3,529 research outputs found

    Diagnosis and Repair for Synthesis from Signal Temporal Logic Specifications

    Full text link
    We address the problem of diagnosing and repairing specifications for hybrid systems formalized in signal temporal logic (STL). Our focus is on the setting of automatic synthesis of controllers in a model predictive control (MPC) framework. We build on recent approaches that reduce the controller synthesis problem to solving one or more mixed integer linear programs (MILPs), where infeasibility of a MILP usually indicates unrealizability of the controller synthesis problem. Given an infeasible STL synthesis problem, we present algorithms that provide feedback on the reasons for unrealizability, and suggestions for making it realizable. Our algorithms are sound and complete, i.e., they provide a correct diagnosis, and always terminate with a non-trivial specification that is feasible using the chosen synthesis method, when such a solution exists. We demonstrate the effectiveness of our approach on the synthesis of controllers for various cyber-physical systems, including an autonomous driving application and an aircraft electric power system

    Time-optimal Control Strategies for Electric Race Cars with Different Transmission Technologies

    Get PDF
    This paper presents models and optimization methods to rapidly compute the achievable lap time of a race car equipped with a battery electric powertrain. Specifically, we first derive a quasi-convex model of the electric powertrain, including the battery, the electric machine, and two transmission technologies: a single-speed fixed gear and a continuously variable transmission (CVT). Second, assuming an expert driver, we formulate the time-optimal control problem for a given driving path and solve it using an iterative convex optimization algorithm. Finally, we showcase our framework by comparing the performance achievable with a single-speed transmission and a CVT on the Le Mans track. Our results show that a CVT can balance its lower efficiency and higher weight with a higher-efficiency and more aggressive motor operation, and significantly outperform a fixed single-gear transmission.Comment: 5 pages, 4 figures, submitted to the 2020 IEEE Vehicle Power and Propulsion Conferenc

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Enhancing Performance of Hybrid Electric Vehicle using Optimized Energy Management Methodology

    Get PDF
    The fuel consumption and the fuel management strategy (PMS) of the hybrid electric vehicle are closely linked (HEV). In this study, a hybrid power management technique and an adaptive neuro-fuzzy inference (ANFIS) method are established. Artificial intelligence represents a huge improvement in electricity management across different energy sources (AI). The main energy source of the hybrid power supply is a proton exchange membrane fuel cell (PEMFC), while its electrical storage devices are a battery bank and an ultracapacitor. The hybrid electric vehicle's power management strategy (PMS) and fuel consumption are closely related (HEV). In this paper, an adaptive neuro-fuzzy inference and hybrid power management strategy (ANFIS) approach is developed. A significant advance in electricity management across multiple energy sources is artificial intelligence (AI). The proton exchange membrane fuel cell (PEMFC) serves as the primary energy source of the hybrid power supply, and the ultracapacitor and battery bank serve as its electrical storage components

    Optimal torque vectoring control strategies for stabilisation of electric vehicles at the limits of handling

    Get PDF
    The study of chassis control has been a major research area in the automotive industry and academia for more than fifty years now. Among the popular methods used to actively control the dynamics of a vehicle, torque vectoring, the method of controlling both the direction and the magnitude of the torque on the wheels, is of particular interest. Such a method can alter the vehicle’s behaviour in a positive way under both sub-limit and limit handling conditions and has become even more relevant in the case of an electric vehicle equipped with multiple electric motors. Torque vectoring has been so far employed mainly in lateral vehicle dynamics control applications, with the longitudinal dynamics of the vehicle remaining under the full authority of the driver. Nevertheless, it has been also recognised that active control of the longitudinal dynamics of the vehicle can improve vehicle stability in limit handling situations. A characteristic example of this is the case where the driver misjudges the entry speed into a corner and the vehicle starts to deviate from its path, a situation commonly referred to as a ‘terminal understeer’ condition. Use of combined longitudinal and lateral control in such scenarios have been already proposed in the literature, but these solutions are mainly based on heuristic approaches that also neglect the strong coupling of longitudinal and lateral dynamics in limit handling situations. The main aim of this project is to develop a real-time implementable multivariable control strategy to stabilise the vehicle at the limits of handling in an optimal way using torque vectoring via the two independently controlled electric motors on the rear axle of an electric vehicle. To this end, after reviewing the most important contributions in the control of lateral and/or longitudinal vehicle dynamics with a particular focus on the limit handling solutions, a realistic vehicle reference behaviour near the limit of lateral acceleration is derived. An unconstrained optimal control strategy is then developed for terminal understeer mitigation. The importance of constraining both the vehicle state and the control inputs when the vehicle operates at the limits of handling is shown by developing a constrained linear optimal control framework, while the effect of using a constrained nonlinear optimal control framework instead is subsequently examined next. Finally an optimal estimation strategy for providing the necessary vehicle state information to the proposed optimal control strategies is constructed, assuming that only common vehicle sensors are available. All the developed optimal control strategies are assessed not only in terms of performance but also execution time, so to make sure they are implementable in real time on a typical Electronic Control Unit

    A Controls-Oriented Approach For Modeling Professional Drivers During Ultra-High Performance Maneuvers

    Get PDF
    In the study of vehicle dynamics and controls, modeling ultra-high performance maneuvers (i.e., minimum-time vehicle maneuvering) is a fascinating problem that explores the boundaries of capabilities for a human controlling a machine. Professional human drivers are still considered the benchmark for controlling a vehicle during these limit handling maneuvers. Different drivers possess unique driving styles, i.e. preferences and tendencies in their local decisions and corresponding inputs to the vehicle. These differences in the driving style among professional drivers or sets of drivers are duly considered in the vehicle development process for component selection and system tuning to push the limits of achievable lap times. This work aims to provide a mathematical framework for modeling driving styles of professional drivers that can then be embedded in the vehicle design and development process. This research is conducted in three separate phases. The first part of this work introduces a cascaded optimization structure that is capable of modeling driving style. Model Predictive Control (MPC) provides a natural framework for modeling the human decision process. In this work, the inner loop of the cascaded structure uses an MPC receding horizon control strategy which is tasked with finding the optimal control inputs (steering, brake, throttle, etc.) over each horizon while minimizing a local cost function. Therein, we extend the typical fixed-cost function to be a blended cost capable of optimizing different objectives. Then, an outer loop finds the objective weights used in each MPC control horizon. It is shown that by varying the driver\u27s objective between key horizons, some of the sub-optimality inherent to the MPC process can be alleviated. In the second phase of this work, we explore existing onboard measurements of professional drivers to compare different driving styles. We outline a novel racing line reconstruction technique rooted in optimal control theory to reconstruct the driving lines for different drivers from a limited set of measurements. It is demonstrated that different drivers can achieve nearly identical lap times while adopting different racing lines. In the final phase of this work, we use our racing line technique and our cascaded optimization framework to fit computable models for different drivers. For this, the outer loop of the cascaded optimization finds the set of objective weights used in each local MPC horizon that best matches simulation to onboard measurements. These driver models will then be used to optimize vehicle design parameters to suit each driving style. It will be shown that different driving styles will yield different parameters that optimize the driver/vehicle system
    • …
    corecore