161
02200493	-3	$0780004000001 c 000 \mathrm{f}_{\text {ffmff fmimf fliff }}$	-1.402715	2.150038
02210489	-2	O1f001 00000007 fr 07 ffffff ffmff fmff	-1.405406	2.141953
02220487	-6	$01 \mathrm{fr00} 50000001 \mathrm{f07f} \mathrm{ffffff} \mathrm{ffiff} \mathrm{fflff}$	-1.426009	2.226588
02230479	-4	001 fff c00000 00001 f fffmf fffff fffff	-1.437500	2.246094
02240475	-2	0001 ff f 0000000007 ffflf ffmff fflff	-1.440000	2.237510
02250469	0	f0001f fffe 0000001 ffmff ffimf ffiff	-1.433628	2.236745
02260467	-	fc0007 fffco 000001 ffffff ffmff fffiff	-1.427313	2.235906
02270466	-1	fro03f fimfr 000003 ffmff ffmff ffmf	-1.425439	2.226897
02280465		fr80ff ffffe 000001 ffmff ffimf fimf	-1.419214	2.226006
02290463	,	ffr7ff flimf 000001 fmmff fmfff fmff	-1.413043	2.225047
02300463	-2	ffmeff fimff 050007 fmfff ffmmf fmmf	-1.415584	2.216900
02310461	-2	fffd7f ffffe 1 fe007 fmmf fmmff fmmf	-1.418103	2.208810
02320460	-1	fffclf fimfe 3fe003 ffmff ffmff fmmf	-1.416309	2.200077

02330458	-1	fffc01 ffffe0 3fe003 ffffff ffififf fmmf	-1.414530	2.191413
02340457	-2	fffc00 7fff00 $7 \mathrm{ff007} \mathrm{ffffff} \mathrm{fffiff} \mathrm{fffiff}$	-1.417021	2.183540
02350455	-2	fffe00 07f001 fff007 fffiff ffifff ffiffi	-1.419492	2.175721
02360454	-1	fffroo 01fc00 3ft803 ffmiff ffimf ffifff	-1.417722	2.167281
02370453	-1	ffff00 005000 1ff003 fffmff ffffff fffmff	-1.415966	2.158905
02380452	-1	$3 \mathrm{fff80} 0000000 \mathrm{ff803ffffff} \mathrm{ffffff} \mathrm{ffffff}$	-1.414226	2.150593
02390451	-2	Offfcl $5001000 \mathrm{ff807fmfff} \mathrm{fffiff} \mathrm{ffffff}$	-1.416667	2.143056
02400450	-1	03ffe3 fe0080 0ff803 ffimff ffmiff ffifff	-1.414938	2.134881
02410448	-1	$00 \mathrm{fffb} \mathrm{ff83f8} 03 \mathrm{f803} \mathrm{ffifff} \mathrm{ffffff} \mathrm{fiffif}$	-1.413223	2.126767
02420448	-1	03ffff ff8ffe 03e003 fffiff fffmff ffmff	-1.411523	2.118715
02430447	-2	03ffff ffdfff 000007 fffiff ffffff fiffif	-1.413934	2.111445
02440446	-2	f8ffff ffifff 800007 ffifff ffffff fffffr	-1.416327	2.104223
02450444	-1	ff8003 ef8fff 020003 ffffff ffffff ffffff	-1.414634	2.096371
02460444	-1	ff8001 f81ffe 000003 ffifff ffffff fffiff	-1.412955	2.088577
02470444	-1	f88003 f80f80 028003 ffffff ffffff fffiff	-1.411290	2.080840
02480444	-1	ffc003 e3e003 00003 ffffff fffmff ffffff	-1.409639	2.073160
02490444	-1	ffe00f efe0ff f80003 fffiff fffiff ffifff	-1.408000	2.065536
02500444	-1	ffe00f ffflff f80003 fmmff ffffff ffffiff	-1.406374	2.057967
02510444	-1	03ffff fff 8 ff e 00003 fflfff fflfiff ffffff	-1.404762	2.050453
02520444	-1	03feff ffro00 200003 fffiff ffffff fifff	-1.403162	2.042994
02530444	-2	03e00f e38fe8 000007 ffffff fffiff fffiff	-1.405512	2.036348
02540444	-2	038007 e 03 ffe 000007 fffmff ffffff ffffff	-1.407843	2.029742
02550445	-2	$7 \mathrm{f0007} \mathrm{f} 47 \mathrm{ffff} 000007 \mathrm{ffffff} \mathrm{ffffff} \mathrm{ffffff}$	-1.410156	2.023178
02560445	-1	$7 \mathrm{f0007} \mathrm{ffffff} 000003 \mathrm{ffffff} \mathrm{fffiff} \mathrm{fffiff}$	-1.408560	2.015958
02570446	-1	fe001f ffbiff 00 f003 fffmff fffmff ffffff	-1.406977	2.008789
02580447	-2	fc007f ffdfff 01 f007 ffffif fffiff fffff	-1.409266	2.002385
02590449	-4	f07fff fe0551 07e01f fffiff fffiff fffff	-1.419231	2.020400
02600450	-4	ebffff fc0000 0 fe0lf fffiff fffiff fffiff	-1.429119	2.038080
02610450	-3	03ffaf e000a8 0ff00f ffffiff fffiff ffmffr	-1.435115	2.039683
02620451	-3	$07 \mathrm{ffc} 7 \mathrm{~d} 40050 \mathrm{lff00f} \mathrm{ffffff} \mathrm{ffmff} \mathrm{flmff}$	-1.441065	2.041204
02630451	-2	07ff14 551000 1ff007 ffffff fffiff fffiff	-1.443182	2.034651
02640452	-3	Offe00 a0fe00 3ff00f ffffff fffiff ffifff	-1.449057	2.036085
02650454	-3	fff 80023 fe 003 fe 00 f ffmfff fffiff fffff	-1.454887	2.037439
02660454	-1	fff800 07ffe0 3 fr003 fffffff ffffiff fffiff	-1.453183	2.030581
02670456	-1	ffr802 7ffffe 3fe003 fffiff ffffff fffiff	-1.451492	2.023767
02680457	-2	fff001 ffffff lfc007 ffifff ffifff ffifff	-1.453532	2.017358
02690459	-3	ffe01f ffffff 07c00f ffifff ffifff ffiffi	-1.459259	2.018712
02700460	-3	fff83f ffifff 02800f ffmff fmfff ffffff	-1.464945	2.019990
02710462	-3	fffiff ffffff 00000f fffiff fffiff fffiff	-1.470588	2.021194
02720462	-2	ffimff fffiff 800007 fffiff ffmiff ffifff	-1.472528	2.014813
02730463	-2	ffflff fffffc 000007 ffffff ffffff fffiff	-1.474453	2.008472
02740464	-1	ffe0ff fffff0 000003 ffifff fffmff fffiff	-1.472727	2.001984
02750467	-2	fc007f fffe 00000007 fffff ffifff ffiff	-1.474638	1.995733
02760468	-1	f8003f fffc00 000003 ffmfff ffmfff ffmmf	-1.472924	1.989339
02770471	1	80007f ff8000 000000 ffffiff ffffff ffffff	-1.464029	2.004102
02780473	2	0001 ff fc0005 0000007 fffff fffifff ffifff	-1.451613	2.039773
02790475	7	00007 f f00000 0001 fc 03 fffff ffmfff ffmfff	-1.421429	2.286684
02800482	1	$0003 \mathrm{f8} 080000003 \mathrm{f80} \mathrm{ffffff}$ ffffff fffiff	-1.412811	2.299338
02810488	-3	003c02 0b8000 03e00f ffffff ffffff ffffff	-1.418440	2.300086
02820490	-3	08000008280000000 f fffiff fffiff ffffff	-1.424028	2.300766
02830494	-3	a00000 00a000 00000f ffmff ffmiff fmmff	-1.429577	2.301379
02840494	-3	a00000 3e8000 00000f fffiff fffiff fffiff	-1.435088	2.301927
02850493	0	0000007 fd 000000001 ffifff fffiff fimff	-1.430070	2.301054
02860494	-1	a00280 ffe800 000003 ffiffff ffifff ffiffi	-1.428571	2.293679

