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Abstract

In the study of vehicle dynamics and controls, modeling ultra-high performance ma-

neuvers (i.e., minimum-time vehicle maneuvering) is a fascinating problem that explores the

boundaries of capabilities for a human controlling a machine. Professional human drivers

are still considered the benchmark for controlling a vehicle during these limit handling ma-

neuvers. Different drivers possess unique driving styles, i.e. preferences and tendencies

in their local decisions and corresponding inputs to the vehicle. These differences in the

driving style among professional drivers or sets of drivers are duly considered in the vehi-

cle development process for component selection and system tuning to push the limits of

achievable lap times. This work aims to provide a mathematical framework for modeling

driving styles of professional drivers that can then be embedded in the vehicle design and

development process.

This research is conducted in three separate phases. The first part of this work

introduces a cascaded optimization structure that is capable of modeling driving style.

Model Predictive Control (MPC) provides a natural framework for modeling the human

decision process. In this work, the inner loop of the cascaded structure uses an MPC

receding horizon control strategy which is tasked with finding the optimal control inputs

(steering, brake, throttle, etc.) over each horizon while minimizing a local cost function.

Therein, we extend the typical fixed-cost function to be a blended cost capable of optimizing

different objectives. Then, an outer loop finds the objective weights used in each MPC

control horizon. It is shown that by varying the driver’s objective between key horizons,

some of the sub-optimality inherent to the MPC process can be alleviated.
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In the second phase of this work, we explore existing onboard measurements of

professional drivers to compare different driving styles. We outline a novel racing line

reconstruction technique rooted in optimal control theory to reconstruct the driving lines

for different drivers from a limited set of measurements. It is demonstrated that different

drivers can achieve nearly identical lap times while adopting different racing lines.

In the final phase of this work, we use our racing line technique and our cascaded

optimization framework to fit computable models for different drivers. For this, the outer

loop of the cascaded optimization finds the set of objective weights used in each local

MPC horizon that best matches simulation to onboard measurements. These driver models

will then be used to optimize vehicle design parameters to suit each driving style. It will

be shown that different driving styles will yield different parameters that optimize the

driver/vehicle system.
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Chapter 1

Introduction

In this dissertation, we aim to better understand and provide a mathematical frame-

work for modeling the human element of high-performance driving. Professional drivers are

considered the pinnacle of performance when it comes to limit handling and minimum-time

maneuvering. In the automotive industry, these drivers are used as tools to evaluate vehicle

performance and provide the final validation check on many automotive development pro-

grams. Their subjective impressions tune the vehicle’s subsystems and overall all feel. In

motorsports, race teams meticulously tune vehicles around their team’s drivers to provide

a competitive platform. Different human drivers possess unique driving styles which lead

to different tunings to suit a particular style. In this work, we will present a method of

modeling different drivers driving styles. Using this framework, the vehicle can then be

numerically optimized for a particular driving style.

Vehicle minimum-time maneuvering is a direct result of the human spirit to push

the human/machine system to the limits of performance. Shortly after the invention of the

automobile, man took to racing. The first recorded race of two vehicles over a prescribed

path occurred in 1867 with home-built steam engine vehicles [6]. The first organized motor-

ing competition took place some years later, in 1894, in France [7]. As the years progressed

motorsports formalized into a myriad of different groups and series which has led to the

vibrant sport that is auto racing today. While the motorsports industry has a direct con-
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nection with this problem, it trickles into much of the automotive industry as a whole.

High-performance vehicles (i.e., sports cars and luxury vehicles) include performance tar-

gets in their development programs that benefit from the study of minimum-time vehicle

maneuvering. Professional drivers are still considered the benchmark of limit-handling per-

formance. By gaining a better understanding of how these drivers operate, we can better

design automotive safety systems that can operate at an equivalent level of performance.

Technologies such as obstacle avoidance, where time-optimal operation is critical, can bene-

fit from researching this problem [8]. Additionally, solutions to these problems reach outside

of the automotive industry and can influence the gaming industry [9] and even education

[10].

Minimum-time vehicle maneuvering problems are among some of the most compli-

cated and challenging problems to model and solve. The general mission of a driver during

this type of driving is to negotiate a set road or maneuver in minimum-time while obeying

constraints that take the form of vehicle dynamics and the track to be traversed. The com-

plicated nature of this arises from a few key areas. Frictional forces between the tire and

road are incredibly complicated and highly nonlinear with respect to control parameters

(i.e., slip quantities). Moreover, the behavior of this friction is highly dependent on the

road surface, thermal conditions, and tire solicitation. Modeling the vehicle dynamics also

introduces complications with suspension effects and aerodynamics. Both of these items

are well researched, and techniques for dealing with these effects exist albeit there is always

a trade-off between model fidelity and computational cost. While much research exists and

shall be reviewed in the subsequent chapters, full comprehension of the ‘human’ aspect of

driving is still not fully achieved. Much of the existing literature has concentrated on creat-

ing an ‘ideal’ driver model while it is well accepted that different drivers have different styles

in accomplishing the minimum-time objective. They can achieve similar performances uti-

lizing their different styles [11]. The goal of this work is to further the study of the ‘human’

aspect of controlling a vehicle during limit handling maneuvers and present a method for

modeling these aspects. The key contribution of this dissertation will be to provide a frame-
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work to mathematically model the human element of driving during ultra-high performance

maneuvers and then a means of optimizing a vehicle for a particular driving style.

1.1 Motivation

Racing and motorsports possess a very distinct connection to this work [1] with

millions of research dollars being spent for milliseconds of lap time improvement [12]. This

research also reaches to other areas of the automotive industry, such as high-performance

vehicles. These vehicles are a key segment to original equipment manufacturers (OEMs). In

the United States, just under 90% of OEMs sell a vehicle that participates in this segment.

Nearly all OEMs at some time or another have demonstrated prototype cars in this segment.

Sports and sport luxury cars account for nearly three-quarters of a million vehicle sold per

year [13]. This trend is not limited to the OEMs; suppliers also play a vibrant role in this

segment. For example, ultra-high performance tires account for 17% of the replacement tire

market in the US. This contribution is worth over five billion dollars per year [14]. These

companies are heavily investing in research and development and acquiring substantial

revenue through this channel.

As technologies advance and driver assistance systems become more prevalent, gain-

ing a better understanding of how professional drivers accomplish minimum-time driving

becomes increasingly important. Driver assistance algorithms should feel ‘natural’ to their

human counterpart and be able to perform as good as a human can. A critical area where

this is the case is obstacle avoidance where a vehicle is controlled typically on the vehi-

cle performance envelope to avoid an imminent collision. Another domain that this work

contributes to is to the concept of automated proving grounds. By automating the testing

component of vehicles, human errors can be mitigated, and a consistent test can be realized.

This work is still in its infancy but has had important research activity [15]. From here,

the obvious extension is autonomous driving where a vehicle needs to be able to perform

with the same capability as a human. Research has also been established in the area of au-
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tonomous racing [16]; moreover, commercial race series have established themselves around

this concept, i.e., Roborace [17].

1.2 Research Overview

The research goal is divided into three phases. First, we will find a suitable frame-

work for modeling the human element of driving. Next, onboard measurements will be

studied to demonstrate the differences we aim to model. The mathematical framework will

then be applied to the onboard data to create a model of a particular driving style. Lastly,

we will use the identified driver model to optimize vehicle parameters.

1.2.1 Mathematical Framework

In the first phase of the work, we will identify a mathematical framework that is

capable of modeling differences in driving styles. We explore Model Predictive Control

(MPC) as it has been shown to model the human decision process [18]. MPC traditionally

uses a fixed-cost function which practically approximates a global goal. In other words, a

minimum-time vehicle maneuvering problem is typically solved with a fixed time-optimal

cost in each MPC horizon. This approximation is sub-optimal as MPC neglects any infor-

mation outside of the scope of the current horizon. Just because time is minimized in each

horizon, does not mean that time will be minimized globally.

Professional drivers are able to learn racing circuits and find strategies to globally

minimize maneuvering time. For instance, in certain sections of the track, it can be advan-

tageous to sacrifice maneuvering time to maximize velocity and ‘setup’ for the next section

on the course. This strategy is especially true on a curve followed by a long straight section

of track [19]. Motivated by how drivers learn different sections of a race track, we explore a

blended MPC cost that is capable of capturing different objectives. In this work we consider

minimizing time and maximizing velocity at the exit of the horizon; however, this could be

further extended to include any suitable objective. Next, an outer loop optimizer learns the
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$J = T_{lap}$
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MPC Horizon
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Optimal Control 
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Track Model C(s)
Initial Conditions
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etc.

Figure 1.1: Overview of the proposed cascaded optimization. The optimal state and control
variables are denoted as x∗ and u∗, respectively.

ideal schedule of the objectives used in each local MPC horizon. This cascaded optimization

structure can be seen in Figure 1.1. This structure allows path information outside of the

current MPC horizon to be included in the local optimization via modification of the local

cost function. This framework will be used to show how some of the inherent sub-optimality

of MPC can be alleviated. Also, we will show that different objective schedules found by

the outer loop optimizer yield identical performance while exhibiting different trajectories.

1.2.2 Experimental Data

The second phase of this research explores experimental data of two drivers that can

achieve identical lap times while exhibiting different styles. There are a few key problems

that arise in dealing with measurement; specifically, in preparing measurements to compare

to simulation. First, modeling the track features are explored by using optimal control to

fit Global Positioning System (GPS) data of a vehicle driving the boundaries of the track

[20]. This track model will be used later in the modeling efforts.

In general, onboard vehicle measurements consist of a limited set of sensors. GPS

data was not available on our measurements of the professional drivers and such, a method

of reconstructing the racing line needed to be developed. In this work, we propose a novel

optimal control strategy of reconstructing the racing line from a limited set of sensor data
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and the previously derived track model. This racing line reconstruction technique also

provides a method to change the basis of the data from the time domain to the path

distance traveled domain which is used in our vehicle dynamic simulation. In this phase, we

also explore the results of the reconstructed racing line to compare and contrast the driving

styles of the two professional drivers.

1.2.3 Modeling Driving Style

The final phase of this research puts the previous two phases together. We will use

the cascaded optimization framework previously explored to create a mathematical model

of the different driving styles seen in the experimental data. The cascaded optimization

finds the schedule of objectives weights (used in each MPC horizon) that best matches the

simulation to the onboard vehicle data. We will show that this framework can model key

driving style differences between the two drivers. The final step of this work is to use these

driver models to optimize vehicle parameters to suit each style. We will then use another

cascaded optimization with each driver model to optimize tire parameters. We will show

how each drivers’ optimal parameters differ; thus, motivating how mathematical modeling

driving style is critical to optimizing the human/machine system.

1.2.4 Key Contributions of this Dissertation

The following summarizes the key contributions of this dissertation and will be

discussed in detail in the subsequent chapters:

• Proposed cascaded optimization framework to model driving style

• Alleviated inherent MPC sub-optimality by globally optimizing local MPC objectives

• Demonstrated local minima in the solution space for minimum-time vehicle maneu-

vering

• Attributed these local minima to driving style differences
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• Proposed novel optimal control based racing line reconstruction using limited onboard

vehicle measurements

• Used cascaded optimization to fit onboard vehicle measurements and model individual

driving style

• Optimized vehicle parameters to suit a particular driving style

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 will present a

literature review of solution techniques for minimum-time vehicle maneuvering. In Chapter

3 the mathematical framework that will be used to model driving style is detailed. Our

work in this chapter was published in [21, 22]. Chapter 4 presents our method for recreating

the racing line from a limited set of onboard measurements and a track model and has been

submitted for publication in [23]. Chapter 5 uses the cascaded optimization framework and

the onboard measurements to create a model of two different professional drivers that are

able to achieve identical maneuvering times. This chapter also explores using the previously

identified driver models to optimize vehicle parameters to suit each driving style. This work

has been submitted for publication in [24]. Finally, Chapter 6 will offer conclusions and

possible directions of future work.
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Chapter 2

Literature Review

While racing began nearly at the same time as the inception of the automobile,

it took some time before engineering principals were applied to investigate vehicle perfor-

mance. According to [25], Mercedes-Benz is credited with the first applications of engineer-

ing principals on the performance of race cars as early as the 1930’s with formal publications

beginning in the 1950’s. The work presented in [26] gives a glimpse into the early days of

race car engineering. At this point in racing, vehicles were relatively independent of aerody-

namic forces which makes the vehicle performance envelope independent of speed. Because

of this, the minimum-time problem over the race circuit can be broken down into a series of

straight segments connected by constant radius turns. If the maximum lateral acceleration

is known, then the speed in these constant radius turns is: Vx =
√
AymaxR. Finally using

the maximum tractive and braking accelerations of the vehicle, the optimum speed profile

between turns can be calculated. This estimate of vehicle velocity around the track can be

integrated over the path distance to derive the lap time. This method is referred to in the

literature as the steady state method of determining lap time. As time progressed, so did

the solution methods.

Today solutions of minimum-time vehicle maneuvering problems can be broken down

into four general classifications. The first type of solutions are the performance envelope

methods (also called quasi-steady-state methods) which solve for a series of steady-state
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conditions that minimize vehicle maneuvering time over a predefined racing line. The

second classification of problems is the two-step, path planning/path following solutions.

In this formulation, a full transient vehicle model is controlled to negotiate a fixed-path in

minimum time. The third class of solutions, which will be referred to as the optimal control

methods, use optimal control theory to find an optimal set of vehicle inputs to negotiated

a track in minimum time. In this method, the racing line is free to vary within the track

width boundaries. In addition to these three main classes, machine learning techniques have

also been applied to model driving.

The remainder of this chapter is organized as follows. First, Section 2.1 discusses

the performance envelope methods. Section 2.2 discusses the path following portion of the

two-step path planning/path following solution. Because path planning techniques are used

in both of the previous classes of problems, they are discussed as a whole in Section 2.3.

The optimal control solution techniques are discussed in Section 2.4. Finally, examples of

machine learning application to minimum-time vehicle maneuvering can be seen in Section

2.5.

2.1 Performance Envelope Methods

These are the earliest examples of solving minimum maneuvering time problems and

as discussed above have been around since the 1950’s. A good description of this method

and history is described in [25]. In these early days of the work, aerodynamic downforce on

race cars was negligible. That is to say that the coupling between the performance envelop

of the vehicle was relatively independent of speed. Because of this, the solution to the

minimum-time problem is relatively straightforward and could be calculated analytically.

As discussed above, the racing circuit can be broken down into a series of constant radius

curves connected by straight lines. By assuming cornering limits the vehicle speed in the

turns, the velocity in the turns can be calculated. The remainder of the problem is to

identify the optimal longitudinal speed profile that connects the two turns. With the full
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Figure 2.1: Performance envelope, g-g-speed diagram. Based on [1].

velocity profile determined around the track, it can be integrated over the track distance

and a measure of lap time can be extracted.

As time progressed, the solution methods were advanced to include the combined

lateral and longitudinal cornering case. Also, methods of treating aerodynamics were intro-

duced as the performance envelopes on modern race cars are highly dependent on speed [1].

A general speed-dependent performance envelope (g-g-speed diagram) can be seen in Figure

2.1. Full ground effect cars introduced in the late 1970’s have substantially increased tire

loading to the point that the cornering performance achieved is many times greater than

by mass alone. Now, that the performance envelope is directly coupled with speed, solving

the problem requires an iterative solution.

These solution techniques first require identifying the performance envelope of the

vehicle (g-g-speed) diagram and a model of the racing line (curvature versus distance C(s)).

Identifying the performance envelop problem will be discussed in the next subsection and

the subject of fitting the racing line will be discussed later in Section 2.3 as this subproblem
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Figure 2.2: Method for calculating optimal velocity profile. Based on [2].

is shared with other methods of solving minimum-time vehicle maneuvering problems. With

these two items, the racing line can be discretized into a series of points and steady-state

conditions can be found at each point that minimizes the vehicle’s maneuvering time. The

solution is found by identifying the apexes at each corner; this is the location where peak

lateral acceleration occurs, and this governs the maximum speed in the turn. Moving

forward from the apex location a profile of the maximum longitudinal acceleration possible

is calculated. In addition to this, the maximum deceleration from the next apex backward

is calculated. The point where they intersect is the switching point between an accelerating

and braking strategy. See Figure 2.2 for a illustration of this. This process is then repeated

around the entire race circuit. Some examples of this work can be seen in [27, 28, 29].

2.1.1 Performance Envelope

The performance envelope can be found a few different ways from optimization of

mathematical models to fitting onboard vehicle measurements. We will concentrate on the

mathematical framework route that uses a vehicle model (we will denote this as f(x,u, t)).
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The works in [2, 30, 31] use optimization to find steady state conditions that make up the

full performance envelope. They discretize the space into a cloud of points and optimize

for these steady state conditions. The process is started by finding the vehicle’s maximum

speed (presumed to be in a straight line) by solving the following optimization.

min
u

J = −vx

s.t. ẋ− f(x,u, t) = 0
(2.1)

where the goal is to find the vehicle inputs u that maximizes velocity (vx) subject to the

vehicle dynamics f(·). Next, the vehicle maximum longitudinal acceleration (v̇x) is found

at several discrete intervals of the vehicle’s maximum speed.

min
u

J = ±v̇x

s.t. ẋ− f(x,u, t) = 0
(2.2)

We now have a shape of vehicle longitudinal potential versus speed. The remainder of the

problem is to fill in the lateral potential (peak v̇y) of the vehicle at discretized points along

the peak longitudinal acceleration at each speed increment.

min
u

J = ±v̇y

s.t. ẋ− f(x,u, t) = 0
(2.3)

For symmetric vehicles, one side of the envelope is sufficient (i.e., J = +v̇y only) to charac-

terize the full envelope.

There are many works utilizing this method, and due to the relatively small compu-

tational burden, they are widely used to this day; especially for a large design of experiment

studies. The remainder of this section will summarize many of the works that utilize this

method. Dominy wrote a series of fascinating papers utilizing performance envelope meth-

ods to study general aerodynamic effects [32]. His later work even incorporated aerodynamic

yaw effects derived from wind tunnel testing [33]. Aerodynamic effects on lap times were
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also studied in [34]. Trade-offs of weight, power, and even hybrid powertrains were explored

in [35]. In [36] multi-objective optimization was used to examine the tradeoff that different

vehicle setup strategies had in a small and large radius corner. Kurt et al. used parallel

computing and steady-state cornering simulations in [37] to examine the trade-offs between

key vehicle parameters for two different radius turns via a multi-objective Pareto analysis.

In 2000, Siegler compared a quasi-steady-state simulation method with steady-state meth-

ods (which treats longitudinal and lateral controls separately) and a full transient method

on a short maneuver [38]. In this article, it was recommended to use a full transient solu-

tion because it takes into account factors that are not accounted via the other methods thus

would allow greater tuning. These performance envelope methods were used by Kapania

et al. to efficiently compute the optimal velocity profile of a fixed path in [39]. Also, [40]

planned the optimal velocity profile considering three-dimensional road effects for an au-

tonomous vehicle near the vehicle’s performance limits. In [41] a simple quasi-steady-state

lap time simulation tool was discussed that utilized a backward/forwards integration scheme

and a simple friction ellipse constraint to optimize gear ratios of a racing vehicle from a

discrete set of possibilities. Both optimization and exhaustive search of the discrete points

were considered. Results of the vehicle simulations were compared to onboard vehicle data.

