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 The fuel consumption and the fuel management strategy (PMS) of the hybrid 

electric vehicle are closely linked (HEV). In this study, a hybrid power 

management technique and an adaptive neuro-fuzzy inference (ANFIS) 

method are established. Artificial intelligence represents a huge improvement 

in electricity management across different energy sources (AI). The main 

energy source of the hybrid power supply is a proton exchange membrane 

fuel cell (PEMFC), while its electrical storage devices are a battery bank and 

an ultracapacitor. The hybrid electric vehicle's power management strategy 

(PMS) and fuel consumption are closely related (HEV). In this paper, an 

adaptive neuro-fuzzy inference and hybrid power management strategy 

(ANFIS) approach is developed. A significant advance in electricity 

management across multiple energy sources is artificial intelligence (AI). The 

proton exchange membrane fuel cell (PEMFC) serves as the primary energy 

source of the hybrid power supply, and the ultracapacitor and battery bank 

serve as its electrical storage components. 
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1. INTRODUCTION  

The three most important and well-known engineering topics are fresh water, electricity, and the 

atmosphere because of their interdependence. Key issues that have been addressed include resource 

limitations and global warming. As a result, manufacturing processes and technical communities are rapidly 

changing their approach to energy-efficient applications, and the growth of the transportation industry is 

driven by economic and environmental factors [1]. Most fossil fuels used in transportation result in 

greenhouse gas emissions. Several attempts have been made in this field to increase the need for fuel cells 

(FCs) as a sustainable source of electrical energy that produces no greenhouse gases in transportation 

applications [2]. Fuel cells are a clean source of fuel for transportation and contribute to environmental 

protection when used in electric cars, trains, airplanes, etc. [3]. New energy conversion technologies such as 

fuel cells outperform conventional devices in many ways, including great energy efficiency, small size, 

environmental safety, long life, and many others. Because of its high power generation density and low heat 

generation—both essential in transportation applications—the proton exchange membrane fuel cell (PEMFC) 

appears to be the most suitable form for use in automotive applications. The limited dynamic response of fuel 

cells is their main disadvantage in transport applications. This means that the fuel cell is unable to respond 

adequately to sudden load changes because it lags behind the load changes. 

As a result, the battery storage and ultracapacitor (UC) should be connected to the fuel cell [4], 

while the battery storage seems to have high power density, but also has several disadvantages, including low 
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energy capacity, long charging time. , high price and short life. The most effective method to address these 

concerns is to use a hybrid FC/B/UC network. Hybrid sources can take advantage of their special qualities 

with this combination. The ultracapacitor provides short bursts of peak power, while the battery acts as an 

energy buffer. A power management scheme (PMS) is necessary to achieve some hybridization and the main 

goal of spreading load demands across power sources. PMS successfully maintains hydrogen consumption 

and improves energy efficiency by limiting fuel cell output to wider operating levels. A set of traditional 

PMS [5] has been implemented to manage the system load between these integrated input sources. 

They are Equivalent Consumption Minimization Scheme (ECMS), Fuzzy Logic Control (FLC), 

External Energy Minimization Scheme (EEMS), PI Control, State Machine Control (SMC) and Equivalent 

Consumption Minimization Scheme. Several other contemporary optimization-based techniques have also 

been developed. The battery bank, fuel cell, and ultracapacitors are included in the state machine control 

(SMC) power management technique that Wang et al. proposed in [6]. The authors of [7] implemented power 

management using the proportional integral (PI) technique to control the energy flowing between 

photovoltaics (PV), fuel cells (FC), batteries and supercapacitors (SC). In [8], a rule-based energy 

management strategy was used to operate a hybrid device with B/SC/FC in many operating modes. Jiang et 

al. in Ref. [9] proposed a dynamic programming (DP) strategy to reduce the amount of hydrogen used in a 

hybrid power system that uses a fuel cell, battery, and supercapacitor to power the drivetrain. For the purpose 

of powering an electric car [10] devised a unique consumption control technique using rule-based fuzzy logic 

control with a number of multi-input sources, i.e. initially the input sources consist of FC/B and later input 

sources. consist of B/SC/FC. 