02870494	-1	$000002 \mathrm{fffa00} 000003 \mathrm{ffilff} \mathrm{ffififf} \mathrm{fififf}$	-1.427083	2.286350
02880495	-1	$500007 \mathrm{ff000} 001003 \mathrm{ffimf}$ fmfiff fifff	-1.425606	2.279068
02890496	-1	000203 ffe 02000003 fmffff fmfff ffmff	-1.424138	2.271831
02900497	-2	000007 ffc 1 lc 000007 ffimff ffimff fffiff	-1.426117	2.265160
02910499	-2	000055 ff0000 004007 fmfff fmPff fiffiff	-1.428082	2.258527
02920500	-3	0000 bf fe 0002 a 0000 f fmmff fmmff fimf	-1.433447	2.259223
02930499	-3	00107 ff f007f f0400f fffiff ffiff fflff	-1.438776	2.259857
02940498	-2	00003f ffooff f80007 ffiff ffliff ffifff	-1.440678	2.253261
02950498	-3	8000 ff f80fff f8000f ffimf fffiff ffiff	-1.445946	2.253835
02960498	-3	e803ff f00fff e 0000 f fffmf fifimf fimff	-1.451178	2.254351
02970498	-2	fa03fe 00 ffff e00807 fmmff ffmeff ffmff	-1.453020	2.247793
02980498	-2	fa0020 03 ffff 800007 ffmff ffffff ffifff	-1.454849	2.241273
02990498	-2	f80000 00 fffe 000007 ffifff ffifff fffff	-1.456667	2.234789
03000498	-1	fe0000 007 ffe 000 f83 ffimf ffimf fffiff	-1.455150	2.228055
03010498	-2	ff0020 0000a0 003fe7 fmiff ffmimf fffiff	-1.456954	2.221658
03020498	-2	ff0080 000000 003fe7 ffimf fmiff fimff	-1.458746	2.215296
03030499	-2	fe0000 05c000 000007 ffifff fmifff ffffff	-1.460526	2.208969
03040500	-3	fc0200 Ofe 00000000 f ffliff ffifff fifff	-1.465574	2.209471
03050502	-3	e00a0a ff 800000000 f fmfff fmmff fmff	-1.470588	2.209920
03060502	-3	80200f fe0000 0080 of ffifff ffiff ffiff	-1.475570	2.210316
03070503	-2	00107 fe 000001 fc 007 ffffff fffiff ffmf	-1.477273	2.204030
03080504	-3	0002ff 800003 fe000f ffmff ffifff fifff	-1.482200	2.204377
03090508	-5	a8fff 0003 fe 00003 f fffmff ffffff fmiff	-1.493548	2.237056
03100508	-3	20 ffe $0003 \mathrm{f8} 00000$ f fffiff fflff fffiff	-1.498392	2.237137
03110510	-3	0 fff00 00 If80 00000 f fffiff ffiff fliff	-1.503205	2.237170
03120511	-3	5 ff 00003 f 0000000 f ffimf ffliff fliff	-1.507987	2.237157
03130513	-3	fr0000 lfe007 ff 00 f ffmmf ffmiff ffmff	-1.512739	2.237099
03140514	-3	000003 ffc 03 ffry 00 f ffmff ffmiff ffmff	-1.517460	2.236997
03150515	-2	00003f $\mathrm{f} 4007 \mathrm{f} \mathrm{fff} \mathbf{c} 07 \mathrm{fffffff} \mathrm{ffmff} \mathrm{fimff}$	-1.518987	2.230652
03160515	-2	f8007f d000ff fffe 07 ffmff fffmf fmfff	-1.520505	2.224343
03170518	-3	e2ffe8 800ffa bff80f fffff fffiff ffiff	-1.525157	2.224210
03180518	-3	00ffaa 8003fe bffr 0 f fffmff ffmff fflff	-1.529781	2.224035
03190517	0	$0007 \mathrm{~d} 41001 \mathrm{lff} \mathrm{fff01} \mathrm{ffffff} \mathrm{ffmff} \mathrm{fliff}$	-1.525000	2.224375
03200516	1	0003fa 8800ff fffl 80 ffimff ffmff ffiff	-1.517134	2.237246
03210514	3	f0000f 80001 f ffflc 3 3ffiff fffiff ffiff	-1.503106	2.293468
03220513	3	fc0007 f00007 fffco 3 fffff ffmiff ffiff	-1.489164	2.348954
03230514	1	ff8003 f8000 03 ff 80 fmfff ffmiff fmmf	-1.481482	2.360768
03240515	0	ff8000 ff0000 07 fe 01 ffmff ffmff ffimf	-1.476923	2.360237
03250515	0	ff 0007 fd 0003 ffc 01 ffmff fmifff ffifff	-1.472393	2.359667
03260515	-1	7f0000 3ff000 $7 \mathrm{ff003} \mathrm{ffmff} \mathrm{ffmff} \mathrm{fffiff}$	-1.470948	2.353131
03270514	-1	8 ffe 0003 fe 007 ff 803 fffiff ffimf fimf	-1.469512	2.346631
03280513	-1	$01 \mathrm{fr00} 007 \mathrm{fc} 1 \mathrm{fff} 033 \mathrm{fmmff} \mathrm{ffmmf} \mathrm{fmff}$	-1.468085	2.340166
03290513	-2	007 fc 000001 f fff007 ffmff ffmff ffmf	-1.469697	2.333930
03300512	-1	003fe0 00000 f fro003 fimff fmimf fimff	-1.468278	2.327543
03310511	-1	00017 f 80001 f f 00003 ffmfff fmmff fimf	-1.466867	2.321191
03320511	-2	40001 f 000007 f00007 ffimf fmmff fmmf	-1.468468	2.315071
03330509	-2	000000180000000007 fmmff fmmff ffmff	-1.470060	2.308983
03340508	-4	00000008000000001 f ffffff ffmff fmfff	-1.477612	2.321140
03350505	-6	00000000000000007 f ffmfff fmmff fimmf	-1.491071	2.374920
03360503	-4	c00000 00000000001 f fffiff fffiff ffiff	-1.498516	2.386496
03370501	-2	f00001 000400000007 ffffff ffmimf ffiff	-1.500000	2.380177
03380500	-1	f80000 003 fr 0003 fc 3 fmmff ffmff ffmff	-1.498525	2.373891
03390499	-2	f40000 00 fff0 001 ¢f7 fimff fmmff fimff	-1.500000	2.367646
03400499	-1	f40000 01fffc 0007c3 fmfff fmmff fmffr	-1.498534	2.361434

