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Summary

Advances in video motion analysis research for ma-
ture and emerging application areas

This thesis aims at enhancing two human activities that together cover almost

half of our daily routine, sleeping and watching TV. The research described in this

thesis focuses on an area that potentially improves both of these otherwise rather

disjunct activities. We address optimization of motion estimation algorithms for TV,

and investigate the feasibility of using video motion analysis algorithms to extract

valuable information about a person’s sleep from video.

Motion estimation (ME) for TV picture rate conversion is a rather mature

application area with several decades of on-going research efforts. A number of good

ME methods exist and combinations of methods with a large number of parameters

are not uncommon. Objective validation of ME methods and the influence of the

many parameters that are involved have become more and more important. In this

thesis, a methodology has been developed that can be used for the optimization

of ME methods. At the same time, the developed methodology takes into account

that objective measures cannot fully model the human perception. In a case study

with hierarchical 3DRS, one of the state-of-the-art ME algorithms, we explored

the extensive parameter space of 13000 motion estimators and provided insights

with respect to the importance and the influence of the individual parameters. We

found that the motion estimators optimized with the proposed validation scheme

are superior to multiple existing techniques as well as standard 3DRS with regard

to performance at a low computational complexity. Although the optimization

methodology uses performance measures that do not capture the full complexity of

human perception, still, a good correspondence with subjectively perceived picture

quality is achieved. The conducted perception test confirmed that the components of

the proposed methodology are well chosen and yield motion estimators with a good

picture rate conversion performance.

Analyzing movements during sleep can provide a wealth of information as body

movements can be associated to sleep states and sleep state transitions. Traditional

sleep screening is performed in sleep clinics with polysomnography (PSG) studies,
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Summary

in which a person’s sleep is analyzed by a myriad of different on-body sensors (e.g.,

EEG, EMG, ECG). PSG is considered the gold standard for sleep screening, yet, the

PSG measurements are uncomfortable, disturb the natural sleeping behavior and

therefore lack reproducibility, and require often time consuming manual analysis. To

alleviate these shortcomings, we investigate a new, fully automated, and less invasive

monitoring approach. We focus on a video camera-based system for sleep analysis,

consisting of a near infrared (NIR) camera and NIR light source. We present methods

to extract activity levels, sleep efficiency scores, breathing information, body part

movements, infant sleeping pose, and wake-up behavior. Challenging conditions such

as a shared bed environment, different camera locations and moving cast shadows

are taken into account.

We designed a contactless, off-body video actigraphy system to monitor a sleeping

subject’s movements. With the aim to analyze competitiveness with wrist actigra-

phy, we conducted a differentiated comparison between the two actigraphy methods.

Video actigraphy contains more comprehensive information and is generally more sen-

sitive than wrist actigraphy. The average PSG to video based sleep efficiency error is

comparable to the PSG to wrist actigraphy based error.

In order to discriminate movements of different body parts, we investigated an

enhanced K-Means clustering approach for motion vectors. When performing ME

on sleep sequences, large environmental variations between recording situations such

as viewing angles, blanket types, zoom factors and illumination conditions, can yield

different motion vector fields for similar movements. Therefore, our multi-distance

clustering algorithm is computing content-dependent weights and is not only based

on spatial distances between data points but also on motion vector angle and length.

To realize an easy-to-install system for the end user, we investigated an installation

where the camera is conveniently placed on the bedside table of the primary subject

who is to be monitored. We designed a method sensitive to small scale movements

so that not only activity levels are monitored but also the respiratory waveform can

be computed. Our breathing analysis method performed admirably with an overall

sensitivity of 87%, precision of 90%, and a breathing rate correspondence of 93%,

surpassing the results of state-of-the-art video based breathing algorithms.

To discriminate small movements of a subject from moving cast shadows on a

non-planar and dynamic background, our video processing method integrates motion

detection, motion estimation and texture analysis, efficiently aggregated in a strong

classifier using cascaded AdaBoost. Movement event classification improved threefold

with the proposed method in highly varying lighting conditions, compared to state-

of-the-art.

The first lifestyle application we investigated illustrates an intelligent baby monitor

that warns parents when their baby is turning in its sleep to its belly. By designing a

turning movement detector and combining its information with face detection results,

we improved the infant’s sleeping pose accuracy by 11% compared to a method using

xii



solely face detection.

A personalized wake-up system is envisioned in the second lifestyle application that

exposes the sleeping subject to light that is adapting its intensity over time according

to the subject’s measured activity level. Therefore, we developed a system which

can measure the sleeping person’s activity and control the light output such that

the subject’s behavior corresponds to an activity trajectory of a favorable wake-up

experience.
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Chapter 1

Introduction

The research described in this dissertation leads to the enhancement of two human

activities that together cover almost half of our daily routine, sleeping and watching

TV. According to the American Time Use Survey 2013 [1], the average time spent

watching television in the U.S. amounts to almost three hours a day. Watching TV

is our number one leisure activity in terms of an adult’s occupied time. The National

Sleep Foundation states an average sleep need for an adult of seven to nine hours a

day [2]. This thesis describes new methods in video motion analysis that can improve

both of these otherwise rather disjunct activities. On the one hand, improvements

in video motion estimation can lead to improved TV picture quality. On the other

hand, the analysis of motion in videos of sleeping subjects can help in assessing our

sleep.

For TV picture quality, we present research on optimizing motion estimation

methods for picture rate conversion. In the optimization process we cannot fully

rely on an objective performance measure. Up to now, no objective criterion has

been accepted in the literature as a standard metric for evaluating motion estimation

methods. Multiple performance measures exist but the correlation between the

subjectively perceived video quality and the objective scores is poor. Therefore, we

researched how to compare different motion estimators even with inferior performance

measures. For video analysis of sleep, we investigated the properties and effectiveness

of a similar motion estimation technique as for TV for body movement estimation.

We explored how the obtained motion fields can serve as a foundation for attaining

sleep-relevant information. In this thesis, we present methods to extract activity

levels, sleep efficiency scores, breathing information, body part movements, infant

sleeping pose, and wake-up behavior. Challenging conditions such as a shared bed

environment, different camera locations and moving cast shadows are taken into

account.

Hence, in both research areas, TV picture enhancement and sleep analysis from

video, capturing movement information in video streams is essential. While address-

ing optimization of motion estimation algorithms for the mature area (TV), feasibility

of video motion analysis algorithms for the emerging research area (Sleep) still needs

1



Chapter 1: Introduction

to be investigated. In the following sections, these two research areas and their cor-

responding video processing and analysis challenges are described, and an outline of

this thesis is given.

1.1 Picture rate conversion for TV

Rendering good picture quality remains a challenge for video processing algorithms

in television sets. Therefore, research is still on-going in areas such as video coding,

increasing the perceived sharpness of details, high dynamic range and contrast, wide

color gamut rendition, improved picture rate conversion, and 3D rendering [3–7].

Before the 1990s, television sets would repeat incoming frames to accommodate

for a higher frame rate. This repetition results in perceived judder and blur. Since

the 1990s, the role of motion estimation (ME) for picture rate conversion has become

more important. Current TV sets show video signals with several hundreds of frames

per second (400 Hz, 600 Hz, or even 800 Hz [8]), whereas the input is often a mere 24

frames per second (fps). This means that per second hundreds of images have to be

generated by the television set. Knowing where and what kind of motion takes place

in the video stream can help in rendering moving areas sharper (with less motion blur)

and allows for a smooth motion portrayal by using the estimated motion information

in the picture rate conversion process [9]. For each entity in the image (e.g., a pixel, a

block consisting of several pixels, an object) the displacement is defined by a motion

vector across which the entity has shifted with regard to the original image(s). By

doing this for the entire image, a so-called motion field is returned, i.e., a matrix

with entries corresponding to motion vectors of image pixels or blocks. Extracting

the motion from video images as closely as possible to the actual motion captured

[10], can thus aid applications such as picture rate conversion [11], 2D-to-3D video

conversion, and structure from motion. In 2D-to-3D conversion, different cues are

used to compute the depth map from a 2D video, of which depth from motion is

an essential cue [7]. Similarly, in structure from motion, 3D structures of an object

are reconstructed based on the computed motion information of an initial 2D video

stream [12]. When the displacement in subsequent images is correctly represented by

the motion vectors, they are considered as matching the so-called ‘true’ motion [10].

Motion estimation (ME) for TV picture rate conversion is a rather mature appli-

cation area with several decades of on-going research efforts [9, 11, 13, 14]. Neverthe-

less, because of the increasing spatial resolution (from SD to HD, Full HD and Ultra

HD) and picture rates (from 24 fps to more than 800 fps) of video shown on televi-

sion sets, as well as the increasing size and quality of the television displays, there

is continuous pressure to improve the quality of ME algorithms while maintaining

acceptable computational complexity. To this end, spatio-temporal prediction meth-

ods such as recursive search, e.g., [9, 11, 13], are typically applied in practice (e.g.,

[15, 16]). A commonly used spatio-temporal prediction method is 3-Dimensional Re-

cursive Search (3DRS) [14]. An output motion vector is selected from a candidate

vector set based on the minimization of an energy function (e.g., Sum of Absolute

2
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Figure 1.1: 3DRS candidate structure. C denotes the current block for which candidate motion

vectors are determined, S a spatial candidate, U a random update vector added to the

spatial candidate, and T a temporal candidate.

Differences). The candidate vector set (see Fig. 1.1) consists of prediction vectors

from a spatio-temporal neighborhood. Previous estimates are found to be good pre-

dictions under the assumption that objects are larger than blocks and that objects

have inertia [14]. Additionally, random values are added to the spatial candidates,

forming so called update candidates, that help in finding vectors for appearing objects

and accommodate for acceleration. Such a motion vector computation is performed

sequentially for each location in the image. Generally, spatio-temporal predictors have

proven to be a powerful tool in the design of ME algorithms [17–19].

As one of the objectives of this thesis, we investigate the extension of 3DRS ME

with the concept of hierarchy [20]. Combinations of 3DRS with concepts borrowed

from alternative ME methods have shown to be beneficial in earlier publications, e.g.,

[21]. Incorporating a hierarchical component to ME methods has appeared to be of

advantage [11]. Various realizations of the combined hierarchical 3DRS ME can be

thought of (e.g., multi-scale vs. multi-grid ME, different scaling factors and block size

Top of pyramid

Bottom of pyramid

Top of pyramid

Bottom of pyramid

Figure 1.2: Illustration of hierarchical multi-grid and multi-scale approach.
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parameters, different candidate structures). For a hierarchical 3DRS ME, an addi-

tional candidate vector is added from an ‘external’ source, i.e., a hierarchical candi-

date. The hierarchical candidate vector can be obtained by both multi-grid (same res-

olution, multiple block-sizes) and multi-scale (multiple resolution levels) approaches.

In order to describe the multi-scale or multi-grid approach, a scale pyramid is used,

as shown in Fig. 1.2, where ME is performed on higher scales at the top of the pyra-

mid first and motion vectors are propagated down the pyramid to the lower scales by

means of hierarchical candidates.

A large number of ME methods exist and combinations of methods with a large

number of parameters are not uncommon. Objective validation of ME methods and

the influence of the many parameters that are involved is important [9, 11, 14, 22–25].

Objective measures are proposed in [9, 11, 14, 22–25] to evaluate the ME perfor-

mance. These methods all strive to best reflect the subjective image quality. Up to

now, no objective criterion has been accepted in the literature as a standard metric

for evaluating motion estimation methods [10]. In this thesis, we describe a method-

ology that can be used for the optimization of ME methods with a vast number of

parameters. At the same time, the developed methodology takes into account that

objective measures cannot fully model the human perception.

1.2 Sleep monitoring with a camera as off-body sen-

sor

Our sleep consists of cycles where in each cycle, we pass through several sleep stages or

states, such as light sleep, deep sleep, and REM sleep. Traditional sleep screening and

sleep classification are performed in sleep clinics with polysomnography (PSG) studies,

in which a person’s sleep is analyzed by a myriad of different measuring techniques,

such as EEG (electroencephalogram), EMG (electromyogram), ECG (electrocardio-

gram), EOG (electrooculogram), and respiratory effort belts. PSG is considered the

gold standard for sleep screening. Reliability of these measurements suffers from the

so-called first night effect when sleeping in a laboratory environment with multiple

sensors attached to the head and body instead of the familiar home setting and has

negative impact on a person’s sleep. This makes an accurate diagnosis more difficult.

Additionally, sleep clinics tend to have long waiting lists (weeks to months are not

uncommon). The measured signals are usually manually analyzed which is time con-

suming and cost intensive. Therefore, the current PSG procedure for sleep screening

is limited to a one or at most two-night examination.

Although PSG measurements in the sleep clinic are considered the gold standard

for sleep screening, more information that is typically obtained from video recordings

may aid in making the correct diagnosis. However, differential diagnosis is not al-

ways straightforward [26], as is the case for e.g., nocturnal frontal lobe epilepsy and

parasomnias, one of the major categories of sleep disorders with abnormal behaviors

or experiences [27]. In both disorder types, movement behaviors during sleep are
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Figure 1.3: Illustration of a sleep monitoring system using NIR LEDs and a NIR sensitive camera.

Figure 1.4: Contactless video actigraphy monitoring enables local motion analysis. The motion

vectors from the processed video images are color-coded based on the direction and

intensity of the motion. Left image: Blue area indicates hand moving to the right,

green area indicates head moving to the left. Right image: The different colors indicate

different motion of the corresponding body parts.
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often dramatic and bizarre [28]. Patient and witness reports may be limited due to

the nocturnal occurrences [28, 29]. Therefore, besides the clinical interview, video-

polysomnography recordings are suggested to observe the nocturnal behavioral events

[30, 31]. In [32], the combination of PSG and manual video analysis has shown to

enhance the diagnostic ability for disorders with motor activities. An increase in the

positive diagnosis of REM sleep behavior disorder from 80% to 95% of patients has

been achieved. The benefit of this manually performed video analysis is similarly rec-

ognized in [33], where different movement characteristics are observed in REM sleep

(short, jerky movements) than in NREM sleep. The video-polysomnography approach

is also found promising regarding sleep-disordered breathing (e.g., obstructive sleep

apnea) as there seems to be a relationship between sleep disturbances and body and

head position [34, 35].

PSG monitoring is not viable for long-term home monitoring, which in turn may be

important to assess problems or disorders which are not clear after a one or two-night

assessment. This holds for example for parasomnias where the indicative movement

episodes do not necessarily occur on a nightly basis and where complex behaviors and

enacted dreams are mostly observed at home [26, 36]. With the goal to overcome

the disadvantages of sleeping in a laboratory environment, having to wait for a free

bed in a sleep clinic, high cost due to night-shift staff and facility costs, a home

PSG system has been proposed in [37]. Although this procedure is better suited for

monitoring e.g. a few consecutive nights, and reduces the need and cost for a sleep

laboratory and personnel, it is still not a good option for long-term monitoring since

on-body sensors are needed and the recorded data has to be manually interpreted by

qualified sleep clinicians. In addition, regular consumers are becoming more interested

in applications for sleep monitoring or sleep enhancement. It is clear that for this

group, fewer and more comfortable sensors are preferred. A monitoring system that

comes with comfortable and convenient sensors, with the possibility to perform long-

term monitoring and to automatically analyze the recorded data would be appreciated.

With the automatic analysis of the recorded data, there is no need anymore for the

time consuming manual analysis.

Therefore, quite some research efforts have been carried out in the past decade

to monitor sleeping subjects automatically for several nights at home, in the natural

sleeping environment, while employing sensors that offer more comfort. These are

sensors that can either be installed easily in the bedroom or worn on the body. In the

former group, research has been carried out for pressure sensors in the pillow [38], air

filled tubes combined with a differential pressure sensor [39] under a 4 cm mattress,

piezoelectric sensors, strain-gauge and electret foil sensors [40], microphones [41], and

near infrared cameras [42], amongst others. The body-worn sensors include a wrist-

worn accelerometer or so-called wrist actigraphy [43], skin conductance measured at

the wrist [44], optical heart rate sensors [45] based on photoplethysmography worn on

the wrist, combinations of several sensors in one wrist device, e.g., the Empatica E4

wristband [46] measuring optical heart rate, galvanic skin response, skin temperature

and 3-axis acceleration. A recent publication from MIT on skin conduction measured
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at the wrist offers some information on the possibilities of sleep staging using this

technique. Advances on dry electrodes have been used by ZEO to develop a headband

with integrated dry electrodes placed at the forehead. The produced sleep staging for

REM, light and deep sleep have shown to be acceptable, while inferior in detecting

the waking periods. By adding features based on respiration to the already existing

actigraphy feature set, sleep state classification could be improved according to [47–

49].

Among these sensors, wrist actigraphy has become an essential tool in sleep re-

search and sleep medicine [43]. Body movements are an important behavioral aspect

during sleep as shown in [50]. They can be associated to sleep states [51] and sleep

state transitions [52]. It was concluded in [53] that frequency and duration of body

movements are important characteristics for sleep analysis.

A promising sensor gaining more attention in the recent years is the video cam-

era [42, 54, 55]. Attempts have been made to use the video camera and novel

video processing algorithms for movement detection [54], sleep/wake classification

[42], sleep/wake classification under varying global lighting conditions [55] and sleep

breathing disorder detection [56, 57] leading to this newly emerging application area.

With regard to the sleep research in this thesis, we investigate a video camera-

based system for sleep analysis for two main reasons. This remote system is rather

unobtrusive without disturbing a person’s sleep and we can profit from advanced video

processing algorithms developed for more mature video application areas (such as

TV). Such a monitoring setup with a near infrared (NIR) camera and NIR light source

is illustrated in Fig. 1.3. We analyze body movements of sleeping subjects by adapting

ME methods originally developed for the TV application. We developed algorithms

based on motion estimation to compute sleep-relevant information. Activity levels

and body movements are estimated (see e.g. Fig. 1.4). Motion vector fields resulting

from ME methods are further analyzed and processed to comprehend whether they

support i) segmenting the person of interest in a shared bed scenario with subject

occlusion, ii) assigning motion detection results to true subject movement instead of

varying illumination effects, and iii) understanding types of movements such as turning

movement when monitoring e.g. the sleeping pose of a baby. Aiding the long-term

goals of sleep breathing disorder detection and detailed sleep staging, efforts in small-

movement analysis have been undertaken for extracting breathing characteristics.

One of the aspects of this thesis aims at exploring new lifestyle applications by

incorporating movement analysis of sleeping subjects. This has been done for an

intelligent baby monitor and a personalized wake-up light system where the knowledge

of the wake-up behavior over time is used to improve the wake-up experience.
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1.3 Problem description and contributions of this

thesis

In this section, we formulate the research questions for each of the eight research

topics discussed in this thesis. We begin each research topic with the context leading

to the corresponding research question (RQ), share evaluation aspects and end with

how we investigated the corresponding research question.

Optimization of motion estimators for picture rate conversion

For the mature application area of ME for TV picture enhancement, we are

challenged by the extensive parameter space and the lacking means to analyze and

validate parameter settings reliably. This is because there are many types of motion

estimators (MEs) and, within each type, many parameters, which makes a subjective

assessment of alternatives impractical. The parameters can range from a set of values

(e.g., block sizes, scaling factors, number of passes) to structures (e.g., motion vector

candidate structures) up to sub-methods as part of the ME method (e.g., 2-frame

ME vs. 3-frame ME, matching criteria). What complicates the problem even further

is that the interaction of the parameters with each other is difficult to measure due

to the large amount of possible parameter combinations. In the literature, typically

one ME type is selected and proposed, within which some parameters are chosen

(typically sub-method parameters) and others are manually optimized (typically

value parameters). This is observed in [11] where a multi-grid approach is proposed

starting with coarse motion vector blocks (the parameter for the block size is set

to 32 × 32 pixels) followed by a second motion estimation on the same resolution

with finer motion vector blocks (the parameter for the finest block size is set to

4 × 4 pixels). It is documented in [11] that 12 passes are assumed to yield a good

result, but this has not resulted from a quantitative analysis. A multi-scale ME is

proposed in [58] where the scale factors and corresponding block sizes are empirically

determined. Different candidate structures are compared in [22]. Similarly, the effect

of different regularization terms is analyzed in order to enforce smooth motion fields

[22, 59]. The commonly used manual parameter optimization is unlikely to arrive at

an optimum due to the vast size of the optimization space. This brings us to the

following research question:

RQ1: How can a large range of parameter values, parameter types, and interaction

of different parameter choices be taken into account in the optimization of motion

estimators for picture rate conversion?

We have not come across a large range parameter optimization in the literature.

On a reduced scale, different ME parameters and parameter settings are compared in

[22]. The quantitative evaluation of the resulting motion estimators is performed by

comparing the ME scores in an M2SE-SI performance space. The M2SE assesses the
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prediction accuracy of a motion estimator and the SI the motion field consistency

[14, 22]. Other commonly used performance measures comparing different motion

estimators or parameters of motion estimators are PSNR [23, 24], TEMC-MSE

[9, 11], SSIM [25], and SAMND [9, 11, 25]. Visual comparison of the resulting motion

fields with a ground truth motion field is employed in [59]. The ground truth motion

vectors are generated with a modified ray tracer. In [60], the angular error and the

magnitude of difference with regard to the ground truth motion field are computed

for comparing different optical flow motion estimators. By using the ground truth

test sequences from the Middlebury University [61], the endpoint error according

to the Middlebury benchmark is calculated for the different motion vector fields in

[59]. Some ME parameters may alter the computational complexity significantly.

Therefore, also the computational complexity is often measured [24, 62].

We have explored the extensive parameter space of hierarchical 3DRS (H3DRS)

in an automatic manner and present an analysis of the importance and influence of

the various parameters for the application of picture rate conversion. Among the

13000 different motion estimators, the parameter settings have been automatically

compared and optimized in order to render superior motion estimators to multiple

existing techniques as well as standard 3DRS with regard to performance at a low

computational complexity.

Perception-oriented methodology for robust motion estimation design

For the application of picture rate conversion, various objective performance

measures have been developed [9, 11, 14, 22–25], such as PSNR [23, 24], M2SE

[14, 22] and TEMC-MSE [9, 11] addressing the prediction accuracy, SSIM [25]

measuring the similarity between two images, and SI [14, 22] and SAMND [9, 11, 25]

measuring the motion field consistency. They have been employed to evaluate the

performance of a ME. However, these performance measures do not satisfactorily

reflect the perceived subjective image quality. In [63], the objective scores are even

found to correlate poorly with the subjectively perceived video quality. Up to now,

no objective criterion has been accepted in the literature as a standard metric for

evaluating ME methods [10]. Due to the insufficient objective criteria, assessment of

a new ME method is typically not only done objectively, but also subjectively on a

few test sequences [11, 25, 63]. This leads to the following research question:

RQ2: Can high quality robust motion estimators be identified while applying

metrics with limited validity?

The evaluation aspects are similar to those of research question RQ1. To evaluate

the performance of motion estimators, both quantitative [9, 11, 14, 22–25] and

qualitative [11, 25, 63] assessments are usually conducted.
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We present an automatic ME design methodology that can deal with performance

measures that cannot fully model the human perception. A user study is conducted

and indicates that applying this methodology leads to subjectively pleasing upcon-

verted videos despite the inferior objective performance measures. Additionally, the

impact and significance of the two chosen performance measures are analyzed and

compared.