The authors present in [11] an adaptive neuro-fuzzy inference system (ANFIS) for efficient power 

management between FC and battery, which is often used to power electric vehicles. (EV). To improve the 

output power in an electric car using neural networks, a power management technique with two sections – 

wavelet-based and radial-based solutions was developed in [12]. In order to control the power between FC, 

B, SC and EV, the authors developed a new power control mechanism that focuses on wavelet transform 

techniques. By Djerioui et al. the gray wolf optimizer (GWO) was created. A hybrid power system for 

electric vehicle applications that considers FC/B/UC [13]. For parallel HEVs, an FLC-based method was 

developed to optimize the SoC, improve fuel efficiency, reduce NOx emissions, and guarantee better 

drivability. An FLC-based Intelligent Energy Management Agent (IEMA) was created to distribute energy 

among available resources. Energy requirements, vehicle speed, SoC and FLC were constructed in [14] to 

improve system performance. 

 

 
 

Figure 1. Conventional diagram of Hybrid E-Vehicle 

 

[15] Presents a number of power management options for FC-powered EVs. Bison et al. proposed a 

new optimization strategy based on a two-dimensional mechanism that describes the fuel efficiency of hybrid 

vehicles. [16] used wavelet transform and fuzzy logic methodologies to improve the energy management of 

hybrid trams. The main goal of the project is the development of an ideal EMS to reduce hydrogen 

consumption and loss of FC functionality. All optimization problems are not fully solved by any of the 

different algorithms. This is consistent with the No Free Lunch Scientific Theory, which is explored in [17], 

and shows that there is a real need for new optimization techniques in the study of EV power management. 

One important problem that could be solved is the measurement of hydrogen consumption using a hybrid DC 

bus energy storage system. In addition, it combines each DC/DC converter into a single device. In this 

research paper, an innovative hybrid power management system that incorporates ANFIS and serves as an 

adaptive control system is described. This control system is modeled using MATLAB/Simulink software to 

reduce hydrogen consumption in the FC and to keep the battery level (percentage of SoC) as high as possible 
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in terms of life cycle costs and maintenance. With FC/B/UC and PMS settings, a hybrid power control 

scheme is proposed to improve the fuel economy of a hybrid electric vehicle, as shown in Figure 1. 

The essay is structured as follows. The literature review was described in Section 2 in relation to 

several problem statements. The proposed power management strategy (ANFIS) approach is presented in 

Section 3. The analysis of the comparative findings and the proposed technique are presented in Section 4. 

The primary findings that were derived from conducting this proposed work are presented in Section 5 as a 

final point.  

 

2.      LITERATURE SURVEY 

MATLAB/Simulink was used to model fuel cell, ultracapacitor fuel cell, and ultracapacitor fuel cell 

vehicles. Modeling features were included when they significantly affected the optimization goals (e.g. in 

accurate modeling of DC/DC converters) and excluded otherwise to achieve a good trade-off between 

accuracy and runtime (e.g. in simplified motor modeling). Based on efficiency, weight, and cost, the optimal 

powertrain topologies for use in this paper were selected through qualitative analysis. Selected powertrain 

topologies are shown in Fig. 1. All three vehicle types use a DC/DC converter to step up the fuel cell output 

voltage to match the motor controller input voltage (250–400 V is a common range [18]). This design allows 

the use of a smaller and therefore cheaper fuel cell, as the output voltage of the fuel cell can be lower than 

250 V. The number of battery or ultracapacitor cells that can be connected in series with the ESS is limited 

because it is directly connected to the high voltage bus (with with the exception of the vehicle battery fuel 

cell-battery-ultracapacitor). This limitation is acceptable because using a different DC/DC converter for the 

ESS would increase the weight and cost of the car and reduce the efficiency of the system. 

 

2.1.  Batteries   

Due to their better power and energy density, lithium-ion batteries are currently widely considered 

to be the best option for energy storage in electric vehicles over lead-acid or nickel-metal hydride batteries 

[19]. The basis of the battery model used in this work is the high-performance lithium-ion cell ANR26650MI 

from A123 Systems. This paper exhibits great power density, high efficiency, and low cost compared to 

batteries used in earlier vehicle studies [20, 21]. The total resistance and the %V -SOC curves are determined 

by two variables, the number of cells in series and in parallel (batt s and batt p). The %V -SOC curve is a 

function of the percentage of peak voltage, as in the fuel cell model, allowing it to be applied to different 

serial numbers of cells. Estimates put Colombian efficiency at 95% [22]. 