03410499	-1	f007fc 007fff 000003 ffffff ffmff fflff	-1.497076	2.355254
03420499	-1	f003ff 01 lfff c 00003 fffmff ffmff fflff	-1.495627	2.349106
03430498	-1	80003f fe03ff f80003 fimfif ffimf fimf	-1.494186	2.342989
03440498	-1	800a3f fe03ff f80003 ffmff ffmf fmmf	-1.492754	2.336904
03450499	-2	000055 ff015f f00007 fffiff fflff ffliff	-1.494220	2.330891
03460500	-3	0002bf fe 000 a 0000 f ffimf ffimf ffifif	-1.498559	2.330689
03470501	-2	00007 ffe 0010000007 fmmff ffmff ffmff	-1.500000	2.324712
03480501	-2	00007 ffc 0154400007 fmmff fmmff fmmf	-1.501433	2.318766
03490501	-2	0001 If fd 0000014007 ffmff ffmff ffmff	-1.502857	2.312849
03500500	-2	$000 \mathrm{a3f}$ fe8000 008007 ffmfff fmmff fmmf	-1.504273	2.306962
03510498	-1	8000af ffa000 000003 ffffff ffffff ffifff	-1.502841	2.301128
03520497	0	00401 f ffd000 005001 ffmff ffifff flfiff	-1.498583	2.300989
03530498	-2	00 a bf fe8000 000007 ffliff fimffr fififr	-1.500000	2.295197
03540496	-1	000a0f fea000 000003 ffffff fffiff ffimf	-1.498591	2.289434
03550495	-2	000554005000000007 ffffff ffmff ffmff	-1.500000	2.283707
03560494	-1	$0000 a 8000000000003 \mathrm{fffiff} \mathrm{fffiff} \mathrm{ffiff}$	-1.498599	2.278009
03570491	-4	010015700000 lf801f fffiff ffifff ffiff	-1.505586	2.289075
03580489	-3	01 fc 05540000 Off00f fffiff ffifff ffiff	-1.509749	2.288902
03590485	-6	01 ff 011400001507 f ffmff ffmff fffff	-1.522222	2.338395
03600482	-7	00 fffe 0000000000 ff ffffff fffiff ffifff	-1.537396	2.414807
03610476	-5	0007ff fc0000 00003f fffiff ffiff fffff	-1.546961	2.441165
03620472	-3	8000 ff ffe 00000000 f ffffff fimff fflfff	-1.550964	2.440241
03630468	-3	e0003f ffflo 00000 f fffiff ffimf ffiff	-1.554945	2.439289
03640467	-2	f8001f ffff00 000007 fffmf ffmff fmff	-1.556164	2.433147
03650465	-1	ff01ff ffific 000003 fflfff ffffff ffffff	-1.554644	2.427342
03660463	0	ffelff fmmim 000001 ffmff ffimff fffiff	-1.550408	2.427296
03670462	-3	ffliff ffiffe 0f800f ffffff fffiff fffiff	-1.554348	2.426394
03680461	-2	ffliff ffifff lfc007 ffffff ffiff fffiff	-1.555555	2.420355
03690459	-1	fffcle fffffe lfe003 fffiff ffifff fffff	-1.554054	2.414645
03700458	-1	fffc0f fffffe 3fe003 ffiff ffiff fffff	-1.552560	2.408962
03710457	-2	fff00 ffflo 7 7e007 ffimf ffmff ffimf	-1.553763	2.403023
03720456	3		-1.557640	2.402174
03730454	-1	fffe00 03 f c00 fff003 fffiff fififf ffiff	-1.556149	2.396580
03740453	-2	ffff00 01fc00 3 ff 007 ffffff ffmff ffmf	-1.557333	2.390713
03750451	0	$1 \mathrm{fffd0} 0010000$ ffc01 ffimf fimff flmf	-1.553191	2.390788
03760450	-1	0 fffa0 0000000 ffc03 ffffff ffmff fflff	-1.551724	2.385256
03770450	-1	07 ff 2 e 800 a 00 ff 803 fffiff fffiff ffifff	-1.550264	2.379749
03780449	-1	$03 \mathrm{ffe} 5 \mathrm{ff0140} 07 \mathrm{f0} 03 \mathrm{ffffff} \mathrm{ffmff} \mathrm{fffff}$	-1.548812	2.374267
03790448	-1	03 fmb ff8ff $03 \mathrm{f0} 03 \mathrm{ffffff} \mathrm{fffiff} \mathrm{ffiff}$	-1.547368	2.368809
03800448	-3	03 fffff ffifr 03 e 00 f ffmff ffmff ffmf	-1.551181	2.368116
03810447	-3	c3ffff fimfl 0000) f ffimf fimff flfff	-1.554974	2.367397
03820446	-2	fc00ff fiffir 000007 ffifff ffifff fimff	-1.556136	2.361732
03830444	-1	ff 003 ef8fff 000003 fmfff ffimf ffiff	-1.554687	2.356385
03840444	-1	ffc003 f01ffc 000003 fffff ffifff fliff	-1.553246	2.351061
03850444	-1	ffc003 f80f80 200003 ffmff fffmf fmmf	-1.551813	2.345761
03860444	-1		-1.550387	2.340485
03870444	-1	ffe00f effoff fe0003 fffiff fffiff ffimff	-1.548969	2.335232
03880444	-1		-1.547558	2.330001
03890444	-1		-1.546154	2.324794
03900444	-1	01 fc 7 f ffriou0 000003 ffmff ffifff ffifff	-1.544757	2.319609
03910444	-1	038007 e00ffe 000003 ffimf ffmmf fimf	-1.543367	2.314447
03920444	-1	03c003 f83ffl 800003 ffffff ffmff ffiff	-1.541985	2.309307
03930445	-1	$7 \mathrm{f0007}$ f43fff 800003 fffiff ffffff ffffff	-1.540609	2.304189
03940445	0	$7 \mathrm{f0} 007 \mathrm{ffdfff} \mathrm{c} 00001 \mathrm{fffifff}$ fffiff fffff	-1.536709	2.304349