Body movement analysis during sleep based on video motion estimation

A convenient and quite comfortable solution for monitoring sleep at home for mul-

tiple nights is wrist actigraphy [43]. This technology has been used for over 30 years

to study sleep/wake patterns [43]. Another interesting modality is the use of a video

camera. By analyzing body movements of sleeping subjects recorded with a NIR

camera, subjects can sleep in their own familiar bedroom without being disturbed

by on-body sensors. Movements of sleeping subjects can be analyzed by performing

ME on the recorded video stream (e.g., [54, 64–67]). These computed motion vectors

are required to represent movements during sleep, also in low-textured areas such as

the blanket. This is one of the key differences between sleep video streams and TV

video streams. Texture and edges help in computing truly representative motion with

a ME as these areas generally return a better match for the correct motion vector

compared to other motion vectors. However, several different motion vectors may

seem applicable in homogeneous areas. In these areas, all image blocks look similar

and the match criterion or minimization function is thus satisfied for different mo-

tion vectors. Different types of textures, strong edges and high contrast areas are

typically present in TV picture streams since these make content more appealing to

watch. In near infrared monochrome video streams of the bedroom environment,

texture, contrast, and dynamic range can be very different from regular TV picture

material. Texture differences that may be clearly visible in daylight may be greatly

reduced in the monochrome near infrared images (see Fig. 1.5). In order to deal with

none or low-textured objects, including less prominent folds in beddings and blan-

kets, the TV ME has to be redesigned. Most common video techniques performing

ME for sleep analysis are based on optical flow. Lucas-Kanade [68] and hierarchical

Lucas-Kanade using pyramids (e.g., [69]) produce rather noisy vector fields on sleep

sequences. Horn-Schunck optical flow ME [70] and hierarchical versions thereof (e.g.,

[71, 72]) are favored by various researchers [54, 64–67]. Compared to Lucas-Kanade,

more consistent motion fields are computed but there are some difficulties in dealing

with small movements in very low light conditions. Optical flow methods that produce

a dense motion field are computationally quite intense as they perform pixel-based

ME. Advances are marked by recent optical flow algorithms (e.g., [73–75]) with a rel-

atively low computational complexity and promising performance on the Middlebury

benchmark [61].

Video techniques that compute activity levels of a sleeping subject are either

based on straightforward frame differencing [42, 76, 76–78] or computationally more
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Figure 1.5: Loss of texture when the same scene is captured with an infrared camera (right) com-

pared to a visible light camera (left).

intense optical flow methods [54, 64–67]. Motion vectors derived from optical flow

methods are reduced to activity levels, losing the extra directional information.

Movement pattern analysis with motion vectors has been explored in [42], but not

further applied for sleep analysis. Given the advances of video-based ME techniques

and the possibility to record movements originating from the entire body, we address

the following research question:

RQ3: How does video actigraphy compare to wrist actigraphy and is it more

sensitive to movements originating from body parts other than the wrist?

PSG is considered the gold standard for sleep assessment [79] with sleep efficiency

being one of the measures derived from the PSG data [80]. Typically, the output of

proposed actigraphy methods is compared with PSG [42, 55]. In [42], a video-based

sleep monitoring technique is proposed and compared with both PSG and wrist

actigraphy. The accuracy of the sleep/wake classifications is computed. Liao and

Yang report an 8% performance difference between video and PSG and a 1%

performance difference between wrist actigraphy and video actigraphy. We are

not aware of a differentiated comparison of video and wrist actigraphy on different

movement categories (small, medium, and large) obtained from several nights of

sleep. The Bland-Altman analysis is a standard way to measure agreement between

two methods applied to the same subjects and also to compare a new technique with

the gold standard directly [81].

The candidate structure of the 3DRS motion estimator used for TV applications
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has been adapted to better capture the movements of a sleeping person. A video

actigraphy method is designed based on video ME and compared with wrist acti-

graphy in a Bland-Altman analysis. Advantages in full body movement monitoring

are observed and similar sleep efficiency values are achieved between video and wrist

actigraphy.

Multi-distance motion vector clustering for video-based sleep analysis

When performing ME on sleep sequences, large environmental variations between

recording situations such as viewing angles, blanket types, zoom factors and illumi-

nation conditions, can yield different motion vector fields for similar movements. For

video actigraphy, motion vector direction is a secondary characteristic and is mostly

not used to derive an activity level (e.g., [54, 66]). Assuming that image blocks

belonging to one body part move with similar speed in similar directions, motion

clustering could become interesting in case the clusters coincide with body parts or

sub-parts. Mainly body part segmentation and person segmentation could profit

from these motion clusters. For some sleep disorders, knowledge on which body part

is moving is essential. This is recognized in general by [78] and in particular for the

disorder of periodic limb movements by [82–84]. Computation of local motion is

important because it allows us to study movement characteristics of different body

parts [42]. Additionally, motion vector clusters aid in drawing the boundary between

two people lying closely together in the same bed [85]. We use the popular K-Means

clustering method [86]. It is simple and straightforward [87], allowing it to run on

overnight sleep sequences. The core idea was developed almost half a century ago and

is successfully employed nowadays (e.g., [88]), also for motion vector clustering [89].

In K-Means implementations, random seeds are often selected as starting points [87].

Studies conducted by [90] and [91] improve the selection of the seeds based on the

spatial distribution of the data but do not take any data-inherent characteristics into

account. Weight factors for the different cues may vary depending on the properties

(e.g., zoom factor, lighting conditions, viewing angles) of the recorded video sequence.

The angle difference between motion vectors can be a much stronger differentiator

than the length difference in one viewing angle, whereas the opposite may hold in

another viewing angle. In an existing method [92] addressing the challenge of image

retrieval, the weight of each descriptor or cue is automatically computed based on a

dissimilarity histogram and a capacity graph. This brings us to the following research

question:

RQ4: What are meaningful descriptors for motion vector clustering given the

large variety of motion vector field properties produced by the varying recording

conditions in sleep monitoring?

To our best knowledge, there is no review available on the validation of motion

vector clustering algorithms for sleep analysis. A motion vector clustering method
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is used in the area of meteorology in [93] where it forms one module of the entire

system. The performance of the entire system is then evaluated, and the improved

results used as a reflection on the clustering algorithm. In [94, 95], motion vector

clusters are compared with manual ground truth assignments. Feasibility of an

implemented motion vector clustering method is shown with processed images in

[89].

We developed a content-dependent clustering method to cluster movements

originating from one body part. An enhanced K-Means clustering approach is

investigated for motion vectors. Our multi-distance clustering algorithm is not only

based on spatial distances between data points but also on differences in motion

vector angle and length.

Actigraphy and breathing monitoring of a shared bed from the bedside

table

In [42, 55, 96, 97], the camera is mounted high up on the wall or ceiling

overlooking the bed. On the one hand, this may yield video data that is easier

to process, on the other hand, it does not pose an easy-to-install home system

for the end user. Sensor system placement on the bedside table is realized as an

alternative in [98]. Movements of sleeping subjects are typically analyzed with the

aim to perform sleep/wake classification [43] or to screen for diseases characterized

by particular movement patterns [83]. Accurate sleep state classification is more

challenging with the comfortable, convenient and easy-to-install sensors offered for

the home environment, such as wrist actigraphy [43], radar sensors [99], pressure

sensors in the pillow [38], pressure sensors in the bed sheet [100], air filled tubes

combined with a differential pressure sensor [39] under a 4 cm mattress, piezoelectric

sensors, strain-gauge and electret foil sensors [40]. This is due to the reduced set

of physiological signals that can be measured. A more detailed and improved sleep

state classification is accomplished by adding respiration features to the set of

actigraphy features as shown by [47] and [48]. According to a survey by [101], 62%

of the respondents report to sleep with a bed partner. For the camera system in the

home setting it is particularly challenging to derive the physiological characteristics

of the Primary Subject (PS) in the presence of a bed partner as both subjects are

recorded in the image and some of their body parts may lie in close proximity of each

other. A side viewing angle makes it even more challenging to distinguish between

movements from the bed partner and the PS as they are overlapping in the camera

image. Only movement information originating from the PS should contribute to the

activity level. The Eulerian Video Magnification approach [102] amplifies breathing

motion in the video images for improved visualization of the subtle motion. No

breathing parameters are automatically derived from the processed images. Taking

these observations into account, we are interested in the following research question:
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RQ5: Is a user-convenient camera placement on the bedside table acceptable for

measuring actigraphy and breathing of a sleeping subject in a shared bed?

Body movement detection in sleep with video analysis methods is compared to

manually labeled ground truth in terms of sensitivity and precision in [54], and is

compared to wrist actigraphy in terms of accuracy in sleep/wake classification in

[42, 55]. To evaluate breathing analysis methods, the computed breathing waveforms

are generally not compared with the reference breathing waveform but only the

derived breathing rates validated [103, 104]. Other research targeting the breathing

disorder obstructive sleep apnea (OSA) measure the performance of their OSA

classifier [105, 106]. Manual comparison with a reference signal on single test

episodes is also common [56, 65, 107].

We present a system that automatically segments the person of interest in a

shared bed with an AdaBoost classifier using among others motion, intensity, focus

and Histogram of Oriented Gradients (HOG) features. Actigraphy characteristics

are computed and a breathing analysis method is proposed.

Robust and sensitive motion detection for sleep analysis

Sleep experiments are typically conducted in controlled and static illumination

conditions [55]. This may work well in a laboratory setting but fails in practice where

(sun)light and shadows may move over the sleeping subject. With regard to local dy-

namic illumination, moving shadows can be caused by e.g., a family member, outside

tree branches or moving curtains in the presence of another light source (e.g., street

lighting, moonlight, sunlight, indoor lighting). It may become difficult to discern

between a shadow propagating over the bed and body movements performed by the

sleeping subject. Particularly challenging are body movements performed over small

distances and of short durations. These are not uncommon, especially among patients

suffering from periodic limb movements in sleep (PLMS) or periodic limb movement

disorder (PLMD). They can perform short (down to 0.5 seconds [82]) and small move-

ments [82]. An actigraphy based approach for detecting periodic limb movements is

suggested and found reliable and correct in [83] and [84]. Some problems with the

usual EMG measurements may even be avoided with actigraphy sensors according to

[83].

The commonly used video methods for movement analysis during sleep are ME

and frame differencing [42, 54, 64–67, 76–78]. That those systems misdetect a mov-

ing shadow as subject movement is recognized by [55] where global artificial light

changes were added to the laboratory sleep videos. This approach is however not

designed to be insensitive to local illumination changes where subject movements can

be distinguished from a moving shadow.

Previous research related to shadow detection imposed various restrictions on the

camera [108], the shadow area properties related to the background characteristics
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[109, 110], or the background itself [111–113]. For sleep monitoring, only a static

camera is assumed, while the assumptions above are relaxed. This is relevant, since the

bed is non-planar with beddings lying loosely on and around the subject. Moreover,

the background changes dynamically, as subject movements change the folds’ location

and appearance of the beddings, while fold appearance (texture) varies with moving

cast shadows. Strikingly, local intensity changes of 25% between consecutive frames

are observed due to cast shadows vs. a 10% change due to subject movement.

In [111], the previous and current frames are compared by computing the local

variance of the intensity ratios. Uniform regions are considered as potential shadow

areas. The same effect is observed in [114] using a similar approach. Stauder et al.

[114] correctly stressed the assumption of textured objects and a planar background

which does not hold for the application at hand. Folds in beddings and blankets yield

a non-planar background.

Employing a background model (e.g., [55, 115, 116]) is a very common approach

confirmed in [108] and [112] where it is the first choice in the majority of the 50

selected shadow detection methods. A background and/or shadow model cannot be

learned for the application discussed in this paper due to the dynamic and non-planar

background yielding edges at different locations and at times larger intensity variations

under the influence of moving cast shadows compared to subject movement.

Substantial research efforts have been made in determining shadow areas based on

edge and texture information [109, 110, 113, 115, 117]. It is assumed that textures in

background and shadow areas show high resemblance and/or that a foreground object

will have significant interior edges contrary to a shadow region. This assumption is

often violated where strong edges due to the blanket folds are manifested despite

the cast shadow. Tracking moving objects has proven to be beneficial for shadow

detection in [115] and [116].

As both a cast moving shadow and subject movement can be captured by

performing ME on the video stream, we raise the following research question:

RQ6: How can subject movement be distinguished from moving cast shadows for

the case of periodic limb movements?

Concerning the validation of a method addressing the above research question, the

following should be taken into account. As gold standard for movement detection for

PLMS and PLMD, on-body electromyography (EMG) is utilized [118]. The severity

of PLM can be quantified using the so-called periodic limb movement index (PLMI),

see [118]. Original PLM patient video data is available in [82]. For assessing the

performance of classification algorithms on single samples (e.g., frames), sensitivity,

specificity and Matthews Correlation Coefficient [119] are known measures in machine

learning [120]. The root mean square (RMS) error is used to measure the difference

between an estimated value and the ground truth value and is utilized for motion

recognition in sleep in [121].
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We propose a camera-based system combining video motion detection, ME and

texture analysis with machine learning for sleep analysis. The system is robust

to time-varying illumination conditions while using standard camera and infrared

illumination hardware. We tested the system for Periodic Limb Movement detection

during sleep, while using EMG signals as a reference.

Intelligent baby monitor

In the USA, 4500 infants die annually of sudden infant death syndrome (SIDS)

[122]. In order to reduce the risk for SIDS, parents are advised to put their babies

to sleep on their back (supine) and not on their stomach (prone). Feedback to the

parent on the baby’s sleeping pose may be appreciated, particularly after the baby

has gained the ability to roll over. Current baby video monitors display the live video

stream on the parent unit without performing any automatic analysis on the baby’s

sleeping position.

Movements of sleeping children are automatically analyzed and compared for dif-

ferent sleep stages in [76]. In [123], reflective markers are attached to the baby’s

sleeping bag which makes it easier to monitor the movements and pose of a baby.

The body pose is recognized in [121] by using an artificial neural network solution

and taking into account edge detection, row and column image profile projections. It

requires an exhaustive data set to train the neural network and a specific location of

the IR camera (i.e., overhead). The authors observe the method’s lack of robustness

as it cannot deal with a bed quilt, different hairstyles of the sleeping subjects and dif-

ferent clothes. Coarse body part detection of head, torso and upper leg is performed

in [97]. It uses mainly models based on edge detections and is therefore invariant to

face pose and variations in appearance. Combined with motion information, image

areas are identified where body parts are likely to be located. As such, lying on the

side can be distinguished from lying in a supine/prone position. However, this method

is not capable of distinguishing between supine and prone. Traditional computer vi-

sion methods for face detection [124] have been used for infants in [125]. Challenges

for an approach based solely on face detection can be the at times unfavorable face

pose/angle towards the camera (often non-frontal), low contrast in the infrared images

and the rather low quality video images.

With the access to detailed motion vector information from video processing

methods discussed in this thesis, we pose the following research question:

RQ7: How can we detect when a baby is turning from the supine to the prone

sleeping pose?

Regarding the evaluation of binary classification problems as is the case here,

accuracy and precision are proposed by [126] as performance measures. Validation

of a 2-class categorization method in the area of sleep analysis has been done with

sensitivity and precision in [54], and with accuracy in [42, 55].
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Problem description and contributions of this thesis

By designing a turning movement detector based on motion vector information

and combining its information with face detection results, we determined the infant’s

sleeping pose.

Intelligent wake-up light

Analyzing body and breathing movements of sleeping subjects is primarily done

for sleep stage classification or monitoring of sleep disorders. Limited research efforts

have been spent for incorporating movement analysis in an intelligent wake-up

light system. Research has shown [127, 128] that using a so-called artificial dawn

wake-up light (e.g., Philips HF3490 [129]) during the wake-up phase (starting 30

minutes before the set wake-up time) results in a better wake-up experience. The

light intensity increase is preset and can be too large (resulting in people waking

up too early) or too small (resulting in people waking up from deep sleep). Some

efforts have been made towards a more personalized wake-up light (e.g., [130]). A

correlation exists between the lighter sleep phases and more body movements [43].

This is used in [130] where an intelligent alarm clock wakes the sleeping subject when

he/she transitions through the light sleep phase within 30 minutes before the set

wake-up time. When the subject does not pass through the light sleep phase in the

mentioned time frame, the intelligent alarm clock behaves as any traditional alarm

clock. In that case, the subject is still woken up in an abrupt manner by the alarm

clock. A similar approach is implemented in the ‘iwaku’ product [131]. No related

work could be found that ensures a wake-up in a light sleep phase at the preferred

or set wake-up time. The research question we face in this matter is:

RQ8: How can we create a good wake-up experience with light?

Concerning this research question, our objectives were to determine an activity

level trajectory with video analysis corresponding to a good wake-up experience and

to design a stable wake-up light controller.

Regarding the evaluation of a wake-up light, user studies are typically done

(e.g., [127]). In control system design, stability and performance of a controller

are commonly investigated. According to [132], a linear time-invariant system is

considered stable if all the roots of the transfer function denominator polynomial

have negative real parts. Additionally, simulation results can validate the choice

of the control loop model and compare it to alternative controller models with less

stable elements as is done in [133].

We developed a system which can detect the sleeping person’s activity and

controls the light output such that the subject’s behavior corresponds to an activity

trajectory of a favorable wake-up experience.
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Chapter 1: Introduction

1.4 Outline

This thesis focuses on video motion analysis methods developed for the mature ap-

plication area of TV picture enhancement (Chapters 2 and 3) and the emerging ap-

plication area of sleep analysis from video (Chapters 4-7).

We have explored the extensive parameter space of H3DRS in an automatic man-

ner in Chapter 2 (RQ1). Chapter 3 (RQ2) presents an automatic ME design method-

ology that can deal with performance measures that cannot fully model the human

perception.

A video actigraphy method is designed based on video ME and compared with

wrist actigraphy (RQ3) in Chapter 4. Subsequently, a content-dependent clustering

method is developed to cluster movements originating from one body part (RQ4). In

Chapter 5 (RQ5), the camera system is placed on the bedside table to make product

installation as convenient as possible for the user. We present a system that computes

actigraphy and breathing characteristics of only the person of interest in a shared bed

situation. In Chapter 6 (RQ6), we propose a camera-based system that can robustly

discern movements from local time-varying illumination conditions. In Chapter 7,

we demonstrate the potential of camera-based movement analysis in sleep related

applications outside the common interest of sleep stage classification or monitoring of

sleep disorders. The first application targets an intelligent baby monitor that informs

parents about changes of their baby’s pose in its sleep (RQ7). The second application

shows how a sleeping subject’s movement pattern can be used to build a personalized

wake-up light system (RQ8).

Chapter 8 concludes with the main insights and results obtained in this thesis and

offers an outlook to future work.
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Chapter 2

Optimization of hierarchical 3DRS motion

estimators for picture rate conversion

Abstract

There is a continuous pressure to improve the quality of motion-compensated pic-

ture rate conversion methods while maintaining acceptable computational complex-

ity. Since the concept of hierarchy can be advantageously applied to many motion

estimation methods, we have extended and improved the current state-of-the-art mo-

tion estimation method in this field, 3-Dimensional Recursive Search (3DRS), with

this concept. We have explored the extensive parameter space and present an anal-

ysis of the importance and influence of the various parameters for the application of

picture rate conversion. Since well-performing motion estimation methods for picture

rate conversion show a trade-off between prediction accuracy and spatial motion field

consistency, determining the optimal trade-off is an important part of the analysis.

We found that the proposed motion estimators are superior to multiple existing tech-

niques as well as standard 3DRS with regard to performance at a low computational

complexity.

This chapter is published as: A. Heinrich, C. Bartels, R.J. van der Vleuten, C.N. Cordes, G.

de Haan; Optimization of hierarchical 3DRS motion estimators for picture rate conversion, IEEE

Journal of Selected Topics in Signal Processing, vol. 5, no. 2, pp. 262-274, Mar. 2011.
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Introduction

2.1 Introduction

Motion estimation (ME) is an essential part of the picture rate conversion methods

that are applied to eliminate film judder in high-end televisions [134]. Because of the

increasing spatial resolution (from SD to HD and Full HD) and picture rates (from

24 fps to more than 200 fps) of video shown on those televisions, as well as the in-

creasing size and quality of the television displays, there is a continuous pressure

to improve the quality of the ME algorithm while maintaining acceptable computa-

tional complexity. To this end, spatio-temporal prediction methods such as recursive

search, e.g. [135–137], are typically applied in practice (e.g. [138, 139]). Generally,

spatio-temporal predictors have proven to be a powerful tool in the design of motion

estimation algorithms [140–142].

Combinations of 3-Dimensional Recursive Search (3DRS) [143] with concepts bor-

rowed from alternative ME methods have shown to be beneficial in earlier publica-

tions, e.g. [144]. In this paper, we extend the 3DRS technique with the concept of

hierarchy [145] which has been advantageously applied to many ME methods. This

work shows the effect of parameter optimization on the quality of hierarchical motion

estimation, and most importantly, that the commonly used manual parameter opti-

mization is unlikely to arrive at an optimum due to the vast size of the optimization

space. This work thus clearly indicates that sufficient attention has to be placed on

the optimization of a hierarchical motion estimator, as otherwise the result is likely to

be suboptimal. Therefore, we explore the extensive parameter space and provide in-

sights with respect to the importance and the influence of the individual parameters.

Since well-performing ME methods for picture rate conversion show a trade-off be-

tween prediction accuracy and spatial motion field consistency, the optimal trade-off

is analyzed.

In Section 2.2, we introduce the concept of hierarchy for ME and describe its

integration with 3DRS. The designed motion estimators and their parameters are for-

mally defined in Section 2.3. In Section 2.4, we explore the parameter space in order

to find the optimal range of parameter settings. A further in-depth analysis of several

parameters, the performance and complexity analysis of the proposed motion estima-

tors and existing techniques is then given in Section 2.5 and Section 2.6, respectively.

Section 2.7 summarizes our conclusions.

2.2 Hierarchical 3DRS motion estimation

Hierarchical ME is introduced in Section 2.2.1, followed by a discussion of its integra-

tion into 3DRS in Section 2.2.2.
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2.2.1 Multi-scale and multi-grid hierarchical motion estima-

tion

The ME methods discussed in this paper are based on the principle of block-

matching [146]. According to this principle, the image is divided into blocks and

for each block a reference image is searched for the best-matching block (according

to a pre-defined cost function). In case of motion in the sequence, the best-matching

block will be located at a different spatial position in the reference image than in the

current image. The vector over which the matching block has been shifted compared

to the block in the current image is called the motion vector. The complexity of

finding the best-matching block obviously depends directly on the number of different

vectors (with corresponding cost function evaluations) that are examined. Hierar-

chical ME methods can take large search ranges efficiently into account [147] which

reduces the risk of being trapped in suboptimal local minima.

In this paper, we investigate a hierarchical ME approach using resolution down-

scaling, which we call multi-scale block-matching ME. Using down-scaling, the coarser

motion vectors are obtained from block-matching at a lower spatial resolution and

can be successively refined at higher resolutions. We will combine the multi-scale

approach with a hierarchical ME method known as multi-grid block-matching [146].