These methods have been successfully used to study sensitivities of key vehicle parameters

and evaluate different active technologies [42, 2]. Some tools using this simulation technique

were even commercialized [43]. More recently, the work in [44] introduced a method for

including transient effects into quasi-steady state solution methods via iteratively updating

quasi-steady state solutions at a particular location on the track to obey a fully transient

vehicle model. This alleviates the lack of ability to model transient vehicle effects that these

solutions suffer from.
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2.2 Path Following

The previous solution type provides a quick, computationally inexpensive solution

to the minimum-time maneuvering problem that has shown to have good correlation with

actual vehicle data with distinct overprediction of performance during heavy braking phases

on a race track [30, 31]. However, this approach neglects the effect of the human driver

altogether which has been shown to have a significant effect on this problem [45, 46]. Even

very early work showed the importance of preview in human control. The work in [47]

shows how very early experiments of “drivers” were used to correlate optimal tracking con-

trol models of drivers. In contrast to the performance envelope methods of the automotive

industry, the aviation industry took a different path in the 1950’s. Their approach was

to study and model how pilots interact with aircraft. This early work was extended to

the man-machine interface of the automobile as shown in [48] and one of the first driver

models of note is the crossover model [49]. This model utilizes a simple experimentally

derived transfer function to model a driver’s control actions during regulation tasks such as

negotiating a straight section of highway. While this type of driver model is inadequate for

modeling minimum-time vehicle maneuvering problems, it is noteworthy because even mod-

ern optimal preview control techniques reduce to the crossover model for regulation tasks

[50, 51]. While the complete history of driver modeling is out of the scope of this chapter,

several good literature review papers exist that could be consulted [52, 53, 54]. Much of

the work in minimum-time vehicle maneuvering is typically deeply rooted in MacAdam’s

optimal preview control work [55]. Again, this method assumes a fixed racing line to follow.

Planning the path to be followed is discussed in Section 2.3. Despite this shortcoming, this

method is extremely relevant and useful. It can be implemented with relatively low com-

putational cost and can be fairly robust while including the important effects of transient

vehicle behavior and a way to model the driver.

This method is the method typically used by commercial software (for example

CarSim [56]). The driver model in Tesis Dynaware (Vedyna) is explained in [57]. In this
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software they use a two-step approach where the initial racing line is planned a priori [58]

and then tracked via the driver model. The racing line calculation includes the ability to

modify the acceleration limits (g-g-v diagram) so that the model can be adjusted to model

different levels of driver skills. They use a nonlinear controller to steer the vehicle model.

Many academic works utilize this solution method also. In [59], IPG’s CarMaker

was used to simulate lap time around two different tracks. A design of experiment was

created using Taguchi’s approach, and key suspension parameters were examined on their

relative effects on the total performance. A series of papers from Velenis and Tsiotras gave

a very formal framework for a solution of the velocity profile generation of a vehicle with a

fixed friction envelope. In their first paper [60], the optimal velocity profile was derived for a

particle motion model constrained to a fixed path with a fixed friction ellipse. They derived

the adjoint system of equations and enforced first order necessary condition of optimality

to achieve a solution. They looked at several cases of path primitives (i.e., constant radius,

decreasing radius, and increasing radius turn) and were able to concatenate a series of solu-

tions to achieve the optimal velocity profile for an arbitrary path. They then extended the

work in this paper to include a bicycle model vehicle and a simple Pacejka tire model [61].

To mitigate stability issues, constraints were added at critical vehicle slip angles. Their

work in [62] gave analytical solutions of the minimum-time problem for a vehicle bound by

a friction ellipse on a prescribed path. In this work, they also proposed a receding horizon

method for calculating the optimal velocity profile that could be implemented in an online

control strategy. The work in [63] proposed a quadratic minimization approach to identify

the driver input to best match the reference path and reference trajectory computed a pri-

ori using a performance envelope method. In [64], a reference trajectory was found using

approaches discussed in Section 2.4 for a simple motorcycle model. Those trajectories were

then tracked via Proportional Integral Derivative (PID) control on a higher fidelity vehicle

model. In [65], Sharp used a linearized motorcycle model, LQR theory and an iterative

approach to learn the ideal speed profile for a fixed path. This technique was applied to

race cars in [66]. The work in [67] also considered controlling motorcycles and concentrated
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on creating a nonlinear tracking control to follow the desired trajectory. They applied their

controller to a high fidelity multi-body motorcycle model in ADAMS. In [68], lap simula-

tion was conducted by using a linearized and discretized vehicle model. The time-varying

parameters of the model captured the nonlinear vehicle effects and this model compared

favorably to a high-fidelity ADAMS vehicle model. A reference simulation was used as the

reference path to follow, and two control strategies were examined: predictive control and

finite-time control strategies which showed reasonable results. The main contribution of

this work is showing how a strictly linear system could be used in a highly nonlinear vehicle

model with good results. Experimental results of a nonlinear tracking controller consider-

ing three-dimensional road effects were presented in [40] at Thunderhill Raceway. In [69],

Dynamic Programming (DP) was utilized to solve for the optimal velocity profile of the

vehicle given a fixed path and identify an optimal hybrid powertrain policy (split between

an internal combustion engine and electric motors). Experimental data of autonomous

vehicles using tracking controllers to achieve near limit handling performance have been

demonstrated in [70] using their Audi test vehicle [16]. In this work, they concentrated

on tracking a racing line modeled with a series of constant radius, straight, and clothoid

connector segments which they have shown to be a suitable method for modeling and fitting

a racing line [71, 72, 73]. Real-time control has been investigated in [74] where Nonlinear

Model Predictive Control (NMPC) was used to track a predefined trajectory. In this work,

they showed experimental results implemented on scale remote control vehicles where the

autonomous algorithm was able to beat a human controller.

A significant contribution in this method came from Boyd et al. [75] where they

applied the work in [76] to transform a fixed path time-optimal vehicle maneuvering problem

to a convex optimization via a novel transformation. This convexification has implications

for real-time critical control where computational cost is critical.
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2.3 Path Planning

Both the performance envelop methods, and the two-step path planning/path fol-

lowing methods require a path to follow. There are several methods for identifying the

racing line, and they can be broken into three broad categories, racing lines derived from

onboard vehicle measurements, geometric optimization, and vehicle simulation. They will

be discussed in the subsequent subsections.

2.3.1 Path Planning from Onboard Measurements

From onboard measurements, the racing line model can be determined one of two

ways, either directly from the geometry of the measured path (GPS or estimated local

coordinates x, y points, or from simple kinematic relationships of the vehicle measurements;

i.e., C = ψ̇/vx. GPS measurements can directly be used to estimate the racing line [77],

although, care must be taken when converting these measurements into paths used to

follow as they contain noise, satellite dropouts, and other measurement issues that must

be treated to achieve a reasonable model of the path to be followed. The work in [41]

discusses reconstructing the path curvature from the x, y coordinates of the measured path

after filtering. In [78, 72], a racing line was fit from measurement data by a series of

straights constant radius curves, and clothoid segments. In [5], the racing line (C(s)) was

fit using simple kinematic relationships of the measured vehicle states. In this work, an ad-

hoc method of compensating integration errors at each integration step with a kinematic

vehicle model is discussed resulting in a closed curve model of the racing line around a

full race circuit. Rather than using the previous ad-hoc methods of correcting integration

errors, the work in [23] uses a model of the track itself and a simple particle motion model

to find the racing line that best matches onboard data while remaining within the track

width boundaries.
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2.3.2 Path Planning via Geometric Optimization

In several works, the racing line is derived from geometrical properties rather than

based on measurement or simulation. The work in [63] derives two racing lines; one of

minimum curvature and one of minimum distance. They manipulate control points of

splines and constrain them such that they remain within the track boundaries. Then, they

combine these two racing lines via a combination factor, ε. They use a performance envelop

method to determine the optimized ε that minimized the vehicle maneuvering time. This

approach operates on the theory that when selecting a racing line, the driver is balancing

two objectives, going as fast as possible and traveling the shortest distance. The work in

[79] extends [63] to racing video games and decomposes the track in to several segments

where combination factor ε can be modified. Simulations show results for a large variety of

tracks.

2.3.3 Path Planning via Simulation

Using the previously discussed performance envelope methods of lap simulation is

another method of finding the racing line. The racing line can be modeled as a general curve

via a set of basis functions such as splines or Bézier curves [80]. The parameterized curves

can be manipulated from a set of control points. An optimization routine can manipulate

these control points and then a performance envelope method provides a measure of lap time

of the current iterate. The work presented in [81, 82] uses genetic algorithms to move spline

control points at track waylines (lines perpendicular to the track) to optimize lap times.

The control points can be constrained to remain within the track width boundaries. In [82],

the optimal racing line at the Circuit de la Sarthe (Le Mans) was found and compared to

measurements from onboard vehicle data. The work in [71] moves control points of a set of

straight lines, clothoid segments, and constant radius turns to optimize lap times.

While these three classes capture the majority of the methods, a few others note-

worthy works do not fit into these general classification. The work in [27] discusses how

the “groove” (racing line) can be modeled with piecewise fifth order spiral functions. Other
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methods are also discussed in the literature. In [83], a computationally inexpensive frame-

work for finding a suitable racing line using a linearized vehicle model and quadratic pro-

gramming is discussed. In [74], rapid exploration of random trees (RRT) was used as

means of path planning. Finally, the results from the one step trajectory optimization

(discussed later in Section 2.4) can be used as the racing line to be followed by these two

step algorithms. This is explored in [84, 85, 15] for the application of providing a reference

trajectories for real-time control.

2.4 Optimal Control

The final class of problems is the optimal control approach. Optimal control theory

is used to find the vehicle control inputs (i.e. steering, brake, throttle, etc.) subject to

constraints such as the vehicle dynamics and road boundary. For general background in

optimal control theory, the reader is referred to [86, 87]. These problem can be posed in a

general form such as:

min
u

J =
sf∫
so

1
ṡds

s.t. dx
ds − f(x,u, s) = 0

h(s,x(s),u(s)) ≤ 0

g(s,x(s),u(s)) = 0

gb(x(s0),x(sf ),u(so),u(sf )) = 0

(2.4)

where the vehicle dynamics are written as f(x,u, s). In this case, the independent variable

is distance traveled s. The general set of vehicle states are x and vehicle controls are u.

Inequality constraints are placed on the problem (h(·)) and are typically used to constrain

the vehicle to remain within the track width boundaries and limit the the longitudinal

control to remain within the peak engine power. Equality constraints are modeled by g(·).

Boundary conditions are denoted in gb(·).

In this problem, the racing line is an outcome of the optimal control inputs to the
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vehicle and is free to vary as necessary. This line of work began in the early 1990s [88]

and [89] which may be considered the first significant formulation of these problems [90].

Shortly after Hendrix et al., Da Lio published a very similar work for motorcycles [91]. The

work in [92] provides an excellent background on this topic.

The remainder of this section is organized as follows. First, solutions of optimal con-

trol problems are discussed in Section 2.4.1. Then, specific sub-problems and applications

within minimum-time vehicle maneuvering are discussed in Section 2.4.2.

2.4.1 Solving The Optimal Control Problem

Once the optimal control problem is posed, there are several methods for solving

these problems. The solutions are well reviewed in [3, 93]. Solutions of optimal control

problems are classified into three categories: indirect methods, direct method, and dynamic

programming. Indirect methods utilize calculus of variations to derive first-order necessary

conditions of optimality. Direct methods discretize the optimal control problem and solve

the discretized problem via nonlinear programming problem (NLP) techniques. Dynamic

programming is rooted in solving the Hamilton-Jacobi-Bellman equation and is an attractive

optimal control technique as it can yield a state feedback control law and it is guaranteed to

be a globally optimal policy. However, It suffers from the curse of dimensionality and these

problems quickly become intractable for all but the simplest vehicle models [94]. Despite

the fact this solution method is not currently widely used (and will not be discussed further

here), recent development in the field such as Differential Dynamic Programming looks

promising as a way to alleviate some of the computational burden [95].

2.4.1.1 Indirect Methods

Indirect methods aim at deriving the first-order necessary conditions of optimality

via application of Pontryagin’s Minimum Principle. The problem resulting from these indi-

rect methods is a Hamiltonian boundary value problem which in general is quite arduous to

solve. Still, there are many works offering examples utilizing indirect methods [89, 91, 96].
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They have also been applied to many sub-problems in this field: extensive study of differ-

entials [97], gear ratios [98, 99], racing karts [100], varying model fidelity [101] and vehicle

layouts [102].

While not strictly vehicular optimal control, a substantial piece of work was released

in 2004, in the form of a software package, MBSymbia. This software provides the abil-

ity to generate symbolic equations of motion for multibody systems automatically. This

software has been heavily utilized in recent works that use indirect methods. In [103], the

software package is demonstrated by deriving the equations of motion for a motorcycle.

An interesting feature of this work is the automatic ability to linearize the system which

can then be used to perform classic control techniques as demonstrated in this work. In

[96, 104] this technique was applied to minimum-time vehicle maneuvering. The result of

these derivations is a two-point boundary value problem. They were able to solve this

problem numerically, and the optimal solution was presented on a full race track (Adria cir-

cuit). In a later work, real-time control was addressed [105] (for other applications besides

minimum-time vehicle maneuvering).

2.4.1.2 Direct Methods

The second class of solution methods is direct methods which aim at solving the

posed optimal control problem instead of deriving the necessary conditions. This is generally

done by transforming the optimal control problem into a Nonlinear Programming Problem

(NLP) via discretization [106, 107]. This method has been used since the late 1990s to

solve minimum-time vehicle maneuvering problems [108] and much of the modern work is

rooted in [90]. Direct methods have been utilized to research many problems in minimum-

time vehicle maneuvering. Sensitivity studies were examined in [109] and showed good

correlation between practical observations to simulation.

Direct methods can generally be divided into two classes: methods that parameterize

the control input only and methods that parameterize both the state and control input.

They are typically referred to as shooting methods and collocation methods, respectively.
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Figure 2.3: Classification of direct methods. Based on work in [3].

This classification can be seen in Figure 2.3. While the intricacies of all of the different

methods are outside of the scope of this document, a brief overview is written for single

shooting, multiple shooting, and collocation methods below. The reader is referred to one

of the many excellent resources on this topic for the full details [3, 93, 107, 106, 4].

2.4.1.3 Shooting Methods

The single shooting method is the simplest place to begin. This method’s name

got its origins from shooting a projectile at a target. As the name implies, a cannon is

aimed at a target and shot. The difference between the projectile and intended target is

assessed, the cannon re-aimed, and the process is recursively repeated until the target is

hit. In this method, the control input is parameterized across the solution space. This

parameterization can be anything from a zero-order hold scheme which holds the current

control value constant until the next discrete point, spline interpolation, or another basis

function. The user provides an initial guess of the discretized set of control points, and the

process begins. The system dynamics are then integrated given the control signal. Next,

a sensitivity of the cost function with respect to each discrete control point is established.

These gradients are used to construct the search direction. A step is taken along the

identified search direction to reduce the cost of the optimization. The new control inputs

are then retested, and the process continues until a local optimum is found. Unfortunately,
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Figure 2.4: Illustration of single versus multiple shooting methods. Based on the work in
[4].

this method is highly sensitive to the initial guess as the guess is propagated through the

entire system dynamics. Issues like numerical stability make this method difficult to achieve

robust solutions. The user must be fairly close to the solution to ensure convergence.

Multiple shooting methods aim to address the problems of single shooting methods.

The solution space is divided into multiple single shooting segments. At the interface

between segments defect equality constraints are introduced to constrain the solution to

be continuous across the segments. While these methods introduce additional constraints

in the optimization, they generate sparse NLP problems that are computationally easier

to work with. They are also much less sensitive to the initial guess than single shooting

method, and many successful optimal control codes use this method for solving the optimal

control problem. One such example is ACADO [110]. Figure 2.4 illustrates both single

shooting and multiple shooting methods.
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2.4.1.4 Collocation Methods

In these methods, both the state and control inputs are described by a set of basis

functions, and the solution is constrained to satisfy the dynamic constraints only at collo-

cation points in the trajectory. Depending on the parameterization procedure and type of

collocation used, these solutions are further subdivided into several methods, and the reader

is referred to [3, 4] for the full details. A common parameterization is to use Lagrange poly-

nomials to globally parameterize the solutions space (this parameterization is classified as

a pseudospectral or a global orthogonal collocation method). This is the method employed

by the solver GPOPS-II which is used extensively throughout this dissertation [111].

2.4.1.5 Comparison of the Two Methods

There is a discussion on which method is more suited to this problem [92]; however,

both methods have yielded excellent results [112, 95]. Moreover, the work in [113] shows

that the Lagrange multipliers used in direct methods are discrete approximations of the co-

state variables found in the indirect methods and with either method, numerical methods

are required (for all but very simple systems) to solve the problem.

2.4.2 Specific Sub-Problems

The subsequent subsection will be divided into different subproblems and application

areas for these optimal control solution.

2.4.2.1 Early Solutions

As previously discussed, this method has been applied since the 1990’s. In [88], a

transient vehicle model was used to minimize maneuvering time for a hairpin turn. The

boundary conditions were chosen such that additional constraints were not necessary to keep

the vehicle on the track. The work presented in [89] can be considered the first significant

formulation of the optimal approach to solving minimum-time problems. In this paper,

they solved the problem for simple short maneuvers utilizing optimal control theory and

24



Pontryagin’s Minimum Principle. In [114], a simple linearized vehicle dynamic model and

a quasi-Newton penalty method was used to solve for the optimal trajectories.

A very extensive set of papers from authors Lot, Da Lio, et al. was presented in

literature dating back to the mid-1990’s where they were at the forefront of this work. In

[91], it is claimed that Da Lio independently and nearly simultaneously to [89] formulated

the optimal control approach for motorcycle handling [115, 116]. In [91] they concentrated

on utilizing indirect methods to solve the problem for motorcycles. Rather than minimizing

time, the distance over a fixed time was maximized. The boundary constraints of the

vehicle were placed into the cost function via penalty functions. The underlying two-point

boundary value problem was numerically solved in this work. Good correlation between

data on a section of the Mugello racing circuit in Italy and the optimal control solution was

shown.

Sharp et al. has also produced a series of important works starting in the late

1990’s that help lay the foundation for modern minimum-time vehicle maneuvering problem.

Allen’s master’s thesis [108] shows how Sequential Quadratic Programming (SQP) could be

used to solve for the optimal vehicle inputs subject to vehicle dynamics and road constraints

for a short maneuver. Casanova in his dissertation [5] later extended these solutions to a

full track.

In addition to the previously mentioned works, Siegler et al. also worked on some

of the early publications. In [38], they compared and contrasted these optimal control

solutions to performance envelope methods. They later refine their trajectory optimization

on a short segment and showed a correlation to experimental data [117, 118].

2.4.2.2 Extending Solutions Over Short Segment To Arbitrarily Long Track

Solving an arbitrarily long track is significantly more difficult than a short segment,

and many works looked at ways to extend short segment solutions to arbitrarily long tracks.

Casanova utilized a multiple shooting algorithm to facilitate the solution of an entire race

track [5]. In this work, he used automatic differentiation to speed up computations [119].
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Kelly took the research in a different direction and used a receding horizon approach to

extend a short segment solution to an arbitrarily long track [120, 45]. This work had

the added focus of dealing with a black-box vehicle model. Therefore, he relied on finite-

differencing techniques to obtain derivative information and a Feasible Sequential Quadratic

Programming (FSQP) optimization algorithm [121] to guide solvers away from exploring

non-feasible regions of the solution space.

Today, state-of-the-art solvers have been able to realize optimal control solutions of

minimum-time vehicle maneuvering over a full track [20].

2.4.2.3 Modeling Human Drivers

At the heart of this work is modeling the human element of driving. There have

been several works that concentrate on modeling this in various ways. While not strictly

minimum-time maneuvering, [122] showed how different driving styles (comfort-oriented

driving, aggressive driving, etc.) could be modeled via different cost functions in an MPC

framework. The work in [120] considered the control grid spacing (in direct methods)

as analogous to the human driver control bandwidth and studied its effect on maneuvering

time. The work presented in [123, 124], aimed to recreate specific advanced driver maneuvers

such as trail-braking via modifying the optimal control formulation. A robust, tube-based

MPC was also explored in [46] to model drivers in the presence of disturbances.