03950446	-1	fe003f ffmff $80 f 803 \mathrm{ffifff} \mathrm{fffimf} \mathrm{fimff}$	-1.535353	2.299256
03960447	-2	fe007f ffmeff 01 f 807 ffmff fmmff fmimf	-1.536524	2.294007
03970449	-2	f1ffff ff0555 $47 \mathrm{f007}$ ffimff ffffff ffmff	-1.537688	2.288781
03980449	-2	e7ffff fro005 43 r 807 fmffff fffiff fifff	-1.538847	2.283579
03990450	-1	03 ffcf f 00080 0ff803 ffmiff fmmf fffff	-1.537500	2.278594
04000451	-2	$07 \mathrm{fr87}$ d00000 0 ff007 ffmff fffiff ffmff	-1.538653	2.273443
04010452	-2	Offe08 a2b800 $3 \mathrm{ff007}$ flfiff fimff ffimf	-1.539801	2.268317
04020455	-4	$7 \mathrm{ff004035000} \mathrm{7f001f} \mathrm{fffiff} \mathrm{ffffff} \mathrm{fffiff}$	-1.545906	2.277669
04030455	-1	fff000 07ff00 7ff003 fffiff fffiff ffiff	-1.544554	2.272767
04040456	-1	ffe000 0 ffff 8 3fe003 ffimf fmmff ffiff	-1.543210	2.267886
04050458	-1	ffe 008 ffffe 3 fe 003 fmmff fmmf ffmff	-1.541872	2.263025
04060459	-2	ffc101 fimfe lfe007 fimiff fmmff fimm	-1.542997	2.257979
04070460	-1	ffe 00 f fffmff 808003 ffmfff fmfff ffmff	-1.541667	2.253165
04080461	-2	ffm07f fffmf 000007 ffmff fmmff ffmf	-1.542787	2.248169
04090462	-1	ffimff fffiff 800003 fffiff ffimf fffff	-1.541463	2.243402
04100462	1	ffllff ffimf 800000 ffffff ffimf fflff	-1.535280	2.253621
04110465	-1	ffcliff fimfo 000003 fflfff ffffff ffffff	-1.533980	2.248845
04120467	-2	ff01ff ffff00 000007 ffffff fffiff ffiff	-1.535109	2.243924
04130473	-5	0003 ff ffe 00000003 f ffmimf fmfff fffff	-1.543478	2.267432
04140474	-3	0003 ff ff8000 00000f ffffff ffifff fffiff	-1.546988	2.267068
04150477	-2	000 fff f00010 400007 ffifff ffifff fiffif	-1.548077	2.262111
04160478	-1	000 fff c 00000800383 ffffff ffmiff ffffff	-1.546763	2.257405
04170484	0	000 ff 080000003 e 01 ffffff ffffff ffffff	-1.543062	2.257714
04180486	-1	000500200000007 e 03 fflffff ffimff ffiff	-1.541766	2.253028
04190490	-2	020002800000000007 ffifff fffiff fimf	-1.542857	2.248162
04200492	-3	0800000000800000 of fffmff fffiff fimff	-1.546318	2.247854
04210492	1	2a0000 2aa000 000000 ffmff ffmiff fffiff	-1.540284	2.257855
04220493	0	$5000407 \mathrm{ff000} 000001 \mathrm{ffffff} \mathrm{fmfmf} \mathrm{fmff}$	-1.536643	2.258113
04230495	0	$0000041 \mathrm{ff000} 000001 \mathrm{fmfff} \mathrm{fffmf}$ ffmiff	-1.533019	2.258343
04240495	0	d00005 5ff400 005401 fmmff ffflff ffiff	-1.529412	2.258547
04250495	0	140001 fff 00001401 ffmfff ffliff fffiff	-1.525821	2.258723
04260497	-1	000007 fff000 014003 ffmfff fffiff fflfff	-1.524590	2.254079
04270498	-1	000203 ffe02a 0a0003 ffimff ffffff fffiff	-1.523364	2.249454
04280499	-2	000501 ff 054540007 fffiff fmfff ffmiff	-1.524475	2.244739
04290500	-1	$00002 \mathrm{ff8000} 000003 \mathrm{ffmeff} \mathrm{ffffff} \mathrm{fffiff}$	-1.523256	2.240157
04300502	-4	00003 f f 000 f a 001 l ffflff fffiff fimff	-1.529002	2.249159
04310500	-3	0002bf ff02ff f8000f fffiff ffimf ffiff	-1.532407	2.248950
04320500	-3	0002bf fe03ff f8000f ffffff flmff ffmff	-1.535797	2.248719
04330499	-2	C0017f fcliff f00007 ffmiff ffmiff ffiff	-1.536866	2.244033
04340499	-2	f401ff 0101 fff f00007 ffffff fffiff ffiff	-1.537931	2.239366
04350498	-1	fe80be 00 ffff e00003 ffimf ffiff fflff	-1.536697	2.234892
04360498	-1	fe0000 00 ffff 800003 ffm fff ffmff flfff	-1.535469	2.230435
04370498	-1	ff0000 003fff 8001 e 3 fffiff fmfff fffff	-1.534246	2.225996
04380498	-1	ff8000 000ffe 0003f3 fifmf ffifff ffiff	-1.533029	2.221574
04390498	-1	ff8000 $000000001 \mathrm{lf3}$ fffiff fimff fifff	-1.531818	2.217169
04400498	-1	ff80e0 2000000003 e 3 ffmfff ffffff ffffff	-1.530612	2.212781
04410500	-2	fe0202 $03 \mathrm{f800} 000007 \mathrm{ffifff} \mathrm{fifmf} \mathrm{fffiff}$	-1.531674	2.208272
04420502	-3	f82028 Ofe 00000000 f ffimf ffimf fifff	-1.534988	2.208143
04430503	-3	c00007 ff0000 01000 f ffimf fffiff fffff	-1.538288	2.207993
04440503	-2	c00007 f 00000070007 ffffff ffiff ffliff	-1.539326	2.203509
04450505	-2	00007 f c00001 fe0007 ffmemf fmmf fffiff	-1.540359	2.199043
04460507	4	$5005 f 500001 \mathrm{f} 0001 \mathrm{f}$ fimff ffliff fffff	-1.545861	2.207628
04470509	-3		-1.549107	2.207410
04480510	-3	03ffe0 0007e0 00000f fffiff fimff fmfff	-1.552338	2.207171