The battery voltage is multiplied by the measured battery current. In order to add the energy entering 

or leaving the battery to the initial energy in the battery, this energy is integrated and then converted from 

joules to kilowatt hours (in kilowatt hours). The SOC of the battery in percent is then calculated by dividing 

the current energy output of the battery by its total capacity. This %SOC is converted to voltage using a 

lookup table based on the information for the ANR26650MI cell [23]. Since the bus voltage rating for the 

ESS battery is 346.5 volts at 3.3 volts per cell, the number of battery cells in series is fixed at 105 (with room 

to charge and discharge without exceeding the motor controller voltage limits). The battery voltage is chosen 

to be lower than the bus voltage for the battery-ultracapacitor ESS, which uses a two-quadrant DC/DC 

converter between the battery and the high-voltage bus. The maximum number of battery cells in series is 75, 

which allows the ultracapacitor bank to dissipate at 250 V. The weight of each cell is 70 g. The final weight 

per cell is 123 g after adding 53 g for packaging and cell balance. $110 was quoted as the price for six articles 

[24]. It is estimated that the price may drop as low as $100 for higher volume production. A final $15 is 

added to each group of six cells for cell packing and balancing. Therefore, each cell is expected to cost 

$19.15. The maximum current allowed is 70A and the price per kilowatt is expected to be $82.90/kW. 

 

2.2.  Fuel Cell Model 

In order to vary the voltage of the fuel cell and battery independently of the voltage of the 

ultracapacitor, DC/DC converters coupled to the fuel cell and battery are essential components of the 

powertrain. If isolation is not required, as assumed in this paper, and if the voltage gain is not excessive, as in 

this paper, a non-isolated DC/DC converter is suitable for use in fuel cell automobiles [25]. As a result, the 

fuel cell-battery-ultracapacitor vehicle uses a straight-line bidirectional converter (see Fig. 5) that connects 

the battery to the high-voltage bus, and all other types of vehicles use a straight-line unidirectional boost 

converter (the converter in Fig. 5 with switch S1 removed for ensuring unidirectional energy flow). This 

article uses basic hard-switching converter models to simplify modeling and avoid the in-depth topic of 

comparing different soft-switching methods based on efficiency, complexity, ease of control, weight, and 

cost. It is common practice to use interleaved and/or softswitch [26] converters at these high power levels. 

Since the losses of the dynamic converter will impact the overall fuel consumption of the car [27] 

and because a high-performance converter can increase the volume and cost of the motor, it is essential to use 

a precise DC/DC converter. Model. For example, when determining the true benefit of using a smaller fuel 
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cell or battery, it is important to consider how much lighter and less expensive the accompanying DC/DC 

converter will be. 

 

2.3.  Ultracapacitor Vehicle 

In a car using an ultracapacitor, the ultracapacitor stores energy from regenerative braking and offers 

additional power during acceleration. The energy storage capacity of the ultracapacitor is usually insufficient 

for vehicle movement at low speeds. Therefore, the control approach must guarantee that the energy storage 

capacity will be used as efficiently as possible. [28] examines three approaches and shows that optimal fuel 

efficiency is achieved by keeping the sum of the vehicle's kinetic energy and the energy stored in the 

ultracapacitor constant. This makes intuitive sense because the ultracapacitor will have enough room to 

absorb regenerative braking energy when the vehicle is braking, when its speed is high and its voltage is low. 

The low-pass coefficient is again chosen as the controller variable. The power supply of the fuel cell and the 

EZS are separated from the necessary electrical energy by means of a filter. All ESS (transient) power is 

supplied by the ultracapacitor within its current and voltage limitations. The battery supplies the remaining 

energy needed in case the voltage of the ultracapacitor drops below its lower limit (250 V). If the fuel cell is 

unable to provide electricity, or if the current consumption of the fuel cell is less than 7.55%, the battery 

supplies additional energy. 

 

3.  PROPOSED HYBRID POWER MANAGEMENT SYSTEM  

A hybrid energy storage system (HESS) consists of a supercapacitor, Li-ion batteries, and a 

PEMFC. To ensure that the load has sufficient reliable power, these three sources are often considered 

FCHEVs. Figure 1 shows the hybrid system analysis configuration. The three power sources in this system 

are the capacitors, the fuel cell and the rechargeable battery. The fuel cell is equipped with a DC/DC boost 

converter that increases its voltage level to the desired level and maintains it at the outputs. A DC/DC 

bidirectional power supply device that converts fluctuating power into a fixed voltage is found in batteries. 

Supercapacitors have been included in bi-directional converters that allow energy to be exchanged in both 

directions, similar to some other capacitors. 