2.4.2.4 Vehicle Optimization

A typical goal after modeling a driver is optimizing the closed-loop system. Several

works used these optimal control techniques to analyze and optimize vehicle setup. In [90],

a four-wheel vehicle model with a differential and a simple aerodynamic model was used to

solve the minimum-time vehicle maneuvering problem for a double lane change maneuver.

This was solved via direct methods and an SQP solver. This solution was used to evaluate

the effect of yaw inertia on maneuvering time. In [109], the sensitivity of maneuvering time

to vehicle mass was explored, and the optimal location of the vehicle center of gravity was
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explored in [125].

The work in [20] presented a very compact and efficient vehicle model (three degrees

of freedom for the sprung mass motion and treated loads, slip ratios, and steering as inputs

to the system). In this work, extensive modeling of the situation where a tire loses contact

with the ground was treated. Track modeling using optimal control and GPS data on the

Barcelona Formula One circuit was discussed. They then were able to include vehicle setup

parameters in the optimal control formulation and solve for them simultaneously with the

state and control trajectories. They optimized the following vehicle parameters: center of

gravity location, aerodynamic center of pressure, roll stiffness distribution, and differential

constant. In this work, they relied on direct methods implemented in the ILOCS software

package [126]. A stability analysis with respect to the longitudinal aerodynamic center of

pressure was also presented. The work in [97] extensively explores optimizing differentials

for minimum-time maneuvering situations. They use an indirect method to solve optimal

control problem for a double lane change and investigate the ideal coupling between drive

tires on a rear wheel vehicle. The trade-offs between lap time, tire wear, and controllability

are also discussed.

2.4.2.5 Powertrains

Both direct and indirect methods were used to solve for the optimal control on a

full course of vehicles equipped with hybrid powertrains [127] (indirect) and [128] (direct).

In [128], energy recovery system on modern Formula One race cars were modeled. In this

work, they also considered variable aerodynamic properties that were functions of longitu-

dinal velocity in the formulation. This work uitalized the GPOPS-II software [111] which

implements an adaptive direct collocation method of solving the optimal control problem.

This work [128] was also presented in [93] along with a fantastic review of numerical methods

for solving optimal control problems.

While not minimum-time maneuvering, [129, 130] offers a fascinating paper looking

at minimum fuel, just-in-time optimal control problems of a hybrid race car. They showed
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the importance of three-dimensional road features in the control strategy when studying

a circuit with significant elevation features. This work stands out also as it gives a very

practical insight into formulating the numerical solution to the optimal control problem

including how they arrive at the initial guess.

In both works [131, 132] torque vectoring was explored by using an optimal control

formulation. A causal torque vectoring strategy is explored an compared to the ‘ideal’

optimal control trajectory through the maneuver.

2.4.2.6 Modeling the Dynamics

In [133] reduction in the computational effort was researched by using a linearized

vehicle model with an MPC approach. Berntrop et al. explored different vehicle and tire

modeling techniques and compared and contrasted solutions in [134, 135, 136]. In [136],

a single track, double track, and double track with load transfer were modeled for a 90◦

and a double lane change. In [101], a compelling argument is made for including higher

order vehicle dynamic effects in lap time simulations. Specifically neglecting suspension

dynamics can lead to different conclusions of primary vehicle parameters such as weight

distribution. The work in [137] showed how a projection operator based Newton method

could be applied to generate computationally efficient solutions to these types of problems.

The analogy between the iteration steps and the human learning process was made in this

work. A rigid body vehicle model was solved and lap time results compared favorably

to results generated using the commercial software: VI-CarRealTime. In [138, 19, 139],

Maniowski uses a piecewise linear approximation of the driver control inputs to drive a

high fidelity vehicle model. He then uses a genetic algorithm to optimize the driver inputs

and vehicle parameters for a simple maneuver. He also uses a multi-objective optimization

to explore the Pareto-optimal solutions of minimizing time over the short maneuver and

maximizing exit velocity.

Suspension effects were modeled and incorporated into the vehicle simulation as

described in [140, 130]. In, [141] a very detailed vehicle model with suspension dynamics
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was considered to show that a quasi-static tire load assumption is not the best. They

delivered an excellent simulation to measurement correlation on a qualifying lap of a GP2

race car.

Three-dimensional track modeling was discussed in [142] and optimal control lap

time simulation on these 3D tracks was presented in [143]. Much of this is discussed further

in [144]. The work in [145] also considered three-dimensional track effects for optimizing a

motorcycle’s maneuvering time.

2.4.2.7 Thermal Tires

The thermal properties of tires have a significant effect on vehicle performance during

these high-performance maneuvers. The work in [146] provides a great review of material

physics that cause this phenomenon. In [147, 45], Kelly derives a thermally sensitive tire

model and incorporates it into the lap time simulation. He provides insight on the effect

of a tire’s thermal state on lap times. Recently the work in [19] used a high fidelity vehicle

model coupled with a thermally sensitive tire model. The tire model appropriately modified

the global friction of a Pacejka tire model as a function of operating temperature. Tire

temperature was calculated using a one-dimensional heat transfer equation accounting for

heat generation due to slip as well as heat transfer to the environment. Driver controls

were discretized and optimized using genetic algorithms. For this short segment, a Pareto

analysis was carried out to examine the tradeoff between optimizing maneuvering time

and exit velocity (which is sometimes advantageous over a short track when entering a long

straight section after a corner) for a variety of tire conditions. Measurements were presented

showing good correlation with the simulation. In [148] the interaction between tire wear

and driving was studied. In this work, a thermally sensitive tire model was derived, and

three scenarios were optimized. First, a tire warming strategy was developed which even

showed the common practice of a driver weaving on a long straight to keep the tires up

to temperature. Second, a tire saving strategy was examined where maximum tire wear

limits were imposed on the lap optimization yielding slightly slower lap time while obeying
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the wear constraints. Finally, the effect of vehicle set-up on tire wear was also studied by

looking at several cases of differentials.

2.4.2.8 Real-Time Control

Verschureren et al. put out a series of papers working on real-time NMPC time-

optimal control and this was even applied to scale remote control vehicles [149]. The

real-time NMPC algorithm [110] required a least squares cost function form, and in this

work, the cost was adjusted such that the least squares cost mimicked a true time optimal

cost. This was implemented experimentally on a scale race track. In a later paper, [150], an

alternate algorithm, the exact Hessian-based approach, was utilized for solving the NMPC

problem. The results were compared to a true OPC solution obtained off-line with cyclic

boundary constraints. In this paper, true real-time optimal control was realized. The

authors cite the deteriorated performance (MPC solution compared to the OPC) due to the

constraint of a fixed preview horizon.

2.4.2.9 Powertrain Gearing

Insight into vehicle setup, specifically gear choices, was shown in [98] using an op-

timal control framework. In this work, the authors performed an analysis of the traction

potential of the vehicle and examined the room for improvement with respect to gear choice.

Lap time improvement was shown with the updated gearing, and it was also shown that the

“optimal” driver would change the control inputs in response to a different gearing choice.

Colsalter et al. continued their work in the area of optimizing motorcycles for minimum-

time maneuvering. In [99], they added an optimization routine to the algorithm to select

the optimal gearing for a particular race circuit.

Optimal control approaches for solving problems of this type are extremely interest-

ing and challenging because of the mixed-integer states that gears involved in the solutions.

The work in [151] uses a branch and bound technique to deal with the integer constraints,

and a direct method was used to solve the optimal control problem. The work presented
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in [152] furthered the previous by looking at alternative solution techniques that take ad-

vantage of the natural bang-bang control found in optimal control problems to relax the

integer constraints and find an optimal set of gear shifts on an elliptical track with a simple

nonlinear bicycle model. The work in [153] solves this problem with direct multiple shoot-

ing techniques implemented in the MUSCOD-II software packaged [154] and compared to

alternative solution techniques presented in [152].

2.4.2.10 Alternate Vehicle Types

Several works in literature have used these methods for optimizing motorcycles for

minimum-time vehicle maneuvering some examples are [91, 103, 155] where the center of

gravity location was optimized and [99] where optimal gearing was discussed. The work in

[145] looked at time-optimal control of motorcycle dynamics with a hybrid powertrain and

three-dimensional road for the annual Isle of Man TT Zero Challenge. In this work, they

were able to show excellent computational efficiencies with indirect methods implemented

in their solver described in [96]. In addition to motorcycles, racing karts were discussed in

[100].

2.4.2.11 Large slip angle maneuvers

This subproblem of the vehicle minimum-time maneuvering has been studied by

many authors. The work in [156] derived an unstable equilibrium point at high vehicle

slip angles. This is a common maneuver in ‘drifting’ competitions where drivers control

vehicles in very large sideslip conditions for extended periods of time. In [156], they were

also able to experimentally demonstrate a vehicle tracking this equilibrium point using a

controller. The work in [102] provides a fascinating look into the relationship between

the minimum-time problems and driving at large vehicle slip angles. Here, several vehicle

configurations were explored on several road surfaces (via modified tire characteristics). For

the cases of off-road coupled with rear wheel and all wheel drive, large vehicle slip angles

were observed when solving the minimum-time problem. In this paper, a single-track vehicle
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model was utilized with a Pacejka tire model coupled with lags on the force response of the

tire. In another publication [157], they used a similar vehicle model to specifically analyze a

cornering technique where the driver will apply a handbrake (acting on the rear wheels only)

in order to saturate the rear tires and increase the yaw velocity of the vehicle. To facilitate

this, the controls were augmented to include a term for the application of the handbrake.

Also, the optimal control cost function was augmented to include a time minimization as

a means to drive the car to the inside of the track. They showed excellent correlation to

experimental results of a professional driver performing this maneuver on an off-road course.

Moreover, they also showed that increasing the friction characteristics to that similar to dry

pavement did not affect the ability to reproduce the handbrake maneuver (with this mixed

cost function) and concluded that this driving technique is more a function of road geometry

than vehicle dynamics. The work in [158] showed how vehicle setup parameters could be

optimized for maximizing vehicle slip angles for ‘drift’ competitions.

2.5 Machine Learning Methods

In the mid 90’s MacAdam showed how neural networks could be applied to modeling

driver behavior (albeit, this was not minimum-time driving) [159]. In this work, he showed

how a simple neural network could be effectively trained and give good results compared to

experimental validation data of drivers driving in a virtual environment. Casanova makes

the connection in his work, between his control structure and neural networks operating in

the same manner to model driving behavior [51]. Some works have applied these techniques

to limit handling maneuvers. For instance, [160] uses an online racing simulator as a test

bed and trains neural networks based on human driving telemetry. The goal is a controller

that was capable of mimicking a human driver. Although there were cited issues such as the

case when a driver enters into an unstable regime, a real driver can enter a recovery period;

however, the neural network struggles. They propose that this strengthens the hypothesis

that a real driver has a control hierarchy and different operating levels. The gaming industry
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has put out a good number of works that use these methods. A good number of these are

based around an online race car game, TORCS (The Open Racing Car Simulator) [161],

and developing controllers to compete for the best lap times. The work in [162] is another

example of applying neural networks to control the vehicles.

2.6 Conclusions

In this chapter, four classifications of solutions to the minimum-time vehicle maneu-

vering problem were detailed. These included performance envelope methods which used

a quasi-steady-state assumption to find a series of steady-state conditions that optimizes

lap time. Next, the two-step method of following a fixed racing line in minimum time was

discussed. As the previous two methods needed a racing line to follow, methods for path

planning were also detailed. Optimal control solutions as will be used in the remainder of

this dissertation were then detailed. Their main contribution is removing the assumption

that the racing line is fixed. In this section, methods for solving the optimal control prob-

lem were discussed, and application areas of these solution methods were detailed. Finally,

machine learning techniques were also discussed as a means of solving the minimum-time

vehicle maneuvering problem.
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Chapter 3

Modeling Minimum-Time

Maneuvering with Global

Optimization of Local Receding

Horizon Control

Abstract

In this chapter1, we explore the notion that a human driver uses a receding horizon

model predictive control (MPC) scheme for minimum-time maneuvering. However, MPC is

an inherently sub-optimal control scheme because not all future information is incorporated

into its finite preview horizon. In many practical applications, this sub-optimality is toler-

ated as the solution is sufficiently close to optimal. However, it is known that professional

1This chapter is compiled from:
J. R. Anderson and B. Ayalew. Modelling minimum-time manoeuvering wit a global optimisation of local
receding horizon control. Vehicle System Dynamics, pages 1-24, 2018.
J. R. Anderson and B. Ayalew. Global optimization of local weights in mixed-cost MPC for minimum time
vehicle maneuvering. In 2017 IEEE Conference on Control Technology and Applications (CCTA), pages
560-565, Kohala Coast, Hawaii, USA, August 2017. IEEE.
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drivers have the ability to learn driving circuits and exploit their features to minimize their

global maneuvering time. In this chapter, we will model their process with a cascaded

optimization structure. Therein, the inner-loop features a local MPC scheme tasked with

finding the control inputs that achieve a blended objective of minimizing time and maxi-

mizing velocity in each preview horizon/distance. The outer-loop of this cascaded structure

computes the best set of weights for the two components of the local objectives in order to

minimize the global maneuvering time. The proposed cascaded optimization and control

approach is compared against a straight-forward fixed-cost time optimal MPC applied to

minimum-time maneuvering over two well-known race courses. The chapter also includes

an extended literature review and details of the computational formulation of the model

approach.

3.1 Introduction

Minimum-time vehicle maneuvering is an important sub-set of studies in vehicle

dynamics and has a very direct influence on the motorsports industry [1]. It also influences

other aspects of the automotive sector especially for modern high performance automo-

biles. Moreover, knowledge gained here indirectly affects a much larger aspect of vehicle

design such as safety and driver assistance systems. The modeling and understanding of

how high-performance human drivers manage to operate efficiently despite the very nonlin-

ear dynamics involved in minimum-time maneuvers can provide useful insights for future

implementations of autonomous vehicle controllers as well.

This chapter presents a cascaded optimization structure which is intended to model a

professional driver learning a new driving circuit to minimize maneuvering time. The inner

loop of this structure features a blended cost receding horizon model predictive control

(MPC) that is capable of weighting different objectives in each horizon. MPC is chosen as

the control strategy for the inner loop based on the some recent justifications for how it

closely represents human-driver actions. Casanova [5] makes the case that a human driver
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behaves more like a MPC (in a moving horizon manner) than an optimal controller acting

on the full maneuver. He states, if a driver were indeed a true optimal controller acting over

the entire circuit then, he or she will choose his initial control inputs on the start line based

on how he or she intends on crossing the finish line. Since a driver is clearly not using the

full racing circuit to that extent in order make control decisions, a different mechanism must

be in place. Moreover, it was stated in [92], ‘there comes a point where the track ahead has

diminishing importance for control decisions affecting the present time.’ In other words,

a human is not considering the full circuit when making local control decisions but rather

utilizing a preview horizon. While we conjecture that a human driver behaves more like

MPC than optimal control, we also know that a human can learn new race tracks to best

exploit their features and minimize the global maneuvering time. In order to accomplish

modeling of this learning, we expand the local MPC cost function to have two objectives:

minimizing time and maximizing velocity at the end of the horizon. These two objectives

were motivated by literature where [19] states, it can be advantageous in a short segment to

drive with one or the other objective (minimizing time or maximizing velocity) depending

on the future track configuration. For example, on a track with a curve followed by a long

straight section, it can sometime be advantageous to the global maneuvering time to take

more time in the current curve and maximize velocity of corner exit to achieve more speed

through the following straight section. The outer loop in our algorithm does just that. It

acts on the full track to find the best set of weights that trade-off the two objectives on

each MPC horizon for minimal global time. In this direction, our previous work [163] has

shown advantages for a hybrid (switching) cost function using a very simple vehicle model

and a short section of track. However, the discontinuous switching may be unrealistic.

The present work incorporates the ability to more naturally and smoothly blend two local

objectives, a more detailed vehicle dynamics model, and much longer driving circuits.

In addition to more closely representing a human driver, MPC has another key

computational benefit: the initial guess. Nonlinear optimization in general relies on an

initial guess as a starting point to begin searching. The initial guess of the solution is
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paramount to performance of the computational framework. If this initial guess is too far

from the actual solution, the optimization could become computationally very expensive,

or worse, fail to converge. With MPC, the only initial guess required is that of the first

preview horizon and not the full maneuver as each subsequent horizon can be seeded with

the initial guess of the solution to the previous. Therefore, if the first segment is in a

location where we know what the driver is doing, for instance, a long straightway where full

throttle is applied, then the initial guess should be sufficiently close to the solution in that

horizon. This is much easier than guessing a good solution around a full track. The work

in [120] originally used this feature of MPC to extend solutions over a short segment to an

arbitrarily long track.

In summary, in this chapter, we formulate and detail a cascaded optimization scheme

of local MPC costs to represent a human learning how to drive a new driving circuit to

globally minimize maneuvering time. We will discuss how this cascaded control structure

compares with the traditional fixed-cost time-optimal MPC applied around the track. The

rest of the chapter is organized as follows. Section 3.2 details the vehicle model used and

cascaded optimization framework. Section 3.3 presents results on a full race track while

section 3.4 offers conclusions and an outlook on our future work.

3.2 Mathematical Framework

This section will detail both the vehicle model used for this work and the cascaded

optimization structure. The vehicle model consists of a four wheel vehicle model including

effects of load transfer, nonlinear tires, aerodynamics, and a differential. The vehicle model

will be presented in section 3.2.1. The cascaded optimization structure consists of an inner

loop MPC controller which drives the vehicle around the track while minimizing its local

cost function while the outer loop finds the best cost function for each horizon. This will be

further detailed in section 3.2.2. Finally, we briefly describe a time-optimal MPC controller

in section 3.2.3 to compare the cascaded optimization to.
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3.2.1 Vehicle Model

This work utilizes a four wheel vehicle model. The sprung mass has three degrees

for longitudinal velocity (vx), lateral velocity (vy), and rotation about the yaw axis (ψ̇).

The wheel dynamics are modeled with four individual differential equations. The following

subscripts are used to denote wheel position: (·)p where p ∈ {fl, fr, rl, rr} denotes front left,

front right, rear left, rear right wheel position respectively. Much of the vehicle modeling is

similar to those used in previous works [45, 20, 97]:

v̇x = vyψ̇ +
Fx
m

(3.1)

v̇y = −vxψ̇ +
Fy
m

(3.2)

Izzψ̈ = a(cos(δ)(Fyfr + Fyfl) + sin(δ)(Fxfr + Fxfl))+

wf (Fyfr sin(δ)− Fxfr cos(δ))+

wf (Fxfl cos(δ)− Fyfl sin(δ))+

wrFxrl − b(Fyrr + Fyrl)− wrFxrr

(3.3)

where Fx and Fy denote the total lateral and longitudinal forces acting at the Center of

Gravity (Cg):

Fx = cos(δ)(Fxfl + Fxfr)− sin(δ)(Fyfl + Fyfr)

+Fxrl + Fxrr + Fax

Fy = cos(δ)(Fyfl + Fyfr) + sin(δ)(Fxfl + Fxfr)

+Fyrl + Fyrr

(3.4)

and the individual tire lateral and longitudinal forces are denoted by Fxp and Fyp. The

distance from the Cg to front and rear axle are a and b respectively, half the front and

rear track width are wf and wr, and the front steering angle is δ as seen in Figure 3.1.

Aerodynamic drag is Fax and discussed below.

The remaining four degrees of freedom are comprised of the individual wheel dy-
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namics.