04490512	-3	2ff800 01fc00 00000f fffffr ffimf ffiff	-1.555555	2.206914
04500513	-2	$7 \mathrm{fc} 00007 \mathrm{f001} \mathrm{ff} 0007 \mathrm{ffmff} \mathrm{ffmimf} \mathrm{fmff}$	-1.556541	2.202457
04510515	-2	000000 ff 01 f fff007 ffmff fmimf ffmf	-1.557522	2.198019
04520516	-3	$000003 \mathrm{ff} 03 \mathrm{f} \mathrm{fff80f} \mathrm{fffiff} \mathrm{ffliff} \mathrm{ffiff}$	-1.560706	2.197749
04530517	-3	f8007f d000ff 07 fc 0 f ffmfff fffiff ffifff	-1.563877	2.197462
04540516	-1	7 c 00 ff a 000 ff abff03 ffffff fffiff fflff	-1.562637	2.193329
04550520	-3	00 ffea 000 ffa bff 0 f fffiff ffmiff fmimf	-1.565789	2.193040
04560520	-3	007fa2 0003 fe bff80f ffmff ffimf ffimf	-1.568928	2.192732
04570518	1	0003fa 8000ff fffl 80 ffffff fimff ffiff	-1.563319	2.202322
04580517	1	C0017f 54007f fffco fffiff ffmimf fflfff	-1.557734	2.211808
04590516	1	f8000f ea 000 f fffrio 0 ffffff ffmiff ffmf	-1.552174	2.221191
04600516	1	fe 0003 fe8000 $03 \mathrm{ff80} \mathrm{fmmff} \mathrm{fmfff} \mathrm{ffmff}$	-1.546638	2.230471
04610517	-1	ff8001 f0000 0 fff03 ffmmf ffmff fffff	-1.545454	2.226289
04620517	-1	ffc000 7fc000 1 lfc03 ffffff ffffff fiffiff	-1.544276	2.222122
04630517	-2	7 fc 0007 fc 0007 fe 007 ffmff fffiff fifff	-1.545258	2.217779
04640516	-2	$3 \mathrm{ff800} \mathbf{l f f 8 0 0} 7 \mathrm{ff007} \mathrm{ffmff} \mathrm{ffifff} \mathrm{fffiff}$	-1.546236	2.213454
04650514	-1		-1.545064	2.209342
04660514	-1	Oaffe0 000f8f ffr 03 ffmfff ffimf ffiff	-1.543897	2.205246
04670513	0	$101 \mathrm{ff0} 00001 \mathrm{f}$ ff0001 ffffff ffmff flifff	-1.540598	2.205616
04680512	-1	282 fff 80000 f flo 003 ffffff fflfff fffiff	-1.539446	2.201535
04690511	-1	540007 c00001 700003 fffffff ffifff ffiff	-1.538298	2.197469
04700510	-1	000000380000000003 ffimf ffffff fmff	-1.537155	2.193417
04710508	-3	00 a 0028 a 000000000 f ffmff ffffff fffff	-1.540254	2.193295
04720506	-3	80000000000000000 f ffmfff ffffff ffmff	-1.543340	2.193153
04730501	-1	fc0000 000014000003 ffmff fmfff ffmf	-1.542194	2.189148
04740500	0	fe0000 000000000001 lffiff fimff ffiff	-1.538947	2.189536
04750499	0	ff0000 000 ffc 0007 fl fffiff ffmiff fflfff	-1.535714	2.189901
04760499	0	fe $0000001 \mathrm{ffc} 0007 \mathrm{f9} \mathrm{ffffff} \mathrm{ffmfff} \mathrm{ffifff}$	-1.532495	2.190244
04770499	0	fc0000 007fff 000041 ffffff fffmf fimff	-1.529289	2.190565
04780499	0	fc01fc 007fff 00001 lffifff ffffff fffiff	-1.526096	2.190864
04790499	0	fc01ff f007ff f0000 fimff ffimf fffiff	-1.522917	2.191141
04800499	0	f4007f fc07ff fc0001 ffimf fiffff ffiff	-1.519750	2.191398
04810499	-1	80007f ff01ff fd0003 flifff fifff ffiff	-1.518672	2.187411
04820499	0	00001f ff005f fd0001 ffifff fffiff ffiff	-1.515528	2.187647
04830501	-2	00001 f ff0141 400007 ffmff fflfff fffff	-1.516529	2.183611
04840501	-2	00005 ff f0000 000007 ffffff ffmeff fffff	-1.517526	2.179590
04850502	-2	0000 ff fa 000 a 02 e 007 fmmff fmmff fimf	-1.518518	2.175583
04860502	-2	0000 ff fa0000 028007 fffiff ffffff fffiff	-1.519507	2.171591
04870501	2	O0001f flo000 004007 ffmiff ffifff fffffr	-1.520492	2.167613
04880501	-3	00001 f f 400000000 f ffffff ffiff fflff	-1.523517	2.167647
04890500	-3	00000f fa2000 00a00f ffffff ffmff fffff	-1.526531	2.167663
04900500	-3	0080bf fea000 00800f fffiff ffiff fffiff	-1.529532	2.167661
04910498	-2	0000 af faa000 000007 ffliff ffifff fffff	-1.530488	2.163704
04920497	-2	000055514000000007 fmfff ffimff ffmff	-1.531440	2.159762
04930495	-2	100000000000000007 fffiff ffifff ffiff	-1.532389	2.155833
04940494	-4	00000200000008001 l ffffff fmfff fffff	-1.537374	2.163754
04950490	-3	$00 f 800000000$ Off00f fiflif ffliff ffliff	-1.540323	2.163696
04960489	4	$01 \mathrm{f} 0100000007 \mathrm{f01f} \mathrm{ffffff}$ fiffif ffifff	-1.545272	2.171491
04970484	-7	00 fff $0000000000 f f$ ffimff fimff fffff	-1.556225	2.226758
04980479	-4	001 fff f 000000001 f fffmff ffmiff ffliff	-1.561122	2.234240
04990474	-5	0000 ff ff 000000003 f fffiff fimff fimf	-1.568000	2.253376
05000472	4	80007 f fff 80000001 f flffif fimff fimf	-1.572855	2.260660
05010470	-4	e 000 ff fflm 000001 f fffiff ffimf fiffif	-1.577690	2.267869
05020468	-3	fc00ff fimfo 00000f fffff fffff fffff	-1.580517	2.267374