In this method, a coarse motion vector is first found using a large block size and this

vector is successively refined for the smaller blocks into which the larger blocks are

decomposed (using a quad-tree decomposition). By combining the multi-scale and

multi-grid approaches, we are flexible in investigating the effects of using different

block sizes and scale factors.

2.2.2 Hierarchical 3DRS block-matching

3DRS [135] selects the output motion vector ~d from a candidate vector set C, that

is based on prediction vectors from a spatio-temporal neighborhood. This process

comprises two steps:

1. For each (block/pixel) location ~x in frame number n, construct a candidate set

C, e.g.

C =
~d(~x+ k · ~ux − ~uy, n),

~d(~x− ~ux, n), ~d(~x, n− 1), ~d(~x+ ~ux, n− 1),
~d(~x+ l · ~ux + ~uy, n− 1),

~d(~x− ~ux, n) + ~η, ~d(~x− ~uy, n) + ~η

 ,

k = −1, 0, 1, l = −1, 0, 1

(2.1)

where ~ux, ~uy are unit vectors on the block/pixel grid, and ~η is a random value.

Usually this random value is drawn from a fixed update set [135].
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Figure 2.1: Configuration of the spatial and temporal candidates for the scanning direction indi-

cated by the gray arrows in the block grid. The light gray block is the current block.

The spatial candidates are indicated with the gray circles, the temporal candidates

with the white circles (see Eq. (2.1)).

2. The estimated value for ~d(~x, n) then is

~d(~x, n) = arg min
~dc∈C

( Em(~x, ~dc, n) + Ep(~d∗c) ) (2.2)

where Em is a common match term for which we use the Sum of Absolute

Differences (SAD), while Ep is a block size dependent penalty term to bias

the preference among the different types of candidates ~dc which is denoted by
~d∗c . Regarding the three candidate types, we distinguish between the spatial,

temporal and update predictors which will be elaborated on in the following.

We refer to the sum of the match term and the penalty term as the energy

function.

Important is that steps 1 & 2 are performed sequentially for each location. Hence, the

newly estimated value is assigned to the location before moving to the next location.

Therefore this new value becomes part of the candidate set of the next location,

directly influencing the estimate for that next location.

The underlying idea of 3DRS is that “objects are larger than blocks” and therefore

already estimated neighboring vectors are good predictions for the current value to be

estimated. These neighboring values are called spatial candidates (~d(·, n) in Eq. (2.1)).

Unfortunately, not all neighboring values have already been estimated. However,

previous estimates both in time and iteration are also good predictions, assuming

“objects have inertia”. These predictions from previous estimates are called temporal

candidates (~d(·, n − 1) in Eq. (2.1)), but are somewhat less reliable than spatial

candidates, because of the motion of the objects and the change in motion. The

reliability of the different types of predictors is taken into account by the penalty in

Eq (2.2).

The scanning direction determines the order in which block-based motion estima-

tion is performed. Fig. 2.1 shows the configuration of spatial and temporal candidates
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when processing from top-left to bottom-right. This is the scanning order assumed in

Eq. (2.1). Processing solely in this order means that good motion vector estimates

can only propagate in one direction. If a good estimate is found at the bottom of the

image it can take some time before it is propagated to the top.

To improve the propagation of good estimates it is beneficial to vary the scanning

direction. In practice two mechanisms are used for this. In the first option after a

scan from top to bottom, the next scan is run from bottom to top. This is alternated

continuously. The second option is called meandering meaning that after scanning a

line from left to right, the next line is scanned from right to left. If both mechanisms

are used, good estimates can propagate in four different directions, which ensures a

quick spreading of good estimates all over the image. For an even faster propagation,

two scans (both top to bottom and bottom to top) per image can be performed in

a meandering manner. The example candidate set from Eq. (2.1) assumes scanning

from top to bottom and from left to right, i.e., along the unit vectors defining the

axes of the image. If the scanning direction is changed the unit vectors ~ux and ~uy in

Eq. (2.1) should be changed in unit vectors defining the current scanning direction,

~sx and ~sy.

Another important aspect concerns the update candidates (~d(·, n)+~η in Eq. (2.1)).

Both spatial and temporal candidates contain values that already have been estimated.

However, new values need to be introduced as well to find vectors for appearing objects

and to accommodate for acceleration. This is achieved by adding small random values

to spatial candidates. These random values can be drawn from a random distribution,

e.g., a Gaussian distribution (N ), but typically they are drawn from a fixed update

set (US) [135].

ηx,y ∼ N (0, σ) where ~η =

(
ηx
ηy

)
, or ~η ∈ US (2.3)

These vectors can be small since objects have inertia and in order to promote smooth-

ness, σ ≤ 2. Hence, the motion of objects will only change gradually. To find a motion

vector that differs significantly from previously estimated vectors, it takes several con-

secutive updates. This process is called convergence. Updated vectors are considered

the least reliable predictors and are therefore assigned the highest penalty.

Typically the penalty for spatial candidates is fixed to zero. For 16-bit image data,

we empirically determined that the penalty Ep of 128 per pixel in a block for temporal

candidates and 512 per pixel in a block for update candidates produces good results.

The evaluation of the energy function in Eq. (2.2) is the most expensive part. In

the case of 3DRS the energy function only needs to be evaluated for a few candidates,

regardless of the range of the motion vectors. The size of the candidate set can be

tuned to achieve good quality with a minimum number of candidates. The candidate

set from Eq. (2.1) contains 11 candidates. However because of the smoothness of

the motion field, often neighboring candidate locations result in the same prediction.

Therefore the number of candidates can be sub-sampled without significant loss in

quality (see the 3DRS candidate structure in Fig. 2.3). In this paper, we add an
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Top of pyramid

Bottom of pyramid

Top of pyramid

Bottom of pyramid

Figure 2.2: Illustration of multi-grid and multi-scale approach.

additional candidate vector from an ‘external’ source, i.e., a hierarchical candidate.

The hierarchical candidate vector can be obtained by both multi-grid (same reso-

lution, multiple block-sizes) and multi-scale (multiple resolution levels) approaches.

The 3DRS block matching method with the additional hierarchical candidate is per-

formed on each hierarchical level (except on the coarsest level, where the hierarchical

candidate is not available and thus the non-hierarchical 3DRS is performed). On each

hierarchical level, the temporal candidate vectors are propagated from the previously

computed vectors on the highest-resolution image and down-scaled with regard to all

the scales used in the current hierarchical ME scan. This shows better performance

than when possibly unconverged temporal candidates from the same scale are used.

The introduction of a hierarchical candidate vector increases the number of can-

didate vector evaluations that are performed, compared to non-hierarchical 3DRS.

In order to profit from the hierarchical candidate without a complexity increase, we

could e.g., skip the ME on the full-resolution image and use motion vectors that are

up-scaled from a lower-resolution estimation or modify the motion vector candidate

structures (see Section 2.3.2).

2.3 Hierarchical motion estimation definition and

parameters

First, the hierarchical motion estimators, as well as their parameters, are defined

in Section 2.3.1. Next, the chosen parameter values are discussed in Section 2.3.2

Candidate Structures, Section 2.3.3 Scans, Section 2.3.4 Scale Parameter Sets, and

Section 2.3.5 Block Sizes. Finally, an example motion estimator configuration is given

in Section 2.3.6.

2.3.1 Definitions

In order to describe the multi-scale or multi-grid approach, a scale pyramid is used,

as shown in Fig. 2.2, where ME is performed on higher scales at the top of the
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fine Lowest/Finest scale on which ME is performed Scalar

coarse Highest/Coarsest scale on which ME is performed Scalar

sfw, sfh Scaling factor width and height for resizing scales Array

blkw, blkh Block width and height of each scale Array

scan Amount of ME scans performed per scale Array

Table 2.1: Parameters for the hierarchical motion estimator design.

pyramid first and motion vectors are propagated down the pyramid to the lower

scales by means of hierarchical candidates. The parameters involved in the design of

hierarchical motion estimators are explained in the following and an overview is given

in Table 2.1.

The relevant parameters for the scale structure are the fine scale, the coarse scale

and the scaling factors sfw and sfh. The fine scale and the coarse scale denote the

levels of the pyramid (see Fig. 2.2) where ME is performed, e.g., fine = 1, coarse = 2.

fine is the finer scale (for multi-scale ME) or the one with a finer block grid than

coarse in the case that the coarse and fine scale have the same size (multi-grid ME).

If the full resolution is included as a scale on which ME is performed, fine = 0 is

chosen (otherwise fine = 1). The scale factors sfw and sfh determine the size of the

scales. The scaling factors sfw and sfh for width and height are arrays which indicate

how much one scale is down-scaled in comparison to the next lower scale in the

pyramid. The first component, i.e., sfw[0], denotes the scaling factor between the full

resolution image and the following higher level of the pyramid; the second component,

i.e., sfw[1], denotes the scaling factor between the first down-scaled image and the

next higher scale in the pyramid etc. In the case of a multi-scale motion estimator

(right image in Fig. 2.2), the image dimensions become smaller as we ascend in the

pyramid. However, when a multi-grid (left image in Fig. 2.2) motion estimator is

designed, two scales have the same dimension, thus the corresponding scaling factor

component equals 1. As the spatial resolution of two vector fields from two different

scales may not be equal, this may require scaling of the vector field as well, which is

implemented as nearest neighbor scaling.

The block width and block height dimensions blkw and blkh are arrays where

the elements blkw[i], i = 0, . . . , coarse, indicate the block sizes for each scale i in the

pyramid. The equivalent block width dimensions on the full resolution image can be

computed as in

blkw
′[0] = blkw[coarse] ·

coarse−1∏
i=0

sfw[i], for coarse > 0. (2.4)

The equivalent formula is applied to the block height dimensions. The number of

ME scans performed on each scale is defined by the parameter scan which is also an

array. In this experiment, all the elements were chosen to take identical values, i.e.,

either all equal to 1 or all equal to 2.
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Figure 2.3: The usual 3DRS candidate structure, as well as nine different subsamplings of the

spatio-temporal neighborhood of a block (candidate structures 1,. . . ,9) are shown. C

denotes the current block for which candidate motion vectors are determined, S a spatial

candidate, U a random update vector added to the spatial candidate, T a temporal

candidate, and H the hierarchical candidate resulting from the ME scan on a coarser

grid or on a coarser scale. For candidate structures 4 and 8, d = 1/60.

The random update vectors in both, positive and negative, horizontal and vertical

direction are chosen with quarter-pixel accuracy. The lengths of the update vectors

are discretized to 0.25, 0.5, 1 and 2. The length of the update vectors is not changed

throughout the scales and thus not down-scaled proportionally to the scaling factor,

which should favor a fast convergence speed. In order to find the zero motion of

stationary image parts such as subtitles and logos faster, the zero vector is included

as an additional motion vector candidate with a high penalty, set equal to the update

penalty.

2.3.2 Candidate structures

Different numbers of candidates and different approaches are applied to determine

the motion vector candidates, as shown in Fig. 2.3. In contrast to the usual 3DRS

candidate structure (also shown in Fig. 2.3), the temporal candidate is closer to the

current block for all the hierarchical approaches because, for coarse scales, the tem-
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Scale structure A 1 scale, fine 1

Scale structure B 2 scales, fine 0

Scale structure C 1 scale, fine 1, multi-grid

Scale structure D 2 scales, fine 1

Scale structure E 1 scale, fine 0, multi-grid

Table 2.2: Investigated scale structures.

poral candidate may come to lie outside the object in which the current block is

located.

Candidate structures 1 and 2 are intended to determine the performance of simple

candidate structures that resemble the usual 3DRS structure. Candidate structures 5

and 6, on the other hand, are intended to determine the performance of very complex

candidate structures with many candidates.

Candidate structures 3, 4, 7, 8 and 9 are quite complex in their design. The goal

of candidate structures 3 and 7 is to speed up the convergence. Candidate structure

3 includes a candidate which least resembles the spatial candidate S, with respect to

its angle, whereas candidate structure 7 adds the longest vector which is computed by

comparing the sum |vx| + |vy| of the absolute value of the vector components vx, vy.

Candidate structures 4 and 8 choose different types of candidates (8) or a different

location of the candidates (4) depending on the ratio between the block size and

the scale dimension dim(block)/dim(scale). Candidate structure 9 includes a motion-

compensated candidate by projecting the motion vectors found in the previous scan

to the new block locations in the current image.

2.3.3 Scans

In our experiments, the motion estimation scans are performed in a meandering man-

ner either once or twice for each scale of a designed motion estimator.

2.3.4 Scale parameter sets

Different scale structures were selected by varying the values of fine, coarse, sfw
and sfh. We chose simple structures involving at most two scales on which ME is

performed. The benefit of multi-scale and multi-grid ME in comparison with 3DRS

ME on a down-scaled version of the input image were investigated. The multi-scale

estimators are B and D in Table 2.2 (2 scales), where B performs the last ME step

on the full resolution and D on a down-scaled version. The multi-grid estimators are

C and E in Table 2.2 (1 scale), where C performs ME only on a down-scaled image

and E on the full resolution. Finally, the 3DRS ME on a down-scaled version of the

input is described by scale structure A in Table 2.2.

The investigated parameter settings of the scale structures shown in Table 2.2 are

given in Table 2.3.
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fine coarse sfw sfh Scale structure

1 1 2 2 A

1 1 4 4 A

1 1 8 8 A

1 1 2 4 A

0 1 2 2 B

0 1 4 4 B

1 2 2,1 2,1 C

1 2 4,1 4,1 C

1 2 8,1 8,1 C

1 2 2,1 4,1 C

1 2 2,2 2,2 D

1 2 2,4 2,4 D

0 1 1 1 E

Table 2.3: Parameter settings regarding scale.

2.3.5 Block sizes

For each row in Table 2.3, the block width and block height are selected from the

set of possible block sizes {2, 4, 8, 16, 32, 64}. Non-square blocks are included as well,

however only when the block width is twice as large as the block height. When the

last ME scan is performed on the full resolution image (fine = 0), the block width

and height for scale 0 are chosen to be either 2, 4 or 8.

2.3.6 Example

An example of a hierarchical motion estimator configuration is given in Table 2.4. The

candidate and scale structures and block sizes have been explained in Section 2.3.2,

Section 2.3.3, Section 2.3.4, and Section 2.3.5, respectively.

2.4 Quantitative analysis

In this section, the performance of the different motion estimator (ME) parameter

settings will be evaluated for the application of picture rate conversion (see [148],

Chapter 4). Therefore, we selected ten Full HD test sequences (see Fig. 2.4) with a

Candidate Scale sfw sfh blkw blkh scan

structure structure

2S1TC C 4,1 4,1 8, 2, 8 8, 2, 8 2

Table 2.4: Multi-grid motion estimator configuration example.
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Figure 2.4: Test sequences used for the quantitative evaluation. Note that the bottom row is reused

for still images and de-interlacing with a typical de-interlacer, e.g. [149].

duration of 3 frames that address common challenges in ME, such as several layers

with different motion, repetitive structures, small objects, subtitles and ticker tapes,

de-interlaced images with typical de-interlacers of average quality (e.g. [149]), large

motion, and occlusion areas. To ensure a satisfactory performance with less challeng-

ing test material, we also included fairly straightforward sequences for ME as well

as a repeated still image. We expect a well-performing ME to have a good average

performance for all challenges. For individual challenges, we acknowledge that other

ME parameter settings may render a better result, however, the objective in the ME

design for picture rate conversion remains a good overall performance. Therefore,

the average performance over all test sequences is compared. In order to analyze

the behavior of the motion estimators with respect to convergence speed and steady

state performance, two motion vector initializations are chosen as described in Sec-

tion 2.4.1. The objective measures used to evaluate the motion estimator performance

are introduced in Section 2.4.2, followed by the evaluation itself in Section 2.4.3.

2.4.1 Motion vector initialization

In order to examine the different motion estimators with respect to the convergence

speed of the motion vectors and regarding their performance in the steady state, when

the motion field is already converged, two different initializations are chosen. Firstly,

for evaluating the convergence speed, a zero vector initialization is used. Such un-

converged states occur frequently, not only in scene changes but, more importantly,
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when a tracked object reappears from behind an occluding area or when accelerations

and irregular motions are involved (e.g., up and downwards moving head of walking

person). Secondly, an initialization with converged motion vectors is performed. To

save computation time for the analysis, the motion vectors used for the second ini-

tialization are computed with a fixed multi-grid ME of which the parameter settings

are given in Table 2.4.

2.4.2 Performance measures

Two fundamental characteristics are recognized as the basis of ME design: The bright-

ness constancy assumption when the true motion is found and the smoothness con-

straints to enforce consistent motion fields within a moving object. The trade-off

between smoothness terms and brightness constancy in the form of luminance com-

parisons has already become apparent in the early optical flow advances [150]. The

metrics developed for high-performance ME methods for retiming show comparable

features and the known trade-off between prediction accuracy and spatial motion field

consistency. It is recognized in [136] and [143], that accurate predictions at a highest

possible consistency are necessary for a satisfactory viewing experience. Relevant met-

rics addressing the temporal continuity and spatial consistency of the motion vectors

are documented in [136] and [143]. The prediction accuracy and temporal continuity

are quantitatively assessed with the ‘M2SE’ [143],

M2SE(n) =
1

nh · nw

∑
~x∈W

(Fo(~x, n)− Fi(~x, n))2, (2.5)

and the spatial inconsistency measure ‘SI’ is based on [143],

SI(n) =
∑

~xb∈Wb

1∑
k=−1
l=−1

(
|∆x( ~xb, k, l, n)|+ |∆y( ~xb, k, l, n)|

8 ∗Nb

)
, (2.6)

where nh and nw are the image height and width in pixels, respectively, W is the set

of all the pixels in the entire image, Fo(~x, n) the luminance of the original image at

position ~x and at the temporal position n. Fi is the motion compensated average of

frames n− 1 and n+ 1 by applying the vectors estimated for frame n, ~xb the position

of the block b among the set of all the blocks Wb in the entire image, Nb the number

of blocks in an image and

∆x( ~xb, k, l, n) = dx( ~xb, n)− dx( ~xb +

(
k

l

)
, n), (2.7)

∆y( ~xb, k, l, n) = dy( ~xb, n)− dy( ~xb +

(
k

l

)
, n), (2.8)
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where dx and dy are the computed motion vectors. Different block sizes in the SI

metric, e.g., 8×8 pixel blocks vs. 1×1 pixel blocks, return different results due to the

metric bias towards larger motion vector blocks, thus appropriate block dimensions

should be chosen for the set of MEs one would like to compare (8× 8 pixel blocks in

this paper).

The PSNR depends on the number of bits NB used for representing the video data

and is calculated from the M2SE (PSNR(n) = 10 · log10 ((2NB − 1)2/M2SE(n))). It

measures how well the interpolation result corresponds to true motion using tempo-

rally extrapolated motion vectors, whereas the SI indicates the spatial smoothness

of the computed motion field. The motion field and interpolated images are evalu-

ated after performing ME on the second image of the input sequence since the pixels

from a previous image are included in the M2SE computation. Note that, for these

measures, ME is performed at the original image position and not at the interpolated

position. Thus, a motion vector is assigned to each occurring element in the original

image rendering it unlikely to miss small objects which may be the case when ME is

performed on the interpolated position.

All the motion vectors are computed without applying any post processing such

as block erosion [151] in order to facilitate an easier analysis of the results. This is

assumed correct because the SI and PSNR measures are expected to indicate the same

tendency and ranking of the MEs with and without applying block erosion.

2.4.3 Performance evaluation

Since both a high PSNR as well as a consistent motion field are characteristics of

a good ME, a PSNR - Consistency plot as shown in Fig. 2.5 is introduced as a

means to capture the achieved PSNR performance in relation to the consistency of

the motion field. The inverse mean of the PSNR and the mean inconsistency values

(SI) are plotted in the following sections by computing the average performance of

all parameter setting combinations with regard to the different test sequences. The

optimal ME with a high PSNR and a low inconsistency is located in the bottom

left corner. A ME which surpasses all the others in one regard (either consistency

or PSNR) is called a Pareto-optimal or an ‘optimal’ motion estimator. The set of

optimal MEs lies on the ‘optimal trade-off curve’ as described by [152].

The PSNR-Consistency graphs in Fig. 2.5 and Fig. 2.6 depict the metric results

of 13320 hierarchical MEs (6660 MEs in the steady state and 6660 MEs in the uncon-

verged state) which are created based on all possible parameter combinations (i.e.,

varying candidate structures, scale structures, block sizes and scans) described in

Section 2.3. For each ME, the average performance with respect to the different test

sequences was computed. A wide spread of the MEs in the unconverged state is vis-

ible in Fig. 2.5. The best MEs lie close to the optimal trade-off curve. Therefore,

the optimal contour lines of the hierarchical MEs are depicted in Fig. 2.6 where a

compromise between PSNR and consistency performance is attained. It is visible

that an improvement in both motion field consistency and PSNR is achievable for a
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Figure 2.5: PSNR-Consistency trade-off graph: Steady state (converged): hierarchical MEs (red),

3DRS ME (green x); Unconverged state: hierarchical MEs (blue), 3DRS ME (green o).

hierarchical ME with regard to the traditional 3DRS ME.

The contour lines in Fig. 2.6 indicate often a better consistency performance in

the unconverged than in the steady state. Note that the unconverged state denotes

merely that the motion vector initialization was chosen to be zero but does not exclude

the fact that a converged motion field may result already in the second image. This

was the case for the MEs on the contour line. Furthermore, the lower consistency in

the steady state might be related to the fact that a converged default motion field is

used in the initialization which is not computed with the tested ME but with the one

given in Section 2.4.1.

Since it is not evident which part of the optimal contour line a good visual qual-

ity corresponds to, seven optimal MEs were chosen for an initial analysis. Their

characteristics are summarized in Table 2.5.

Along the curve of Fig. 2.6, from low to high PSNR up to Opt. ME 6, the following

motion field improvements are observed. The related picture rate conversion benefits

are confirmed when playing back the interpolated sequence.

• Improved spatial consistency of the motion field
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Unconverged state

Steady state

3DRS unconverged state

3DRS steady state

Opt. ME 1 unconverged state

Opt. ME 1 steady state

Opt. ME 2 unconverged state

Opt. ME 2 steady state

Opt. ME 3 unconverged state

Opt. ME 3 steady state

Opt. ME 4 unconverged state

Opt. ME 4 steady state

Opt. ME 5 unconverged state

Opt. ME 5 steady state

Opt. ME 6 unconverged state

Opt. ME 6 steady state

Opt. ME 7 unconverged state

Opt. ME 7 steady state

Figure 2.6: Contour lines of optimal hierarchical MEs in steady state (red) and unconverged state

(blue); 3DRS and 7 optimal hierarchical MEs are indicated as well.

Candidate Scale sfw sfh blkw blkh scan

structure structure

Opt. ME 1 2Unlike D 2, 2 2, 2 8, 64, 32 8, 64, 32 2

Opt. ME 2 5H1TC D 2, 4 2, 4 8, 64, 16 8, 32, 8 2

Opt. ME 3 2S1TCMotComp C 2,1 2,1 8, 32, 32 8, 16, 32 2

Opt. ME 4 2S1TC C 2,1 2,1 8, 16, 64 8, 8, 32 2

Opt. ME 5 4S2T D 2, 2 2, 2 8, 8, 8 8, 8, 4 2

Opt. ME 6 2S1TC D 2, 2 2, 2 8, 8, 16 8, 4, 8 2

Opt. ME 7 4S5T B 4 4 8, 4 8, 4 2

Table 2.5: Selected MEs on optimal contour line. All of them incorporate the zero vector as an

additional candidate.
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(a) Steady state motion field, Opt. ME 5

(b) Steady state motion field, 3DRS

(c) Unconverged motion field, Opt. ME 5

(d) Unconverged motion field, 3DRS

Figure 2.7: Motion field visualized with color overlay of 3DRS and Opt. ME 5 in example sequence

chosen for subjective assessment.