˙ωfl =
(−Tfl +RfFxfl)

Jrf
(3.5)

˙ωfr =
(−Tfr +RfFxfr)

Jrf
(3.6)

ω̇rl =
(−Trl +RrFxrl)

Jrr
(3.7)

˙ωrr =
(−Trr +RrFxrr)

Jrr
(3.8)

3.2.1.1 Vehicle Controls

The lateral and longitudinal dynamics are controlled through inputs: u1, u2 which

is the steering rate and torque demand rate on the chassis. This allows for a convenient

mechanism of placing state constraints representing the human bandwidth of control and

vehicle limitations. The steering angle and torque demand quantities satisfy:

δ̇ = u1 (3.9)

Ṫ = u2 (3.10)

The vehicle is assumed to have only front wheel steering. In other words, δfl = δfr =

δ and δrl = δrr = 0. The torque allocation between the four wheels is modeled based on the

work in [164] and depends on whether or not the vehicle is braking or accelerating. While

driving, this vehicle is rear-wheel drive only; however, under braking, the brake forces are

distributed among all four wheels. Because of this, the torque allocation (T ) is separated

into positive components: T+, T−. For our purposes, the following separation method was

used.

T+ =
1

2
+

1

2
sin(arctan(100 · T )) (3.11)

T− =
1

2
− 1

2
sin(arctan(100 · T )) (3.12)
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When it is known whether the vehicle is braking or driving, the torque distribution (kt) can

be determined via:

kt = T+ktdriving + T−ktbraking (3.13)

where the parameters ktdriving,ktbraking are fixed vehicle parameters. Finally, the wheel

torques can be found:

Tfl =
1− kt

2
T (3.14)

Tfr =
1− kt

2
T (3.15)

Trl =
kt
2
T + kd∆ω (3.16)

Trr =
kt
2
T − kd∆ω (3.17)

where kd is the viscous differential constant and ∆ω is difference in rear wheel speed; i.e.,

∆ω = ωrl − ωrr.

3.2.1.2 Aerodynamics

A simple aerodynamic model is used to capture the speed dependent down force

(Faz) and drag (Fax) quantities acting on the vehicle. These forces are applied to the

vehicle center of pressure shown in Figure 3.1. Other aerodynamic affects such as yaw and

pitch coupling are neglected for the purposes of this work. The aerodynamic forces are

described by:

Faz =
1

2
CLρAv

2
x (3.18)

Fax =
1

2
CDρAv

2
x (3.19)

The constants CL, and CD are the downforce and drag coefficients, respectively. The

vehicle’s frontal area is denoted with A and the air density is denoted with ρ.

40



Cg

Cp
wr

ab

aaba

δ

wf

yb

xb

Fxrr

Fxrl

Fyrl

FxfrFyfr

Fyfl

Fxfl

Fyrr

vx

vy

ψ̇

vv

Figure 3.1: Vehicle top view. Note: body-fixed coordinates xb and yb are located vertically
at the ground plane.

3.2.1.3 Load Transfer

The normal tire load is calculated by summing the forces and moments about the

body fixed-coordinates seen in Figure 3.1 and enforcing a roll stiffness distribution D ∈ [0, 1]

such that the front axle load transfer is a fixed proportion of the total load transfer. This

yields the following linear system to be solved:



1 1 1 1

−wf wf −wr wr

−a −a b b

D − 1 1−D D −D





Fzfl

Fzrl

Fzrl

Fzrr


=



−mg − Faz

−hFy

(aa − a)Faz + hFx

0


(3.20)

3.2.1.4 Tires

The tire’s friction forces are calculated via an empirical formula that responds to

changes in loads, lateral slip angle, and longitudinal slip. It is based on the simplified Pacejka
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tire model presented in [45, 20]. The slip ratio (κ) and slip angle (α) are calculated:

κ = −
(

1 +
Rω

vxtire

)
(3.21)

and,

α = − arctan

(
vytire
vxtire

)
(3.22)

where R is the effective rolling radius of the tire and vxtire, vytire are the longitudinal and

lateral velocities of the tire accounting for vehicle rotation. A detail description of the

adopted tire model can be found in Appendix B.

3.2.1.5 Path Intrinsic Coordinate System

In order to facilitate a convenient mechanism for constraining the vehicle to stay

within the track bounds, path intrinsic coordinates will be used. This coordinate system

models the vehicle trajectory with respect to the road centerline. It is depicted in Figure

3.2. The heading angle deviation (eψ) represents the difference between the path heading

and the vehicle heading angle while the lateral deviation (ey) refers to the vehicle lateral

deviation from the path centerline. The vehicle speed in the path reference frame is denoted

as ṡ. The quantities ṡ, eψ, and ey are calculated as follows:

ṡ =
vx cos(eψ)− vy sin(eψ)

1− eyC
(3.23)

where C is the path curvature and a known function of path distance i.e., C = C(s).

ėψ = ψ̇ − Cṡ (3.24)

ėy = vx sin(eψ) + vy cos(eψ) (3.25)
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Figure 3.2: Path intrinsic coordinate description. Note subscripts s and v refer to the path
and vehicle frame respectively.

3.2.1.6 Distance Based Description

The full system description can now be written as:

ẋ = f(x,u, t) (3.26)

where,

x =

[
eψ ey vx vy ψ̇ ωp δ T

]T
(3.27)

The last step is to convert the independent variable from time to space. This is done to

eliminate the free final time boundary condition that arises if the system is posed in the

time domain. Once converted, the final distance is fixed; thus, the free final boundary

condition is eliminated. This transformation is achieved via application of the chain rule of
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differentiation to the system dynamics in: (3.26).

dx

dt

dt

ds
=
dx

ds
=

ẋ

ṡ
(3.28)

3.2.2 Cascaded Optimization

In this section, the proposed cascaded optimization approach will be detailed. This

optimization structure is comprised of a lower level controller which utilizes a variable cost

MPC to drive the vehicle around the track while minimizing the cost function at each MPC

preview horizon. The variable cost allows the controller in a local horizon to blend two

different objectives: minimizing time or maximizing exit velocity at the end of the horizon.

3.2.2.1 Inner Loop MPC

This loop is responsible for solving the optimal set of vehicle controls u1 and u2 over

the prescribed maneuver while minimizing a cost function in each preview horizon. This

Model Predictive Control (MPC) strategy utilizes a moving horizon where a portion of the

track is previewed and an optimal control problem is solved over this portion. The horizon

then moves forward and the process repeats around the track. Within in each horizon the

optimal control problem can be posed as:

min
u

J(x, x(s), u(s), wk) = JMPC

s.t. dx
ds − f(s, x(s), u(s)) = 0

h(s, x(s), u(s)) ≤ 0

gb(x(s0), x(sf ), u(so), u(sf )) = 0

(3.29)

where J is a general cost-functional that will be further clarified in the proceeding discussion.

The function f(·) ∈ Rn represents the system dynamics described by (3.28). The function

g(·) ∈ Rng is used to constrain the lateral deviation of the vehicle to stay within the track

width boundaries (ey ≤ ey ≤ ey) and to limit the maximum engine power (Peng = Tωrear ≤

Pmaxeng ). The function gb(·) ∈ Rngb captures boundary conditions of the problem.
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In the cascaded optimization formulation, a mixed-cost function capable of blending

the objectives of minimizing the local segment maneuvering time and exit velocity will be

used. The two objectives are balanced via the weighting terms wk, where the subscript

k ∈ {t, vx} denotes either time or longitudinal velocity. Therefore, the local MPC cost

function used in each horizon can be written as:

J iMPC(Zi) = wit

(
t(sihorizon)

st

)2

︸ ︷︷ ︸
Minimize Time

−wivx

(
vx(sihorizon)

svx

)2

︸ ︷︷ ︸
Maximize Exit Velocity

(3.30)

In this cost structure, proper scaling between the objectives is handled via the scaling

(normalization) terms. These are denoted st and svx and are, respectively, the maximum

values of time and velocity found in the reference time-optimal MPC solution (see section

3.2.3). Their values are fixed throughout the whole maneuver.

The computation process given a global set of weights Z is depicted in Figure 3.3.

First, the problem domain s ∈ [s0, sf ] is divided in to i = 1, 2, ..., N segments. These

segments define the MPC update interval: sMPC = (sf − s0)/N . Next, the first MPC

horizon a© is posed over the horizon s1 ∈ [s10 = s0, s
1
0 + shorizon] with initial conditions

x10 = x0. The preview horizon (shorizon) is a chosen parameter and can be seen in Table 3.2.

Now, the optimal control problem (3.29) can be solved over this horizon using the local cost

J1(Z1) = (3.30). Where the weights Z1 = [w1
t w

1
vx] blend the objectives minimizing time

and maximizing velocity over this horizon. Once this optimal control problem is solved,

the global solution is then updated over the MPC update interval b©. Next, the problem

advances forward by the MPC update interval and the next MPC horizon is formed d©.

This next segment starts at s20 = s10 + sMPC and has the initial conditions x20 = x1(s20) are

found from the previous horizon c©. The second horizon is then solved and the process is

repeated around the entire racing circuit for all i = 1, 2, ..., N − 1 MPC horizons. To allow

the vehicle to come up to operating speed, the maneuver timing is started a distance after

the initial simulation distance s0 which is denoted as sstart. This simulates the ‘out lap’ a

human driver performs when first going on a racing circuit and comes up to speed before
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Figure 3.3: MPC Lap Simulation.

the timed maneuver begins. Similarly, an ‘in lap’ is also simulated as the timed portion

of the maneuver (sfinish − sstart) occurs before the simulation is complete at distance sf .

Therefore, the global performance index is: J = t(sfinish)− t(sstart).

3.2.2.2 Outer Loop Optimization

The objective of the outer loop optimization is to find the optimal set of weights

that the inner loop controller will use in each local MPC horizon such that the global

maneuvering time (t(send) − t(sstart)) is minimized. The cascaded optimization can be
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written as:

min
Z

J = t(send)− t(sstart)

s.t.

Sub MPC Problem: for i = 1, 2, ..., N − 1

Optimal Control Problem(3.29)

si ∈
[
sio (sio + shorizon)

]
si+1 = sio +

(sf−s0)
N

xi+1
0 = x(si+1)

wik ∈ [0, 1]

(3.31)

where Z, the decision variable of the outer loop and contains the set of weights (wik, k ∈

{t, vx}) to be used over each local MPC horizon. In other words:

Z =

[
Z1 Z2 . . . ZN−1

]T
=

[
w1
t w1

vx w2
t w2

vx . . . wN−1t wN−1vx

]T
(3.32)

where N-1 is the number of MPC segments on the track. Therefore, the global set of weights

Z ∈ R2(N−1)×1. Furthermore, each element of Z is constrained such that wik ∈ [0, 1].

Note that as will be highlighted below, the cascaded optimization is generally non-

convex with substantial computational overhead. We applied genetic algorithms and used

supercomputing clusters to arrive at the results presented below.

3.2.3 Reference Time-Optimal MPC Solution

To facilitate comparison between the cascaded optimization approach, we will con-

sider a traditional fixed-cost time-optimal MPC applied over the whole maneuver. The

local cost function for this time-optimal MPC is:

J it =

∫ sihorizon

si0

1

ṡ
ds (3.33)

Hereafter, we refer to the solution to this formulation as reference time-optimal
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MPC solution.

3.3 Results and Discussion

In this section, the preceding control strategies are applied to a short chicane ma-

neuver and two racing circuits: Hockenheim and Nürburgring. On each track, the globally

optimized MPC will be compared to the traditional fixed-cost time-optimal MPC. The ve-

hicle used in this work is representative of a Formula 1 racing car and was presented in

[20, 45]. The parameters used can be found in Table 3.1. To solve the problem posed in

(3.31), two solvers were utilized. For the outer-loop MATLAB’s global optimization tool

box [165] was employed to find the global set of weights Z that minimized global maneuver-

ing time. A genetic algorithm was chosen as there are many local optima in the solution set

(which will be discussed further later). The cascaded optimization is generally non-convex

with substantial computational overhead; thus, supercomputing clusters were used to ar-

rive at the results presented below. The inner loop performs the MPC procedure outlined

in Figure 3.3 and recursively solves the optimal control problem described in (3.29). The

solution for this optimal control problem is found via an orthogonal collocation method

(implemented in the software package GPOPS-II [111]). The vehicle model used is a four

wheel vehicle model with seven degrees of freedom. Three degrees of freedom for rigid body

motions: (vx) longitudinal velocity, (vy) lateral velocity, and yaw rate (ψ̇). Four differential

equations are used to calculate the wheel dynamics. The MPC algorithm and simulation

parameters can be seen in Table 3.2.

Split channels will be used below and provide a convenient means for comparing

these two solutions and are defined here as the difference between the two simulations at

each distance on the track. Formally written:

∆y = y(s)|timeOpt − y(s)|locallyOptMPC (3.34)

where y can be any measured state, control input, or calculated channel.

48



Parameter Description Units Value

m Mass kg 660
Izz Yaw inertia kgm2 450
L Wheelbase m 3.4
a Distance of Cg to front axle m 1.8
b Distance of Cg to rear axle m 1.6
hcg Height of the Cg m 0.3
wf Half front track width m 0.73
wr Half rear track width m 0.73
ktdriving Rear axle torque distribution while driving - 1
ktbraking Rear axle torque distribution while braking - 0.4
Peng Maximum engine power kW 460
CL Coefficient of lift - 3
CD Coefficient of drag - 0.9
A Vehicle frontal area m2 1.5
ρ Air density kg/m3 1.2
aa Distance of Cp to front axle m 1.9
ba Distance of Cp to rear axle m 1.5
kd Differential coefficient Nm/(rad/s) 10.47
D Proportion of front axle load transfer - 0.5
R Effective rolling radius of the tire m 0.33

Table 3.1: Vehicle parameters used for simulation.

Value for Value for Value for
Parameter Description Units Chicane Hockenheim Nürburgring

shorizon MPC horizon m 150 200 250
sMPC MPC update rate m 10 10 10

sMPC = (sf − s0)/N
s0 Initial distance m -50 -200 -200
sstart Timing start distance m 0 0 0
sfinish Timing stop distance m 650 2640 4501

Table 3.2: Control scheme parameters used in simulation.
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3.3.1 Chicane Maneuver

First, a chicane maneuver (this is a track feature found on many race circuits) was

simulated and the two control strategies, globally optimized MPC and time-optimal MPC

were compared. Note, the metric maneuvering time is calculated as t(sfinish) − t(sstart)

were sstart = 0m and sfinish = 650m. For the trajectories (Figure 3.4) in a macro view,

the racing lines are extremely similar; however, looking at the difference in lateral deviation

between the two solutions versus distance around the track (Figure 3.5) shows that they

are indeed quite different with almost 0.7m deviation occurring just after point 2©. This

can be considered a substantially different racing line through this section of the maneuver.
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Figure 3.4: Vehicle trajectories.

The values of the weights themselves w around the track are quite noisy as seen

in Figure 3.6; however, conclusions can still be drawn. If the contribution of the velocity

weight, i.e., wvx/(wt + wvx) is plotted along side the track curvature. Distinct spikes in

wvx contributions can be seen when the curvature is changing (Figure 3.7). On the straight

portions of track, the two objectives minimizing time and maximizing velocity are nearly
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Figure 3.5: Difference in racing line versus track distance of the two solutions. Note:
∆ey = ey(s)|timeOpt − ey(s)|locallyOptMpc.

identical objectives (albeit some subtleties exist) and contribute to the noise seen in these

weights; thus, the reason for the highlights in the plot.

The difference in these solutions manifest themselves mainly at two key points over

the maneuver seen in Figure 3.8 (approximately 1© = 125m and 2© = 240m). These two

points demonstrate exactly what the algorithm is capable of doing. The outer loop sees a

section of track where it is beneficial to sacrifice some speed at the local section of track

1© to maintain a higher velocity later in the maneuver 2© where it is more important to

the global objective. In other words, some speed is sacrificed in the high speed section of

the track to maintain higher speed through the low speed section of the track yielding a

net improvement in performance over the entire maneuver. Figure 3.9 show a comparison

of the vehicle steering and throttle differences in the two control strategies and Table 3.3

show the final maneuvering times and performance differences.
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Figure 3.6: Optimized weights W around the chicane maneuver.

Figure 3.7: Contribution of weight of exit velocity wvx/(wt+wvx) and track curvature. Note
the circled spikes in section of the track where the curvature is changing. The highlighted
region denotes a straight path segment.

52



0 100 200 300 400 500 600

30

35

40

45

50

55

60

Distance [m]

v
x
 [

m
/s

]

 

 

1© 2©

Time Optimal MPC

Optimized MPC Weights

100 150
55

56

57

58

59

60

220 240 260 280
30

31

32

33

34

35

Figure 3.8: Velocity comparison.

0 100 200 300 400 500 600

−0.2

−0.1

0

0.1

0.2

Distance [m]

δ
 [
ra

d
]

 

 

0 100 200 300 400 500 600

−4000

−2000

0

2000

4000

Distance [m]

T
 [
N

*m
]

 

 

Time Optimal MPC

Optimized MPC Weights
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3.3.2 Hockenheim

This race course is located in the town of Hockenheim, Germany and was open

in 1932 [166]. In this research, the short configuration will be used which consists of a

2.6km closed road course with 10 various radii corners. The globally optimized MPC and

traditional time-optimal MPC trajectories can be seen in Figure 3.10. The trajectories are

quite similar over most of the race course with one very large difference occurring from the

apex to exit of turn four. The key data channels from this simulation can be seen in Figure

3.11. The top plot in this figure is the vehicle’s longitudinal velocity over the lap and right

below is the split velocity. Split channels provide a convenient means for comparing these

two solutions and are defined here as the difference between the two simulations at each

distance on the track. Formally written:

∆y = y(s)|timeOpt − y(s)|locallyOptMPC (3.35)

where y can be any measured state, control input, or calculated channel. The split velocity

trace in Figure 3.11 shows that adjusting speed by just a few m/s in certain sections can

have an impact on the final performance. The third plot of Figure 3.11 shows the split-time

plot and is the key indicator for showing the advantage of the globally optimized MPC. The

reader can see that right after the apex of turn four through corner exit and all the way

to the entry of turn 6 (to a lesser degree) that the slope of the globally optimized MPC

∆t is down; i.e., this solution is gaining time on the reference time-optimal MPC solution.

Thus, at the same location on the track, there has been less elapsed time with the globally

optimized MPC. Turn four is the key location on the circuit where the global weights were

able to change the trajectory to yield a net benefit. The controller did this by sacrificing

time right before the apex of turn four as can be seen on the same plot (where the ∆t traces

is increasing to a peak right past the turn four apex). This is the key point demonstrating

how the globally optimized MPC mimics a human driver, it can learn to sacrifice time in

a particular location of the track, in this case the entry of turn four through the apex,
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Figure 3.10: Trajectories on the Hockenheim racing circuit. Numbers with the prefix ‘T’
denote the 10 different turn apexes on the course. Red waylines denote corner entry locations
and cyan lines denote corner exit lines.

in order to ‘setup’ the next section with higher velocity and ultimately achieve a better

solution over entire maneuver. The fourth plot in this figure shows the split (∆ey) racing

line and again, the key difference between the two solutions is at turn four where the globally

optimized MPC is able to apex the turn earlier, sacrificing some time early in the corner

while achieving a higher velocity at corner exit.

The globally optimized weights themselves are quite noisy as can be seen in the

last trace of Figure 3.11 and overlaid on the track map in Figure 3.12. Much of this noise

comes from the fact that when traveling in a straight line, the objectives of maximizing

velocity and minimizing time are nearly identical. This is demonstrated in the control

quantities: steering (δ) and torque demand (T ) shown in Figure 3.11. On the straight

sections of track (section without highlights denoting the corners), the control quantities

of the globally optimal MPC are nearly identical to the time-optimal MPC in spite of the
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s[m]

Figure 3.11: Hockenheim distance histories. Blue denotes the reference time optimal MPC
and green is the optimized cascaded optimization. From top to bottom longitudinal ve-
locity, split velocity, split time, split racing line, steering wheel angle, torque demand, and
contribution of the exit velocity MPC weight in each local segment. The weight contribu-
tion is defined as: wvx/(wt + wvx). Weights in straight portions of the track are dotted
to emphasize results during corners. Note that each turn is denoted with a grey patch
and corner entry and exit points correspond to those denoted in Figure 3.10. Corner apex
location makeup the x grid location in these plot and corner number are located at the top
of each channel.