05030467	-2	fr07ff fiffc 000007 fmmff ffmff ffmeff	-1.581349	2.263223
05040466	-3	ffbeff fimfic 00000 f fffiff fimf ffiff	-1.584159	2.262719
05050463	-4	ffliff fiffc 3 fc 01 f ffimf fimff fmff	-1.588933	2.269759
05060462	-3	ffleff ffifc 3 fc 00 f fiffff ffmff fflff	-1.591716	2.269202
05070460	-3	ffrsof ffiff 7f000f ffmff ffimf fmfff	-1.594488	2.268631
05080459	-2	fff001 fflel 7 fe 007 ffifff fffiff fififf	-1.595285	2.264496
05090457	-2	fffc00 lff 007 ff 007 ffffff ffffff fffff	-1.596079	2.260377
05100456	-2	fffe00 Off003 ff007 ffifff ffifff fffiff	-1.596869	2.256272
05110454	-1	fffr80 $00 f 8003 \mathrm{ff803} \mathrm{ffifff} \mathrm{ffifff} \mathrm{ffiff}$	-1.595703	2.252560
05120453	0	7 ff 00007800 lff 01 ffmff ffiff fffiff	-1.592593	2.253123
05130452	-1	1 fffa0 0000000 fr803 fffiff ffffff ffmf	-1.591440	2.249421
05140452	-2	Offf80 0000000 [f807 fffiff ffiff ffifff	-1.592233	2.245377
05150451	-2	$07 \mathrm{ffc} 7 \mathrm{fe} 000007 \mathrm{f007}$ fmmff fmfff ffmff	-1.593024	2.241347
05160450	-2	$03 \mathrm{ffe} 3 \mathrm{frga0} 03 \mathrm{f} 007 \mathrm{fff} \mathrm{fff} \mathrm{ffmff} \mathrm{ffmff}$	-1.593811	2.237332
05170449	-3	07 ffiff ffdeff 01000 f fflfff fffiff fffiff	-1.596525	2.236823
05180448	-3	03 ffff ffffe 00000 ¢ ffimf fimff fiffir	-1.599229	2.236301
05190446	-1	fe 000 f fflmf 000003 ffmfff ffffff ffmf	-1.598077	2.232690
05200445	-1	ff8003 ffcfff 074003 fmmff fmfff ffmff	-1.596929	2.229089
05210444	1	ff 000 f80ff8 000000 ffmff fmmff fffff	-1.591954	2.237714
05220444	1	ffe 000 f80fe 000000 ffmff ffmff fffff	-1.586998	2.246257
05230445	0		-1.583970	2.246767
05240445	-1	ffe007 dffoff fr0003 ffmff ffmmf ffmf	-1.582857	2.243136
05250445	0	03 fe 7 f ffl9ff f00001 fififf ffflff fflff	-1.579848	2.243625
05260445	-1	01 ffff fff057 d10003 fffiff fmimf fimf	-1.578748	2.240005
05270445	-2	01e01f c7el 00000007 fmmf fffmff ffimf	-1.579546	2.236098
05280445	-2	010007 e01ffc 000007 fffff fffiff fffiff	-1.580340	2.232205
05290446	-2	3 f 8003 e 03 ffe 000007 ffliff ffffff fffiff	-1.581132	2.228325
05300446	-1	$3 \mathrm{e} 0003 \mathrm{ef3} 3 \mathrm{ff} 800003 \mathrm{fffimf} \mathrm{ffimf} \mathrm{flfff}$	-1.580038	2.224763
05310447	-1	fe 001 l f fmmf 007003 ffmff ffmff ffmff	-1.578947	2.221213
05320448	-2	fe007f ffoffe 011007 fmfff fffff filff	-1.579737	2.217377
05330450	-3	f83fff fe 0 aa8 87e00f ffffff fffiff ffliff	-1.582397	2.216995
05340450	-3	e3ffff fe0280 03f00f ffmimf fimff fmemf	-1.585047	2.216600
05350450	-1	00 fef fa0028 03 fr 03 fffimf ffmfff flimf	-1.583955	2.213102
05360451	-1	01 ffc 5 d 0000007 fr 03 fmfff fmmff fmff	-1.582868	2.209615
05370452	-1	03ffla 2aa820 0 fr803 fmfff fflff fffff	-1.581785	2.206137
05380454	-3	0ffe22 80 f800 3 fe 0 of ffimf fimff ffimf	-1.584416	2.205769
05390455	0	$7 \mathrm{ffc} 0003 \mathrm{ff} 003 \mathrm{3ff001} \mathrm{fffiff} \mathrm{fiffiff} \mathrm{ffimf}$	-1.581482	2.206325
05400456	-1	fff02 8 ffffr 3 fe003 fffeff ffmiff fffmf	-1.580407	2.202870
05410458	-1	ffe000 ffffe 3fe003 fmmf fmmff fmff	-1.579336	2.199426
05420459	-2		-1.580111	2.195700
05430460	-2	ffe00f fimff 03 e 007 ffimff fimfff fimff	-1.580883	2.191988
05440461	-2	fffc 7 f ffimf 800007 ffffff fifff fflff	-1.581652	2.188287
05450463	-2	fffiff fflefr 800007 ffmff ffffff fffiff	-1.582418	2.184600
05460463	0	ffmiff ffmff 800001 ffmff ffmff fflff	-1.579525	2.185175
05470465	-1	ffcliff fimi 000003 ffliff ffifff fliff	-1.578467	2.181799
05480467	-2	frolff fffco 000007 fmifff ffmff fifff	-1.579235	2.178148
05490469	0	f8003f fffe 0000001 ffmff fimff fimf	-1.576364	2.178715
05500470	1	f0003f fff00 000000 fffiff fffff ffiff	-1.571688	2.186785
05510474	1	0000 ff fe0000 800000 flifff fmfff fffff	-1.567029	2.194782
05520475	2	0001 ff f 000000000407 ffimf ffmimf fmiff	-1.560579	2.213781
05530482	2	000 fe 000000001 f 007 fffff ffmff fffiff	-1.554152	2.232627
05540486	-1	003 fe 0000000007003 ffmff fmmf fimf	-1.553154	2.229157
05550490	-3	0 e 30000 ba000 00800 f ffmfff ffmff fffff	-1.555756	2.228906
05560492	-4	28000000280000001 f ffmiff flifff fififf	-1.560144	2.235611

05570492	0	$22000000 a 800000001 \mathrm{fmmff}$ fffmff fmmf	-1.557348	2.235959
05580492	1	2800002 ffr 00000000 fmmf fmmff ffmf	-1.552773	2.243637
05590494	0	000202 affr 00000001 ffmfff ffffff fffff	-1.550000	2.243929
05600494	1	e 8000288 ffa 00000200 fmmff fmmf fmff	-1.545455	2.251499
05610496	-1	$\mathrm{a} 00000 \mathrm{ff800} 002803 \mathrm{fmifff} \mathrm{ffffff} \mathrm{fffiff}$	-1.544484	2.248021
05620496	-1	$000003 \mathrm{ffr800} 002803 \mathrm{ffmff} \mathrm{fmfff} \mathrm{fimf}$	-1.543517	2.244554
05630498	-2	000003 ffe 000280007 ffmfff fmmff fliff	-1.544326	2.240944
05640499	-2	000001 ffc 014500007 fmfff fmfff fmfff	-1.545133	2.237345
05650499	-1	500017 ffc000 000003 ffmfff ffmff fmimf	-1.544170	2.233916
05660500	-2	80003f ff800b eaa007 fffmf fimff fmmf	-1.544974	2.230341
05670499	-2	50001 l fr801f fd5007 ffmiff ffmff fflff	-1.545775	2.226779
05680498	-1	a000bf ff80ff fe0003 ffifff fffff ffiff	-1.544816	2.223388
05690498	-1	ea00bf fe0fff fe0003 fffiff fffff fffff	-1.543860	2.220007
05700498	-1	fa00ff f80fff f 80003 fflmf ffffff fffiff	-1.542907	2.216636
05710498	-1	fe80fe 00 ffff e 00803 ffffff fffiff fifff	-1.541958	2.213275
05720498	-1	fe0000 00 ffff 800003 ffmff fflff fflfff	-1.541012	2.209924
05730498	-1	fr8000 003 fff 820003 fffifff ffmimf fffiff	-1.540070	2.206583
05740498	-1	ff8008 001 ffe 0003 e 3 fffiff fffff ffiff	-1.539131	2.203252
05750498	-1	ff8028 000000 000fe3 3 fimim ffimf ffimf	-1.538195	2.199931
05760498	-1	fr80a0 000000 001 fe 3 fffimf ffmff fflfff	-1.537262	2.196619
05770499	-2		-1.538062	2.193188
05780500	-3	fe0000 07f000 00000f ffimf fimf ffiff	-1.540587	2.193085
05790502	-3	e00282 fr8000 00000f ffffiff fimff ffiff	-1.543104	2.192970
05800502	-3	e00803 fe 000000000 f fffiff fflff fmiff	-1.545611	2.192842
05810503	-2	80017f f00000 07c007 ffmimf ffmiff fffff	-1.546392	2.189429
05820504	-1	0 O 2 Iff e 00001 fe0003 fffiff ffiff ffiff	-1.545455	2.186185
05830507	-2	001 ffc 00007f 000007 fffiff ffiff ffiff	-1.546233	2.182795
05840508	-2	00 fff 0001f8 000007 ffmff ffmemf fmmf	-1.547009	2.179415
05850511	-2	$57 \mathrm{f} 000007 \mathrm{f00} 000007 \mathrm{ffmff} \mathrm{fmmff} \mathrm{fmimf}$	-1.547782	2.176045
05860512	-3	bfe000 03f800 00000 f fimmf fmmf fimf	-1.550256	2.175925
05870514	-3	fe0002 3fe00f fr 00 f flmff fimff fffff	-1.552721	2.175792
05880515	-3	000001 fc 01 l f fc 00 f flmff ffimf fimff	-1.555179	2.175649
05890516	-3	20003 f fa007f effr 0 f fffiff fffff fffif	-1.557627	2.175494
05900516	-3	fc007f f800ff affeof fififf ffifff fflfff	-1.560068	2.175327
05910516	-1	380 fff a 001 lff abff03 ffiff fflfff ffiff	-1.559122	2.172181
05920519	-4	007 fd 40007 fd 5 ffc lf ffffff fiffif fffiff	-1.563238	2.178548
05930519	-1	0007554001 If 7 ffe 03 ffmff fffiff ffiff	-1.562290	2.175413
05940519	-1	0007d5 4001 ff ffim 03 fflfff fiffff fffiff	-1.561345	2.172287
05950518	0	80003e 0000 ff ffle 01 fmfff ffffff fffff	-1.558725	2.172726
05960517	0	f0001f c0001f ffff0 1 fmifff fflfff fffff	-1.556114	2.173149
05970516	1	ff8003 fe0000 $03 \mathrm{ff80} 0$ ffifff ffmiff ffiff	-1.551840	2.180423
05980516	0	ff8000 fr8000 0 fffol fflfff ffffff ffffff	-1.549249	2.180797
05990516	-1	ffe000 7fe000 3ffc03 fmfff flfff fffff	-1.548334	2.177665
06000516	-1	3fe 000 3fe000 3 ff 303 fmfiff ffmff ffimf	-1.547421	2.174541
06010516	-2	Offe00 03fa00 ffr007 ffliff fffiff fiffif	-1.548173	2.171268
06020515	-2	$01 \mathrm{ff80} 007 \mathrm{~d} 07 \mathrm{fff807} \mathrm{flfifff}$ fffiff fffiff	-1.548922	2.168005
06030515	-3	007 fc 00003 f ffe 00 f ffliff ffffff ffmff	-1.551325	2.167896
06040514	-2	003ffr 00003 f fe0007 ffimff fimff filfff	-1.552066	2.164645
06050512	-1	a0000f 8000 of 880003 fffiff ffiff fimff	-1.551155	2.161576
06060511	-2	000000400000000007 ffffff ffifff fffiff	-1.551895	2.158346
06070509	-4	00000404000000001 f fffiff fffiff ffiff	-1.555921	2.164637
06080508	-3	00000000000000000 f ffmff ffffff ffmff	-1.558292	2.164501
06090503	-3	e00000 000004 00000 f fmmf fmimf ffiff	-1.560656	2.164355
06100501	-2	f80000 000001000007 fffif ffffff ffiff	-1.561375	2.16112