47



Chapter 2: Optimization of hierarchical 3DRS motion estimators for
picture rate conversion

• Better alignment of motion vectors with the edge of moving objects, resulting

in reduced artifacts in occlusion regions

• Improved temporal consistency of the motion field, resulting in reduced flickering

• Higher convergence speed (for the steep part of the contour line)

When the metric results indicate a high spatial consistency of the motion field, there

are large temporal motion field inconsistencies and artifacts due to erroneous con-

sistent motion vectors across the motion edges. Opt. ME 1-3 show indeed spatially

consistent vector fields (e.g., large zero vector areas) but their quality is unaccept-

able due to the produced local judder when played back. Along the contour line,

an improvement of the motion vectors regarding the object alignment (clearly better

with Opt. ME 4) is visible which causes less occlusion artifacts. The motion field is

temporally still quite inconsistent which produces flickering and visibly varying arti-

facts at motion boundaries. Overall, Opt. ME 6 shows the best visual quality. The

hierarchical MEs Opt. ME 5 and Opt. ME 6 obtain a similar PSNR value as 3DRS

but a higher consistency measure for both the unconverged and steady states. When

comparing 3DRS with Opt. ME 5 (Fig. 2.7(a) and Fig. 2.7(b)) in the steady state,

a smoother motion field (encoded in color) is clearly visible with Opt. ME 5 in the

background and in the legs of the leopard. For the unconverged state, the motion

fields obtained by performing ME between the second and the third image are shown

in Fig. 2.7(c) and Fig. 2.7(d). The consistency increase and faster convergence of

Opt. ME 5 in comparison with 3DRS is apparent as well. This corresponds well with

the expected added value of the hierarchical candidate with respect to larger search

ranges and the rare selection of false local minima. The performance degrades when

going beyond Opt. ME 6. The motion field of Opt. ME 7 is perceived as noticeably

more inconsistent which leads to disturbing flickering artifacts. The relevance of the

spatial inconsistency metric is confirmed since a high PSNR at the cost of consistency

is not preferred.

We expect the performance gain achieved with the addition of hierarchical layers

to stagnate when more than a couple of layers are applied. In order to get a visual

impression of the qualitative contribution when more than 2 scales are used, the

visually best performing ME, Opt. ME 6, was extended to a ME with 5 scales. An

informal subjective evaluation showed hardly any visible differences in terms of the

listed motion field improvements mentioned earlier. This is in correspondence with

the quantitative improvements of 0% in PSNR and 7% in SI, indicating that using

more than 2 scales has only minor performance benefits.

2.5 Detailed parameter analysis

In order to carry out a more representative analysis and to allow for slight imper-

fections in the metrics, also the MEs within a particular distance from the optimal

48



Detailed parameter analysis

0 0.5 1 1.5 2 2.5 3 3.5
0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

Inconsistency

1
/P

S
N

R

Figure 2.8: Range of optimal hierarchical MEs in steady state (red) and unconverged state (blue).

contour lines are investigated. For the 16-bit HD data, the considered range was cho-

sen to be δ(1/PSNR) = 0.0005 and δ(SI) = 0.1. The MEs within this range are shown

in Fig. 2.8. The contour lines are further divided into two segments as shown with the

dashed line. When comparing common settings among the MEs, it is chosen to take

into account all the MEs on the right hand side of the dashed line where the PSNR

hardly decreases and room for a rather large improvement in terms of consistency is

given.

Section 2.5.1 discusses the candidate structures, Section 2.5.2 the amount of scans,

Section 2.5.3 investigates the scale parameter sets, and Section 2.5.4 the block sizes.

The resulting optimal hierarchical MEs are summarized in Section 2.5.5.

2.5.1 Candidate structures

An overview of the performance of the optimal MEs regarding the candidate struc-

tures is given in Fig. 2.9. The contour lines of all the optimal MEs for each candidate

structure are given in Fig. 2.9. The description of the different candidate structures

can be found in Fig. 2.3. For comparison, the performance of 3DRS is illustrated as

well. It is clearly visible that the two candidate structures with the least (4) can-
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didates (1S1TC and 2Unlike) perform worst. This indicates the necessary number

of prediction vectors for a satisfactory performance. The importance of spatial pre-

dictors on a large resolution with small block sizes is apparent in the suboptimal

performance of the candidate structure 5H1TC. The optimal MEs of the other can-

didate structures in Fig. 2.9 achieve a more or less similar metric result. Especially

for the unconverged state, a significant increase in consistency (around 1) and PSNR

(around 1.2 dB) compared with 3DRS is found. In the steady state there is mainly

room for a consistency increase.

ME candidate structures that yield more often an optimal ME are preferred as they

are assumed less sensitive to varying settings than other candidate structures and thus

more robust. The goal is to find optimum settings for both the unconverged and the

steady state. For a practical implementation in real-time applications, however, it can

be useful to discriminate between the unconverged and the steady state and choose

the best candidate structure for each state. With respect to the range of optimal MEs,

the distribution of the candidate structures is given in Fig. 2.10 (the steady state case

is comparable to the unconverged state). The numbers on the x-axis correspond to

the candidate structure numbers in Fig. 2.3 and the y-axis to the ME count. For both

states, the distribution in the interesting segment indicates that a good performance

can be achieved with the candidate structures 2, 4, 5, 6 and 9. Hence, it may be

interesting to use the most straightforward candidate structure, 2, as it contains

the least number of candidates and does not require a complex implementation (for

candidate structure 9 which only involves one more candidate a higher computational

complexity is expected due to the motion compensated candidate). These results

suggest that a minimum number of prediction vectors is needed for a satisfactory

performance and that most of the necessary information is contained in this minimum

candidate set.

2.5.2 Scans

Performing two ME scans per scale generally renders a better overall performance

than only one scan per scale (occurrence rate of 67% vs. 33% respectively) since good

motion vectors found close to object edges can be refined and propagated to other

parts within the object. Two scans with an occurrence rate of 81% in the unconverged

state are found to be particularly useful for a fast convergence.

Note that the total number of scans performed when computing the resulting

motion field of one image is dependent on the number of scans per scale and the

number of scales or block grids used. For e.g., the multi-grid approach with 1 scan,

the total number of scans is equivalent to the case with the scale structure A (indicated

in Table 2.2) and 2 scans.

2.5.3 Scale parameter sets

In this section, the scale structures and scaling factors are discussed. Particularly the

unconverged state shows a clear discrepancy between the scale structures. The contour
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(a) Unconverged state
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(b) Steady state

Figure 2.9: Contour lines of optimal MEs in unconverged (a) and steady (b) state for different

candidate structures.
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Figure 2.10: Distribution of the candidate structures among the range of optimal MEs in the

unconverged state.

lines in Fig. 2.11 depict the optimal quantitative performances of the MEs for each

scale structure in the unconverged state. Particularly the scale structures ‘2 scales,

fine 0’ and ‘1 scale, fine 0, multi-grid’ show a significant decrease in consistency and/or

PSNR suggesting suboptimal high-frequency content (e.g., noise) in the full resolution

image. With the selected test sequences addressing natural content, removing the

higher frequencies by downscaling the input image thus does not show any visible

drawbacks. In the steady state there is no noticeable difference among the other

three scale structures. However, when the motion vector is not yet converged the

multi-scale/multi-grid approach (‘1 scale, fine 1, multi-grid’, ‘2 scales, fine 1’) seems

beneficial for both PSNR and consistency which confirms the hypothesis of the added

value of an hierarchical candidate.

In the analysis of the distribution of the five scale structures (analogously to the

candidate structures in Fig. 2.10) we found that the scale structures C and D are

the most represented groups (84%). Scale structure D occurs around 35% more often

than C, thus using two different scales seems to be of advantage.

When analyzing the distributions of the scaling factors the following is observed.

The finest scale on which ME is performed is dominated by the scaling factor 2.

The full resolution with scaling factor 1 is rarely chosen. Apparently, the highest

frequencies (such as noise) in the image do not contribute to a more accurate ME.

In the multi-scale approach, the coarse scale which is added for fast convergence and

consistency shows, as expected, higher scaling factors (4 and 8 occur approximately

equally often).
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Figure 2.11: Contour lines of optimal MEs in unconverged state for different scale structures.

2.5.4 Block sizes

We assume that larger blocks and/or coarser scales would improve the convergence

speed and large object area smoothness, and smaller blocks on the fine scale would

serve as a refinement of the motion field obtained on the coarse scale. For the fine

scale in the context of HD sequences, block dimensions in the neighborhood of 8× 8

blocks on the full resolution would be plausible since experience on SD content has

shown that 8× 8 blocks are a good trade-off between PSNR and SI [153].

The distribution of the block dimensions for multi-scale MEs is illustrated in Fig.

2.12. The data reveals that the block sizes of MEs using 1 scale are similarly dis-

tributed as the ones of the fine level of the multi-scale MEs (in order to avoid repeti-

tion and limit the figures, only the graphs corresponding to the multi-scale case are

shown). The dominant width and height dimensions in the well performing segment

range from [8,32] and [4,16] respectively. The block sizes of the multi-grid motion

estimators which are included in the 1-scale case are more concentrated than the ones

of the multi-scale MEs (see the large spread of the coarse level block sizes) indicating

that more similar block dimensions are selected when the same scale is re-used. On

average, the block width and height of the selected MEs on the coarse scale range

from [32, 128] and [16,64], respectively. Based on these observations, we conclude

that multi-scale MEs make use of the varying frequency content and are more robust

when different block sizes are used.
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Figure 2.12: Range of optimal MEs using 2 scales. Distribution of equivalent block sizes for full

resolution image.

2.5.5 Optimal hierarchical motion estimators

Based on the parameter analysis in the previous sections, we propose to employ the

multi-scale MEs with candidate structure 2S1TC, scale structure D and 2 scans. An

overview of the proposed parameter settings of this ME type is given in Table 2.6

where block settings, performance and complexity are rendered. The fourth row of

Table 2.6 shows the mean performance for the 62 most robust MEs. The range of block

width and height settings were analyzed in more detail. Therefore, their distributions

were considered as probability distributions of settings for well performing MEs and

their expectation value a good approximation of a robust well-performing ME given

in the seventh row. The selected block sizes indicate that larger blocks are suited for

HD content. When applying one of the two scale factor settings of scale structure D

given in Table 2.3, the resulting ME happens to coincide with Opt. ME 6 in Figure

2.6 which was visually perceived as the most pleasing ME among the seven MEs on

the contour line.
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Block width Block height mean mean # Block com-

full res. full res. PSNR SI parisons nBC

3DRS unconv. + steady 8 8 28.17 2.53 388800

3DRS unconv. 8 8 27.74 2.26 388800

3DRS steady 8 8 28.60 2.80 388800

Range of MEs [8,32], [32,128] [4,16], [16,64] 28.46 2.18 [60242,963900]

Low-complexity MEs 32, 128 16, 64 27.98 1.45 60242

High-complexity MEs 8, 32 4, 16 28.81 3.01 963900

Proposed MEs 16, 64 8, 32 28.91 2.37 240975

Proposed MEs unconv. 16, 64 8, 32 28.90 2.27 240975

Proposed MEs steady 16, 64 8, 32 28.91 2.46 240975

HRNM [154] unconv. 8 8 28.02 1.87 777600

HRNM [154] steady 8 8 29.32 1.48 777600

FS [155] unconv. 16 16 25.78 15.00 1056370680

FS [155] steady 16 16 25.78 15.00 1056370680

TSS [156] unconv. 16 16 22.80 3.90 201000

TSS [156] steady 16 16 22.80 3.90 201000

OTS [157] unconv. 16 16 23.79 6.64 152271

OTS [157] steady 16 16 23.79 6.64 152271

DS [158] unconv. 16 16 23.95 7.24 292462

DS [158] steady 16 16 23.95 7.24 292462

HEXBS [159] unconv. 16 16 23.90 7.28 214186

HEXBS [159] steady 16 16 23.90 7.28 214186

MVFAST [160] unconv. 16 16 28.12 4.44 131207

MVFAST [160] steady 16 16 28.15 4.43 130824

EPZS [142] unconv. 16 16 27.84 3.62 133821

EPZS [142] steady 16 16 28.69 3.77 84137

MRST [147] unconv. 16,16,16,16 16,16,16,16 28.26 5.26 9199420

MRST [147] steady 16,16,16,16 16,16,16,16 28.60 5.16 9182275

MPMVP [137] unconv. 32,16, 8, 4 32,16, 8, 4 27.41 3.99 3125265

MPMVP [137] steady 32,16, 8, 4 32,16, 8, 4 28.13 3.80 3120024

Table 2.6: Performance and complexity analysis of proposed MEs, 3DRS and various techniques

documented in literature. Block width and block height indicate the equivalent block

sizes for the full resolution where the selected settings for the fine and course scales

can be a range ([..]) of values.
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2.6 Results

We measured the quantitative performance and computational complexity of various

MEs. The computational complexity is expressed in the number of block comparisons

nBC. For the proposed MEs, this can also be derived from

nBC =
∑

i∈Wscales

nh · nw · scan(i) · ncand

blkw,fullRes(i) · blkh,fullRes(i)
, (2.9)

where Wscales is the set of all the used scales, scan(i) the number of scans on scale i,

ncand the number of motion vector candidates (ncand = 7 for the hierarchical MEs due

to the addition of the zero vector candidate), blkw,fullRes and blkh,fullRes the width and

height of the equivalent block sizes for the full resolution scale.

Table 2.6 gives an overview of the SI and M2SE-PSNR values and the number

of block comparisons of the different recursive-search MEs that are proposed, as

well as the benchmark results from several methods described in literature. These

include full-search (FS) and reduced-search pattern based methods, i.e., three-step-

search (TSS) [156], one-at-a-time search (OTS) [157], diamond search (DS) [158] and

hexagon-based-search (HEXBS) [159], as well as algorithms based on spatio-temporal

predictors, i.e., the predictive (zonal) search methods MVFAST [160] and EPZS [142],

the recursive search methods 3DRS [135] and HRNM [154], and combined hierarchical-

predictive methods, i.e., the MRST-method proposed in [147] and MPMVP from [137].

In the steady state, we simulate the convergence mode for these methods by iterating

the corresponding MEs ten times on the first image. Note that the M2SE-PSNR

metric favors ‘true’ motion, i.e., MEs with a better vector field consistency can out-

perform a full-search method. Furthermore, all methods from literature were adapted

and tested with smaller block dimensions (e.g., 8 × 8), however, no improvement in

PSNR and SI was observed.

In comparison with standard 3DRS with two scans, the proposed hierarchical

MEs achieve a complexity reduction of 38% while outperforming 3DRS on average

by 0.7 dB. This holds particularly for the unconverged state with an improvement

of more than 1 dB and 7% in consistency. Even the sophisticated HRNM ME [154],

with a significantly higher complexity due to 3-picture estimates, is surpassed in the

unconverged state (PSNR difference of 0.9 dB). However, in the steady state, HRNM

shows a clearly better performance than any of the hierarchical MEs. From these

observations we conclude that for the unconverged state, a combination of the hier-

archical approach and HRNM may be beneficial for both computational complexity

and performance.

The benchmark further shows that the non-predictive (reduced-)search methods

FS, TSS, OTS, DS, and HEXBS are generally unsuitable for picture rate conversion.

As these methods purely optimize for minimal ‘residue’ in the match criterion, they

produce highly inconsistent vector fields (with PSNR values smaller than 24 and/or

SI values larger than 4). The predictive search methods generally perform better, as

they (implicitly) enforce vector field consistency, with the methods EPZS and MRST
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achieving the best steady-state PSNR performance (slightly below the proposed MEs).

Among these, when taking the computational complexity into account, EPZS is iden-

tified as the ME achieving the best compromise between performance and complexity.

Yet, its spatial inconsistency is more than 50% larger than the SI values of the pro-

posed MEs, and this has a large impact on the perceived picture quality. We conclude

from these results that the proposed hierarchical MEs are superior to multiple existing

techniques as well as standard 3DRS with regard to combined PSNR/SI performance

at a low computational complexity.

2.7 Conclusion

Hierarchical ME promises fast convergence of motion vectors, a high motion field

consistency and a small M2SE error. In this paper, we introduced the concept of

hierarchical ME to 3D-Recursive Search (3DRS), and we performed a design-space

exploration of the extensive parameter space to provide insights into the importance

and influence of individual parameters. In particular, a quantitative analysis was per-

formed by determining the PSNR and Spatial Inconsistency (SI) of 13320 hierarchical

MEs to show the trade-off between spatial consistency and match quality.

In general, we found that applying the hierarchical approach to 3DRS does not

require complex candidate structures in order to perform well. In fact, straightforward

candidate structures having relatively few candidates already offer a good overall

performance, i.e., one that is close to the optimal trade-off curve. Furthermore, we

identified that multi-scale MEs are amongst the best performing hierarchical MEs,

closely followed by multi-grid MEs on down-scaled images, with these being hindered

by a lower robustness with respect to varying block sizes.

Based on the design-space exploration, a ME configuration is proposed that offers

an improvement of more than 1 dB over 3DRS in the unconverged state, and of 0.7

dB on average. At the same time, the computational complexity is reduced by 38%.

When benchmarking the proposed MEs to various other techniques, the results show

a superior combination of PSNR/SI performance while offering a low computational

complexity.

We also showed that, in comparison to a sophisticated ME approach using 3-

picture estimates (HRNM), the proposed hierarchical MEs offer better results in terms

of both image quality and complexity in the unconverged state. Therefore, as future

work, a combination of the hierarchical approach and HRNM may be investigated to

identify whether the combination offers further improvements in performance and/or

computational complexity.
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Chapter 3

Perception-oriented methodology for

robust motion estimation design

Abstract

Optimizing a motion estimator (ME) for picture rate conversion is challenging. This

is because there are many types of MEs and, within each type, many parameters,

which makes subjective assessment of all the alternatives impractical. To solve this

problem, we propose an automatic design methodology that provides ‘well-performing

MEs’ from the multitude of options. Moreover, we prove that applying this method-

ology results in subjectively pleasing quality of the upconverted video, even while

our objective performance metrics are necessarily suboptimal. This proof involved

a user rating of 93 MEs in 3 video sequences. The 93 MEs were systematically se-

lected from a total of 7000 ME alternatives. The proposed methodology may provide

an inspiration for similar tough multi-dimensional optimization tasks with unreliable

metrics.

This chapter is published as: A. Heinrich, R.J. van der Vleuten, G. de Haan; Perception-oriented

methodology for robust motion estimation design, IEEE Journal of Selected Topics in Signal Pro-

cessing, vol. 8, no. 3, pp., June 2014.
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Introduction

3.1 Introduction

Motion estimation (ME) is an essential part of picture rate conversion methods that

are applied to eliminate film judder, reduce flicker and eliminate blur in high-end

televisions [161]. Because of the increasing spatial resolution (from SD to HD, Full

HD and Ultra HD) and picture rates (from 24 fps to more than 200 fps) of video

shown on those televisions, as well as the increasing size and quality of the television

displays, there is continuous pressure to improve the quality of ME algorithms while

maintaining acceptable computational complexity.

Optimizing a motion estimator (ME) for picture rate conversion is challenging.

This is because there are many types of MEs and, within each type, many parameters,

which makes subjective assessment of alternatives impractical.

For the application of picture rate conversion, various objective metrics have been

developed and employed to evaluate the performance of a ME, e.g [161–167]. Unfor-

tunately, these performance measures represent a necessarily suboptimal approach to

reflect the perceived subjective image quality.

In this paper we propose a robust ME design methodology that, while applying

such suboptimal metrics, can still identify good MEs automatically and identify the

MEs with a consistently good performance for a multitude of challenges. Moreover,

we present a user study to support this perception-oriented ME-design methodol-

ogy and its assumptions. Users rated 93 MEs in 3 video sequences. The 93 MEs

were systematically selected from a total of 7000 ME alternatives. The current paper

can be seen as an extension of earlier work described in [168] and [169]. The pro-

posed methodology may provide an inspiration for similar tough multi-dimensional

optimization tasks with unreliable metrics.

In Section 3.2, we present the proposed robust ME design methodology followed

by video data analysis results on ten test sequences supporting the robustness claims

made in [168] and [169]. Section 3.3 describes the user perception test to confirm and

improve the proposed design methodology. The results are presented in Section 3.4

and discussed in Section 3.5 where the perceived quality of MEs is incorporated in an

improved ME design methodology. Conclusions are drawn in Section 3.6.

3.2 Proposed motion estimation design methodol-

ogy and robustness analysis

This section presents the proposed motion estimation methodology and related ro-

bustness experiments.

3.2.1 Proposed motion estimation design methodology

In order to automatically identify parameter settings of robust MEs for upconverting

video sequences, we present a methodology that can successfully deal with perfor-

mance measures that are suboptimal in the sense that they do not fully reflect the
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perceived video quality. A three-step approach is suggested where, first, the variety

of conditions under which the MEs should perform well is defined and appropriate

test data is selected. Second, a contour line or trade-off curve illustrates the achieved

compromise between the motion vector prediction accuracy and consistency (see

Fig. 3.3). Third, an attractive segment is identified containing all MEs within a

defined distance from an attractive section of the contour line. Histogram analysis

provides the distribution of MEs within the attractive segment to identify the

parameter settings of the MEs that are least sensitive to varying settings and thus

most robust.

Test data selection

A ME should perform well under a majority of considered conditions for the picture

rate conversion application. These conditions are included in the test data which

should address ME challenges such as repetitive structures, small objects, subtitles

and ticker tapes, several layers with different motion, de-interlaced images with typ-

ical de-interlacers of average quality (e.g., [170]), large motion, and occlusion areas.

To ensure a satisfactory performance with less challenging test material, also fairly

straightforward sequences for ME should be included, as well as repeated still images.

Out of a pre-selection of 20 sequences, the ten test data sets were selected according

to these criteria. Some of the 10 remaining test sequences were used for verification

purposes of the results. A snapshot of each Full-HD test sequence is shown in Fig. 3.1.

The two sequences shown in the bottom row are reused for the repeated still image

sequence and the de-interlaced sequence. The test set should thus address the main

challenges posed by the application and include standard test sequences. Addition-

ally, each algorithm (in our case, each motion estimator type) may introduce new

problem cases that are less prominent with other algorithms. For these new problem

cases, additional test data is included. With this in mind, a good representation of

all types of motion should be accomplished.

We expect a well-performing ME to have a good average performance for all

challenges. For individual challenges, we acknowledge that other ME parameter

settings may render a better result, however, the objective in the ME design for

retiming video sequences remains a good overall performance. Therefore, the average

performance over all test sequences is compared.