56



−400 −300 −200 −100 0 100 200 300

0

50

100

150

200

250

300

350

400

450

x [m]

y 
[m

]

Contribution of wvx

 

 

T1

T2

T3

T4

T5

T6

T7

T8
T9

T10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.12: Contribution of the exit velocity MPC weight in each local segment. This
contribution is defined as: wvx/(wt + wvx).

fact that the globally optimal MPC is choosing different values for the contribution of exit

velocity and maneuvering time at each local segment. The key benefit to this structure is

that the weights can change in a corner to setup different trajectories that could impact

global performance. There is a small section of track right after the apex of turn four where

the globally optimal MPC more heavily weights the exit velocity (wvx) and the trajectory

in that location is able to change enough to setup the next section of track yielding a better

maneuvering time overall. The final results can be seen in Table 3.3.

3.3.3 Nürburgring

The two control strategies were also applied to the Nürburgring race course. This

is a very historic track located in the town of Nurburg Germany and was constructed in

the 1920s [167]. For the purposes of this work, the grand prix configuration consisting of
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14 turns over a distance of 4.5km was used. The vehicle trajectories can bee seen in Figure

3.13. The results on this track were very similar to Hockenheim; there was one key location

from the apex of turn six (T6) to corner exit that comprised much of the performance

advantage of the globally optimized MPC. The distance histories of velocity, split velocity,

split time, split racing line, steering wheel angle, torque demand, and contribution of exit

velocity weight can be seen in Figure 3.14. Just as in the Hockenheim case, changing speed

by just a few m/s in key locations around the course yields global performance benefits.

Looking at the split time (∆t) plot shows that the majority of the performance advantage

of the globally optimized MPC comes just after the apex of turn six to just after corner

exit. The globally optimal trajectory sacrifices time just before the apex of turn six to

take advantages of higher speed all the way to the entry of turn nine (T9) yielding a net

improvement. The split racing line plot (∆ey) shows that a very different racing line is used

in this turn.
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Figure 3.13: Trajectories on the Nürburgring racing circuit. Numbers with prefix ‘T’ denote
corner apexes, red waylines denote corner entry locations and cyan lines denote corner exit
lines.
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s[m]

Figure 3.14: Nürburgring distance histories. Blue denotes the reference time optimal MPC
and green is the optimized cascaded optimization. From top to bottom longitudinal ve-
locity, split velocity, split time, split racing line, steering wheel angle, torque demand, and
contribution of the exit velocity MPC weight in each local segment. The weight contribu-
tion is defined as: wvx/(wt + wvx). Weights in straight portions of the track are dotted
to emphasize results during corners. Note that each turn is denoted with a grey patch
and corner entry and exit points correspond to those denoted in Figure 3.13. Corner apex
location makeup the x grid location in these plot and corner number are located at the top
of each channel.
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3.3.4 Summary of Results and Discussion

The final performance of both controllers can be seen in Table 3.3. While these

performance gains may seem small to the casual observer, in the context of motorsports

these can be significant. In Formula 1 racing, teams spend millions of dollars for millisecond

gains in lap time performance [93, 12]. Moreover, these small gains come with dramatic

changes to the racing line. This corroborates the authors’ experiences with professional

drivers. Different drivers are able to achieve similar performance with a very different

trajectory or driving style. Mathematically speaking, this demonstrates the existence of

multiple local minima in the solution space, a point which has not been directly discussed

in reviewed literature. It is the opinion of the authors that these local minima could

be used to explain different driving styles that are exhibited by professional drivers. To

further support this point, five other iterates of the genetic algorithm outputs for the global

weight (Z) search are plotted for the Hockenheim track in Figure 3.15. Their respective

maneuvering times and improvement over the time-optimal MPC can be seen in Table 3.4.

It is clear to see that this notion of globally optimizing the local MPC weights has advantage

over the traditional fixed cost time optimal MPC and is able to outperform it repeatably.

Moreover, there are many different sets of weights that all out perform the time optimal

MPC and thus demonstrating the existence of multiple local minima in the solution space.

Course Vehicle Model Controller Time [s] ∆ Time [s] ∆ [%]

Chicane Particle Motion† Time-optimal MPC † 22.787 - -
Blended-cost MPC † 22.349 -0.438 -1.92

Chicane Four Wheel Time-optimal MPC 14.493 - -
Blended-cost MPC 14.446 0.047 -0.324

Hockenheim Four Wheel Time-optimal MPC 44.471 - -
Blended-cost MPC 44.264 -0.207 -0.466

Nürburgring Four Wheel Time-optimal MPC 72.121 - -
Blended-cost MPC 71.866 -0.255 -0.354

† These results were published in [163].

Table 3.3: Results from the chicane, Hockenheim, and Nürburgring.
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Maneuvering Performance
Controller Time [s] ∆ Time [s] ∆ [%]

Time optimal MPC 44.471 - -
Example iterate a 44.286 -0.185 -0.416
Example iterate b 44.286 -0.185 -0.415
Example iterate c 44.323 -0.148 -0.334
Example iterate d 44.325 -0.146 -0.328
Example iterate e 44.335 -0.136 -0.306

Table 3.4: Other iterates on Hockenheim showing globally optimized MPC outperforming
time optimal MPC.

3.4 Conclusions

In this chapter, a cascaded optimization structure is formulated to model how a

professional driver is able to optimize over local segments of race circuits to minimize ma-

neuvering time over the whole track. An inner loop MPC with a variable cost function is

used to set local control and an outer loop optimization searches to find the best set of

weights that the inner loop will use in each horizon to optimally blend the objectives of

minimizing time or maximizing velocity in each MPC horizon. This cascaded optimization

structure is then used to simulate a Formula 1 car on a simple chicane and two well-known

race courses: Hockenheim and Nürburgring. The results are compared to a traditional

fixed-cost time-optimal MPC controller. In both cases, the cascaded optimization is able

to outperform the time-optimal controller. Moreover, examining other iterates in the solu-

tion space demonstrates that there are several different solutions with similar performance;

i.e., a demonstration of the existence of local minima in solution space. The later is a

corroboration of the intuition and practical field observations that different driving styles

may achieve very similar maneuvering times. Future work will look at exploiting this opti-

mization structure to further analyze the driving style differences between different human

drivers.
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Chapter 4

An Optimal Control Approach to

Race Line Reconstruction from

Limited Onboard Data

Abstract

The racing line is a key response studied in minimum-time vehicle maneuvering

problems. Different drivers have different driving styles and these differences can manifest

themselves in the racing lines they take. By understanding these lines, one can gain insights

into how different drivers achieve minimum-time performance. State of the art racing

simulation techniques use time optimal control formulations wherein the racing line is free to

move within the boundaries of the track. It is often of interest to be able to compare results

from these simulation techniques with onboard measurements taken during racing events

or controlled tests. Vehicles are often tested with a limited set of sensors and traditional

methods of estimating the racing line from onboard measurements accumulate too much

error to provide useful comparisons. In this chatper1, we will present a novel method of

1This chapter has been submitted for publication: J. R. Anderson and B. Ayalew. An optimal control
approach to race line reconstruction from limited onboard data. Vehicle System Dynamics (Submitted,
under review), 2018.
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reconstructing the racing line using optimal control formulations in order to fit onboard

measurements to a reference track model. The reference track model is generated from

GPS measurements collected a priori and serves as a method of grounding the onboard

measurements that are prone to drift and error accumulation. The details of the proposed

method are demonstrated with a case study using measurements conducted at Sebring

International Raceway.

4.1 Introduction

The racing line is the path taken by the vehicle on a given driving/racing circuit

resulting from the driver’s control actions (i.e., throttle, steering, braking, etc.) which are

applied to achieve the goal of minimizing the vehicle’s maneuvering time. This line must

lie within the track boundaries. The line itself is a compromise between the ability of

the vehicle to travel as fast as possible (i.e., minimizing curvature of the racing line) and

traveling the shortest distance. Generally, a professional driver blends these two objectives

in some fashion to achieve the goal of minimizing overall time, given his/her knowledge of the

vehicle’s performance envelop and the track configuration [63]. Professional human drivers

are still considered the benchmark for minimum-time vehicle maneuvering performance.

Gaining insights on how they are able to accomplish this performance is important to

motorsports [1], the high-performance vehicle segment of the automotive industry, and even

the gaming industry [80]. These racing lines are not unique to a particular vehicle/track

combination and can change based on vehicle setup [20]. Also, as will be shown in this

chapter, different human drivers have different driving styles and they can achieve similar

performance while adopting different driving lines [11]. Being able to understand different

driving styles by identifying the differences in racing lines will aid in understanding how

the system can be solicited in different ways to achieve time optimal performance. By

understanding these solicitations, tunings of the vehicle can be tailored to specific drivers

resulting in an optimized vehicle/driver system. Our recent research is in the area of
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mathematically modeling driving styles [21, 22] and a key consideration being the ability

to capture the effect of the differences in racing lines.

In addition, vehicle measurement is not often acquired relative to the road traveled

which makes a comparison to simulation difficult. At best, test vehicles are instrumented

with Global Positioning System (GPS) sensors and a relative comparison of the racing

lines in cartesian or GPS coordinates is possible; however, sensor error such as bias and

resolution still prevents a good comparison to simulation. Moreover, racing and high-

performance vehicles, in general, are instrumented with a very limited set of sensors that

capture the global chassis motion (e.g., accelerometer, gyroscopes, and optical slip angle

sensors). Estimating the racing line from these limited set of sensors is not straightforward

as noise and sensor drift affect the estimation. One work that investigated the issue is that

of Casanova [5] which presented a method for compensating integration errors to estimate

the path taken by the driver; however, his corrections still accumulate too much error to

compare to optimal control based simulations as will be shown in our results.

Modern methods of simulating minimum-time vehicle maneuvering problems are

generally formulated as the following optimal control problem:

min
u

J =
sf∫
so

1
ṡds

s.t. dx
ds − f(x,u, s) = 0

x ≤ x ≤ x, u ≤ u ≤ u

(4.1)

where the independent variable s is the distance traveled along the track centerline, u is

a general set of controls to the vehicle (e.g., throttle/brake, steering), and x is a general

set of vehicle states (e.g., acceleration and velocity components). The states and control

inputs are bounded. These techniques date back to the work presented in [88, 89, 91] and

the topic is also reviewed well in [92]. The vehicle dynamics are typically written in path

intrinsic coordinates and bounded such that lateral deviation of the vehicle from the center

of the path remains within the track width limits. This formulation allows the racing line
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to naturally vary within the track boundaries.

The model of the track is often expressed in a path intrinsic coordinate system. In

its simplest form (as will be used in this chapter), the model can be a general function of

track curvature versus distance (c(s)). In this chapter, we will use spline interpolation of

curvature data versus path centerline distance. Recent works have extended track modeling

to three-dimensional tracks by using the differential geometry of ribbons or strips to describe

the track via a generalized Frenet Serret description of the path [168, 142]. Once the track

model is chosen, then the next step is fitting these models to an existing racing circuit. The

work in [169] models the track by fitting a series of straight, constant radius, and clothoid

segments. More generally, [20] uses an optimal control fitting method for modeling the track

curvatures as a function of distance from just GPS data. We will adopt this approach in the

subsequent section to fit a track model of Sebring International Raceway as an intermediate

step towards reconstructing the racing line.

An alternate method for solving minimum-time vehicle maneuvering problems is to

treat the path planning and path following hierarchically as separate problems. The path

planning phase of the problem relies on constructing the desired path to follow. One method

that is typically employed to optimally select this line, is geometric optimization. With this

method, the racing line is constructed from a parameterized curve such as a spline and its

geometry is optimized to either minimize curvature, minimize distance traveled, or blend

these two objectives while remaining within the track boundaries. The work presented in

[63, 80, 79, 170] provides good examples of this technique. Alternatively, onboard vehicle

data can be used to reconstruct the reference path. This is another application of the work

presented in this chapter. With a reference path identified, the remainder of the problem is

to follow the path in minimum time. The work presented in [51] gives an excellent overview

of this technique. Solving a fixed-path minimum-time vehicle maneuvering problem has

been shown to be a convex optimization problem in [75]. This work extends the fixed-path

time optimal problem for robots [76] to vehicles.

In this chapter, we aim to accomplish the following: first, we give an example of

67



fitting the track model from GPS data acquired on the boundaries of the track. Second, we

present a novel method of optimally fusing onboard vehicle measurement with a model of

the racing circuit itself. To outline our proposed approach, we use data collected on Sebring

International Raceway [171]. Lastly, we will further motivate the importance of studying

the racing line and will show how different lines around the same track can yield nearly

identical lap times.

The remainder of the chapter is organized as follows. Section 4.2 describes fitting

of the reference track model from GPS data. Section 4.3 details our method for optimally

reconstructing the racing line. We apply this methodology to actual vehicle data on Sebring

International Raceway in Section 4.4. In this section, we will also compare driving styles of

two drivers that are able to achieve identical performance while using different racing lines.

Section 4.5 offers conclusions and outlines some directions for future work.

4.2 Track Modeling

To outline our proposed approach, we shall use actual data collected on Sebring

International Raceway [171]; however, the formulation and approach are general and can

be applied to other similarly configured race tracks. The basis of the track model is GPS

measurement of the track itself. To that effect, a vehicle equipped with an accurate GPS

sensor was driven at low speed around the inner and outer boundaries of the circuit. This

data will serve as the basis to fit the track model. Because of the low elevation change and

banking angle around this circuit, a planar track model is sufficient to capture the pertinent

features. In this chapter, the track model is defined as the track curvature as a function of

path distance c(s).

Before fitting of the track model (c(s)) is possible, the centerline of the track should

be estimated from the data collected on the inner and outer boundaries. First, the cartesian

coordinates are calculated from the GPS measurements of the inner and outer boundaries.

The data recorded is then split into two data sets that represent the inner and outer track
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boundaries respectively. Because the data is measured in the time domain with a constant

sampling rate, it is spatially nonuniform as seen in Figure 4.1. The data is then resampled

to a spatially uniform grid using a one-dimensional spline-based interpolation.
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Figure 4.1: GPS data of the boundaries of Sebring.

The centerline of the track can now be reconstructed from the x, y coordinates of the

inner and outer boundaries. Similar to the approach presented in [142], a nearest neighbors

approach is used. Each discrete data point along the outer boundary (xjo, y
j
o, j = 1, 2, ..., N)

is looped over and the following four-step algorithm is performed. In the first step, we

construct a perpendicular line (y⊥) from the outer boundary at the point xjo, y
j
o:

yj⊥(xjo) = mj
⊥(xjo) + bj⊥ (4.2a)

mj
⊥ = (yj+1

o − yjo)/(xj+1
o − xjo) (4.2b)
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bj⊥ = yjo −m
j
⊥x

j
o (4.2c)

This perpendicular line is projected from the outer boundary toward the inner boundary.

In step two, the nearest neighbors (to the projected perpendicular line y⊥) on the inner

boundary (xji , y
j
i ) are found. A spline is fit through the nearest three neighbors. In step

three, we find the intersection between the nearest neighbors spline on the inner boundary

and the projected perpendicular line (y⊥). Finally, in step four, we find the midpoint

between the original outer boundary data point (xjo, y
j
o) and the calculated intersection

point from the previous step. The result is an estimated center point on the track (x̂j , ŷj).

This procedure is repeated for all j = 1, 2, ..., N points along the outer boundary to give

the reference path centerline coordinates. Figure 4.2 gives a graphical representation of this

procedure.

y

x

Step 4: Track Centerline (x̂, ŷ)

Step 2: Nearest Neighbors

Step 3: Inner Boundary

Step 1: Projected Perpendicular (yj⊥)

Intersection Point (xj
i , y

j
i )

Outer Bound

Inner Bound

xj
o, y

j
o

Figure 4.2: Nearest neighbors method of interpolating track centerline from boundaries.

To fit the track model (c(s)) to the data representing the track centerline (x̂, ŷ)

previously calculated, we adopt the optimal control formulation suggested in [20]. A simple
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kinematic mapping of the path curvature to Cartesian coordinates is written as:

c′ = u (4.3a)

ψ′ = c (4.3b)

x′ = cos(ψ) (4.3c)

y′ = sin(ψ) (4.3d)

The system states (x) are the track curvature (c), path heading angle (ψ), and x y Cartesian

coordinates. Note that the (·)′ operator denotes spatial derivatives (d(·)ds ). The system input

is u which is the spatial rate of change of curvature. With x =

[
c ψ x y

]T
, the above

system (4.3) can be written compactly as:

dx

ds
= f(x, u, s) (4.4)

Next, the optimal control problem can be written to fit the track model to the measured

data:

min
u

J =
sf∫
so

wuu
2 + (x̂− x)2 + (ŷ − y)2ds

s.t. x′ − f(x, u, s) = 0
sf∫
so

c ds = 2π

x0 = xf , y0 = yf , c0 = cf

(4.5)

where x̂, ŷ denotes cartesian coordinates of the centerline of the track derived from the GPS

data. The function f(x, u, s) represents the system dynamics, and the remaining equations

enforces the track closure conditions. The weighting term wu in the cost function is used

to filter the track model and obtain a smooth estimate of the track curvature (c(s)).
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Having found good estimates of the centerline of the track (x̂, ŷ), we solve the

nonlinear optimal control problem (4.5) to obtain the optimal track model (c(s)) subject to

the imposed constraints with a suitable solver. For our purposes, we found the orthogonal

collocation methods implemented in the software GPOPS-II [111] sufficient; however, any

nonlinear optimal control solution techniques could be applied to solve this problem. The

final fit of the track model from GPS data can be seen in Figure 4.3. It can be seen that

the optimal control approach very closely fits the estimated (from GPS measurements)

centerline while retaining sufficient smoothness.

In order to quantify performance of the track fitting, the distance normal to the

fit c(x) (blue curve in Figure 4.3) and each estimated centerline point (red ‘x’ in Figure

4.3) is calculated. Using this approach, the mean distance is calculated to be 5.98m with a

standard deviation of 2.82m. Considering the track spans 1000m in the x and y coordinate,

this error can be considered small. Note that this error is due to the smoothing performed

by weighting on the rate of change of curvature (wu) and closure conditions enforced in the

optimal control formulation. We found these results to be a sufficient balance of accuracy

of fit and a sufficiently smooth track model. The fit curvature versus distance (c(s)) will

be used as the track model in our racing line reconstruction method detailed in the next

section.

4.3 Race Line Reconstruction

In this section, the algorithm for reconstructing the race line from vehicle measure-

ment and the fit track model (discussed in Section 4.2) will be detailed. As previously

mentioned, measurements from typical sensors found on a racing car can be quite limited

as in our case study. The vehicle was not equipped with a GPS sensor during the test, and

as such, only the four sensors: lateral and longitudinal velocity (vx, vy) and lateral and

longitudinal acceleration (ax, ay) will be used in this algorithm.
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Figure 4.3: Fit of the track model (c(s)) from GPS data.
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4.3.1 Motivation for Optimal Race Line Reconstruction

As previously mentioned, the work [5] is one of the few works to discuss reconstruct-

ing the racing line from onboard measurements. Therein, an ad-hoc method of compensating

integration errors to enforce closure conditions was proposed. With this method, a simple

kinematic model is used to estimate curvature from vehicle velocity and lateral acceleration

(after appropriate data filtering):

c =
ay
v2x

(4.6)

Then, vehicle yaw is computed as:

ψ(t) =

tf∫
t0

c(t)vx(t)dt (4.7)

The error accumulated in the vehicle yaw over one lap can be written as:

Eψ = ψ(tf )− 2π (4.8)

where 2π assumes a closed lap with no overhead crossings. To enforce continuous track

conditions at the start/finish line, a correction to the curvature (c) estimation is applied.