06110499	0	fc0000 000ff0 000501 fffiff fffffff fffiff	-1.558824	2.161574
06120499	0	fc0000 $001 \mathrm{ff0} 001 \mathrm{ffl} \mathrm{ffffff} \mathrm{ffffff} \mathrm{ffffif}$	-1.556281	2.162005
06130499	0	f40000 01fffd 0007fl ffffiff ffimf ffmiff	-1.553746	2.162422
06140499	0	f40050 01ffff 0001el ffifff ffiffi ffiff	-1.551220	2.162825
06150499	0	f407ff c01fff c00001 ffimf ffifff ffifff	-1.548701	2.163214
06160499	0	d001ff f017ff f00001 ffifff ffffff fffff	-1.546191	2.163589
06170499	-2	00157 ffc 07 ff fc 0007 ffimff ffffff ffffff	-1.546926	2.160421
06180499	-2	00007f fe05ff ff5407 ffifff ffiffr ffffff	-1.547658	2.157261
06190500	-3	20003f fe02af e0080f fmifff ffifff fiffiff	-1.550000	2.157179
06200501	-4	00017 ffc 001400001 f ffimff flfiff fffiff	-1.553945	2.163356
06210502	-3	0000ff f802aa 00000f ffffff ffffff ffffff	-1.556270	2.163234
06220501	-2	00007f f00015 05c007 fffimf ffmfff ffifff	-1.556982	2.160077
06230500	-2	00003f fe0000 0a8007 fmmff fffiff ffiffi	-1.557692	2.156929
06240500	-3	00003f fe0000 00800f ffmmff ffmff ffmff	-1.560000	2.156801
06250498	-1	00000f fe8000 000003 ffffff fffiff fffiff	-1.559106	2.153856
06260498	-2	00003f fa0000 000007 ffffff ffffff ffffff	-1.559809	2.150730
06270496	-1	00000b fa0000 000003 ffifff ffmffr ffffff	-1.558917	2.147804
06280496	-2	000002 e 0000000007 ffffff ffffff fffff	-1.559618	2.144698
06290493	0	100044110000000001 ffffff ffffff ffffff	-1.557143	2.145149

Appendix 9 Encoder Error Test

Test Data (every 0.0833 mm a reading):

2	7	11	15	19	24	28	32	37	41
45	49	53	58	62	66	71	75	79	83
88	92	97	101	105	109	114	118	122	127
131	135	139	144	149	153	157	161	165	170
174	178	183	187	191	196	200	204	209	213
217	221	226	230	234	239	243	247	252	256
261	265	269	274	278	282	287	291	295	300
304	308	313	317	322	326	330	334	339	343
347	351	356	360	364	369	373	377	382	386
390	394	399	403	408	412	416	421	425	430
434	438	442	447	451	456	460	464	468	473
477	481	486	490	495	499	504	508	513	517
521	525	529	534	538	542	547	551	556	560
564	568	572	577	581	586	590	594	599	603
607	612	616	620	624	629	633	637	641	646
650	655	659	664	668	672	677	681	685	689
693	698	702	706	710	715	719	724	728	732
737	741	745	750	754	758	762	766	771	775
780	784	788	793	797	801	806	810	814	818
822	827	831	835	839	844	848	853	857	862
866	871	875	880	884	888	893	897	901	905
910	914	919	923	927	932	936	940	945	949
953	958	962	966	971	974	979	983	988	992
996	1001	1005	1009	1014	1019	1023	1027	1032	1036
1041	1045	1049	1054	1059	1063	1067	1071	1076	1080
1084	1089	1093	1097	1102	1106	1110	1114	1119	1123
1127	1132	1136	1140	1144	1149	1153	1157	1161	1166
1170	1174	1178	1183	1187	1191	1196	1200	1204	1209
1213	1218	1222	1227	1231	1236	1240	1244	1249	1253
1257	1261	1266	1270	1274	1279	1283	1288	1292	1296
1301	1305	1310	1314	1319	1323	1328	1332	1336	1340
1345	1349	1353	1357	1362	1366	1370	1375	1380	1384
1388	1392	1397	1401	1405	1409	1414	1418	1423	1427
1431	1436	1440	1444	1449	1453	1457	1462	1466	1470
1475	1479	1483	1488	1492	1496	1500	1505	1509	1514
1518	1522	1526	1531	1535	1540	1544	1548	1553	1557
1561	1566	1570	1575	1579	1583	1588	1592	1596	1601
1605	1609	1614	1618	1623	1627	1631	1635	1640	1644
1648	1653	1657	1661	1665	1670	1674	1678	1683	1687
1692	1696	1700	1705	1709	1713	1717	1721	1726	1730