Performance measures

The chosen performance measures which the trade-off curve is dependent on are based

on fundamental characteristics that are recognized as the basis of ME design: The

brightness constancy assumption when the true motion is found and the smoothness

constraints to enforce consistent motion fields within a moving object. The trade-off
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Figure 3.1: Snapshots of test sequences used for the quantitative evaluation.

between smoothness terms and brightness constancy in the form of luminance com-

parisons has already become apparent in the early optical flow implementations [171].

Similarly, [161, 162, 165, 166] and [167] recognize that accurate predictions at

a highest possible consistency are necessary for a satisfactory viewing experience.

Relevant metrics addressing the prediction accuracy, temporal continuity and spatial

consistency of the motion vectors are documented in [161, 162, 165, 166] and [167].

The prediction accuracy and temporal continuity are quantitatively assessed with the

‘M2SE’ [162, 167],

M2SE(n) =
1

nh · nw

∑
~x∈W

(Fo(~x, n)− Fi(~x, n))2, (3.1)

and the spatial inconsistency measure ‘SI’ based on [167],

SI(n) =
∑

~xb∈Wb

1∑
k=−1
l=−1

(
|∆x( ~xb, k, l, n)|+ |∆y( ~xb, k, l, n)|

8 ∗Nb

)
, (3.2)

where nh and nw are the image height and width in pixels, respectively, W is the set

of all the pixels in the entire image, Fo(~x, n) the luminance of the original image at

position ~x and at the temporal position n. Fi is the motion compensated average of

frames n− 1 and n+ 1 by applying the vectors estimated for frame n, ~xb the position

of the block b among the set of all the blocks Wb in the entire image, Nb the number

of blocks in an image and

∆x( ~xb, k, l, n) = dx( ~xb, n)− dx( ~xb +

(
k

l

)
, n), (3.3)
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∆y( ~xb, k, l, n) = dy( ~xb, n)− dy( ~xb +

(
k

l

)
, n), (3.4)

where dx and dy are the computed motion vectors.

The PSNR measure is calculated from the M2SE: PSNR(n) = 10 ·
log10 ((2NB − 1)2/M2SE(n)), where NB is the number of bits used for representing

the video data.

The PSNR - Consistency plot as e.g. shown in Fig. 3.2 with 6660 hierarchical

Recursive Search (RS) MEs [168] is introduced displaying the statistics for each

ME computed over all test sequences. The PSNR - Consistency plot captures the

achieved PSNR performance in relation to the consistency of the motion field. The

inverse mean of the PSNR and the mean inconsistency values (SI) are plotted by

computing the average performance of all parameter setting combinations with

regard to the different test sequences. The optimal ME with a high PSNR and a

low inconsistency is located in the bottom left corner. We call a ME which is not

surpassed by any other ME in both regards (consistency and PSNR) an ‘optimal’

ME. This set of optimal MEs lies on the ‘contour line’ (blue line in Fig. 3.3) or

‘trade-off curve’ as described in [172].

Identification of robust ME settings

A subset of MEs considered ‘well-performing’ MEs are found close to the contour line.

The selection criteria for this group of MEs are the following:

1. Well performing MEs should be located close to a so-called attractive section of

the contour line,

2. the attractive section is bounded by a minimal PSNR and a maximal Inconsis-

tency (dashed lines in Fig. 3.3),

3. the area spanned by the attractive section and the maximum ∆SI and ∆PSNR

distance contains well performing MEs. This area is called attractive segment

(red arrows in Fig. 3.3).

Among the MEs with a satisfactory performance (e.g., blue MEs in Fig. 3.4), the

distribution of the parameter settings is analyzed and their values compared in a

histogram parameter analysis. The most robust ME settings are identified by high

counts in the corresponding parameter histogram. A ME parameter setting that yields

more often an optimal ME is preferred as it is assumed less sensitive to varying settings

of other parameters. Among the high counts the setting closest to the expectation

value is selected.

The attractive segment and the corresponding attractive contour line section have

been defined based on the authors’ observation of different ME performances on ten

Full HD test sequences.
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Figure 3.2: PSNR-Consistency trade-off plot of 6660 RS MEs.

3.2.2 Robustness analysis of proposed methodology

A design space exploration of thousands of MEs (resulting from combinations of 8

different parameters, each parameter with 2 to 8 different possible values) has been

carried out on ten test sequences (see snapshots in Fig. 3.1). The proposed method-

ology has been applied to two different ME types: Hierarchical Recursive Search

block matching (RS) and Phase Plane Correlation (PPC). Both are relevant mo-

tion estimators for the application of picture rate conversion and are commercially

available in products. Spatio-temporal prediction methods such as RS, e.g., [161–

164, 173–176], are applied in practice (e.g., [177, 178]), and so are alternatives based

on PPC [179, 180].

Recursive search motion estimation

We investigated a hierarchical ME approach using resolution down-scaling, which we

call multi-scale block-matching ME. Using down-scaling, the coarser motion vectors

are obtained from block-matching at a lower spatial resolution and can be succes-

sively refined at higher resolutions. We will combine the multi-scale approach with a

hierarchical ME method known as multi-grid block-matching [181]. In this method,

a coarse motion vector is first found using a large block size and this vector is succes-

sively refined for the smaller blocks into which the larger blocks are decomposed (using

a quad-tree decomposition). By combining the multi-scale and multi-grid approaches,

we aim at reducing the computational complexity and are flexible in investigating the
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Figure 3.3: The PSNR-Consistency trade-off graph of the ME design space where the green shaded

area indicates the area of possible MEs which are bounded by the contour line (blue).

The black dashed lines indicate the minimal PSNR and maximal Inconsistency for the

attractive contour line section. The range of well performing MEs in the attractive

segment are highlighted by the red arrows.

effects of using different block sizes and scale factors.

The multi-scale and multi-grid approach are illustrated by the scale pyramid shown

in Fig. 3.5, where ME is performed on higher scales at the top of the pyramid first

and motion vectors are propagated down the pyramid to the lower scales by means

of hierarchical candidates.

The block-matching method we apply is the RS ME of [167]. In contrast to the

usual RS candidate structure of [167], the temporal candidate is closer to the current

block for all the hierarchical approaches because, for coarse scales, the temporal can-

didate may come to lie outside the object in which the current block is located. An

overview of the investigated candidate structures is given in Fig. 3.6.

The parameters involved in the design of hierarchical motion estimators are ex-

plained in the following and an overview is given in Table 3.1.

The relevant parameters for the scale structure are the fine scale, the coarse scale

and the scaling factors sfw and sfh. The fine scale and the coarse scale denote the

levels of the pyramid (see Fig. 3.5) where ME is performed, e.g., fine = 1, coarse = 2.

fine is the finer scale (for multi-scale ME) or the one with a finer block grid than

coarse in the case that the coarse and fine scale have the same size (multi-grid ME).

If the full resolution is included as a scale on which ME is performed, fine = 0 is

chosen (otherwise fine = 1). The scale factors sfw and sfh determine the size of the

scales. The scaling factors sfw and sfh for width and height indicate how much one
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Figure 3.4: RS MEs (black) within a limited distance from the contour line; 1745 highlighted

MEs (blue) in the attractive segment. Dashed line indicates minimal PSNR for well

performing ME.

scale is down-scaled in comparison to the next lower scale in the pyramid. In the

case of a multi-scale motion estimator (right image in Fig. 3.5), the image dimensions

become smaller as we ascend in the pyramid. However, when a multi-grid (left image

in Fig. 3.5) motion estimator is designed, two scales have the same dimension, thus

the corresponding scaling factor component equals 1. As the spatial resolution of two

vector fields from two different scales may not be equal, this may require scaling of

Top of pyramid

Bottom of pyramid

Top of pyramid

Bottom of pyramid

Figure 3.5: Illustration of multi-grid (left) and multi-scale (right) motion estimation approach. In

both cases, ME is performed on higher scales at the top of the pyramid first and motion

vectors are propagated down the pyramid to the lower scales by means of hierarchical

candidates.
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Figure 3.6: The usual 3DRS candidate structure, as well as nine different subsamplings of the

spatio-temporal neighborhood of a block (candidate structures 1,. . . ,9) are shown. C

denotes the current block for which candidate motion vectors are determined, S a spatial

candidate, U a random update vector added to the spatial candidate, T a temporal

candidate, and H the hierarchical candidate resulting from the ME scan on a coarser

grid or on a coarser scale. For candidate structures 4 and 8, d = 1/60.

the vector field as well, which is implemented as nearest neighbor scaling.

The block width and block height dimensions blkw and blkh are arrays where

the elements blkw[i], i = 0, . . . , coarse, indicate the block sizes for each scale i in the

pyramid.

The PSNR-Consistency plot and the contour line of the optimal RS MEs are given

in Fig. 3.2 and Fig. 3.7. Note that the SI measure is computed based on 8 × 8 pixel

blocks. The MEs within the attractive segment are shown in Fig. 3.4. Based on the

parameter histogram analysis, which is elaborately discussed in [168], 62 multi-scale

MEs have been identified out of the 1745 MEs in the attractive segment (see Fig. 3.4).

An overview of the proposed parameter settings of this ME type is given in Table 3.2

where block settings and performance are rendered. The first row of Table 3.4 shows

the mean performance for the 62 robust MEs. From the expectation value of the
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fine Lowest/Finest scale on which ME is performed

coarse Highest/Coarsest scale on which ME is performed

sfw, sfh Scaling factor width and height for resizing scales

blkw, blkh Block width and height of each scale

cand.struc. Selected candidate structure

scan Amount of ME scans performed per scale

Table 3.1: Parameters for the hierarchical motion estimator design.

block dimension distributions of the 62 MEs we determined the proposed ME settings

given in the second row. The resulting ME happens to coincide with Opt. ME 6 in

Fig. 3.7 which was visually perceived as the most pleasing ME among the seven MEs

on the contour line.

Block width Block height mean mean

full res. full res. PSNR SI

62 Robust RS MEs [8,32], [32,128] [4,16], [16,64] 28.46 2.18

Proposed RS ME 16, 64 8, 32 28.91 2.46

Table 3.2: Block settings and performance in PSNR and SI of 62 robust RS MEs and the proposed

RS ME. Block width and block height indicate the equivalent block sizes for the full

resolution where the selected settings for the fine and course scales can be a range ([..])

of values.

Phase Plane Correlation Motion Estimation

PPC was developed in the ‘80s [179] and is employed in state-of-the-art products [180].

Instead of obtaining motion vector candidates from a spatio-temporal neighborhood

as in RS, PPC retrieves the motion vectors by performing phase correlation in the

Fourier domain between spatially corresponding blocks from consecutive images. A

correlation plane of displacement peaks is returned of which a subset is used as motion

vector candidates in a consequent block matching operation on smaller blocks. Among

the most dominant peaks in the obtained displacement field, the peak yielding the

minimal match error between the motion compensated and the original smaller blocks

is selected.

We implemented PPC-based MEs based on [179] (which may not reflect current

product implementations) with the parameter variations as given in Table 3.3. In

total, 1800 ME parameter combinations are investigated. Initially, a two-dimensional

Fourier transform is performed on the larger blocks with dimensions mlxml. The np
most dominant displacement peaks are considered motion candidates for the smaller

blocks with dimensions msxms. Another parameter is the block step size sb based

on which the pixel locations of the next mlxml block are selected for the next FFT
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ml {32, 64, 128}
ms {1, 2, 4, 8, 16}
np {1, 2, 3, ..., 20}
sb {16, ...,ml}
as {0, 1}

Table 3.3: Parameter settings for PPC MEs.

operation. The values for sb are set in the range between the largest ms setting

(16) and the current ml dimension. The displacement of the larger blocks can be

determined with pixel or sub-pixel accuracy. The binary variable as indicates a sub-

pixel accuracy of 0.25 pixels when as = 1 and pixel accuracy when as = 0.

The contour line (with the 8×8 block-based SI measure) of the PPC MEs is given

in Fig. 3.7.

The histogram analysis is conducted for all parameters in Table 3.3. Among the

54 MEs within the attractive segment, we found that the block dimensions of both the

larger and smaller blocks converge to ml = 128 and ms = 16. This is expected since

large ml dimensions are necessary to capture larger movements. Taking 16×16 blocks

to perform block matching on the candidate peaks is already proven in the RS study

to be a suitable value when we are dealing with HD sequences. The robust number

of candidate peaks np is determined to be np = 13. Largely overlapping blocks are

favored with a block step size tending to sb = 32.

In the authors’ perception, the computed robust ME settings (referred to as the

PPC proposed ME and RS Opt. ME 6 in Fig. 3.7) corresponded with better upcon-

verted quality than other ME settings (e.g., other optimal MEs in Fig. 3.7 or MEs in

the attractive segment). The results have also shown that a comparison between two

MEs from different ME types (i.e., from RS and from PPC) is possible when MEs are

sufficiently far apart in the PSNR-Consistency trade-off graph as is the case between

PPC and RS MEs (see Fig. 3.7).

The proposed methodology should find robust MEs even with suboptimal per-

formance measures. The SI metric is evidently suboptimal in the sense that the SI

output is dependent on the selected block dimension, thus the 8 × 8 block-based SI

measure is not comparable with the 1 × 1 pixel-based SI measure. For the case of

PPC, we have added a pixel-based SI evaluation (see Fig. 3.8), where a motion vector

is assigned to each pixel in the image instead of validating the SI performance on only

8 × 8 pixel motion vector blocks. The distances ∆SI and ∆PSNR to the attractive

section were chosen such that approximately the same number of MEs ended up in the

attractive segment. When comparing the 8×8 block based SI with the pixel-based SI,

we found that different MEs are returned in the attractive segment. 22% of the MEs

in the attractive segment of the 8× 8 block-based SI measure are not present in the

attractive segment of the pixel-based approach. Nevertheless, the histogram analysis
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Figure 3.7: Contour line of RS (red line) and PPC (blue line) MEs; several optimal MEs are

highlighted.

reveals that the same robust ME is computed in the case of the pixel-based SI. In

Fig. 3.8, it is apparent that the computed robust ME is located halfway between Opt.

ME 3 and Opt. ME 4, whereas in Fig. 3.7, the same ME is located closer to Opt. ME

3, which underlines the incongruent output of the two SI metrics.

The performance of the computed robust ME is analyzed and compared to other

MEs within the attractive segment to determine the robustness of the chosen pa-
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Figure 3.8: Contour line of PPC MEs derived from pixel-based SI metric with highlighted optimal

MEs.
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attractive segment in PSNR and SI per sequence. Bottom: PSNR distances to the

contour line for the best performing RS MEs within the attractive segment in PSNR

and SI per sequence. The computed robust ME is highlighted with a thicker blue line.
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Block width Block height mean mean

full res. full res. PSNR SI

Robust RS ME 16, 64 8, 32 28.91 2.46

3DRS [173] 8 8 28.60 2.80

HRNM [182] 8 8 29.32 1.48

FS [183] 16 16 25.78 15.00

3SS [184] 16 16 22.80 3.90

OTS [185] 16 16 23.79 6.64

DS [186] 16 16 23.95 7.24

HEXBS [187] 16 16 23.90 7.28

MVFAST [188] 16 16 28.15 4.43

TCSBP [161] 16 16 28.31 4.07

EPZS [189] 16 16 28.69 3.77

MRST [190] 16,16,16,16 16,16,16,16 28.60 5.16

MPMVP [176] 32,16, 8, 4 32,16, 8, 4 28.13 3.80

Table 3.4: Performance comparison of the computed robust RS ME and various techniques docu-

mented in literature. Block width and block height indicate the equivalent block sizes

for the full resolution fine and course scales.

rameter settings. A robust ME is expected not to perform badly on any of the test

sequences. Therefore, the PSNR and SI distance to the contour line are displayed

in Fig. 3.9, where the computed robust RS ME is plotted against the best MEs (in

either PSNR or SI) for each sequence. Only one ME (highlighted in black in Fig. 3.9)

reveals on average smaller distances in both PSNR and SI. However, its SI distance

from the contour line for the ‘WalkingMan’ test sequence (sequence 7 in top image

of Fig. 3.9) shown in the middle snapshot of the first row in Fig. 3.1 is clearly larger

than the SI distance of the computed robust ME. Hence, the ME computed with the

proposed methodology is not surpassed in robustness by any of the best MEs per test

sequence.

The computed robust RS ME is a multi-scale recursive search ME with candidate

structure 2S1TC (see [168] for details), employing two scales where the first scale is a

downscaled version of the full resolution image by a factor of 2 and the second scale a

downscaled version by a factor of 4, where 2 estimation scans are performed on each

scale. The block size settings and PSNR/SI performance are given in the first row of

Table 3.4.

To further confirm that the proposed methodology returns well-performing MEs

which can compete with other techniques, a benchmark is provided in Table 3.4. An

overview is given of the SI and M2SE-PSNR values of the investigated recursive-search

MEs as well as the benchmark results from several methods described in literature

implemented by us. These include full-search (FS) and reduced-search pattern based

methods, i.e. three-step-search (TSS) [184], one-at-a-time search (OTS) [185], dia-

mond search (DS) [186] and hexagon-based-search (HEXBS) [187], as well as algo-
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rithms based on spatio-temporal predictors, i.e. the predictive (zonal) search meth-

ods MVFAST [188] and EPZS [189], the RS methods 3DRS [173], HRNM [182] and

TCSBP [161], and combined hierarchical-predictive methods, i.e. the MRST-method

proposed in [190] and MPMVP from [176]. Note that the M2SE-PSNR metric favors

‘true’ motion, i.e. MEs with a better vector field consistency can outperform a full-

search method. Furthermore, all methods from literature were adapted and tested

with smaller block dimensions (e.g., 8 × 8), however, no improvement in PSNR and

SI was observed.

The benchmark shows that the computed hierarchical RS ME is outperformed

solely by the sophisticated HRNM ME which employs 3-picture estimates. We suggest

from these results that the proposed methodology does yield superior performing MEs

among the thousands of ME parameter combinations.

The proposed methodology has been tested with a large set of parameters (6660

RS MEs) and a smaller set of parameters (1800 PPC MEs). In both cases, the

methodology returned robust MEs. As long as there are sufficient permutations of

parameter settings, the methodology should be able to compute reoccurring ‘well-

performing’ settings yielding robust motion estimators.

3.3 Perception test for assessing ME quality

A subset of MEs is considered as ‘well performing’ when they satisfy particular se-

lection criteria. The properties of these MEs are further analyzed to determine the

settings of a robust ME. We have conducted a user study on a limited set of test

sequences to gain insight into the validity of the assumptions made in Section 3.2. In

particular, the definition of the chosen attractive segment and the quality influence

of PSNR and Inconsistency performance measures are investigated.

3.3.1 Video sequence selection

Snapshots of the three video sequences used in the user study are shown in Fig. 3.10.

Sequence A shows a person walking in front of a calendar and other objects with

high contrast and many details. Departing cars are accelerating over an intersection

in sequence B. In sequence C, a motor boat passes behind an iron grid fence. This

sequence contains different motions and occlusion. The sequences posed different ME

challenges resulting in MEs on different PSNR and Inconsistency quality scales (see

ME clusters in Fig. 3.11). The video sequences were converted from 24 fps (sequences

A and C) or from 30 fps (sequence B) to 60 fps using the MEs selected in Section 3.3.2.

The video clips were 1.5 s - 2 s long and presented to the viewers in an uninterrupted

loop.
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A B C 
Figure 3.10: Snapshots of the selected video sequences.

3.3.2 ME selection

The objective of the user study is to answer the following research questions which

help in improving and verifying the ME design methodology.

1. Is a contour line analysis of MEs sufficient such that the attractive segment can

be limited to the attractive section of the contour line?

2. Is the attractive segment appropriately chosen in Section 3.2 such that a ME

inside the attractive segment scores significantly better than a ME outside the

attractive segment?

3. Do the PSNR and SI measures show similar importance for assessing the ME

quality?

Therefore, three different partitions or areas were selected corresponding to the

attractive section of the contour line, the original attractive segment and an attractive

segment biased towards high PSNR values.

The selection of the specific MEs within each partition was done in a systematic

way. A grid was used for selecting motion estimators with approximately the same

distances in 1/PSNR and Inconsistency. The grid is shown in Fig. 3.11 as black dots,

where the colors indicate the sequence (A (red), B (blue), and C (green)). This grid

consisted of equally separated points which figured as guiding target positions. Points

were chosen systematically according to their PSNR and SI values (not according to

their parameter settings which can vary largely in a non-consistent way), from dense

points closer to the optimum to less dense further away from the optimum. When a

grid point was selected, the closest motion estimator was chosen. From the optimum

(in terms of 1/PSNR and SI), the first ME was selected for each sequence. The next

five MEs then were selected with a distance of two grid points between each other.

The MEs farthest away from the optimum were selected with a distance of four to

five grid points from each other. An overview of the 93 selected motion estimators

in the 1/PSNR-Inconsistency plot is given in Fig. 3.12. The black rectangle indicates

the area of interest shown in Fig. 3.13 with the resulting ME selection. Due to

performance variations of the same ME for different sequences, different MEs may be
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Figure 3.11: All MEs: sequences are indicated by the colors red (A), blue (B), and green (C). A

grid is laid over to systematically select motion estimators.
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Figure 3.12: Selected MEs as black dots in the total 1/PSNR-Inconsistency plot.
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Figure 3.13: Selected MEs from sequences A (red), B (blue), and C (green). Three partitions are

indicated (grey) and numbered 1, 2, 3.

selected for sequence A than for sequence B. In total, 93 ME-sequence combinations

were selected.

Three partitions were selected for each sequence to draw MEs from (see Fig. 3.13).

They differ in position and size in the 1/PSNR-Inconsistency plot. The first partition

is limited to the contour line, the second partition describes the attractive segment

proposed in [169], and the third partition is biased to high PSNR scores, largely

disregarding the SI score. This bias is chosen to assess the influence of the PSNR

and SI measures on the perceived video quality. The bias towards PSNR is present

in a number of publications evaluating MEs where no inconsistency measure is taken

into account (e.g., [163, 191, 192]). This third partition encompasses all MEs within

a distance of ∆PSNR from the ME with the highest PSNR score. The range of

∆PSNR varied between 0.35 < ∆PSNR < 0.55, selecting a similar number of MEs

for each sequence. MEs from the three partitions were compared with MEs outside

the partitions in Fig. 3.13.

3.3.3 User study setup

The experiment was set up in an enclosed testing room without any windows. The

room was dimly lit with two identical floor lamps, each consisting of two halogen
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Figure 3.14: User study setup: participant rating the quality. The second screen was positioned

outside the field of view of the participant and its brightness level was set to minimum.

lamps. With each lamp, the spot was directed to the wall and the main lamp was

directed diffusely to the white ceiling, giving a domestic impression (see Fig. 3.14).

In the back of the testing room, the main screen displaying the video sequences was

located. In front of it a table was positioned on which a second screen (the instruction

and score entry screen), a computer keyboard and a computer mouse were present.

Participants were seated on a chair behind the table. The second screen was positioned

outside the field of view of the participants and its brightness level was set to minimum

to reduce its influence as much as possible. The reason for introducing a second

screen is to give participants the possibility to adjust the score while reviewing the

test sequences. The distance between the center of the main screen and the forehead

of the participant was approximately twice the diagonal length of the screen minus

10 percent, in our case, with a 46 inch screen, 82.8 inch. This ratio between screen

diagonal and viewing distance was based on the SMPTE standard 196M-2003 [193].

A video streaming system was used for both presentation and response recording.