This correction is written as: ∆ψ = −Eψ/s; where s is the distance travelled. Thus the

corrected yaw estimate (ψ) is:

ψ(t) =

tf∫
t0

(c(t) + ∆ψ) vx(t)dt (4.9)

Yaw is then integrated yaw to find the x, y coordinates, a similar correction is applied to

(4.9) such that the beginning and end x, y points are collocated.

Ex = x0 − xf , Ey = yo − yf

∆x = −Ex
s , ∆y =

−Ey

s

(4.10)
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Finally, the corrected x and y coordinates (x, y) can be written as follows:

x(t) =

tf∫
t0

[cos(ψ(t)) + ∆x] vx(t)dt (4.11a)

y(t) =

tf∫
t0

[sin(ψ(t)) + ∆y] vx(t)dt (4.11b)

This method was applied to our data set and the result can be seen in Figure

4.4. It can be observed that there is a poor correlation between the reconstructed racing

line and the reference track boundaries. This may be acceptable if the goal was relative

comparisons between data sets; however, when trying to compare lap simulations to onboard

measurement, the data needs to be represented in the same reference frame.

x [m]
-400 -200 0 200 400 600 800

y
 [
m

]

-200

0

200

400

600

800

Track Map From GPS
Raceline Reconstruction 

Figure 4.4: Comparison of racing line reconstruction [5] to track map derived from GPS.
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4.3.2 Optimal Control Approach

In order to reconstruct a smooth racing line from measurement, a base vehicle

model is used to ensure natural vehicle motion. The particle motion model is a good choice

because of its simplicity while retaining the capability of modeling minimum-time vehicle

maneuvering problems [163]. In fact, very few parameters are necessary to characterize

a vehicle using this model. Simple dynamic lags are used that model the vehicle specific

dynamics (powertrain, suspension, tires, etc.). As derived in [172], the particle (center of

gravity of the vehicle) motion in path intrinsic coordinate can be written as:

ṡ =
vt cos(eψ)

1− ey c(s)
(4.12a)

v̇t = at (4.12b)

ėψ =
an
vt
− vt cos(eψ)

c(s)

1− ey c(s)
(4.12c)

ėy = vt sin(eψ) (4.12d)

ȧt = 1/τt (u1 − at) (4.12e)

ȧn = 1/τn (u2 − an) (4.12f)

Here, the subscripts (·)t and (·)n denote directions tangential and normal to the

path. Velocity is represented by v and acceleration by a. The path intrinsic coordinates

(which can be seen in Figure 4.5) describe the vehicle motion as a lateral deviation from the

path centerline (ey) and heading angle deviation (eψ). The heading angle deviation (eψ) is

defined as the difference between the path heading angle (ψs) and the vehicle heading angle

(ψv). The subscripts (·)v and (·)s are used to denote vehicle and path, respectively. The

inputs (u =

[
u1 u2

]T
) control tangential and normal vehicle motion and operate through

lags τ which model the specific vehicle’s transient behavior. The curvilinear distance along

the path centerline is denoted as s. The models states are: x =

[
s vt eψ ey at an

]T
.
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Finally, the above vehicle model can be written by:

ẋ = g(x,u, t) (4.13)

ṡ

y

x

ey

1
C

ψv

ψs
eψ

vv

Path Centerline
Vehicle’s Path

ey

ey

Figure 4.5: Path intrinsic coordinate description. Note subscripts s and v refer to the path
and vehicle frame respectively.

With the above model of the vehicle motion, the racing line reconstruction can be
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accomplished by solving the following optimal control problem:

min
u

J =
tf∫
t0

||x̂− x||2Q + ||u||2R dt

s.t. g(x,u, t)− ẋ = 0

|ey| ≤ ey

t ∈ t̂

s ∈ strack

vt0 = vtf , ey0 = eyf , eψ0 = eψf

(4.14)

The problem is written to find the optimal inputs u to the particle motion model

that best fit our measured vehicle states (x̂), subject to the motion dynamics and the track

width constraints (ey). The time duration for the problem should span the time from vehicle

measurements and the curvilinear distance along the path should span the distance of the

track from our reference track model (c(s)). Finally, the initial and final states of position

and velocity are collocated to enforce a cyclic boundary condition found on a racing lap.

The matrices Q and R are diagonal weighting matrices used to adjust the fit relative to the

measured states and control effort, respectively.

4.4 Results and Discussion

4.4.1 Racing Line Reconstruction at Sebring

In this section, vehicle measurement taken during a test session at Sebring Inter-

national Raceway will be used along with the reference track model fit in Section 4.2 to

reconstruct the racing line taken during a test. First, the onboard vehicle measurements are

preprocessed. Each signal is filtered with a Chebyshev type II filter [173] as described in the

racing line reconstruction method offered in [5]. Next, the measurements are rotated from

the body fixed x, y coordinates, to the particle’s tangential and normal coordinates (t, n)

via the vehicle slip angle β = arctan(vy/vx) [174]. Finally, the previously described optimal
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Parameter Description Value

Q2,2 Weight on vt 1.00
Q5,5 Weight on at 0.01
Q6,6 Weight on an 0.01
R1,1 Weight on u1 0.01
R2,2 Weight on u2 0.01
τan Normal acceleration lag 0.07s
τat Tangential acceleration lag 0.07s

Table 4.1: Table of parameters used in the racing line reconstruction.

control algorithm (4.14) can be solved. As with the track model fitting problem, the racing

line reconstruction optimal control problem (4.14) was solved using orthogonal collocation

techniques implemented GPOPS-II [111]. This software does an efficient job of transcribing

the optimal control problem into a finite dimensional nonlinear programming problem and

includes built-in mesh refinement which helps approximate the continuous control signal.

The parameters we used in our formulation of the problem are listed in Table 4.1.

Figure 4.6 shows the measured states of the vehicle compared to the adjusted values

from the racing line reconstruction algorithm. It can be seen that minor corrections to the

measurements are applied by our racing line reconstruction algorithm such that the trajec-

tory does not violate the track width constraints. The reconstructed racing line overlaid on

the track map can be seen in Figure 4.7 along with the racing line as a function of curvi-

linear distance along the track centerline (ey(s)). It can be clearly seen that, compared to

Figure 4.4, our racing line reconstruction gives an accurately reconstructed racing line that

lies within the boundaries of the track.

4.4.2 Driver Comparison

While these results demonstrate the effectiveness of the algorithm, a comparison

between drivers will further motivate the importance of reconstructing the racing line.

From this test session, two experimental runs with identical vehicle setups but two different

drivers are fed through our optimal control based racing line reconstruction algorithm and
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Figure 4.6: Results of the racing line reconstruction for Driver A.
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Figure 4.7: Results of racing line reconstruction on measurements from Driver A.
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compared. The two lap times were separated by only 0.06%. This minor difference can

easily be explained in experimental factors such as the different times of day that the two

runs were conducted, ambient air and track temperature differences, differences in track

friction evolution as other cars negotiate the circuit, etc. These factors considered, the

two drivers were able to achieve nearly identical performance. While the maneuvering

time performances were practically identical, the vehicle states and trajectory deviated

considerably. To facilitate comparison, we will use split channels to compare the differences

between the two runs. They provide a convenient mechanism for comparing two data sets

and they are formally defined as:

∆y = y(s)|driverA − y(s)|driverB (4.15)

where y can be any signal to compare.

Figure 4.8 shows the split velocity and split racing line taken by the two drivers.

It can be seen that while the speed only varies a few m/s at key locations, the racing line

varies by as much as 2m over the course of the lap which is significant (Note: ∆ey does

reach over 4m between turns 16 and 17 and on the front straight; however, this was driver

B returning to the center of the track and has little effect on the maneuvering time).

Key sections where a difference in driving style can be observed is turn 6 (denoted

as T6 in Figure 4.7) through turn 7 (denoted as T7). The data traces of the split channels

and trajectories during this section of the track can be seen in Figures 4.9 and 4.10. Driver

B carries more speed through turn 6 but then slows more in the straight before turn 7

staying close to the center of the track, braking in a straight line, and ‘setting up’ turn 7

sooner rather than carrying more speed into the entrance of turn 7 as driver A does. The

result is driver B has more speed at the apex through the exit of corner 7. The result is

very similar maneuvering times through the segment (≤ 0.04s difference) but the drivers

accomplish the segment with two different styles. Driver A carries more speed into turn 7

while driver B apexes the turn earlier and exits at a faster velocity.
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Figure 4.8: Comparison of the split velocity and split racing line between drivers A and B.

Different trajectories with identical performance demonstrate there are multiple

local minima with respect to global maneuvering time. Using our reconstruction technique,

we are able to compare the racing line taken by each driver and gain insights on different

actions taken by the two drivers.

Local minima are discussed in our previous work [22], where a hybrid Model Pre-

dictive Control (MPC) cost was used to more closely model the inherent sub-optimality of

the minimum-time maneuvering problem. In this work, we are able to see that multiple

controllers achieved identical maneuvering times while taking different trajectories. As evi-

denced in Figures 4.8-4.10, different driving styles are able to demonstrate nearly equivalent

performance thereby corroborating our previous work [22].
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Figure 4.9: Comparison of the split velocity and split racing line between drivers A and B.
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4.5 Conclusions

Typical methods of racing line reconstruction prevent a close comparison of simula-

tion to actual measurements. Since modeling and simulations are conducted with respect to

a track model and the onboard inertial data is measured without this reference, it is often

difficult to make accurate comparisons. In this chapter, we first fit a reference track model

from GPS data using optimal control techniques. We then used this track model (c(s))

along with onboard vehicle measurements and a particle motion model to reconstruct the

driven racing line. This estimate of the racing line is the line that best fits the measured

data while obeying the track width constraints of the track model. This reconstruction

scheme was exercised for the case study of two drivers on the same vehicle setup at Se-

bring International Raceway. Both data sets were used with a track model of Sebring to

reconstruct the drivers’ racing lines.

With both tests’ racing lines reconstructed using the Sebring track model, a compar-

ison of the driving styles between drivers was possible. The two drivers achieved identical

performance (albeit small difference exist in the data; but, can be accounted for with minor

environmental changes that occur during the experiment) while utilizing a fairly different

driving style. A difference in racing lines of 2m can be observed in key locations of the

circuit. These differences in driving styles help corroborate the conclusion that there are

indeed multiple local minima that exist in the minimum-time solutions space. Understand-

ing of the driving style differences can help with tuning and design of the vehicle systems

(e.g. tires, suspensions, etc.) to suit a particular driver or driving style.

Future work aims at using the proposed technique for racing line reconstruction

towards developing mathematical/computational models that explain the driving styles of

high-performance drivers.
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Chapter 5

A Cascaded Optimization

Approach for Modeling a

Professional Driver’s Unique

Driving Style

Abstract

In the context of minimum-time vehicle maneuvering, previous works have shown

that different professional drivers drive differently while achieving nearly identical perfor-

mance. These differences are typically attributed to the driving style of the individual

driver. In this chapter1, we present a cascaded optimization framework for modeling indi-

vidual driving styles. Therein, an inner loop Model Predictive Controller (MPC) finds the

optimal vehicle inputs that minimize a blended-cost function over each receding horizon.

The outer loop of this framework is an optimization computation which finds the optimal

weights for each local MPC horizon that best fit data obtained from onboard vehicle mea-

1This chapter has been submitted for publication: J. R. Anderson and B. Ayalew. A cascaded optimiza-
tion approach for modeling a professional drivers unique driving style. Vehicle System Dynamics (Submitted,
under review), 2018.
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surements to the simulation of the maneuver. This cascaded optimization is exercised for a

case study on Sebring International Raceway where two different professional drivers were

able to achieve nearly identical lap times while adopting different driving styles. It will be

shown that this framework is able to model key differences in style between the two drivers

during a particular corner. The models of the individual drivers are then fixed, and a final

optimization is used to tune tire parameters to suit each driving style and illustrate the

importance of modeling the individual driver.

5.1 Introduction

Modeling the human component of ultra-high-performance driving is of key interest

to the motorsports and high-performance automobile industry. In the motorsports industry,

the vehicle is tuned, and in some cases designed, with a particular driver or small set of

drivers in mind. The same situation occurs with automakers of high-performance vehicles.

Typically, they employ a small team, ranging from one to just a few key engineers, to lead

the vehicle tuning efforts and sign-off on the final design. In both situations, the individual

driving preferences and driving styles of these drivers are imprinted on the basic feel and

setup of these vehicles. In this chapter, we refer to driving style as the different control

strategies that drivers tend to use to accomplish their goals. This can be seen in the different

racing lines that they take. Some drivers will tend to brake early for a turn to set up the

exit of the corner sooner than others while some execute the opposite, and carry much

more speed into a turn and apex the corner later. Considering these differences in style, the

ability to understand and mathematically model differences between professional drivers is

essential to advancing simulation efforts.

Previous works have demonstrated that different human drivers are able to achieve

equivalent performance using a very different set of control histories and vehicle trajectories.

In [33], Dominy states: “it is the authors’ experience that two top racing drivers may

describe quite different techniques for driving the same car through a particular turn”. The
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works in [11] and [23] have demonstrated that two drivers with an identical vehicle are able

to achieve equivalent performance while adopting different racing lines. These differences

can be attributed to the individual driving styles among these professional drivers.

Literature suggests that Model Predictive Control (MPC) provides a good founda-

tion for modeling the human driver’s decision process [18, 5]. In this work, we will use a

cascaded optimization structure where an inner loop utilizes a multi-objective or blended-

cost MPC while an outer loop optimization varies the weights used on the multiple objectives

in each MPC horizon. The local MPC cost function is capable of blending the objectives

of minimizing time over the MPC horizon and maximizing velocity at the exit of the MPC

horizon. This particular cost structure was motivated by the work in [175, 19], which states

that over a short segment, it can be advantageous to global maneuvering time to maximize

the exit velocity rather than minimize time over the segment. This is true especially when

the track section consists of a curve followed by a long straight. In our previous work [22],

we used the cascaded optimization strategy to show that by varying the objectives between

key horizons, the blended-cost MPC could outperform a traditional time-optimal MPC. In

traditional MPC, the global objective of minimizing time over the maneuver is approxi-

mated by minimizing time in every MPC horizon. Not only was the cascaded optimization

able to outperform the traditional MPC, it was shown that identical lap time performance

could be achieved while adopting different trajectories and control histories. We attributed

these local minima in the solution space to different driving styles. In this chapter, we aim

to expand on our previous work and use the cascaded optimization framework along with

onboard vehicle measurements to model differences between actual drivers. Specifically, we

will use the outer loop of our cascaded optimization to find the objectives used in each local

MPC horizon that give the optimal match of the simulated response with the proposed

driver model and the onboard vehicle measurements. After extracting models of different

driving styles with this approach, we will then use these models to individually optimize

tire parameters that best suit the individual driver’s style.

The remainder of this chapter is organized as follows. The mathematical framework
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we use to model driving style is explained in Section 5.2. Section 5.3 details a case study

of this approach on experimental data collected at Sebring International Raceway with two

professional drivers. In Section 5.4, we will use the identified models of the two drivers in

a scenario where it is desired to optimize the tire parameters. Finally, Section 5.5 offers

conclusions and directions for future work.

5.2 Cascaded Optimization Framework For Modeling Driv-

ing Style

To model different driving styles, we will adapt the cascaded optimization presented

in Chapter 3 as outlined in Figure 5.1. The inner loop remains a Model Predictive Controller

(MPC) with a blended-cost in each MPC horizon that is capable of minimizing time or

maximizing velocity at the end of the horizon. This controller calculates the optimal vehicle

inputs u that minimize a local cost function while the outer loop searches for the optimal

weights for each local MPC horizon that best match onboard vehicle measurements. Each

loop is detailed in the following subsections.

Outer Loop

Inner Loop

x,u

Z

Blended-Cost MPC

MPC Cost

Optimization

x̂ Zdriver

Figure 5.1: Overview of the cascaded optimization framework for modeling driving style.
The reference measurements are denoted as x̂. The vehicle simulation state and control
variables are x,u, respectively. The decision variables of the outer loop optimization are
Z. The output of the algorithm is the optimal set of weights that best fit the measurement
Zdriver.
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5.2.1 Inner Loop MPC

As previously discussed, the cost function used in each MPC horizon (JMPC) is a

blended-cost function with two different performance objective terms. One term is used

to minimize time over the MPC horizon and the other is used to maximize velocity at

the end of the horizon. These terms are weighted via the weighting terms wk, where the

subscript k ∈ {t, vx} denotes either time or longitudinal velocity. The values of these terms

are assigned from the outer loop optimizer for each horizon i and this is detailed in the next

subsection. A regularization term is also added to the cost function that introduces ‘small’

penalties on each control input to avoid numerical issues that arise from singular arcs [143].

The cost function is written as:

J iMPC(Zi) = wit t(s
i
f )︸ ︷︷ ︸

Minimize Time

− wivx vx(sif )︸ ︷︷ ︸
Maximize Exit Velocity

+

sif∫
sio

m∑
i=1

εiui ds

︸ ︷︷ ︸
Regularization

(5.1)

where Zi is the set of weights wik used in each MPC horizon i. The distance at the end of

the MPC horizon is denoted as sif , which is sif = sio + shorizon where shorizon is the length

of the MPC horizon and sio is the initial distance of the horizon.

The MPC process itself is carried out as illustrated in Figure 5.2. The optimal

control problem is solved over the first MPC horizon: i = 1, s1 ∈ {s1o, s1f}, given the initial

conditions x1
o. The problem is then advanced by the MPC update interval (sMPC = s/N)

where N is the number of MPC horizons that the full track distance (s) is divided into. The

next MPC horizon (i = 2) is formed: s2 ∈ [s2o, s
2
f ], s2o = s1i + sMPC . The initial conditions

for this MPC horizon are extracted from the previous horizon; i.e., x2
o = x1(s2o). This

process is then repeated recursively N − 1 times over the full maneuver.
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sMPC

shorizon
s1o

s3o
s4o

s2o

s1f
s2f s3f

s4f

x1o x2o x3o x4o

Figure 5.2: MPC Process.

5.2.2 Outer Loop MPC Weight Optimization

In this loop, the optimal weights for each MPC horizon Zdriver is found such that

the simulation best matches the onboard vehicle measurements x̂. The outer loop can be

written as:

min
Z

Jglobal =
sfinish∫
sstart

||x− x̂||2Q + ||u− û||2R ds

s.t.

Sub MPC Problem: for i = 1, 2, ..., N − 1

Optimal Control Problem (3.29)

sif = sio + shorizon

si ∈
[
sio, sif

]
si+1
o = sio + sMPC , sMPC = s/N

xi+1
o = xi(si+1

o )

wik ∈ [0, 1]

(5.2)

where Z is the decision variable of the outer loop and contains the set of weights (wik, k ∈

{t, vx}) to be used over each local MPC horizon. In other words:

Z =

[
Z1 Z2 . . . ZN−1

]T
=

[
w1
t w1

vx w2
t w2

vx . . . wN−1t wN−1vx

]T
(5.3)
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where i = 1, 2, ..., N − 1 is the index for the individual MPC horizon. Therefore, the global

set of weights is Z ∈ IR2(N−1). Furthermore, each element of Z is constrained such that

wik ∈ [0, 1]. The term Q is used to tune the outer loop optimization process and place

emphasis on the key states to match between the vehicle simulation with the proposed

driver model and the onboard measurement data. Note that the vector Zdriver represents

the identified driver model corresponding to the onboard vehicle measurement data under

consideration.

5.3 Results: Case Study on Sebring International Raceway

In this section, the mathematical framework previously presented will be applied to a

case study at Sebring International Raceway [171]. The experimental setup is as follows: two

different professional drivers drove a session on Sebring in a Grand Touring (GT) race car.