1734	1739	1743	1747	1751	1756	1760	1765	1769	1773
1777	1781	1786	1790	1795	1800	1804	1808	1813	1817
1821	1826	1830	1835	1839	1843	1848	1852	1857	1861
1865	1869	1873	1878	1882	1886	1891	1895	1899	1904
1908	1912	1916	1920	1925	1929	1933	1937	1941	1945
1949	1954	1958	1963	1967	1972	1976	1981	1986	1990
1994	1999	2003	2008	2012	2017	2021	2026	2030	2034
2039	2043	2047	2052	2056	2061	2065	2069	2074	2078
2083	2087	2091	2096	2100	2104	2109	2113	2117	2122
2126	2131	2135	2140	2144	2148	2153	2157	2162	2166
2171	2175	2179	2183	2188	2192	2196	2200	2205	2209
2213	2217	2222	2227	2231	2235	2240	2244	2249	2253
2257	2261	2266	2270	2274	2279	2283	2287	2292	2296
2300	2304	2309	2313	2317	2321	2326	2331	2335	2340
2344	2348	2353	2357	2361	2366	2370	2375	2379	2383
2388	2392	2396	2400	2404	2409	2413	2417	2422	2426
2430	2435	2439	2443	2448	2452	2456	2460	2465	2469
2473	2477	2482	2486	2491	2495	2500	2504	2508	2513
2517	2521	2526	2530	2534	2539	2543	2547	2552	2556
2560	2565	2569	2573	2577	2582	2586	2591	2595	2600
2604	2608	2613	2617	2621	2626	2630	2635	2639	2643
2647	2652	2656	2661	2665	2669	2674	2678	2683	2687
2691	2696	2700	2704	2708	2713	2717	2722	2726	2730
2735	2739	2744	2748	2752	2757	2761	2765	2770	2774
2779	2783	2787	2792	2796	2800	2805	2809	2813	2817
2821	2825	2830	2834	2839	2843	2847	2852	2856	2861
2865	2869	2874	2878	2883	2887	2891	2896	2900	2905
2909	2914	2918	2922	2927	2931	2935	2940	2944	2948
2953	2957	2962	2966	2970	2974	2979	2983	2987	2991
2995	3000	3004	3008	3013	3017	3021	3026	3030	3034
3039	3043	3047	3051	3055	3060	3064	3068	3072	3077
3081	3086	3090	3094	3099	3104	3108	3113	3117	3122
3126	3131	3135	3140	3144	3148	3153	3157	3161	3166
3170	3174	3179	3183	3187	3192	3196	3200	3205	3209
3213	3218	3222	3226	3231	3235	3239	3244	3248	3253
3257	3261	3265	3270	3275	3279	3283	3288	3293	3297
3301	3306	3310	3314	3319	3323	3327	3331	3336	3340
3344	3349	3353	3358	3362	3366	3371	3375	3380	3384
3388	3393	3397	3401	3405	3410	3414	3418	3423	3427
3432	3436	3440	3445	3449	3453	3458	3462	3466	3471
3475	3480	3484	3488	3493	3497	3501	3506	3510	3514
3518	3523	3527	3531	3535	3540	3544	3549	3553	3557
3562	3566	3570	3575	3579	3583	3588	3592	3596	3600

3605	3609	3613	3618	3622	3626	3631	3635	3640	3644
3649	3653	3657	3661	3666	3670	3675	3679	3683	3688
3692	3696	3701	3705	3709	3714	3718	3722	3726	3731
3735	3740	3744	3748	3752	3757	3761	3765	3770	3774
3778	3783	3787	3791	3796	3800	3804	3809	3813	3818
3822	3826	3831	3835	3840	3844	3848	3853	3857	3861
3865	3869	3873	3877	3881	3886	3890	3894	3899	3903
3908	3912	3916	3921	3925	3930	3934	3938	3942	3946
3951	3955	3959	3964	3968	3972	3977	3981	3985	3989
3994	3998	4002	4007	4011	4015	4020	4024	4029	4033
4037	4042	4046	4050	4055	4059	4064	4068	4072	4077
4081	4085	4090	4094	4098	4103	4107	4111	4115	4120
4124	4129	4133	4137	4141	4146	4150	4154	4159	4163
4167	4171	4176	4180	4184	4189	4193	4197	4202	4206
4211	4215	4220	4224	4229	4233	4237	4242	4247	4251
4255	4260	4264	4269	4273	4277	4282	4286	4290	4295
4299	4303	4307	4312	4316	4320	4325	4329	4333	4337

Encoder Pulse Error 1

Pulses for every mm:

49	52	52	51	52	52	52	52	52	53
51	52	52	52	51	52	53	52	51	53
53	51	51	53	52	53	52	52	52	52
52	52	52	52	52	52	51	52	54	52
53	52	52	52	53	52	51	52	52	53
52	52	53	52	52	53	52	51	51	54
52	52	53	52	53	52	52	52	52	52
52	52	52	53	50	52	52	52	52	52
52	54	51							

frequency	1	1	11	53	14	3
pulses	49	50	51	52	53	54

$$
\begin{aligned}
& \bar{x}=52.048 \\
& \sigma^{2}=0.6855 \\
& 3 \sigma=2.48
\end{aligned}
$$

Encoder Pulse Error 2
Pulses for every 0.25 mm :

11	13	13	12	13	13	13	13	13	13
12	14	12	13	13	13	13	13	13	13
13	13	13	13	14	12	13	13	13	13
13	13	13	13	13	13	13	13	14	13
12	13	14	12	13	13	13	13	13	13
13	13	13	13	12	14	13	13	12	13
13	13	13	13	12	14	13	14	13	12
14	13	13	13	13	12	13	13	14	13
13	14	13	13	13	12	13	13	13	13
12	13	13	14	13	13	13	13	13	13
14	13	13	13	13	13	13	13	13	13
13	13	13	13	13	13	13	13	13	13
13	13	13	13	14	12	13	13	13	13
13	13	13	13	12	14	12	13	14	13
13	13	14	12	13	13	13	12	13	12
13	14	14	13	13	14	13	13	13	13
13	13	13	14	13	13	14	12	13	13
13	13	14	12	13	13	13	13	13	14
13	13	13	13	12	13	13	13	13	13
13	13	13	13	13	13	13	13	13	14
13	13	13	13	13	13	13	13	13	13
14	13	13	13	13	13	12	13	13	14
13	13	13	14	13	13	13	13	13	12
13	13	13	13	12	13	13	13	14	14
13	13	13	13	13	13	13	13	13	14
12	14	14	13	13	12	13	14	13	13
13	13	13	13	13	13	13	13	13	13
13	13	13	13	13	13	13	13	13	13
13	13	13	13	13	13	13	13	13	13
13	13	13	13	14	13	12	12	13	13
13	14	12	13	13	13	13	13	13	13
13	13	13	13	13	13	13	13	13	13
13	13	13	13	14	13	13	14	13	13
12	13	13			1				

frequency	1	28	270	34
pulses	11	12	13	14

$$
\begin{aligned}
& \bar{x}=13.012 \\
& \sigma^{2}=0.198 \\
& 3 \sigma=1.335
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 4 \\
& 1 \\
& \begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array} \\
& \text { - } 1
\end{aligned}
$$

[^0]: ** The excution time quoted here is obtained from the simulation results of the Motolora simulation packege, SIM56000.EXE.

[^1]: Image fmeff fffiff fffmf foof 001 lffff fimf fffmf fffff fffiff fo07e0 01 ffff ffclff