The main screen used for video presentation was a 46 inch Sony LCD TV screen (Sony

KDL-46HX920) with a LED back light and had a 16:9 aspect ratio. The minimum

luminance was 0 cd/m2 (due to local dimming), the maximum luminance was 600

80



Results

cd/m2. The instruction screen used was a Philips LCD monitor screen (Philips Bril-

liance 240B) with a 24 inch diameter and a 16:10 aspect ratio. The brightness was

set to the screen’s minimum. The other settings were left at factory defaults.

3.3.4 Participants and procedure

In total, 24 participants joined the perception test, among them 12 male and 12

female subjects, ranging from 21 to 51 years old. None of the participants had any

professional experience in video processing.

The participants were seated in front of two displays on which the instructions and

video sequences were presented. Written instructions were given on the instruction

display and example trials were presented on the main TV display. In the first phase

of the experiment, subjects got familiar with the stimuli. Every video sequence was

presented at two performance levels (i.e., a high quality video sequence and a low

quality video sequence) that indicated the range of performances. In the second

phase, the training phase, six samples were presented to let the participants get used

to the rating slider. Participants were asked to rate the video sequences on a quality

scale from 0 to 10 points (10 denotes highest quality). While the video sequence was

presented, participants judged the quality of the video sequence by positioning the

slider with the computer mouse on the instruction screen.

In the third phase, the test phase, all conditions were presented in a randomized

order, and ratings had to be given. After pressing the confirmation button below the

rating slider, the next sequence was presented on the main display. On average, the

experiment took 25 minutes, approximately 8 minutes per sequence.

3.4 Results

In total, 93 ME-sequence combinations (stimuli) were rated on quality by 24 partici-

pants. We conducted a one-way ANOVA with the 93 stimuli as independent variable

and the user scores as dependent variable. An ANOVA per sequence and per partition

was carried out. The motion estimators and their mean quality score are plotted in

the top rows of Fig. 3.15, Fig. 3.16, and Fig. 3.17, where the color of the dots indicate

the mean quality score. The mean score did not exceed the level of 8, thus the range

of the color bar is limited to 8 in the corresponding figures.

When partition 1 (contour line MEs, Fig. 3.13) was compared to the other MEs

in its specific sequence, no significant difference between the partition and the rest of

the MEs was found (pA = .131, pB = .205, pC = .407). Significance is judged when

the p-value < .05. pi denotes the p-value for sequence i where i ∈ {A, B, C}. For

partition 2 (attractive segment as defined in [169]), a significantly higher mean score

on quality was obtained than for the other MEs in the sequence: pA < .05, pB < .001,

pC < .05. The difference between partition 3 (high PSNR influence) and the rest of

the quality scores appeared to be significant too: pA < .001, pB < .001, pC < .001.
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Figure 3.15: Top: Mean quality scores for sequence A indicated in color in the 1/PSNR-

Inconsistency plot. Bottom: Quality Means and estimation by the model for sequence

A.

For the quality measures, regression analysis was performed for the predictors

Inconsistency and 1/PSNR. For the three video sequences, specific regression models

were calculated. Models are represented in the scatter plots in the bottom rows of

82



Results

1 1.5 2 2.5 3
0.03

0.0305

0.031

0.0315

0.032

0.0325

0.033

0.0335

0.034

0

1

2

3

4

5

6

7

8

Inconsistency

1/
PS

N
R

B

Inconsistency

1/
P

S
N

R

 

 

1 1.5 2 2.5 3
0.03

0.0305

0.031

0.0315

0.032

0.0325

0.033

0.0335

0.034

0

1

2

3

4

5

6

7

8

Figure 3.16: Top: Mean quality scores for sequence B indicated in color in the 1/PSNR-

Inconsistency plot. Bottom: Quality Means and estimation by the model for sequence

B.

Fig. 3.15, Fig. 3.16 and Fig. 3.17, where the background color indicates the expected

value by the model. The colored dots represent the mean quality value of the motion

estimators obtained by the user study, plotted against Inconsistency and 1/PSNR.
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Figure 3.17: Top: Mean quality scores for sequence C indicated in color in the 1/PSNR-

Inconsistency plot. Bottom: Quality Means and estimation by the model for sequence

C.

For sequence A (bottom image in Fig. 3.15), variance in quality can only be

explained by the 1/PSNR predictor. The percentage explained variance is 58.9%

(R2=.589). This model appears to be significant: pA < .001. Taking into account
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that Inconsistency would not improve the model fit, the resulting equation for the

quality Q is as shown in (3.5).

QSeq.A = 69.138− 1829.001 · 1/PSNR (3.5)

For sequence B (presented in bottom image in Fig. 3.16), a model based solely on

1/PSNR explains 60.2% of the variance significantly (pB < .001). An improvement of

6% is found with the model with both predictors Inconsistency and 1/PSNR where

66.1% of the variance is significantly explained (pB < .001). In (3.6), the quality

formula is derived.

QSeq.B = 56.694− 1.018 · SI− 1621.128 · 1/PSNR (3.6)

Similarly to sequence A, variance within the sequence C group of MEs (see bottom

image in Fig. 3.17) can only be explained by 1/PSNR (pC < .001). The percentage

explained variance is 68.3%. The equation of the quality model is shown in (3.7).

Inconsistency as a predictor would not improve the model fit.

QSeq.C = 38.660− 894.966 · 1/PSNR (3.7)

3.5 Discussion

The results of the ME perception test give us insight into the relevance of the con-

tour line, the attractive segment as defined in Section 3.2 and the influence of the

performance measures PSNR and SI.

3.5.1 Contour line vs. attractive segment(s)

To be able to select a group of MEs within each sequence to be the best performing,

three partitions have been compared. For all three video sequences, the data analysis

of the user scores yielded no significant difference between the MEs on the contour

line (with a PSNR of at least 27.8 and the SI limit set to 8) and the other MEs. This

confirms the initial hypothesis and observation of the authors that the performance

measures are suboptimal and do not necessarily yield the perceptually best MEs on

the contour line.

However, MEs within the attractive segment as defined in Section 3.2 were evalu-

ated significantly higher on quality, supporting the choice of the attractive segment.

Also the MEs in the partition heavily influenced by high PSNR scores with a large

range of SI values was rated significantly higher. This suggests that another attrac-

tive segment with a PSNR bias exists returning a robust, well performing ME. To

some extent this is recognized in the proposed methodology. A larger variation in
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the SI performance measure is allowed than in the PSNR metric (see SI and PSNR

limits marked with dashed lines in Fig. 3.3). Accordingly, when incorporating the

third partition as an attractive segment in the proposed methodology and applying

the methodology on the ten test sequences illustrated in Fig. 3.1, the ME with the

same robust settings is computed as with the original attractive segment.

3.5.2 Regression analysis

Regression models for the quality as a function of 1/PSNR and Inconsistency SI were

estimated. These models explained 59%-68% of the variance in quality. More than

half of the variance in quality is explained by the PSNR measure (in sequences A, B,

C) and by the SI measure (in sequence B). For MEs with lower PSNR (sequences A

and C, red and green MEs in Fig. 3.11), the PSNR measure plays the only role in

assessing the ME quality. Users may not see the difference in inconsistency when the

PSNR is too bad. For sequence B with the highest PSNR MEs, a slight influence of the

SI measure became visible (6% improvement compared to PSNR only). The authors

have analyzed MEs for test sequences outside the set in Fig. 3.10 and can observe

a marginal improvement with the PSNR-dependent importance of SI. For large SI

values (e.g., with some PPC ME settings the SI value goes beyond 13 for PSNR

values close to the best PPC PSNR values), a clear degradation in performance is

observed. MEs with large SI values should be discarded and therefore, the vertical

cut-off line in Fig. 3.3 limiting the attractive segment should be well chosen for the

motion estimator types at hand. Assumptions that the SI measure would be more

meaningful even in the smaller SI value ranges have not manifested themselves. Other

performance measures should be investigated in future work to increase the percentage

of explained variance in quality.

3.6 Conclusions

A computer-aided design methodology is proposed that can deal with suboptimal

performance measures. A three-step approach is employed where, first, the variety

of conditions under which the motion estimators should perform well is defined and

appropriate test data is selected. Second, a contour line or trade-off curve illustrates

the achieved compromise between the motion vector prediction accuracy and consis-

tency. Third, an attractive segment of well performing MEs is identified containing all

motion estimators within a defined distance from an attractive section of the contour

line.

In order to validate and improve the methodology, we have conducted a perception

test to come to a perception-oriented motion estimation design methodology which

corresponds well with the perceived video quality. In the user study, TV viewers rated

93 different motion estimators in 3 video sequences. User ratings indicate that well

performing motion estimators should not be limited to the contour line. The proposed

attractive segment has been confirmed.
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High quality ratings are also given to a partition dominated by high PSNR scores

while maintaining a large variation in consistency. The higher impact of the PSNR

measure compared to the inconsistency measure is supported by the conducted regres-

sion analysis. The inconsistency measure has influence on the perceived video quality,

only for the sequence with motion estimators at high PSNR scores, and yields even

there an improvement of only 6%. A clear degradation in performance is observed

for MEs with large SI values. These should be discarded and therefore, the vertical

cut-off line limiting the attractive segment should be well chosen. Other performance

measures should be investigated in future work to increase the percentage of explained

variance in quality.

The proposed methodology may provide an inspiration for similar tough multi-

dimensional optimization tasks with suboptimal metrics.
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Chapter 4

Video based movement analysis during

sleep

4.1 Body movement analysis during sleep based on

video motion estimation

Abstract

To assess sleep in the home situation, wrist actigraphy is often used. However, it

requires an on-body sensor which may disturb sleep and primarily collects data on the

movement of one wrist only. Video actigraphy, by estimating motion from captured

infrared images, overcomes these issues. In this work, we compare activity levels from

wrist and full body video actigraphy in a home setting. Video actigraphy correctly

found 19% more small and medium movements that were missed by the wrist sensor.

We further show that similar values of sleep efficiency (SE, %) are obtained from

simultaneous recordings of video and wrist actigraphy, and we compared both to

reference SE values provided by a full polysomnography (PSG). The proposed video

actigraphy proved convenient and easy to use in real home situations. It successfully

found movements originating from under the blanket, and turned out to be robust

to various sleeping positions, different illumination conditions, viewing angles, beds

and blankets. Our results suggest that on-body actigraph sensors can be successfully

replaced with the proposed video-based solution for the application of unobtrusive

sleep monitoring and analysis.

This chapter is published as:

1. A. Heinrich, X. Aubert, G. de Haan; Body movement analysis during sleep based on video

motion estimation, IEEE International Conference on e-Health Networking, Applications &

Services (Healthcom), pp. 539-543, Oct. 2013.

2. A. Heinrich, X. Zhao, G. de Haan; Multi-distance motion vector clustering algorithm for video-

based sleep analysis, IEEE International Conference on e-Health Networking, Applications &

Services (Healthcom), pp. 223-227, Oct. 2013.
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4.1.1 Introduction

Body movements are an important behavioral aspect of sleep as shown in [194] and

[195]. They can be associated to sleep states [196] and be connected to the sleep states’

transitions [197]. It has been shown that frequency and duration of body movements

are important characteristics for sleep analysis [198]. In order to measure the amount

and intensity of nocturnal activity in an automatic manner, so-called actigraph mon-

itors can be worn around one wrist or ankle during sleep episodes. During the last

decades, actigraphy (activity-based monitoring) has become an essential tool in sleep

research and sleep medicine. Research confirms that it is a cost-effective method

for assessing specific sleep disorders and circadian rhythms compared to traditional

polysomnography based analysis [199]. Typically, actigraphy is obtained from a wrist

device equipped with a small electronic accelerometer and is worn by a person on the

non-dominant arm. It has been largely proven that there is good correlation between

the output data of actigraphy and polysomnography (PSG) in sleep analysis, e.g.,

estimation of wake/sleep time, estimation of coarse sleep stages [200, 201]. However,

when wearing an actigraph, the sleep quality may be affected due to the discomfort

of applying contact sensors on the body.

Other contact-based sensors in bed or on person are considered in sleep research,

e.g., pressure sensors in the pillow in [202]. Other mechanical sensor examples of in-

terest for sleep monitoring are given by piezoelectric sensors, strain-gauge and electret

foil sensors as mentioned in [203].

It is challenging for sensors that primarily measure movement from a specific body

part to render accurate and objective movement information of the sleeping subject,

e.g., the actigraph around the wrist will less clearly record other body part movements.

Aside from sleep comfort and accurate measurements, installation convenience and

short waiting times for the output the next morning are of high importance to the

user. Attaching sensors to the body, fixing them to the bed or having to purchase

specific bed items to set up the system are all obstacles. Therefore, we propose a real-

time feasible system with low computational complexity that performs an off-body

motion analysis in sleep where the sleeping subjects can enjoy the natural sleeping

environment without being attached to any sensors and which can provide a higher

sensitivity and more information than the currently widely used wrist actigraph for

movement monitoring in sleep research.

Section 4.1.2 discusses related work and the proposed video-based activity esti-

mation system. Also the experimental setup and data collection are described. The

evaluation of the proposed video actigraphy system is presented in Section 4.1.3.

Conclusions are drawn in Section 4.1.4.

4.1.2 Methods - Video-based activity estimation system

We developed an off-body near infrared (NIR) sleep monitoring system with a NIR

camera, a NIR light source being invisible to the human eyes and a video analysis

algorithm to extract the movements of the sleeping person. It can handle many
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viewing angles and NIR lighting settings, which makes installation in the bedroom

easy. The NIR sleep monitoring system can perform the analysis in real-time and

with volatile memory, so that privacy issues are limited.

Related work

NIR video processing is becoming a relevant area as shown by the number of pub-

lications over the last years, e.g., [204]. More work is carried out in this area for

the application of sleep analysis [205–211]. In [205], a new edge detector is proposed

which can deal with the lower dynamic range and contrast in IR images which is

claimed to be useful for upper body detection [206] and the diagnosis of obstructive

sleep apnea. In [207], the body position and body direction is recognized by using an

artificial neural network solution. It requires an exhaustive data set to train the neu-

ral network and a specific location of the IR camera (overhead, not possible from the

side). Due to the importance of the training, the latter approach is limited and does

not work with a bed quilt, different hairstyles of the sleeping subject and different

clothes. These three characteristics are all likely to change over time.

In order to analyze general human motion (not targeted on sleeping persons),

[208] suggests a version of MHI (motion history image) where a successive layering of

image silhouettes is analyzed. The gradient computation of the motion history image

returns the motion of the segments in the image. [209, 212] follow a similar approach as

[208], but targeted at the application of sleep. The challenges of this approach are the

correct assignment of motion direction and magnitude to image areas within the body

silhouette due to the variety of spatial and temporal motion regions. Additionally,

the gradient of complex motions cannot be found since neighboring segments do not

necessarily need to belong to the same movement when different body parts are moving

at the same time.

Besides performing MHI, [209, 212] also report video-based activity monitoring.

To this end, frame differencing is applied in order to estimate the activity level. A

similar approach is described in [210] where the resulting activity count is based on a

body part dependent weighting scheme. Hereby motion detection is performed, not

motion estimation, thus no information on the direction and the amount of movement

is obtained. Local motion analysis with motion vector information is beneficial for

several movement based applications for sleep such as advanced video actigraphy,

bed-sharing, sleep disorder analysis, e.g., periodic limb movement disorder (PLMD),

and body part segmentation.

Several motion estimation methods exist returning motion vectors for image

patches/pixels. Spatio-temporal prediction methods have proven to be powerful in

the design of motion estimation algorithms [213–218]. They render consistent mo-

tion fields in textured and non-textured areas at a real-time feasible computational

complexity as is shown in [219, 220]. A motion estimation method is documented in

[211] and [221], where the optical flow method is applied to determine motion and

even particularly cloth motion in [221] and is also applied in the area of sleep analysis
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Figure 4.1: Resulting UV color-coded motion vector field with optical flow (top) and recursive

search (bottom) motion estimation. The motion vectors from the processed video

images are color-coded based on the direction and intensity of the motion.

[222]. Optical flow is based on gradient computation and therefore works well in tex-

tured areas, but it has difficulty in non-textured areas as reported in [221], which is

often the case for the sleep application where a blanket can have very low frequency

patterns. In our experiments, the resulting optical flow vector field tends to be rather

noisy and inconsistent (see Fig. 4.1 for a comparison of vector fields obtained with

optical flow (top) and recursive search (bottom)). This is a drawback when appli-

cations are considered where a reliable estimation of the local motion direction and

magnitude are important.

Proposed video actigraphy method

Spatio-temporal prediction methods such as recursive search form the basis of our

approach, e.g., [213–215]. In order to extract the motion information of a sleeping

person, recursive search motion estimation (RS) is performed on two consecutive video

images. This technique returns motion vectors per block and thus allows for a local

analysis of coarse body motion. For the purpose of one full-body actigraphy score,

motion detection methods would be sufficient where the number of detected motion

pixels or blocks in the image indicate the activity level. With the aim towards a

flexible system which can easily be extended with local motion analysis, we designed

a motion estimation method returning close to true motion fields of the sleeping

subject’s movements. The video-based actigraphy measure a is derived from the

computed motion vectors ~d per block b (b is an element among the set of all blocks
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Figure 4.2: Proposed candidate structure where C indicates the current block, S the spatial candi-

dates, U the update candidates, T the temporal candidate and the four lines the means

of the motion vectors in the neighboring blocks.

in B) in frame n where the sum of the resulting absolute motion vector components

(L1-norm) (|~d(x)|,|~d(y)|) is used as an estimation of the activity level

a(n) =
∑
b∈B

|db(x, n)|+ |db(y, n)|. (4.1)

For the application at hand, the motion vector candidate sets proposed in [214] and

[215] are adapted by changing the spatio-temporal candidate locations and by adding

mean motion vectors to the candidate set. Limb movements under the blanket and

small movements in the blanket may occur and spread over a larger area where the

motion within this area would only vary slightly. The addition of the mean candidates

showed an improved motion magnitude correlation with the ‘ground truth’ from 130

annotated short video clips of sleeping subjects. The output motion vector ~d at

each image block location ~c is selected from a candidate set C that is based on

prediction vectors: firstly, from a spatio-temporal neighborhood for propagation of

good estimates and secondly, based on the addition of small random values to the

spatio-temporal candidate vectors. This enables faster convergence by finding vectors

for newly appearing objects in the video and accommodation for acceleration. It

is important that the motion estimator is provided with very similar motion vector

candidates to the neighborhood motion for a faster convergence and for capturing

local motion changes. Therefore, four mean candidates were added to the candidate

set. These four candidates are the means of the motion vectors surrounding the

current image block (typically 8 × 8 pixels) in the four directions starting from the

horizontal direction with an angular spacing of 45◦. The candidate structure is shown

in Fig. 4.2 where c indicates the current block, S the spatial candidates, U the update

candidates, T the temporal candidate and the four lines represent the means of the

2k + 1 motion vectors in the neighboring blocks. The output motion vector ~d can be
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Figure 4.3: Resulting UV color-coded motion vector field when applying the proposed video-based

activity estimation method. The motion vectors from the processed video images are

color-coded based on the direction and intensity of the motion. The different colors

indicate different motion of the corresponding body parts.

computed for each block location ~c in frame number n as in
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(4.2)

where u signifies units on the block grid, 2k + 1 the number of blocks we would like

to consider for the mean candidates,

m =

{
0, if l < 0

−1, if l ≥ 0
(4.3)

and where ~η is a random value. This random value is drawn from a fixed update set

in accordance with [223] for accelerated convergence.

An example of the obtained motion vector field is given in Fig. 4.3 when applying

the proposed video-based activity estimation method to a real-life sleep situation.

Test data

Two independent data sets are collected in two experiments. In the first experiment

(home setting), six independent volunteers, not part of the research team, 2 female
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and 4 males, aged between 24 and 55, not complaining of any sleep disturbances

(measured with the Pittsburgh Sleep Quality Index (PSQI) questionnaire [224]), were

monitored at home overnight (recording length approximately 8 hours), using both

wrist actigraphy (WA) and the video actigraphy (VA) system. For measuring wrist

accelerations, two Philips DirectLife Activity Monitors with a (for wrist actigraphy)

high sampling frequency of 1 Hz were worn on each wrist. The video actigraphy system

was set up by the participants in their bedroom in line-of-sight with the bed. Their

whole night’s sleep has been recorded with a frame rate of 10 to 15 fps, stored on a

laptop and further compared offline with the wrist activity measurements. Note, that

viewing angle and NIR light intensity varied between test subjects as the participants

were the ones to choose the camera location, adjust the NIR light intensity for the

recording and start the recording, based on a limited set of instructions. The recording

of one female participant was used as training data for adapting the motion estimation

algorithm.

In order to measure the ability of the proposed video actigraphy method for esti-

mating the sleep efficiency, we collected a second video data set (sleep clinic) of four

subjects spending one night in a sleep laboratory. The four subjects were independent

volunteers and not part of the research team. Each subject wore an actigraphy device

(Actiwatch-Spectrum from Philips Minimitter, Bend, OR) on the non-dominant wrist

during the whole night while undergoing a full PSG [225] (Alice 5, Respironics) and

being filmed by NIR camera. The actigraphy measurements were collected with an

epoch length of 60 seconds. A time marker was provided by the subjects by means

of a vigorous hand-shaking to indicate the beginning and end of their intended rest

period. These data are a subset of those described and analyzed in more detail in

[226].

Quantitative evaluation

Experiment 1 (home setting) evaluates the activity count sequences of video and wrist

actigraphy with a ground truth observation (‘no motion’ / ‘motion’ annotation) ob-

tained by visual inspection of the video recordings. This first data set containing five

video sequences has been processed with the developed video actigraphy method (see

Fig. 4.4 for a visual comparison between video and wrist actigraphy). 188 motion

events in the video recordings have first been visually identified as small (S), medium

(M), large (L) and no (0) motion. These 188 events are all movement events of the 5

subjects that have been observed in the video recordings. They contain movements of

different duration, movements over different distances performed by single and multi-

ple body parts, whole body movements, movements performed under/above the blan-

ket, movements partially occluded by other body parts, and movements performed in

different sleeping positions. The actigraphy counts from the proposed video system

and from the reference wrist actigraphy system were subsequently manually classified

into small (S), medium (M), large (L) and no (0) motion. This has been carried out by

making use of activity amplitude thresholds and movement durations (related to the

97



Chapter 4: Video based movement analysis during sleep

area covered by the VA and WA detected motions). The movements were classified

and the two measurement methods compared in a Bland-Altman inspired plot [227].

Experiment 2 (sleep clinic) examines the suitability of using video actigraphy

for sleep monitoring by comparing its sleep efficiency score with the PSG and wrist

actigraphy reference values. The sleep efficiency parameter (defined as the ratio

of total sleep time over total time in bed, expressed in %) has been estimated for

four subjects spending one night in a sleep laboratory. The time markers indicating

beginning and end of intended rest were automatically detected to give the rest-

interval bounds.