 

 
 

Figure 2. Proposed Hybrid Power Management System 

3.1.  Fuel Cell 

Various fuel cell technologies exist, and they are divided into groups based on the electrolytes they 

use. Proton exchange membrane fuel cells are a different kind of fuel cell that are frequently utilised in 

automotive applications (PEMFC). There are a number of novel fuel cell prototypes, each having a unique set 

of advantages and disadvantages depending on the subject being researched. Any model should be accurate 

and succinct. Additionally, this study proposes a straightforward electrochemical model that might be utilised 

to predict how such a fuel cell will behave under both dynamic and static circumstances [29]. The 

relationship between the fuel cell voltage level and the absolute pressures of hydrogen, water, and oxygen is 

the basis for the hydrogen fuel design used in this work. Table 1 provides an illustration of the fuel cell 
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stack's specs. The relative pressures of oxygen and hydrogen, the temperature at which the membrane 

hydrates chemically, and the output current all affect the fuel cell's voltage. Below is the mathematical model. 

 

𝑉𝐹𝐶=𝐸𝑁𝑒𝑟𝑛𝑠𝑡 − 𝑉𝑎𝑐𝑡 − 𝑉𝑜ℎ𝑚𝑖𝑐 − 𝑉𝑐𝑜𝑛                                                                                                          (1) 

 

Where 𝐸𝑁𝑒𝑟𝑛𝑠𝑡  represents the mean value of thermodynamic potential in every single cell unit.  

Here,  

𝑉𝑎𝑐𝑡  = Activation voltage drop, 

𝑉𝑜ℎ𝑚𝑖𝑐 = Ohmic voltage drop, 

𝑉𝑐𝑜𝑛 = Concentration voltage drop.  

Hence, for N number of cells connected in series, the stack voltage 𝑉𝑠𝑡𝑎𝑐𝑘 is described as 

 

𝑉𝑠𝑡𝑎𝑐𝑘 = 𝑁. 𝑉𝐹𝐶                            (2) 

 

Table 1. Fuel Cell Specifications 

Fuel Cell Model 

(Input Parameters) 

Specifications 

Voltage 53.5V 

Number of Fuel Cell 65 

Operating temprature 43OC 

Nominal efficiency of the fuel stack 55% 

Response time of Fuel Cell voltage 1s 

Voltage undershoot 2V 

 

3.2.  Supercapacitors 

One of the most recent developments in power storage technology, particularly for integrated 

devices, is the use of supercapacitors. In this configuration, a series resistance (R sc) comparable to a 

capacitance (C sc) is connected. In Table 2, the UC's specifications are displayed. The supercapacitor voltage 

(V sc), which results from the SC current (I sc), is calculated using the formula [30]. 

 

𝑉𝑠𝑐 = 𝑉1 − 𝑅𝑠𝑐 × 𝐼𝑠𝑐 =
𝑄𝑠𝑐

𝑆𝑠𝑐
− 𝑅𝑠𝑐 × 𝐼𝑠𝑐                     (3) 

 

An electric vehicle that uses supercapacitors as its storage system must be built with a stack of cells 

where N S cells are connected in series and N P cells are connected in parallel. 

 

Table 2. Supercapacitor Specifications 

Supercapacitor Model 

(Input Parameters) 

Specifications 

Surge Voltage 306V 

Capacitor number in series 6 

Capacitor counts in parallel 1 

Rated voltage 290V 

Rated Capacitance 14.5F 

Operating Temperature 24OC 

 

3.3.  Battery 

A tiny controlled power supply is built into the battery in series with a fixed resistance like this [21]. 

Table 3 lists the requirements for Li-ion batteries. The battery voltage Vbat is specified in equation (1). 

 

𝑉𝑏𝑎𝑡𝑡 = 𝐸 − 𝑅𝑏𝑎𝑡 . 𝐼𝑏𝑎𝑡                              (4) 
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Table 3. Li-ion Battery Specifications 

Battery Model 

(Input Parameters) 

Specifications 

Minimal Voltage 48V 

Determined capacity 40Ah 

Esteemed Capacity 40Ah 

Nominal Voltage capacity 35.15Ah 

Response time of battery voltage 29s 

Fully charged voltage 55.77V 

 

3.4.  Adaptive Network-Based Fuzzy Interface System (ANFIS) 

Power management techniques have emerged to support industrial purposes, such as fuzzy 

approaches, which are more popular in systems control, by automating the learning experience. ANFIS is a 

key method that combines rule-based fuzzy logic control methodology and artificial neural network (ANN) 

learning ability to develop a complete set of all different kinds of feed-forward neural networks using 

supervised learning functions [31]. The ANFIS strategy implements a hybrid training procedure based on 

relevant data, input/output and coupling factors. 