After the tires warmed up, their lap times were separated by only 0.06%. This minor differ-

ence can easily be accounted for considering the two different times of day the vehicle was

run, the change in ambient air temperature, change in track temperature, and grip evolution

due to the other vehicles running on the circuit. Considering these things, the two lap times

can be considered identical. There were locations on the circuit where the drivers exhib-

ited different styles, and their trajectories varied considerably even though the maneuvering

times were identical. One such key location is Turn 17 (T17) which can be seen in the track

map in Figure 5.3. We chose to concentrate on this turn only in this chapter because the cas-

caded optimization with the adopted solution methods is highly computationally intensive

to analyze the full track tractably. By concentrating on this section of track, we were able

to achieve a tractable solution while modeling the differences between the two drivers. The

section around Turn 17 was selected (as shown in Figure 5.3) because the two drivers were

able to achieve identical maneuvering times over the section (see tabulated results in Table

5.3 in Section 5.4) and the selected section had nearly identical boundary conditions between

the two drivers (xdriverA(sstart) ≈ xdriverB(sstart), xdriverA(sfinish) ≈ xdriverB(sfinish).
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Figure 5.3: Map of Sebring International Raceway.
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5.3.1 Problem Setup

The first step in the simulation process is estimating the vehicle state information

from onboard measurements. These state and control estimates (x̂ and û) are to be used

in the outer loop optimizations of (5.2). In this case study, the vehicle was equipped with a

limited set of sensors; specifically, steering wheel angle, lateral and longitudinal acceleration,

lateral and longitudinal velocity, and yaw rate; but, no GPS. In order to reconstruct the

racing line (ey(s)) and transform the measurements from the temporal domain into functions

of the path distance traveled, the racing line reconstruction technique we outlined in our

previous work [23] was used. The technique entailed fitting a track model (curvatures

versus path distance, C(s)) using optimal control methods and measurements of the track

boundaries. Then, the racing line was reconstructed using an optimal control problem

that finds the optimal inputs to a particle motion model that best matches the particle

motion to the onboard vehicle measurements subject to the track boundaries. By using

this simple particle motion vehicle model, and a reference track model (c(s)) sensor noise

and integration errors that typically make reconstructing the racing line problematic can

be alleviated. The result of this step is the full reference measurements and inputs (x̂ and

û) for each driver that we wish to model with the cascaded optimization framework.

The cascaded optimization structure outlined in Section 5.2 was then applied to

the processed measurements obtained from each driver. For the inner loop, GPOPS-II was

used to solve the optimal control problem in each horizon [111]. GPOPS-II is a general

purpose optimal control software that uses a direct pseudospectral collocation method to

transcribe the optimal control problem into a finite dimensional nonlinear programming

problem (NLP). This software also features a mesh refinement scheme which better approx-

imates the continuous nature of the dynamics studied. In setting up this solver, we chose to

use automatic differentiation to generate derivative information (adigator was the specific

software used [176]). IPOPT [177] was the general purpose NLP solver used by GPOPS-II.

In the outer loop, we applied MATLAB’s Genetic Algorithm (GA) implementation from

their global optimization toolbox [165] to find the optimal cost function weights (Z) used

94



in each MPC horizon. The nature of this problem is exploiting the local minima observed

in the solution space to explain driving style differences, and as such, a global solver is

necessary to explore the solution space.

Next, the weights in the matrix Q in (5.2) were adjusted to properly scale all cost

function terms. The weighting matrix is a diagonal matrix where each diagonal entry can

be factored into a weighting term and a scaling term; i.e.,

Q =


q1,1/s1,1 0

. . .

0 qn,n/sn,n

 (5.4)

To properly scale each term in the cost function, a baseline time-optimal MPC simulation

was used with all weights set to unity (i.e., qj,j = 1) and the scaling factor sj,j were adjusted

such that the state contribution of each state to the total costs is unity. In other words, we

selected sj,j such that:

∫
1

s1,1
||v̂x − vx||2 ds = 1,

∫
1

s2,2
||v̂y − vy||2 ds = 1, ...,

∫
1

s5,5
||êψ − eψ||2 ds = 1 (5.5)

With proper scaling between terms in the cost function, the weighting components qj,j can

be used to place emphasis on the desired states in the cascaded optimization (5.2). The

same strategy was taken for the control portion of the cost function, i.e., the weights in the

matrix R. The final weights used in our results are given in Table 5.1.

In order to compare detailed data between drivers, we use split channels (denoted

by ∆) which provide a convenient mechanism to visualize differences. These channels can

be formally defined as:

∆y = y(s)|driverA − y(s)|driverB (5.6)

where y can be any signal we seek to compare for the two drivers, driver A and driver B.
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Weight State/Control Value
q1,1 vx 12
q2,2 vy 0.1

q3,3 ψ̇ 1
q4,4 ey 10
q5,5 eψ 2
q6,6 t 7
r1,1 δ 1
r2,2 κfl 0.25
r3,3 κfr 0.25
r4,4 κrl 0.25
r5,5 κrr 0.25
r6,6 Fzfl 0.25
r7,7 Fzfr 0.25
r8,8 Fzrl 0.25
r8,9 Fzrr 0.25

Table 5.1: Table weights used in (5.2).

5.3.2 Results

The drivers’ measured velocities, split velocity, and split time traces during Turn 17

(T17) are compared in Figure 5.4(a). While absolute correlation is not achieved between

measurement and simulation (Figure 5.4(b)), the differences of driver B compared to driver

A are preserved in the simulation. Absolute correlation is quite difficult especially consider-

ing the relatively simple vehicle model chosen; however, model simplicity was necessary to

make this problem tractable. Also, the characterization of tire frictional properties is chal-

lenging as it can vary with everything from ambient conditions to the location on the track.

Despite this, the relative differences between drivers observed in the measurements are also

preserved in the simulations. It can be seen that driver B tends to brake later than driver

A (i.e., retains a higher velocity longer than driver A, see s ≈ 5, 225m in Figure 5.4(b)).

Also, driver B tends to apex the corner earlier (i.e., the point of maximum curvature in the

racing line which also occurs approximately where the drivers place their minimum speed

for this turn, see s ≈ 5, 445m). The general shape of the split velocity curves is preserved

well between the two drivers. Driver B gains a speed advantage right at the entrance of
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Turn 17a (T17a), then loses some of that speed advantage at the exit of the corner before

making up the difference afterward. The split time traces are very similar in shape as well.
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Figure 5.4: Longitudinal velocities (vx), split velocities (∆vx), and split times (∆t) of Driver
A and B for (a) measurement and (b) simulation.

While the key driving style differences (late braking and early apexing) observed

for driver B were seen in both measurement and simulation, the racing line differences were

not as clear. Figure 5.5 shows the split racing lines for the two drivers over this maneuver.

Much of the differences are present in the straight sections of the maneuver where driver

A would tend to return to the center of the track and driver B would not. This particular

style difference has minimal impact on the global maneuvering time and is not able to be

captured in our simulation. In order to capture this effect, the MPC inner loop would need
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to be augmented to include a term to penalize lateral deviation of the vehicle. Alternatively,

much more emphasis would need to be placed in matching the racing line in Q. This was

tried; however, matching racing line more closely comes at the expense of a good correlation

in the velocity traces which we believe to be the most important feature to capture. The

racing line that can be seen in the measurements and simulations lines up much better

during Turn 17a and this can be seen in the trajectory plot of Figure 5.5. Driver A tends

to stay more towards the outside of the corner than driver B.

The absolute correlation issue can also be observed in the trajectories during Turn

17a. While the simulated vehicles use all of the available track width, the vehicles in

measurement do not. This is due to the nature of the physical corner that exists on this

particular track, which is an old runway that exhibits a very rough vertical profile. In

the measurements, the real drivers are able to negotiate the corner while avoiding vertical

inputs that can disrupt the vehicle balance while we neglect this fidelity in our simulation.

Again, absolute correlation was not the goal of our work; instead, we concentrated on a

framework of representing style differences between the two drivers. Future work could

look at increasing model fidelity to capture these effects (methods of incorporating this

modeling detail have been researched in [45, 169]; however, the increased modeling detail

has an increased computational cost, and this is traded-off with tractability of the problem.)

The mechanism that allows the vehicle simulation to capture these key differences in

driving behavior is the variable MPC objectives that are allowed to change between horizons

around the track. The optimal parameters for each driver are denoted as Zdriver. Figure

5.6 shows how the optimal weights (Zdriver) vary between the two drivers. It can be seen

in a couple of key horizons that driver B chooses a heavily weighted velocity optimal cost

just before the areas where he has a higher split velocity. These varying weights between

driver A and B are able to capture the late braking behavior and early apex exhibited by

driver B.

The results from these simulations are two distinctly different mathematical models

(i.e., MPC with weights in ZdriverA and ZdriverB) that capture the key differences between
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Figure 5.5: Split racing line (∆ey) and trajectories of Driver A and B for (a) measurement
and (b) simulation in the turn 17a (T17a).
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these drivers while respecting nearly identical maneuvering times achieved in both simula-

tion and measurement (see Table 5.3 in Section 5.4). In the subsequent section, we will use

these models to perform virtual tire tuning for individual drivers.

5.4 Tire Optimization for a Given Driving Style

In a vehicle development program, there is an established supplier submission pro-

cess, especially for tires. In this process, several tire variants are manufactured by the sup-

plier and submitted to the vehicle manufacturer. A development test driver then subjects

each variant to a battery of tests and each construction is then judged. In high-performance

vehicle programs, lap time is a key metric used to sort tire variants. Armed with the con-

clusions from each construction, the tire designer then makes design decisions to prepare

for the next submission. This iterative process is repeated until a final construction is then

chosen that satisfies all of the vehicle manufacturer’s requirements.

In this section, we will use the previously identified driver models (ZdriverA, ZdriverB)

for each of the drivers to virtually tune the tire to suit each driving style. To that end, we

will construct a scenario that the tire friction balance can be shifted by 5% from the front

to the rear axle, but the total frictional capability is constrained equivalent to the base-

line case. The tire’s longitudinal and lateral forces are modeled in the simplified Pacejka

formulation as:

Fx(Fz, α, κ) = λ1,2 Fz µx(Fz) sin
(
Qx arctan

(
Sx
√
α2
n + κ2n

)) αn√
α2
n + κ2n

(5.7a)

Fy(Fz, α, κ) = λ1,2 Fz µy(Fz) sin
(
Qy arctan

(
Sy
√
α2
n + κ2n

)) αn√
α2
n + κ2n

(5.7b)

The friction coefficient is modeled as a linear function of load (µx,y(Fz)) and it is modified

by the current combined slip condition (terms to the right of µx,y). See [45] for a complete

definition of the tire model. We will use the λ1,2 terms to provide a way of scaling the friction
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coefficient on the front and rear axle, respectively. The front and rear axle is allowed to

vary by ±5% while constrained such that the sum of the multipliers are identical to the

baseline case: i.e, λ1+λ2 = 2. Note that λ1 and λ2 modify both the lateral and longitudinal

coefficient of friction (µx and µy in (5.7)). This is denoted as λ1µx,y(Fz) and λ2µx,y(Fz)

for the front and rear axles, respectively. In addition to modifying the tire friction front

and rear, we will also adjust the location of the slip angle where the maximum lateral force

occurs. In the simplified Pacejka formulation, this is also a linear function of load; i.e.,

αmax = αpeak(Fz). Again, we will introduce decision variables λ3,4 to scale these terms by

±5% for the front and rear axles while keeping the sum of the changes equivalent to the

baseline; i.e., λ3 +λ4 = 2. See also Table 5.2 for the definition of these multipliers λ1, ..., λ4.

In the following, we use the short hand: λ = [λ1, λ2, λ3, λ4]. Finally, the optimization of

tire selection for a particular driver (driving style) can be posed as follows:

min
λ

Jglobal = t(sfinish)− t(sstart)

s.t.

Sub MPC Problem: for i = 1, 2, ..., N − 1

Optimal Control Problem (3.29)

min
u

J iMPC(Zidriver)

s.t. x′ − f(s,x,u, λ) = 0

...

sif = sio + shorizon

si ∈
[
sio sif

]
si+1
o = sio + sMPC , sMPC = s/N

xi+1
0 = xi(si+1

o )

λj ∈ [0.95, 1.05], j = 1, 2, ...4

λ1 + λ2 = 2

λ3 + λ4 = 2

(5.8)
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Parameter Description λ∗driverA λ∗driverB
λ∗1 Multiplier on front axle friction 1.03 1.05
λ∗2 Multiplier on rear axle friction law 0.97 0.95
λ∗3 Multiplier on front axle slip angle at peak lateral force 0.98 1.00
λ∗4 Multiplier on rear axle slip angle at peak lateral force 1.02 1.00

Table 5.2: Optimal decision variables for each driver.

In this problem, the outer loop searches for the optimal set of parameters λ∗ =

[λ∗1, λ
∗
2, λ
∗
3, λ
∗
4] that minimizes the total maneuvering time in the section of interest, Turn

17 (T17). The problem is solved for each driver model (Zdriver); therefore, the local MPC

weight schedule is fixed per driver. The outer loop decision variables (λ) enter into the

inner loop via the vehicle dynamics equations in f(s,x,u, λ); specifically, the tire model

(5.7). The problem is then solved similarly to the fitting process above with the outer loop

being solved via MATLAB’s GA implementation [165] and the inner loop’s optimal control

problem via GPOPS-II [111].

The optimal parameters obtained for each driver are given in Table 5.2 and the

performance gains are listed in Table 5.3. It can be seen that each driver has a different

set of parameters that minimize their global maneuvering time. Driver A’s style has more

potential than driver B with the parameters that we are tuning with; however, both drivers

can benefit from the tuning. Note that the optimization chooses a more oversteering setup

(decreased rear grip and/or increased rear axle slip angle) for both drivers which corroborate

the authors’ experience that this setup is ideal for optimal maneuvering times. This scenario

is used to motivate the possible uses of this framework and demonstrate that different drivers

not only drive differently, there maybe be a different set of parameters that best suit each

driver. Realistically these parameters will be tuned while balancing with other objectives

such as stability and driver workload in addition to maneuvering time; however, this is a

first step at applying a minimum-time maneuvering simulation to tailor vehicle parameters

to a particular driving style.
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Units Driver A Driver B

Baseline Measurement s 23.51 23.50

Baseline Simulation s 23.63 23.62
Optimized Tire s 22.88 22.97
Optimized Tire Time Improvement s 0.75 0.65
Optimized Tire Improvement Percentage % 3.2% 2.8%

Table 5.3: Table of maneuvering times in Turn 17.

5.5 Conclusions

The ability to model individual driving style is an important topic to both the mo-

torsports and high-performance automotive industries. Literature has shown local minima

exist in the solution space for minimum-time vehicle maneuvering problems and experience

has demonstrated that different driving styles can yield identical performance with different

trajectories and control histories. In this chapter, we presented a mathematical framework

for capturing driving style differences between drivers in the form of a cascaded optimiza-

tion. We utilize an inner loop MPC with a blended-cost function which was motivated

by previous work and literature. This controller finds the optimal vehicle inputs (u) to

negotiate the maneuver. An outer loop optimizer finds the optimal cost function to be used

in each local MPC horizon. By varying the objective function used for different horizons

around the track, we can match simulation to onboard vehicle measurements. This mathe-

matical framework is then exercised for a case study on Sebring International Raceway. In

this study, onboard measurements from two professional drivers that negotiated the circuit

with nearly identical maneuvering times were used as the baseline data. Turn 17 was a key

corner where their trajectories varied considerably, despite the identical maneuvering times.

The cascaded optimization framework was able to reproduce the key differences exhibited

in the onboard measurement and yield a model for each driver.

Using the identified model of each driver, a scenario was constructed to optimize

tire parameters to suit the individual driver’s style. Therein, another cascaded optimization
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was used where the inner loop MPC operated on a fixed schedule of objectives (from the

identified driver model), and the outer loop optimized key tire parameters. It was shown

that performance advantages could be gained for each driver and the optimal set of tire

parameters differ between the drivers. This mathematical framework could be applied

similarly to a supplier submission process where a supplier will present the customer with

several variants, test, evaluate feedback, and make design decisions for the next submission.

Data could be collected, the driver’s weights (Z) could be identified, and then a design

direction for the vehicle (λ∗) could be established using these known weights (Z). The new

tire design direction λ∗ will, in turn, affect the way the driver drives (and affect the driver

model Z); thus, the complete process is iterative just like the supplier submission process.

In this chapter, we have outlined the computational details of the first loop of this iterative

process.

Future work could further explore several aspects of this research. First, additional

data could be considered to expand the scope of drivers studied (resources such as the

Revs Vehicle Dynamics Database [11] could be a great resource). Model fidelity could be

increased to capture essential effects such as the track friction along the circuit and laterally

across the track that would improve the model to measurement correlation. Next, while

we limited the inner loop MPC to two objectives, additional objectives could be added to

improve the correlation. The outer loop fit of the data is sensitive to the weighting choices

(i.e., Q and R). Further studies could consider better ways to weight these problems.

Rather than concentrating on a blended-cost MPC, it would be of interest to look at other

aspects of the MPC process to mimic driving styles. For example, instead of fixing the

MPC horizon as we have done, perhaps, a variable MPC horizon could be scheduled via an

outer loop optimizer to yield the differences we seek to model. This would be analogous to

fitting the drivers’ look ahead distance as a function of the path distance traveled.

Modeling individual drivers will be a key problem as vehicles continue to advance.

Just as tunability increases, so does the ability of customization. If there are ways to

model different drivers, one can use our approach described herein to optimize the vehicle
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(components) to suit particular drivers.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In motorsports and high-performance vehicle development, professional drivers are

relied upon to influence design and tuning direction for vehicles. In many cases, they perform

final validation work of a vehicle. It has been established that different drivers have different

driving styles and these styles affect the vehicle design and tuning directions. Most work

to date has explored modeling an ‘ideal’ driver to simulate vehicles, however, modeling the

‘human’ element of driving is less understood. In this dissertation, we aim to mathematically

model the driving style differences between drivers. A cascaded optimization framework was

proposed to model these style differences. This framework was then applied to a case study

to demonstrate the ability of the framework to model style differences and then use the

models to tune tires for specific driving styles.

6.2 Summary of Contributions

In this work, we have presented a framework for modeling driving style and applied

this methodology to onboard vehicle measurements. Using this framework, we were able to

capture key differences in style between two drivers and then optimize the vehicle for each

style. The remainder of this section summarizes the key contributions of this work.
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6.2.1 Cascaded Optimization Framework

A cascaded optimization was proposed as the mathematical framework to model

differences in driving style. The inner loop uses a model predictive controller to optimize

the vehicle inputs that minimize a local blended cost function. The outer loop learns the

optimal objective schedule used in each MPC horizon in the inner loop. This process is

analogous to a human learning a particular circuit or maneuver. We applied this framework

first to show how varying the cost function in each horizon can outperform a traditional

fixed-cost, time-optimal MPC.

While this was done for a minimum-time vehicle maneuvering problems, it can easily

be extended into any MPC process where a global objective is known. It is a general method

for injecting a local MPC horizon with pertinent information outside of that horizon. One

example could be minimum fuel problems where it is necessary to simulate a trajectory

that minimizes fuel over a route, and road information outside of an MPC horizon could

be useful to globally reduce fuel usage. Another example is traffic flow problems. Typically

the MPC horizon is limited to a relatively short horizon to deal with the immediate control

action to safely navigate the environment. If future traffic information, like lane closures,

blockages, or traffic conditions from vehicle to vehicle communication could be incorporated

into the model predictive controller at each horizon, then it could globally improve MPC

performance.

In addition to outperforming the fixed-cost MPC, we were able to obtain multiple

objective weight schedules that were all able to outperform the fixed-cost MPC; but, had

very different control trajectories. This demonstrates local minima in the minimum-time

vehicle maneuvering solution space. This is the key phenomena we used to explain how

different driving styles were able to achieve nearly identical performance. The following

lists the key contributions of this work:

• Outperformed traditional fixed-cost MPC by varying local MPC objectives

– This was demonstrated for multiple vehicles and multiple tracks
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• The variable MPC cost structure could be used as a general method for incorporating

preview information outside of local MPC horizon into each local optimization and

improve global performance.