The video motion analysis data have been processed in three steps. First, the

video data collected at a rate of about 15 fps have been converted to minute sequence

by averaging over consecutive sub-intervals of 60 seconds. Second, the obtained values

have been clipped above the 90th percentile value from the whole night recording (to

resemble the Actiwatch activity counts of a night), and down-scaled to the typical

Actiwatch range of activity-counts. Third, the sequence of video-derived activity-

counts has been extracted within the time interval provided by the hand-shaking

markers. For each subject, this provided a pair of activity-count sequences defined

over the same time-interval and spanning the same range of values, as shown in Fig. 4.4

where the common range of activity-counts has been set to [0 1000] arbitrary units.

The resulting activity counts (either from video or wrist actigraphy) have been

processed by the same given classifier (see [200]) tagging each minute epoch in terms

of sleep or wake state. The sleep efficiency (SE) parameter has been estimated from

the sleep/wake tag sequences spanning the time interval spent in bed. Both the

classification algorithm and the sleep efficiency computation are based on an algorithm

derived from Respironics Actiware [228], using a medium wake threshold value of 40.

This classification algorithm is based on the calculation of linear combinations of

activity counts over a time-window of five minutes, centered on each epoch.

4.1.3 Results

In the first experiment, 188 movements were classified into small (S), medium (M),

large (L) and no (0) motion and the two measurement methods video and wrist acti-

graphy compared in a Bland-Altman inspired plot [227] presented in Fig. 4.5. The

difference of the two results is displayed on the vertical axis versus their arithmetic

mean on the horizontal axis. The size of the circles has been scaled proportionally

to the number of occurrences belonging to the corresponding motion category. The

number of occurrences appear inside the respective circles for the four most frequent

cases with, respectively, 33 (17.5%), 23 (12.2%), 53 (28.2%) and 38 (20.2%), repre-

senting about 80% of all detected movements. The level of correspondence between

the two methods may be evaluated from the number of near-zero differences, which

are the circles close to the horizontal zero level in Fig. 4.5.

The motion data obtained by the VA system correspond in 61% of the 188 cases to

the WA signals for small, medium, and large motions, which is derived from summing
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Figure 4.4: Activity counts during a subject’s sleep with video actigraphy (blue) and wrist acti-

graphy (red).

up the contributions of the three circles on the zero-difference level (12.2% + 28.2% +

20.2% = 60.6%). Ground truth comparisons revealed that the reference wrist-sensor

failed to detect motion in 20.2% of all body part movements. These small (17.0%) and

medium (3.2%) motions not detected by wrist actigraphy, e.g., small leg movements,

represent an opportunity area for the video system. Only one event (0.5%) was falsely

detected by the video actigraphy system due to a light beam passing the bed. An

appropriate selection of the emitted NIR light frequency and a corresponding narrow-

band filter on the camera sensor would make the system more robust to local lighting

changes.

Furthermore, movements from arm, leg, head and torso, or caused by tossing and

turning, were detected even though the subjects were sleeping under a blanket in

various positions. The VA system could handle the different illumination conditions,

viewing angles, beds, and blankets well.

The participants were asked to set up the system and perform a recording them-

selves. Since the users chose the lighting settings, the acquired video images differed in

their overall brightness. Nevertheless, the proposed video actigraphy algorithm could

process the videos with the same motion estimator settings. The large amount of use-

ful video data returned by inexperienced users having received limited instructions
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Figure 4.5: Activity count validation for small (S), medium (M), large (L) and no (0) motion.

Differences of VA and WA (y-axis) vs. their arithmetic mean (x-axis). The size of the

circles indicates the number of occurrences.

gives an indication that the proposed system is convenient and easy to use.

From Fig. 4.4, it may be seen that both activity-count sequences obtained, respec-

tively, from the wrist device and the video motion analysis, are quite similar although

a slight drift along the time axis may be observed in the second part of the night. This

is due to the non-uniform sampling of the video recording. It may also be observed

in Fig. 4.4 that the video-motion analysis produces a few additional activity peaks

of medium amplitude, compared to the wrist-device measurements, while the latter

shows more small amplitude peaks.

The obtained SE values are shown in Table 4.1, together with the PSG reference

values. The SE values derived from Video Actigraphy (VA) are similar to the wrist

actigraphy (WA). They are in fair agreement with the PSG values with an average

error of 5.8% vs. 4.5% for VA and WA, respectively. It must be pointed out that

the applied procedure did not exploit the full potential of video actigraphy, both in

terms of time resolution and in terms of dynamic range. The goal of the experiments

described in this section is just to present a first demonstration that video actigraphy is

able to provide at least comparable SE results with respect to on-body accelerometer-

based actigraphy.

4.1.4 Conclusion

In this work, we have shown that our proposed contactless, off-body video actigraphy

system could successfully replace on-body actigraphs to monitor a sleeping person’s
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Subject SE [%] SE [%] SE [%]

PSG VA WA

1 80.2% 88.2% 89.0%

2 89.9% 78.0% 85.9%

3 91.3% 92.5% 88.0%

4 93.3% 91.3% 91.4%

Average error 0% 5.8% 4.5%

Table 4.1: Sleep Efficiency (SE) estimations from PSG, Video (VA) and Wrist Actigraphy (WA)

on data collected in the second experiment.

movements. Different types of motion from different body parts are well estimated and

correspond exactly to the reference wrist actigraphy results in more than 60% of the

cases. The remaining movements where some disagreement appears between the two

VA and WA methods, may actually represent opportunity areas for the video system.

Indeed, we have shown that the video actigraphy method contains more comprehensive

information and is generally more sensitive than wrist actigraphy. This is especially

true for the 20% of body motions correctly detected by the video actigraphy system

and missed by the reference wrist sensor. Our current setup showed one false positive

due to a short episode of light change in the room. Future work can investigate the

appropriate selection of the emitted NIR light frequency and a corresponding narrow-

band filter on the camera sensor which would make the system more robust to local

lighting changes.

Concerning the estimation of sleep efficiency from activity patterns, the results

obtained from video-based motion analysis can be regarded as quite positive, given

that the sleep-wake classification algorithm has been optimized for wrist actigraphy.

The average video-based sleep efficiency error amounts to 5.8% vs. 4.5% with wrist

actigraphy. These similar results give a first indication that video actigraphy can

compete with wrist actigrahpy. Besides, the method used for deriving activity-counts

from video-motion is also susceptible of improvements, both in terms of amplitude dy-

namic and time-resolution, below the usual minute epochs. The system is convenient

and easy to use in real home situations. For the limited set of 9 test subjects we found

that it is robust to movements originating from under the blanket, to various sleeping

positions, different illumination conditions, viewing angles, beds and blankets.

Future work will explore the system’s opportunities for improved sleep-wake clas-

sification and go beyond the possibilities of wrist actigraphy, such as motion analysis

of specific body parts over time, which is relevant for e.g., periodic limb movement

disorder. With further developement, the system may become a cheap and easy to

use solution for personalized sleep evaluation and early screening of sleep disorders in

the home environment.
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4.2 Multi-distance motion vector clustering algo-

rithm for video-based sleep analysis

Abstract

Overall health and daily functioning deteriorate with poor sleep. Sleep monitoring

can help identify causes of sleep problems. As an advantage over traditional wrist

actigraphy used in home sleep monitoring solutions, video contains more compre-

hensive movement information. Particularly, different body movements can be dis-

tinguished which is beneficial for a more detailed sleep analysis. We developed an

efficient K-Means clustering method with a multi-distance seeding technique to find

the dominant cluster candidates. An integrated multi-distance dissimilarity measure

was used for the subsequent clustering. We present an automatic content-dependent

weight tuning method for the dissimilarity measure to balance between different dis-

tance descriptors. This discriminative algorithm partitions similar body movements

in the same cluster. We were able to produce several dissimilarity measures produc-

ing clusters that agreed 67% with manual clustering of motion vectors by one expert.

Similar clustering characteristics were preferred by both the five expert annotators

and the suggested clustering algorithm. This gives us confidence that the proposed

optimization method can be used in the future.

4.2.1 Introduction

Overall health and daily functioning deteriorate with poor sleep. To improve one’s

sleep, sleep monitoring can help identifying causes of poor sleep. Actigraphy is a

method of monitoring human rest/activity cycles, and it has been used to study sleep

patterns for over 20 years [199]. In order to acquire the data for sleep analysis, the

patient needs to wear a so-called Actiwatch (e.g., [228]) on the wrist of his/her non-

dominant arm before he/she goes to bed. While research results have shown that wrist

actigraphy is a cost-effective method for assessing specific sleep disorders and circa-

dian rhythms [199], it also impacts the sleeper’s comfort as it is an on-body sensor.

Moreover, it is sometimes lacking specificity regarding sleep-wake classification [229].

As an alternative, an infrared video based sleep analysis approach (video actigraphy)

can offer a more comfortable solution while at the same time providing insight into

the local motion analysis of a sleeping subject. The more comprehensive local motion

information obtained with video can show the strength of body movements, the di-

rection of the movements and how the different body movements are correlated with

each other. This last element is particularly interesting since it enables monitoring

of two sleepers in a bed-sharing context with one sensor, sleep disorder analysis, e.g.,

periodic limb movement disorder (PLMD), and body part segmentation.

In order to obtain information on body part motion from the motion vector field,

clustering movements corresponding to the same body part is beneficial. Similarly,

the relevance of such local motion information of a sleeping subject is recognized in
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[230], however no automatic interpretation of the obtained motion vectors is done

(e.g., which vectors should be treated as spanning over one dominant motion area or

which vectors describe the movement of the same body part). In order to address this

overall goal to study movement characteristics of different body parts, we estimate

movements in the entire body and transform them into representative motion vectors

by clustering similar motion vectors. This work will focus on the second step of this

process, i.e., clustering the motion vectors such that the results are discriminative and

agree with expert clustering.

The proposed clustering method is outlined in Section 4.2.2. Section 4.2.3 and

Section 4.2.4 describe the test data and the evaluation methods, respectively. Sec-

tion 4.2.5 presents results and discussion, and Section 4.2.6 concludes this work.

4.2.2 Proposed clustering method

In order to perform motion vector clustering, K-Means [231] clustering is used. The

core idea was developed almost half a century ago and is successfully employed nowa-

days (e.g., in [232]) because it is one of the simplest unsupervised machine learning

algorithms to solve the clustering problem [233]. [233] even claimed it to be the

most popular clustering method employed in scientific and industrial applications as

it is simple and straightforward. Alternative clustering methods could be employed

as well, however, K-Means’ implementation simplicity and computational efficiency

allows it to run on large data sets, e.g., on over-night video sequences.

In K-Means implementations, random seeds are often selected as starting

points [233]. The K-Means performance thus depends on these randomly selected

seeds, resulting in a non-deterministic outcome and, at times, accordingly in non-

representative clusters. Some research has been invested into finding a good set of

seeds, e.g., [234, 235]. Both studies improve the selection of the seeds based on the

spatial distribution of the data but do not take any data-inherent characteristics into

account. For the application at hand where we are dealing with motion vectors, we

apply a seeding technique in our proposed clustering method which adds angle and

length information to the spatial distance cue to determine an initial set of clusters

and their starting points. Clustering motion vectors is also the objective in [236], yet,

K-Means++ proposed in [234] is employed which we believe can be improved on for

motion vector data. Since cues other than the spatial proximity are considered, we

call our approach multi-distance K-Means clustering. It resembles the ‘clustering with

obstructed distance’ approach documented in [237] where two data points are assigned

to different clusters due to a separating obstacle (gray line in Fig. 4.6) although their

Euclidean distance is small. Such an obstacle could be represented by e.g., a large

difference in motion vector direction. The obstacle or obstructed distance is what we

describe with a multi-distance seeding technique and a multi-distance dissimilarity

measure in the subsequent cluster assignments. The idea is illustrated in Fig. 4.6.

The flow graph of the whole clustering process is shown in Fig. 4.7. In the following

sections, we present an efficient seeding technique (Pre-Clustering) to find an appro-
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Figure 4.6: Traditional K-Means cluster assignment (left) and proposed multi-distance clustering

approach where data properties can lead to assigning two data points to two different

clusters despite a small Euclidean distance (right).

priate set of starting points and number of clusters. Unlike the traditional K-Means

algorithm, in which only one parameter is selected for measuring the data’s similar-

ity to the centroids, in the proposed Adapted K-Means Algorithm, motion vectors’

angle and length information as well as their spatial distance are taken into account

as discriminating characteristics. These three measure descriptors will be weighted

automatically and optimally according to the proposed indexing effectiveness metric

(Optimized Dissimilarity Measure) to get the most representative clustering results.

Multi-distance seeding technique

Motion vector clustering is the assignment of dividing a set of motion vectors into

subsets (called clusters) so that the vectors in the same cluster are similar to each

other, i.e., neighboring vectors with similar direction and similar length. This section

Figure 4.7: Clustering flow of the proposed content-dependent weight tuning method.
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Figure 4.8: Example input frame for clustering motion vectors. Two clusters are indicated with

different colors and arrows.

features a pre-clustering process to find the starting points of the dominant movements

with the highest potential to form final clusters.

Pre-cluster calculation A snapshot illustrating the clustering task is shown in

Fig. 4.8. The motion vector information is obtained by performing a variant of Re-

cursive Search Motion Estimation (ME) [213, 214] which has been proven to provide

good results for the application of sleep analysis in [238]. Our ME assigns one motion

vector to each 8×8 pixel block in the frame which is illustrated with an arrow and

color coding. Based on subjective inspection, the blue motion vectors around the legs

(cluster 1) and purple vectors around the chest (cluster 2) can potentially form final

motion vector clusters, because they cover a relatively large area and contain a lot of

similar motion vectors.

In order to initially identify different motion vector clusters based on the motion

vectors and their connectivity, an improved Row-by-Row Labeling algorithm [239],

which is classical for connected components labeling, is proposed. This allows us to

place an obstacle between two motion vectors if their angle or length disagree although

these two motion vectors are direct neighbors. The algorithm makes two passes over

the image: one pass to record equivalences and assign temporary labels and the

second to replace each temporary label by the label of its equivalence class, which

is implemented with a Union-Find algorithm [239]. The traditional binary image

connectivity check is carried out by checking the blocks of the current component

and its neighbor, i.e., if both blocks have the same label it means they are connected.

However, for motion vector pre-clustering, the angle and length of the motion vector

are also considered in this multi-distance approach. See Fig. 4.9 for an example. On

the left the binary output is shown after applying the traditional Row-by-Row Labeling

Algorithm and union-find algorithm. The image on the right displays the modified

Row-by-Row Labeling Algorithm and Union-Find algorithm by taking into account

the motion vectors’ angle and length. Note that for the right example in Fig. 4.9,

one block consists of 8×8 pixels. The data point patterns of the two images are the

same, but since the motion vectors of the blue and red parts are different, they are
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separated into two clusters. Therefore, we altered the algorithm to single out clusters

of motion vectors with similar motion directions and magnitudes.

Starting point selection We have empirically observed in recorded videos of sleep-

ing people that we can expect fewer than 10 motion clusters in the typical sleep move-

ments, e.g., turning, stretching legs, moving arms and head, etc. Therefore, we select

ten clusters with the highest potential to represent dominant body part movements.

Here, the idea of energy level is introduced. A pre-cluster’s energy level is the product

of its mean vector length of all vectors in the cluster and its area (number of motion

vectors). According to different application scenarios and sensitivity requirements,

the top (in our case ten) pre-clusters or the pre-clusters of which the energy level is

above a threshold are selected. The centroids of the chosen pre-clusters are taken

as the starting points for the K-Means algorithm. With this method, both intense

motions (e.g., rapidly moving hands) and slow motions (e.g., turning) are detected.

Fig. 4.10 is the pre-clustered result of Fig. 4.8. The left part shows all the pre-clusters

obtained, and the right part shows the top 7 clusters of which the energy levels are

higher than the pre-defined empirically determined threshold of 60.

Objective multi-distance dissimilarity measure selection and content-

dependent weight optimization

In the seeding process, the starting points for the K-Means algorithm have been

determined. The next step is to find a good dissimilarity measure to be used in

the adapted K-Means algorithm to cluster not only according to spatial distance

but also according to distances in motion vector length and angle. The dissimilarity

measure consists of the appropriate descriptors and their corresponding coefficients.

We present here a technique to compute an automatic, content-dependent dissimilarity

measure with the goal to discriminate well among different motion vectors.

The following descriptors are used for the dissimilarity measure:

Figure 4.9: Binary image and motion vector samples after applying the traditional (left) and im-

proved (right) row-by-row labeling and union-find algorithm.
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Figure 4.10: All pre-clustered results (left) of Fig. 4.8 and top 7 pre-clustered results according to

the energy level computation (right).

• Motion vector length difference

• Motion vector angle difference

• Spatial distance (the distance between the coordinates of two blocks)

– L1-norm distance (Manhattan distance) or

– L2-norm distance (Euclidean distance) or

– Square root of L2-norm distance

Descriptor Measure 1 Measure 2

Length difference | ~A|-| ~B| | ~A|-| ~B|
Angle difference |1− cos(∠ ~A− ∠ ~B)| |1− cos(∠ ~A− ∠ ~B)|
Spatial dist. betw. motion vectors L2-norm L1-norm

Descriptor Measure 3 Measure 4

Length difference | ~A|-| ~B| | ~Ax − ~Bx| , | ~Ay − ~By|
Angle difference |1− cos(∠ ~A− ∠ ~B)|
Spatial dist. betw. motion vectors

√
L2−norm L1-norm

Descriptor Measure 5 Measure 6

Length difference
∥∥∥ ~A− ~B

∥∥∥ ∥∥∥ ~A− ~B
∥∥∥

Angle difference |1− cos(∠ ~A− ∠ ~B)|
Spatial dist. betw. motion vectors L2-norm L2-norm

Table 4.2: Summary of six dissimilarity measures. ~A and ~B represent two motion vectors.

Table 4.2 shows an overview of the examined combinations of these descriptors.

They can be combined to Measures 1, 2, 3. Furthermore, we added three addi-

tional measures in our investigation to analyze the trade-off between efficiency and

importance of the angle difference between motion vectors (Measure 4), angle differ-

ence integrated with length difference in one descriptor (Measure 5), angle difference

added separately to Measure 5 (Measure 6). So in total, six dissimilarity measures

are proposed and evaluated. For angle difference, |1− cos(∠ ~A−∠ ~B)| is used so that

the difference is monotonically increasing.
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Since there are multiple descriptors compared to the traditional K-Means algo-

rithm, a weighting factor tuning method is desired. A similar tuning method is pro-

posed for image retrieval in [240] where the discriminative power of each descriptor

is automatically computed based on a dissimilarity histogram. We have adapted this

method to our application with motion vectors as follows. The equivalent histogram

capacity graph C of a dissimilarity measure descriptor D is the distribution of the

dissimilarity between all possible motion vector pairs. It is used to quantify the in-

dexing effectiveness E of motion vector descriptors and identify the best dissimilarity

measure for a clustering method. The formula for calculating E is given by

E =

∫ 100

0

x · C(x)dx,

where x is the normalized dissimilarity between 0 and 100. The weighting factor

Wi of each descriptor Di within a dissimilarity measure is proportionally assigned

according to the indexing effectiveness of the corresponding dissimilarity measure

descriptor, which objectively shows the importance of the descriptor. Formally,

Wi =
Ei∑N
j=1Ej

,

where i , j denote the i -th and j -th descriptor, N the number of descriptors in one

dissimilarity measure. The final dissimilarity measure Dtot is a weighted sum of the

descriptors.

Dtot =

N∑
i=1

Wi ·Di.

4.2.3 Test data

The proposed method has been designed based on eight representative short move-

ment sequences from four different test subjects recorded overnight with a frame rate

of 10 fps. The test subjects were considered healthy sleepers not complaining of any

sleep disturbances (measured with the Pittsburgh Sleep Quality Index (PSQI) ques-

tionnaire [224]). The movement clips contained different types of motion with few

(approximately 5) and multiple (> 5) motion areas of different dimensions and under

different viewing angles. For the evaluation of the six dissimilarity measures, nine

other 10-second test sequences were extracted from the four overnight recordings,

which were taken to compare the clustering results with the subjective impression of

clustering. One to two sequences were selected out of each overnight recording. Each

sequence consists of 100 frames with a resolution of 640 × 480 pixels.

4.2.4 Evaluation methods

The evaluation is performed according to two aspects, namely the clustering ability

among different dissimilarity measures and the quantitative agreement with the visual

ground truth cluster annotation.
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Clustering ability A

We aim for a clustering algorithm that accumulates similar motion vectors in one

cluster. When motion vector pairs not belonging to the same cluster are counted, a

high occurrence rate is expected for large dissimilarities and a low occurrence rate for

small dissimilarities (as these occur in the same cluster). Therefore, we propose to

measure the clustering performance based on the histogram dissimilarity graph Cd .

A linear penalty function p(x) = x− 100 (for high occurrences in low dissimilarities)

and linear reward function r(x) = x (for high occurrences in high dissimilarities) are

applied when computing the clustering ability A,

A =

∫ 100

0

Cd(x) · p(x) · r(x)dx.

Only motion vector pairs from different clusters are taken into account in Cd

(computed with one optimized dissimilarity measure).

Quantitative agreement with expert cluster annotation

In order to assess how well the indexing effectiveness clustering method reflects the

subjective assignment of motion vectors to a sleeping subject’s moving body part,

an evaluation was carried out on a subset of the nine test sequences. In total, 50

frames with different movement information were selected out of the eight movement

test sequences. For each frame, we annotated several rectangular image areas that

should belong to one cluster based on subjective visual assessment. Two examples are

shown in Fig. 4.12. A pixel-level comparison between the processed clusters computed

with the six dissimilarity measures and the pre-defined rectangles yields the matching

scores (percentage of matched pixels).

Measuring reliability of the single expert annotation and general expert clustering

behavior is computed by comparing manual annotations from five different sleep or

patient behavior experts on ten images.

4.2.5 Results and discussion

Clustering ability A

An example of dissimilarity graph Cd of a test sequence is shown in Fig. 4.11. The first

maximum of Measure 3 occurs at larger dissimilarities than the first maxima of the

other measures. Measure 5 and 6 have a high occurrence peak for small dissimilarities.

From the results listed in Table 4.3, we can conclude that, firstly, Measure 3 has the

best performance. Furthermore, Measure 1 and 2 have similar results which implies

that the L1 and L2 norms have similar influence on clustering results for this data

set. Measure 3 uses
√
L2−norm which makes it score higher. Measure 4 with a cheap

distance computation (L1-norm) and without any angle calculation scores better than

Measure 5 and 6 which combine angle and length difference in one descriptor.
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Figure 4.11: Dissimilarity graph Cd of a test sequence.

Quantitative agreement with expert cluster annotation

The matching scores with expert annotation are given in Table 4.4.

The correspondence with the annotated frames agrees highly with the results obtained

with the clustering ability A. The best matching scores are achieved by the first three

measures which differ only in the descriptor for the spatial distance. From their

identical matching scores, we can conclude that the variation in the spatial distance

computation (L2-norm, L1-norm,
√
L2−norm) does not play a discriminative role for

the cluster assignment. Dissimilarity Measure 4 neglects the angle discriminator while

achieving a higher computational efficiency and obtains a slightly lower matching score

than the first three measures. That the explicit integration of the angle difference

yields better results is also confirmed by the improved matching score with Measure

6 compared to Measure 5. Angle and length difference combined in one descriptor as

is done in Measure 5 yields the lowest matching score and is thus not proposed for

motion vector clustering methods when movements of sleeping subjects are concerned.