The ANFIS architecture is shown in Figure 3 as having only one hidden layer. The input node is 

represented by layer 1, the fuzzification nodes are in layer 2, the result nodes (hidden) are in layer 3, the 

defuzzification nodes are in layer 4, and the output node is represented by layer 5 [32]. A node can also be 

updated, at which point it will be divided into dynamic and static categories. Layers 2 and 4 are examples of 

dynamic nodes, while layers 1 and 3 are examples of stable nodes. The Li-ion battery SoC with three 

membership functions (MF) and the vehicle energy load represented by Pload are both used as inputs of the 

ANFIS control technique to predict the output power of the fuel cell [33]. The predicted proportional benefit 

from the PEMFC level is the result of ANFIS. ANFIS uses proportional variables to quickly measure and 

change standards. 

 
Figure 3. ANFIS five-layer structure 

 

4. RESULTS AND DISCUSSION 

The performance of EV driving just with the battery, fuel cell, and supercapacitor has been 

compared with the performance of EV driving in order to assess the efficacy of the proposed ANFIS energy 

management method. The primary simulation parameters are listed in Table 4. 

 

Table 4. Comparison Performance [34] 

Power Device’s Drive range (km) Specific Energy 

Consumption (Wh/km) 

Energy saving (%) 

Fuel cell 150 93 +13 

Supercapacitor 150 91 +15 

Battery 150 90 +2.5 
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Figure 4. Comparison performance 

 

Table 5. Characteristics of cell present and future battery technologies for EVs [35] 

 

Parameter’s Cell voltage Ah Wgt.kg EV W/kg HEV W/kg 

Batteries 2.8 30 87 140 521 

Fuel 2.7 15 60 127 540 

Super capacitor 3.4 20 24 5.5 250 

PV 1.5 20 24 40 156 

 

 
 

Figure 5. Characteristics of cell present and future battery technologies for EVs 
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Table 6. The Simulation Results Comparison for Different Driving Cycles [36] 

 

Driving Cycle Proposed HEV 

FC/Bat (kW) 

Proposed HEV 

FC/PV/Bat (kW) 

Proposed HEV 

FC/Bat/PV/UC (kW) 

UDDS 7.57 7.64 7.85 

NEDC 5.28 5.33 5.54 

JP 3.43 3.81 3.90 

 

 

 
 

Figure 6. The Simulation Results Comparison for Different Driving Cycles 

 

Moreover, the most successful offline global optimization method, dynamic programming, was 

compared with the proposed EMS for an online driving cycle in this study. The priority and effectiveness of 

the proposed approach will be guaranteed by its advantage over the dynamic programming method. In 

addition, the dynamic programming method does not limit the power generated by the PEMFC to specific 

operating locations. The simulation results of the proposed strategy are contrasted with the results of the 

dynamic programming approach, the most successful offline global optimization technique. For example, the 

fuel consumption in the proposed EMS is 7.64 MPG, while the fuel consumption in the DP strategy is 7.65 

MPG in the UDDS driving cycle for an identical FC/battery/UC structure. As a result, the fuel consumption 

of the proposed EMS is roughly equivalent to that of the DP technique. Table 4 also lists battery power 

fluctuations. According to the findings, the FC/battery/UC arrangement with the proposed EMS has the least 

performance variation compared to the alternative tactics. 

 

5. CONCLUSION 

In order to save gasoline as much as possible, this study proposes an ANFIS for power management 

in hybrid electric vehicles, with fuel cell (FC) as the primary energy source and batteries (BB) and 

ultracapacitors (UC) as secondary sources. The battery SoC is controlled by battery performance penalty 

coefficients in ECMS, a cost-based optimization approach. UC efficiency is not considered in this 

optimization strategy. Once the UCs are depleted, they can be recharged with the same power from the 

battery bank thanks to converters in the battery bank that control the DC bus voltage profile. During the load 

cycle, the battery and FC balance the load demand. This study recommends ANFIS for power management in 

hybrid electric vehicles, with fuel cell (FC) as the main energy source and batteries (BB) and ultracapacitors 

as secondary sources to save as much oil as possible (UC). The battery SoC is controlled by battery penalty 

coefficients in ECMS, which is a cost-based optimization method. This optimization technique does not 

consider the utility of UC. The battery bank has converters that regulate the DC bus voltage profile so that if 

the UCs are depleted, they can be recharged with the same power from the battery bank. The battery and FC 

balance the load demand during the load cycle. 
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