We address the problem of diagnosing and repairing specifications for hybrid
systems formalized in signal temporal logic (STL). Our focus is on the setting
of automatic synthesis of controllers in a model predictive control (MPC)
framework. We build on recent approaches that reduce the controller synthesis
problem to solving one or more mixed integer linear programs (MILPs), where
infeasibility of a MILP usually indicates unrealizability of the controller
synthesis problem. Given an infeasible STL synthesis problem, we present
algorithms that provide feedback on the reasons for unrealizability, and
suggestions for making it realizable. Our algorithms are sound and complete,
i.e., they provide a correct diagnosis, and always terminate with a non-trivial
specification that is feasible using the chosen synthesis method, when such a
solution exists. We demonstrate the effectiveness of our approach on the
synthesis of controllers for various cyber-physical systems, including an
autonomous driving application and an aircraft electric power system