614 research outputs found

    Unconstrained video monitoring of breathing behavior and application to diagnosis of sleep apnea

    Get PDF
    This paper presents a new real-time automated infrared video monitoring technique for detection of breathing anomalies, and its application in the diagnosis of obstructive sleep apnea. We introduce a novel motion model to detect subtle, cyclical breathing signals from video, a new 3-D unsupervised self-adaptive breathing template to learn individuals' normal breathing patterns online, and a robust action classification method to recognize abnormal breathing activities and limb movements. This technique avoids imposing positional constraints on the patient, allowing patients to sleep on their back or side, with or without facing the camera, fully or partially occluded by the bed clothes. Moreover, shallow and abdominal breathing patterns do not adversely affect the performance of the method, and it is insensitive to environmental settings such as infrared lighting levels and camera view angles. The experimental results show that the technique achieves high accuracy (94% for the clinical data) in recognizing apnea episodes and body movements and is robust to various occlusion levels, body poses, body movements (i.e., minor head movement, limb movement, body rotation, and slight torso movement), and breathing behavior (e.g., shallow versus heavy breathing, mouth breathing, chest breathing, and abdominal breathing). © 2013 IEEE

    Advances in video motion analysis research for mature and emerging application areas

    Get PDF

    Thermal imaging developments for respiratory airflow measurement to diagnose apnoea

    Get PDF
    Sleep-disordered breathing is a sleep disorder that manifests itself as intermittent pauses (apnoeas) in breathing during sleep. The condition disturbs the sleep and can results in a variety of health problems. Its diagnosis is complex and involves multiple sensors attached to the person to measure electroencephalogram (EEG), electrocardiogram (ECG), blood oxygen saturation (pulse oximetry, S

    Obstructive sleep apnoea and daytime driver sleepiness

    Get PDF
    Driver sleepiness is known to be a major contributor to road traffic incidents (RTIs). An initial literature review identified many studies reporting untreated obstructive sleep apnoea (OSA) sufferers as having impaired driving performance and increased RTI risk. It is consistently reported that treatment with continuous positive air pressure (CPAP) improves driving performance and decreases RTI risk, although most of these studies are conducted less than one year after starting treatment. UK law allows treated OSA patients to continue driving if their doctor states that treatment has been successful. Despite the wealth of publications surrounding OSA and driving, 6 key areas were identified from the literature review as not fully investigated, the: (i) prevalence of undiagnosed OSA in heavy goods vehicle (HGV) drivers in the UK; (ii) impact of sleep restriction on long term CPAP treated OSA compared with healthy controls; (iii) ability of treated OSA participants to identify sleepiness when driving; (iv) impact of one night CPAP withdrawal on driving performance; (v) individual difference in driving performance of long term CPAP treated OSA participants; (vi) choice of countermeasures to driver sleepiness by two groups susceptible to driver sleepiness, OSA and HGV drivers. Key areas (i) and (vi) were assessed using questionnaires. 148 HGV drivers were surveyed to assess OSA symptoms and preference of countermeasures to driver sleepiness. All participants completing the driving simulator study were also surveyed. 9.5% of HGV drivers were found to have symptoms of suspected undiagnosed OSA. Additionally the OSA risk factors were more prevalent for HGV drivers than reported in national statistics reports for the general population. The most effective countermeasures to driver sleepiness (caffeine and a nap) were not the most popular. Being part of a susceptible group (OSA or HGV driver) and prior experience of driver sleepiness did not promote effective choice of countermeasure. Key areas (ii) to (v) were assessed using a driving simulator. Driving simulators present a safe environment to test participants in a scenario where they may experience sleepiness without endangering other road users. (Continues...)