• Identified local minima that could be used to explain/model different driving styles

6.2.2 Optimal Racing Line Reconstruction

In this phase, we proposed a novel optimal control based technique to reconstruct

the racing line from a limited set of measurements. Traditional methods of reconstruction

incur too much error to be useful, and none proposed to date are able to represent the

measurement (usually collected in the time domain) in the path distance traveled domain.

This is the domain used in simulation and allows for better comparison between simulations

and measurements. Our reconstruction technique uses a simple particle motion model to

ensure natural vehicle motion and a previously fit model of the track to identify the racing

line traveled. This was accomplished by using a limited set of measurements: lateral and

longitudinal acceleration and velocity. This racing line reconstruction technique was applied

to a case study, and we were able to demonstrate nearly identical performance between two

drivers with different driving styles. The following list summarizes the contributions of this

work:

• Proposed optimal control based method to reconstruct racing line from a limited set

of measurements.

• Demonstrated different driving styles with nearly identical performance

6.2.3 Application of Cascaded Optimization Framework to Identifying a

Driver Model

The cascaded optimization framework was applied to the on-vehicle measurements

in order to identify a driver model for each driver. The objective for the outer loop, in this
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case, was to best match vehicle simulation to the onboard vehicle measurements. The result

is a model of the two drivers that was able to capture key differences in driving style.

Using these driver models, we then used another cascaded optimization to optimize

tire parameters for each driver model. It was shown that for the parameters studied, the

optimal parameters varied for each driver. This validates our hypothesis, if we are able to

capture the difference between drivers in simulation, we then can optimize a vehicle for a

particular driver. The following list summarizes these contributions:

• Used a cascaded optimization framework to identify a driver model for two different

driving styles.

– Key differences in style between drivers were preserved in simulation compared

to measurement.

• Using the identified driver models, the vehicle parameters were able to be tuned to a

particular driver.

6.3 Future Work

There are many possible areas to advance this topic. Listed below are a few possi-

bilities.

6.3.1 Scope of Driving Styles Studied

In this work, we relied on one case study of two professional drivers that were able

to achieve nearly identical global performance while exhibiting different styles. It would be

ideal to expand further the number of drivers studied with this framework. Resources such

as the publicly available Revs database [11] could be an excellent resource for expanding

this work.
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6.3.2 The MPC Framework

While MPC was chosen as a good framework for modeling the human decision

process [18], it causes much of the computational burden in the cascaded algorithm; in

fact, the MPC process is the reason that we treat the problem hierarchically. If the entire

problem could be treated with optimal control alone, then optimization parameters (such as

the tire parameters studied in Section 5.4) could be solved simultaneously with the state and

control trajectories. This would allow for a much more computationally friendly problem.

While we use the cascaded optimization to schedule objectives used in each MPC horizon,

perhaps there are other ways to incorporate the learning process within an optimal control

framework. One idea may be to place equality constraints in the vehicle trajectory (i.e.

ey(sconstraint) = eyconstraint). An outer loop optimization could then ‘learn’ the optimal

constraint locations and magnitudes much like a driver learns apex points on a track. This

learning process could then be extended to other items that a professional driver learns

(such as braking points). By including these constraints, multiple driving styles could be

modeled in an optimal control framework and alleviate some of the computational burdens

of the MPC process.

6.3.3 Blended Cost MPC

In this dissertation, we chose to include two terms in the blended cost function:

minimum-time and maximum exit velocity over each horizon. Model to measurement cor-

relation could be improved by augmenting this cost to include other terms such as minimum

or maximum lateral position on the track to force the vehicle to return to the center or push

it to the boundaries over a horizon.

6.3.4 Outer Loop Optimization

As was discussed in Chapter 5, the choice of weighting parameters Q and R have

a significant effect on the quality of the overall fit of the simulation to the reference mea-

surements. In this work, we chose our optimal weighting parameters Q and R based on
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experience. Future work could look at a more systematic way to determine optimal weight-

ing and achieve a better ‘fit’ of simulation results to measurement.

Alternate techniques for finding the optimal weights Zdriver could also be explored.

One idea could be to train neural networks with the measurements rather than using genetic

algorithms.

6.3.5 Alternate MPC Horizon

In this work, we explored a blended, multi-objective cost MPC. There could be other

ways to optimize the MPC process to model the human driver. One idea could be to optimize

the MPC horizon distance (shorizon) in each segment via the cascaded optimization. This

would be analogous to modeling a variable driver’s look ahead distance and could potentially

yield similar results as the blended cost MPC.

6.3.6 MPC Improvements

In our work, we chose to apply an optimal control solver with mesh refinement in

each MPC horizon; this is fairly computationally intensive since we are solving many optimal

control problems over the full maneuver. While we optimized this as much as we could (via

the use of automatic differentiation and solver settings), many other optimal control codes

exist and could potentially provide performance improvements while retaining an accurate

solution.

6.3.7 Alternate Applications of the Cascaded Optimization

As mentioned in the contributions above, the cascaded optimization structure was

a general method of modifying the local MPC optimal control problem to take into account

information outside of the current preview horizon. This idea can extend beyond minimum-

time vehicle maneuvering problems and could be examined in any MPC process where a

global objective is known. The two areas mentioned in the contribution sections could be

potential examples: minimum-fuel planning problems, and traffic flow problems.
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Appendix A Vehicle Model

In this chapter, the vehicle model described in [20] is adopted as it is a reasonable

compromise of model fidelity and computational cost. It is comprised of three degrees of

freedom for the sprung mass, longitudinal velocity (vx), lateral velocity (vy), and rotation

about the vertical axis (ψ̇). The individual wheel dynamics are not explicitly modeled

and instead, the four wheel slip ratios (κp) (where p denotes the four wheel positions)

are modeled as control inputs to the system. This formulation allows us to eliminate the

four wheel dynamics that are much faster than the other vehicle dynamics and can cause

numerical issues (such as dense meshes) when solving the optimal control problem.

v̇x = vyψ̇ +
Fx
m

(A.1)

v̇y = −vxψ̇ +
Fy
m

(A.2)

Izzψ̈ = a(cos(δ)(Fyfr + Fyfl) + sin(δ)(Fxfr + Fxfl))+

tf (Fyfr sin(δ)− Fxfr cos(δ))+

tf (Fxfl cos(δ)− Fyfl sin(δ))+

trFxrl − b(Fyrr + Fyrl)− trFxrr

(A.3)

where m and Izz are the mass and moment of inertia, respectively. Total lateral and

longitudinal forces acting at the Center of Gravity (Cg) are denoted by Fx and Fy.

Fx = cos(δ)(Fxfl + Fxfr)− sin(δ)(Fyfl + Fyfr)

+Fxrl + Fxrr + Fax

Fy = cos(δ)(Fyfl + Fyfr) + sin(δ)(Fxfl + Fxfr)

+Fyrl + Fyrr

(A.4)
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Figure A.1: Vehicle top view. Note: body-fixed coordinates xb and yb are located vertically
at the ground plane.

The individual tire lateral and longitudinal forces are denoted by Fxp and Fyp. The subscript

(·)p again represents the four wheel positions; p ∈ {fl, fr, rl, rr} denotes front left, front

right, rear left, rear right position. The vehicle is assumed to be front wheel steering only.

The steering angle is represented by δ. The vehicle dimensions a, b represent values from

the Cg to the front and rear axle. The dimension tf , tr represent half of the vehicle’s front

and rear track width. These dimensions can be seen in Figure A.1.

A.1 Aerodynamics

The speed-dependent aerodynamic forces act at the center of pressure (Cp) which

is located via the parameters aa, ba. They are the distance of the center of pressure to the

front and rear axle. The lift and drag forces (Fax, Faz) are modeled as:

Faz =
1

2
CLρAv

2
x (A.5)

Fax =
1

2
CDρAv

2
x (A.6)
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where the lift and drag coefficients (CL, CD) are assumed constant. The vehicle’s frontal

area is denoted with A. The air density is denoted with ρ. Other aerodynamic effects such

as yaw and pitch coupling are neglected for the purposes of this work.

A.2 Tires

The tire’s frictional forces are calculated via an empirical formula that responds to

changes in loads, lateral slip angle, and longitudinal slip ratio. It is based on the simplified

Pacejka tire model presented in [45, 20] and detailed in Appendix B. The slip ratio (κ) and

slip angle (α) are calculated by:

κ = −
(

1 +
Rω

vxtire

)
(A.7)

and,

α = − arctan

(
vytire
vxtire

)
(A.8)

where R is the effective rolling radius of the tire and vxtire, vytire are the longitudinal and

lateral velocities of the tire accounting for vehicle rotation.

A.3 Tire Loads

Modeling tire loads presents a unique challenge because of the algebraic relationship

that exists between the tire loads and the forces the tires can produce (which affect tire

loads). This is typically handled one of a few ways in the literature. First, approximations

of the lateral and longitudinal forces acing at the Cg can be made and then the four

wheel loads can be solved for via the equilibrium equations (A.13) discussed below. From

Newton’s second law, The forces acting on the Cg should be proportional to mass times

acceleration. This is fully explained in [45] and was the method employed in Chapter 3.

Lateral acceleration was approximated as ay = ψ̇vx. Since torque input was explicitly

modeled in this chapter, total longitudinal force was modeled as the sum of torques on the

four wheel positions divided by the effective rolling radius of the tires. Alternately, the tire
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loads can be found by modeling the tire vertical dynamics. Stiffness and deflection of the

tires can be explicitly modeled as discussed in [100]. The tire loads can also be treated

as dynamic states with simple lags to account for the suspension dynamics as explained in

[97]. A final method (which is what we will use in the remainder of our work) treats the tire

loads as inputs to the system dynamics and not as system states [140]. In order to have the

system obey equilibrium conditions, equality constraints are placed in the optimal control

formulation. These constraints are derived by summing the forces and moments about the

body-fixed coordinates (xb, yb) seen in Figure A.1 and enforcing a roll stiffness distribution

D ∈ [0, 1] such that the load transfer on the front axle is a fixed proportion of the total load

transfer. First, summing the moments in the vertical direction:

∑
Fz = FzL1 + FzR1 + FzL2 + FzR2 + Faz = 0 (A.9)

Next, balance moments about body-fixed x axis:

∑
Mxb = tr(FzL2 − FzR2) + tf (FzL1 − FzR1) + hFy = 0 (A.10)

Then, sum moments about the body-fixed y axis:

∑
Myb = b(FzR2 + FzL2)− a(FzR1 + FzL1) + ...hFx + (aa − a)Faz = 0 (A.11)

Finall, a fixing the front axle load transfer to be a proportion of the total load transfer, we

can write the following:

FzR1 − FzL1 = D(FzR1 + FzR2 − FzL1 − FzL2) (A.12)
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This yields the following linear system of equations:



1 1 1 1

−tf tf −tr tr

−a −a b b

D − 1 1−D D −D





Fzfl

Fzrl

Fzrl

Fzrr


=



−mg − Faz

−hcgFy

(aa − a)Faz + hFx

0


(A.13)

Note that hcg represents the Cg height.

A.4 Path Intrinsic Coordinate System

The path intrinsic coordinate system provides a convenient mechanism to bound

the vehicle motion to stay within the track width boundaries. In this coordinate system the

vehicle motion is modeled with respect to the road centerline as depicted in Figure A.2. The

heading angle deviation (eψ) represents the difference between the path heading and the

vehicle heading angle while the lateral deviation (ey) refers to the vehicle lateral deviation

from the path centerline. The vehicle speed in the path reference frame is denoted as ṡ.

The quantities ṡ, eψ, and ey are calculated as follows:

ṡ =
vx cos(eψ)− vy sin(eψ)

1− eyC
(A.14)

where C is the path curvature is assumed to be a known function of path distance i.e.,

C = C(s).

ėψ = ψ̇ − Cṡ (A.15)

ėy = vx sin(eψ) + vy cos(eψ) (A.16)
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Figure A.2: Path intrinsic coordinate system. Note subscripts s and v refer to the path and
vehicle frame respectively.

A.5 Distance Based Description

The vehicle dynamics can be written as:

ẋ = f(x,u, t) (A.17)

where, the vehicle states are: x =

[
vx, vy, ψ̇, ey, eψ

]T
and inputs are: u =

[
δ, κp, Fzp

]T
,

where the subscript (·)p denotes the four wheel positions.

For the purposes of time optimal control, it is of interest to change the independent

variable of the system from time (t) to path distance travelled (s). This change of variables

eliminates the free final time boundary condition that would arise if the system were written

in the time domain. This transformation is achieved via application of the chain rule of

differentiation to the system dynamics in (A.17).

dx

dt

dt

ds
=
dx

ds
=

ẋ

ṡ
(A.18)
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The final system description can be written as:

x′ = f(x,u, s) (A.19)

where the operator (·)′ denotes the spatial derivative d
ds . Note that time is added as an

additional state in the state vector x with the state equation: t = 1/ṡ.

Appendix B Simplified Pacejka Tire Model

The tire model used in this work is a simplified tire model rooted in Pacejka’s magic

formula. It is fully described in [45, 20] and included here for completeness. Begin, the tire

velocities are calculated to account for the chassis motion:

vxL1 = vx + ψ̇wf vxR1 = vx − ψ̇wf

vyL1 = vy + ψ̇wf vyR1 = vy + ψ̇wf

vxL2 = vx + ψ̇wf vxR2 = vx − ψ̇wf

vyL2 = vy − ψ̇wf vyR2 = vy − ψ̇wf

(B.1)

where wi, i ∈ {f, r} is half of the front or rear track width. The velocities are then rotated

from the chassis to the tire coordinate system via the following rotation:

T =

 cos(δ) sin(δ)

−sin(δ) cos(δ)

 (B.2)

Now, for each of the wheel positions, the rotation can be carried out:

vxtire
vytire

 = T

vx
vy

 (B.3)
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The slip angle can be calculated by substituting the results in (B.3) into (A.8). Finally the

slip angles are:

αL1 = atan

(
−sin(δ)(vx + ψ̇wf ) + cos(δ)(vy + ψ̇a)

cos(δ)(vx + ψ̇wf ) + sin(δ)(vy + ψ̇a)

)
(B.4)

αR1 = atan

(
sin(δ)(ψ̇wf − vx) + cos(δ)(vy + ψ̇a)

cos(δ)(vx − ψ̇wf ) + sin(δ)(vy + ψ̇a)

)
(B.5)

αL2 = atan

(
vy − ψ̇b
vx + ψ̇wr

)
(B.6)

αR2 = atan

(
vy − ψ̇b
vx − ψ̇wr

)
(B.7)

The slip ratios can be calculated in a similar manor using the tire velocities calculated in

(B.3) and substituting them into (A.7):

κL1 = −

(
1 +

RfωL1

(cos(δ)(vx + ψ̇wf ) + sin(δ)(ψ̇a+ vy))

)
(B.8)

κR1 = −

(
1 +

RfωR1

(cos(δ)(vx − ψ̇wf ) + sin(δ)(ψ̇a+ vy))

)
(B.9)

κL2 = −
(

1 +
RrωL2

vx + ψ̇wr

)
(B.10)

κR2 = −
(

1 +
RrωR2

vx − ψ̇wr

)
(B.11)

B.1 Tire Friction Calculations

The tire frictional forces are calculated by the following steps. First, current max-

imum longitudinal and lateral coefficients are identified by linearly interpolating the set

maximum friction coefficients of friction at reference loads:

µxmax = (Fz − Fz1)
µxmax2 − µxmax1

Fz2 − Fz1
+ µxmax1 (B.12)

µymax = (Fz − Fz1)
µymax2 − µymax1

Fz2 − Fz1
+ µymax1 (B.13)

(B.14)
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The corresponding slip angles and ratios where the peaks occur are similarly calculated:

αmax = (Fz − Fz1)
αmax2 − αmax1
Fz2 − Fz1

+ αxmax1 (B.15)

κmax = (Fz − Fz1)
κmax2 − κmax1
Fz2 − Fz1

+ κymax1 (B.16)

(B.17)

The subscripts (·)i, where; i ∈ 1, 2 represent reference tire parameters. Next, the

tire slip quantities are normalized by the peak values:

αn =
α

αmax
(B.18)

κn =
κ

κmax
(B.19)

Slip is then characterized by a combined-slip coefficient:

ρ =
√
α2
n + κ2n (B.20)

Next, the operating longitudinal and lateral friction coefficients are described by:

µx = µxmaxsin (Qxatan(Sxρ)) (B.21)

µy = µymaxsin (Qyatan(Syρ)) (B.22)

where

Sx =
π

2atan(Qx)
(B.23)

Sy =
π

2atan(Qy)
(B.24)
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Finally the tire forces are given by:

Fx = µxFz
κn
ρ

(B.25)

Fy = µyFz
κn
ρ

(B.26)
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Coulom, and Andrew Sumner. Torcs, the open racing car simulator. Software available
at http://torcs. sourceforge. net, 4, 2000.

[162] Elias Yee and Jason Teo. Evolutionary spiking neural networks as racing car con-
trollers. In Hybrid Intelligent Systems (HIS), 2011 11th International Conference on,
pages 411–416. IEEE, 2011.

[163] Jeffery R. Anderson, Beshah Ayalew, and T. Weiskircher. Modeling a professional
driver in ultra-high performance maneuvers with a hybrid cost MPC. In American
Control Conference (ACC), 2016, pages 1981–1986, Boston Marriott Copley Place,
Boston, MA, USA, July 2016. IEEE.

[164] Amedeo Tesi, Francesco Vinattieri, Renzo Capitani, and Claudio Annicchiarico. De-
velopment of an e-LSD control strategy considering the evolution of the friction torque
with the wear depth. SAE International Journal of Engines, 9(2016-01-1136), 2016.

[165] Global optimization toolbox: User’s guide (R2017a). Technical report, The Math-
Works, March 2017.

[166] Hockenheim. http://www.hockenheimring.de/en/history/, 2017. [Online; ac-
cessed 31-March-2017].

[167] Nürburgring. http://www.nuerburgring.de/en/fans-info/history.html, 2017.
[Online; accessed 31-March-2017].

[168] Roberto Lot and Francesco Biral. A curvilinear abscissa approach for the lap time
optimization of racing vehicles. IFAC Proceedings Volumes, 47(3):7559–7565, 2014.

[169] Torsten Butz, Martin Ehmann, and Thieß-Magnus Wolter. A realistic road model for
real-time vehicle dynamics simulation. Technical Report 2014-01-1068, SAE Technical
Paper, 2004.

[170] Marko Lepetic, Gregor Klancar, Igor Skrjanc, Drago Matko, and Bostjan Potocnik.
Time optimal path planning considering acceleration limits. Robotics and Autonomous
Systems, 45(3):199–210, 2003.

[171] Sebring international raceway, 2017. [Online; accessed 17-October-2017].

[172] T. Weiskircher and B. Ayalew. Predictive control for autonomous driving in dynamic
public traffic. In Proceedings of the American Control Conference, pages 3328–3333,
Chicago, IL, July 2015. IEEE.

[173] Signal processing toolbox. Technical report, The MathWorks, 2014.

137

http://www.hockenheimring.de/en/history/
http://www.nuerburgring.de/en/fans-info/history.html


[174] Thomas Weiskircher, Qian Wang, and Beshah Ayalew. Predictive guidance and con-
trol framework for (semi-) autonomous vehicles in public traffic. IEEE Transactions
on control systems technology, 2017.

[175] Piero Taruffi. The technique of motor racing. Motor Racing Publications, 1958.

[176] Matthew J Weinstein and Anil V Rao. Algorithm: Adigator, a toolbox for the algo-
rithmic differentiation of mathematical functions in matlab using source transforma-
tion via operator overloading. ACM Trans. Math. Softw., 2016.
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