    Impact of obstructive sleep apnoea and experiences of using positive airway pressure

    Get PDF
    The aim of this thesis was to explore the impact of the common sleep-related breathing disorder, obstructive sleep apnoea (OSA); specifically for people with a bipolar disorder (BD) diagnosis but also the wider experience of the first-line treatment for OSA, positive airway pressure (PAP). Chapter 1 is a systematic literature review and thematic synthesis of experiences using PAP to treat OSA. Twenty-five papers were reviewed and included in the thematic synthesis. The quality of each paper was appraised and considered in relation to contribution to the resultant analytical themes. The metasynthesis gave voice to user experiences of PAP and revealed barriers to PAP use at a healthcare service level. The findings highlight the need for a biopsychosocial approach and long-term person-centred support to enhance PAP use. Chapter 2 is a primary empirical research paper on an investigation as to whether people with suspected-OSA and a BD diagnosis experience more sleep and affect instability when “inter-episode” compared to people with a BD diagnosis alone. Ecological momentary assessment was utilised. Eighteen participants (twelve with suspected-OSA) wore an acitgraph for two weeks whilst completing an affect questionnaire twice daily. Measures of instability were calculated using the mean squared successive difference and probability of acute change indices. The groups were not found to significantly differ other than reduced sleep efficiency in the suspected-OSA group. However, only 48% of the intended sample was successfully recruited due to the COVID-19 pandemic. Important avenues for further research are highlighted. Chapter 3 is a critical appraisal of the thesis. Salient issues relevant to future research and clinical practice are discussed, in addition to the under recognised clinical issue of sleep which inspired this thesis

    Cardiotoxicity with vascular endothelial growth factor inhibitor therapy

    Get PDF
    Angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway (VSP) have been important additions in the therapy of various cancers, especially renal cell carcinoma and colorectal cancer. Bevazicumab, the first VSP to receive FDA approval in 2004 targeting all circulating isoforms of VEGF-A, has become one of the best-selling drugs of all times. The second wave of tyrosine kinase inhibitors (TKIs), which target the intracellular site of VEGF receptor kinases, began with the approval of sorafenib in 2005 and sunitinib in 2006. Heart failure was subsequently noted, in 2–4% of patients on bevacizumab and in 3–8% of patients on VSP-TKIs. The very fact that the single-targeted monoclonal antibody bevacizumab can induce cardiotoxicity supports a pathomechanistic role for the VSP and the postulate of the “vascular” nature of VSP inhibitor cardiotoxicity. In this review we will outline this scenario in greater detail, reflecting on hypertension and coronary artery disease as risk factors for VSP inhibitor cardiotoxicity, but also similarities with peripartum and diabetic cardiomyopathy. This leads to the concept that any preexisting or coexisting condition that reduces the vascular reserve or utilizes the vascular reserve for compensatory purposes may pose a risk factor for cardiotoxicity with VSP inhibitors. These conditions need to be carefully considered in cancer patients who are to undergo VSP inhibitor therapy. Such vigilance is not to exclude patients from such prognostically extremely important therapy but to understand the continuum and to recognize and react to any cardiotoxicity dynamics early on for superior overall outcomes

    A 3D machine vision method for non-invasive assessment of respiratory function

    Get PDF
    Copyright © 2015 John Wiley & Sons, Ltd. Background: Respiratory function testing is important for detecting and monitoring illness, however, it is difficult for some patients, such as the young and severely ill, to perform conventional tests that require cooperation and/or patient contact. Method: A new method was developed for non-contact breathing measurement, employing photometric stereo to capture the surface topography of the torso of an unconstrained subject. The surface is integrated to calculate time-dependent volume changes during respiration. Results: The method provides a useful means of continuously measuring volume changes during respiration with high spatial and temporal resolution. The system was tested by comparison with pneumotachometry equipment and a clear periodic signal, of a frequency corresponding to the reference data, was observed. Conclusion: The approach is unique in performing breathing monitoring (with potential diagnostic capability) for unconstrained patients in virtually any lighting conditions (including darkness during sleep) and in a non-contact, unobtrusive (i.e. using imperceptible light) fashion. Copyright © 2015 John Wiley & Sons, Ltd

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces
    • …
    corecore