Measure 1 2 3 4 5 6

Mean A 0.75 0.66 0.89 0.41 0.13 0.25

StD A 0.17 0.20 0.31 0.20 0.31 0.19

Rank 2 3 1 4 6 5

Table 4.3: Performance (normalized) and rank of the six measures on clustering ability A.
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Figure 4.12: Cluster annotation with rectangles in two example frames. The different colors within

one rectangle denote different motion clusters computed using a dissimilarity measure.

Overall, the optimized automatic clustering method achieves an agreement of 67%

with the annotated motion vector cluster formation. When comparing manual an-

notations from five different experts, a mutual agreement of only 65% is achieved,

suggesting a careful look at the quantitative results regarding the subjective annota-

tion. All expert annotators consistently drew large clusters comprising also motion

vectors in different directions (e.g., upper leg and lower leg moving in different direc-

tions). The clusters were often linked to body parts suggesting a combination of body

part segmentation with motion cluster analysis for future sleep analysis work. The

clusters were never intertwined and clearly separated.

An example clustering output is shown in Fig. 4.13 where it is illustrated that

the results of Measure 5 can be quite different from Measure 3. In the clustering

results given in subfigure C, different colors denote different clusters and the cluster

centroids are indicated by light green squares. Measure 3 shows clear and recognizable

clusters. However, the clusters of Measure 5 are less recognizable because the clusters

are intertwined. This may be due to the usage of the
∥∥∥ ~A− ~B

∥∥∥ descriptor, which does

not separate the motion vectors’ length and angle differences in two descriptors. In

agreement with the clustering ability, the manual cluster annotation of one expert and

the communalities among the five experts, Measure 5 and 6 with multiply intertwined

clusters score low, supporting the proposed clustering algorithm.

Measure 1 2 3 4 5 6

Matching score 67% 67% 67% 64% 62% 63%

Table 4.4: Average matching score in percentage of matched pixels for the six dissimilarity mea-

sures.
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Figure 4.13: Clustering results for two sequences: original frame (A), Measure 3 (B) vs. Measure 5

(C). Different colors denote different clusters, cluster centroids are indicated by light

green squares.

4.2.6 Conclusion

In this work, a multi-distance motion vector clustering algorithm based on an en-

hanced K-Means algorithm is proposed where not only spatial distances between data

points but also motion vector angle and length descriptors are used in the dissimi-

larity measures. A multi-distance seeding method computes the K-Means starting

points representing the best cluster candidates. An automatic content-dependent

weight tuning method is applied to optimally balance between different dissimilarity

measure descriptors. Six dissimilarity measures are investigated with an adapted his-

togram analysis and compared with manually annotated ground truth clusters. We

were able to produce several dissimilarity measures with promising first clustering

results where motion vectors of one body part movement are assigned to the same

cluster.

Both evaluations, clustering ability A and agreement with manually annotated

ground truth, agree with each other, supporting the proposed motion vector clus-

tering algorithm using a content-dependent weight optimization for different distance

descriptors. The common clustering behaviors between the high scoring measures and

the five expert annotators give us confidence that the proposed optimization method
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can be used in future for similar applications such as body part segmentation of a

sleeping person.

In both, the clustering ability ranking and the matching scores regarding the

manual cluster annotation, the Dissimilarity Measure 1, 2 and 3 perform best. The

clustering ability validation suggests an improved clustering performance when using√
L2−norm.

Furthermore, both evaluations agree that an explicit descriptor for the angle differ-

ence is beneficial for the cluster assignment. Additional descriptors worth examining

in future are body part labels and a temporal descriptor where the cluster history is

taken into account for the current cluster computation.
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Chapter 5

Video based actigraphy and breathing

monitoring of a shared bed from the

bedside table

Abstract

Good sleep is an important factor for a high quality of life. Presence of sleep disorders

requires patients to undergo polysomnography examinations at a sleep clinic, which

involves attaching multiple head and body sensors. This results in an uncomfortable

and unnatural sleep setting for the patients, complicating an accurate diagnosis. Cur-

rently, this diagnosis is done manually, making the entire process time consuming and

cumbersome. We propose a camera based system capable of analyzing the subjects

in their own sleeping environment. The system segments the primary subject from

the background and any other bed occupants, then computes the actigraphy and the

breathing characteristics of the subject. Segmentation is performed with an AdaBoost

classifier using among others motion, intensity, focus and Histogram of Oriented Gra-

dients (HOG) features. A Sum of Absolute Differences (SAD) operation on the pixels

within the segmented area of the primary subject returns the actigraphy signal. The

breathing characteristics are extracted based on small motion analysis of consecutive

and reference frames. The proposed system has been evaluated on 4 healthy adults for

actigraphy and on 5 healthy adults for breathing analysis using a Texas Instrument

Chronos wrist watch and inductive respiratory belts as references respectively. Eval-

uation was performed using the metrics accuracy, precision, sensitivity and breathing

rate correspondence. The proposed system has an average accuracy of 88% at a pre-

cision of 79% for segmentation of the primary subject. It can detect movements up

to an accuracy of 85% while outperforming wrist actigraphy at 75% accuracy. State-

of-the-art video based breathing algorithms were surpassed with an overall sensitivity

This chapter is published as: A. Heinrich, F. van Heesch, B. Puvvula, M. Rocque; Video based

actigraphy and breathing monitoring of shared beds from the bedside table, Journal of Ambient

Intelligence and Humanized Computing, vol. 6, no. 1, pp. 107-120, Feb. 2015.
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of 87%, precision of 90%, and a breathing rate correspondence of 93%.
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Introduction

5.1 Introduction

The prevalence of sleep problems and costs induced by sleep disorders are high. A

polysomnography (PSG) examination in a sleep clinic is considered the gold standard

for sleep screening and includes attaching multiple sensors to the head (e.g., EEG,

EMG, EOG) and the body (e.g., respiratory effort belts) in order to measure various

physiological signals. Patients can suffer from the so-called first night effect from

sleeping in a laboratory environment instead of their familiar home setting making

an accurate diagnosis more difficult. Additionally, sleep clinics tend to have long

waiting lists (weeks to months are not uncommon). The measured signals are usually

manually analyzed which is time consuming and cost intensive. With the goal to

overcome these disadvantages, home PSG is employed since the 1980s and since then

further improved on [241]. As such, this procedure is better suited for monitoring e.g.

a couple of consecutive nights, but not for long-term monitoring as on-body sensors

and qualified sleep clinicians are still needed.

For consumer applications, fewer and more comfortable sensors are favorable.

These less obtrusive sensors include amongst others wrist actigraphy [242], radar

sensors [243], pressure sensors in the pillow [244], pressure sensors in the bed sheet

[245], air filled tubes combined with a differential pressure sensor [246] under a 4

cm mattress, piezoelectric sensors, strain-gauge and electret foil sensors [247]. Most

common are so-called wrist actigraphy devices that are worn around the wrist mea-

suring the subject’s activity for deriving sleep/wake episode estimates [242, 248]. The

importance of body movements as a behavioral aspect during sleep [249], their as-

sociation to sleep states [250, 251] and sleep state transitions [252] have been found.

To this end, the movements of sleeping subjects are typically analyzed with the aim

to perform sleep/wake classification [242] or to screen for diseases characterized by

particular movement patterns [253]. A more detailed and improved sleep state classi-

fication is accomplished by adding a set of features based on respiration as shown by

[254] and [255].

Recent commercial sleep monitoring products are based on less obtrusive sensors

such as sensors under the bedsheet [256], under the mattress [257], radar [258, 259]

and accelerometer sensors [258]. We propose a camera-based system for computing

activity levels and the respiratory waveform where subjects can sleep in their own

bedroom without being disturbed by on-body sensors. Sleep laboratory costs are

reduced by automatically analyzing the recorded data. The optical sensor allows

us to measure both body movements and breathing of a sleeping subject, thereby

surpassing the limitations of wrist actigraphy. One of the challenges for the camera

system in the home setting is to be able to derive the physiological characteristics of

the Primary Subject (PS) in the presence of a bed partner. According to a survey

by [260], 62% of the respondents report to sleep with a bed partner. Therefore, we

propose a method for differentiating the PS from the bed partner in the image before

calculating the actigraphy signal and breathing waveform. To realize an easy-to-use

system for the end user, the solution we present in this paper does not require to
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mount a camera high up on the wall or ceiling overlooking the bed, contrary to other

proposed systems [261–264]. Instead, the camera can be more conveniently placed

on the bedside table of the PS who is to be monitored. It can be a standalone

device or integrated in existing bedside table products, such as a wake-up light. The

viewing angle makes it more challenging to distinguish between movements from the

bed partner and the PS as they appear in close proximity of each other and are

overlapping in the camera image. A near-infrared camera is used in order to visualize

recordings in a dark environment. This introduces the additional challenge to deal

with none or low-textured objects. Texture differences that may be clearly visible in

daylight may be greatly reduced in the infrared image.

The goal of this research is to develop a sleep monitoring application that can

monitor the movements and breathing waveforms of the PS in the presence of a bed

partner. Therefore, a segmentation algorithm initially discriminates between the area

of the PS and the bed partner, so that, subsequently, the actigraphy and breathing

signals of the PS can be computed. We will present the design of the experiments in

Section 5.2, the proposed segmentation, actigraphy and breathing methods in Section

5.3, the evaluation methods for each experiment in Section 5.4 and the results and

discussion in Section 5.5. Conclusions are drawn in Section 5.6.

5.2 Design of experiment

In this section, the design of the experiments is described for the analysis of activity

and breathing during sleep. The sleep analysis application envisions a product in

which the illumination source and the camera are combined. Such a product could

be easily placed on the bedside table. The camera and the light source are thus in

close proximity of each other and near the head of the PS. To avoid the influence of

varying heights due to different bedside tables a tripod is used as shown in Fig. 5.1.

The height of the camera causes the bed partner to be occluded by the PS for the

largest part of his/her body and for most of the time. The viewing angle of the

camera has been set such that the PS is completely visible from head to foot. For

the video recording, an IDS µEye CMOS camera (USB UI-1220SE-M) with a Fujinon

FE185C086HA-1 fish-eye lens has been used. For illumination in the dark, an infrared

light source with maximum intensity at wavelength 825 nm is used. The resolution of

the image is 752× 480 and the frame rate has been set to 10 fps (frames per second).

The wrist actigraphy has been registered with a Texas Instruments Chronos watch

and is used as state-of-the-art comparison for the segmentation and actigraphy algo-

rithms presented in this paper.

The recorded data sets are split into two categories, natural and synthetic. The two

natural data sets have been acquired in a natural sleeping environment at a subject’s

home (DATA Home1 and DATA Home2). The movements of the subjects in these

data sets are not restricted and reflect the real sleep situation. The two synthetic data

sets (DATA Synt1 and DATA Synt2) have been acquired both at a sleep laboratory

(Sleep Area of Philips Research Eindhoven) and at home where body movements
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Figure 5.1: Schematic representation of the experimental setup for the actigraphy measurements.

were performed according to a movement protocol. Small movements (single arm,

single leg and head movements) and large movements (turning around, moving both

arms and legs simultaneously) were performed by both, PS and bed partner, both

simultaneously and sequentially.

In a separate experiment for breathing analysis, five subjects (2 females, 3 males)

were equipped with the inductive respiratory chest and abdominal belts [265] which

are used as reference signals. The test subjects were monitored in four different

sleeping poses at the Sleep Area of Philips Research Eindhoven. Snapshots of a test

sequence with the four different body positions are given in Fig. 5.2. The subjects were

selected based on their differences in Body Mass Index (BMI) (varying from 17.63 to

29.07 with a mean BMI of 22.67). A sweep over several breathing frequencies and

depths was carried out in each of the four body positions. The participants followed

a metronome in order to approach the breathing rate of the protocol. In each body

position, the subjects started with their natural or instinctive breathing rhythm for

2 min, followed by 1 min of 23 breaths per minute (bpm), 1 min of 19 bpm, 1 min

of 15 shallow bpm, 1 min of 15 deep bpm, 2 min of 12 bpm, 2 min of 10 bpm and

concluding with 3 deep sighs. This data set has been used for the evaluation of the

designed breathing analysis algorithm. For the algorithm design, a different data set

has been used collected in the framework of another study. Few parameter values

were tuned with 2 short breathing periods from the evaluation data set.

Both experiments have been approved by the internal ethics committee of Philips

Research.

5.3 Proposed method

In this section, we will describe the proposed method to analyze breathing and ac-

tivity during sleep using the setup described in the previous section. The method

consists of three steps: the PS segementation, the PS actigraphy measurement and
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Figure 5.2: Snapshots of a breathing test sequence with four different body positions recorded from

the bedside table.

the PS breathing algorithm. They are described in Sections 5.3.1, 5.3.2 and 5.3.3,

respectively. PS breathing monitoring is only performed when no subject movement

is detected in the PS actigraphy signal.

5.3.1 PS segmentation

In order to automatically segment the PS from its background for each picture in

the video, a segmentation algorithm has been implemented using AdaBoost [266].

AdaBoost determines the weights of many weak classification features, such that

they form a Least Mean Square (LMS) optimal strong classifier. The following weak

classification features have been designed that attempt to segment the PS:

Intensity Given the setup of the camera and the IR light source (Fig. 5.1), the dis-

tance to the camera is likely to correlate with the signal intensity. Given that

the PS is the closest object in view, it makes sense to use signal intensity as a

feature. As such, the camera intensity is normalized using histogram normal-

ization and pixels above a threshold intensity (i.e., 0.5, empirically determined)
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are classified as PS.

Focus For recordings in a dark environment, cameras with a large aperture are pre-

ferred. Large apertures typically imply a shallow depth of field and, hence, focus

can be used to segment a certain depth range. By setting the camera focus such

that the PS is in focus, a focus estimator can be used as a feature. The focus

estimate, as described by [267], has been used, yielding a focus estimate for each

pixel location. This focus estimate result is then binarized, such that focussed

edges are found. These edges are then connected, using edge-linking [268], to

form regions. The detected focus regions are considered to be part of the PS.

Motion Motion can be used as a classification cue to segment the PS from the back-

ground, as the background typically has different motion characteristics com-

pared to the PS. To determine the local motion for each frame, we have used

the motion estimation algorithm as described in [269] and [270]. The method

estimates the true motion on a (8 × 8) block basis. The method is known to

propagate motion vectors in areas with a homogeneous intensity. This is unde-

sirable for our application and has been circumvented by adding a preference

towards the zero-vector (no motion). This has been implemented by adding the

zero-vector to the motion vector candidate list. To convert motion estimates

to PS classifications, the motion vectors have been spatially clustered based on

motion vector size and direction. Depending on the location of the cluster they

are considered part of the PS, bed partner or background. Blocks with zero-

motion vectors are considered to be part of the background. All pixels within a

block are assigned the block label.

HOG The histogram of local and normalized oriented gradients (HOG) feature [271]

is a commonly used feature in object classification. The HOG feature is con-

sidered, because we expect the PS to have different shape characteristics than

the background. HOG histograms are created for the subsequent AdaBoost

classification.

Location The setup of the camera with respect to the bed is set such that the PS

is in the center of the camera’s view. To exploit this, the pixels distances to

the center (vertically and horizontally) are used as features. Binary features are

created by thresholding multiple distances.

Edges Although edge information is indirectly encoded in both the HOG and focus

features, edge information has been added as an additional feature. Multiple

edge detectors [268] have been implemented using a fixed kernel size of 3 × 3

pixels for Laplacaian, Sobel, Prewitt, Laplacian of Gaussian (LOG), and Canny

operators and 2× 2 for the Robert operator. Edge intensity thresholds are used

to create binary decisions.

In order to combine the features described above in an LMS-optimal way, cascaded

AdaBoost [272] has been used. In our case, the weights of the features have been
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determined using 240 manually annotated frames: 80 frames each from DATA Home1

and DATA Home2, and 40 frames each from DATA Synt1 and DATA Synt2, as ground

truth. The 240 frames were selected such that they contain most of the typical poses

of a person in a bed.

5.3.2 PS actigraphy

A video based actigraph generation algorithm based on frame differencing, by com-

puting the SAD, and motion estimation is presented by [264] and [273]. The video

actigraph signals generated by these methods have been compared with wrist acti-

graph signals generated by an accelerometer. The video actigraphy method has been

found to be sensitive to movements originating from under the blanket, to movements

originating from body parts other than the wrist, and robust to various sleeping po-

sitions and different illumination conditions. However, in both methods, the camera

has been mounted high up on a wall or ceiling. In our study, the camera is mounted

on the bedside table and a bed partner is in the camera view. By segmenting the

PS first we are robust to bed partner movements. The video actigraph is further

computed by performing a SAD operation on the pixels within the segmented area of

the PS.

5.3.3 PS breathing

For breathing and sleep monitoring, the breathing rate and global changes in the

breathing rate, the regularity/irregularity of the breathing episodes and the tidal

volume are important characteristics. Therefore, the breathing waveform is an asset

as various features representing above characteristics can be derived from it.

After segmenting the PS according to the method described in Section 5.3.1, the

breathing signal is extracted. In this work, the video sequences were obtained from

the breathing data set in Section 5.2 with single sleeping subjects. This setting can be

easily extended to the shared-bed scenario as the segmentation and actigraphy algo-

rithms employ the same camera placement, light settings and yield high segmentation

accuracies as is shown in Section 5.5.

Simple approaches for computing a breathing signal from a video recorded with

a near-infrared camera are based on subtracting consecutive frames from each other

and mapping the sum of pixels in the difference image to the breathing signal (e.g.,

[274]). Besides being very sensitive to noise and lighting changes, this method cannot

differentiate between inhale and exhale phases and sophisticated post-processing is

needed to retrieve the breathing waveform.

In [275], an image sequence is compared with a breath motion template. This

template is formed by accumulating differences between consecutive frames and a

background model generated during a ‘breathing only’ period.

A number of other methods for breathing monitoring [276–279] use optical flow

approaches based on [280]. For monitoring movements in sleep it is one of the most

popular methods [281–284] despite the rather high computational complexity that
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comes with it and its sensitivity to noise. The Eulerian Video Magnification approach

described in [285] amplifies breathing motion in the video images for improved visu-

alization of the subtle motion. No breathing parameters are automatically derived

from the processed images. Subsequent optical flow motion estimation and sums of

vertical or horizontal motion vectors are used to compute the breathing waveform in

[279].

A recently published method by [286] computes the breathing waveform by per-

forming cross-correlation of the current vertical profile with the vertical profile of

earlier images. The vertical profiles are 1D vectors resulting from mean and standard

deviation operations on the rows of an image.

[287] make use of an additional pattern projection device to enhance the subtle

breathing motion in a video sequence. This approach is more costly in terms of

hardware and requires two separate device entities as the pattern is best projected

under an orthogonal angle to the camera viewing angle.

In this work, the breathing waveform is computed according to the approach

illustrated in the top image of Fig. 5.3. Video chunks of 30 seconds are processed con-

secutively and independently. The breathing waveform is computed by automatically

selecting a reference frame during an expiratory pause of the subject. Frames dur-

ing expiratory pauses are more stable/alike than at other breathing time instances

(including maximum inhale peaks) and can easily be reused to render a breathing

waveform similar to the reference signal. The algorithmic steps of each 30-second

video chunk are the following:

• Consecutive image dissimilarity: The correlation coefficient based on Pearson

[288] between consecutive images is computed and subtracted from 1, yielding a

1D signal. A small dissimilarity indicates very small or no motion (which is the

case during an expiratory pause and inhale/exhale transitions, i.e., all circles in

the bottom image of Fig. 5.3).

• BP: A second order Butterworth band-pass filter removes the high frequencies

and the DC component for further processing. A seven-year old child has a

respiratory rate range from 18 to 30 respirations per minute and an adult from 12

to 20 respirations per minute [289]. Therefore, we decided to have a detectable

breathing rate range between 10 breaths / min and 30 breaths / min.

In order to be able to capture an expiratory pause, we aim at a worst case

target accuracy of 1/6 of a resulting breathing waveform period, corresponding

to 6 samples per breath. For the lower boundary of 10 breaths / min, we can

determine the boundary frequency: one breathing cycle takes 6 s (60 s / 10

breaths = 6 s / breath), corresponding to 1 Hz ((6 samples / breath) / (6 s

/ breath) = 1 sample / s). For the upper boundary of 30 breaths / min, one

breathing cycle takes 2 s (60 s / 30 breaths = 2 s / breath), corresponding to 3

Hz ((6 samples / breath) / (2 s / breath) = 3 samples / s). Thus, the cut-off

frequencies for the band-pass filter are chosen at 1 Hz and 3 Hz.
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• Local minima as reference frame candidates: Local minima serve as reference

frame candidates since expiratory pauses are assumed to be a subset among

the local minima. All circles in the bottom image of Fig. 5.3 are local minima

although only the bold circles indicate an expiratory pause (minima in the fi-

nal breathing signal). The dashed circles are minima resulting at times of the

inhale/exhale transition (maxima in the final breathing signal).

• The computation of the expiratory pause reference frame (grey bold circle in

bottom image of Fig. 5.3) is based on frame distance clusters, number of edges

per image and cross correlation lag of number of edges per row. The reference

frame candidates are clustered using the correlation coefficient between them.

One of the clusters is likely to be the one with frames from expiratory pauses

as the return to the expiratory pause position is likely to yield similar images.

In an expiratory pause, the subject is completely exhaled resulting in a higher

number of folds of blankets/clothes produced by the collapsing movement of

foldable objects (i.e., blankets). Therefore, an edge detector should return more

edges in the reference frame images. In an expiratory pause, the edges of the

image should be lower than in images surrounding the candidate reference frame.

This is computed with the cross correlation lag of number of edges per row.

When the confidence of the reference frame history (RFH) is high (based on

similarity of previous waveforms) also the current candidate frames should yield

a continuation of the previous breathing waveform.

• Average frame of RFH and new reference frame average: In order to increase ro-

bustness, an average reference frame is computed as the average of the reference

frame history and the new reference frame. When a large motion (movement

not due to respiration) is detected, we assume that the subject changed position.

The past reference frames are thus not anymore valid and the RFH is emptied.

• The image correlation coefficient between all images and the average reference

frame returns the breathing waveform where minima correspond to expiratory

pauses and maxima to inhale/exhale transitions.

5.4 Evaluation methods

In this section the methods for the evaluation of the three steps are described. First,

the evaluation methods for segmentation of the PS are discussed in Section 5.4.1,

followed by the evaluation methods for actigraphy and breathing in Section 5.4.2 and

5.4.3 respectively.

5.4.1 PS segmentation

A classifier has been designed to segment the PS in the video data from the back-

ground. The classifier has been created using a training algorithm, which uses a
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Figure 5.3: Top: Proposed breathing waveform computation method. Bottom: Intermediate out-

put signal after computing the consecutive image dissimilarity. Minima in this con-

secutive image dissimilarity graph correspond either to expiratory pauses (minima) or

inhale/exhale transitions (maxima) in the final breathing signal.

(manually) annotated training set. The annotation has been created using an an-

notation tool called ITK-SNAP [290] on 240 camera images yielding pixel accurate

ground truth. The tool’s user interface is shown in Fig. 5.4. The classifier is trained

with training data and evaluated with a test data set that is different from the train-

ing data set. The classifier has been evaluated by means of K-fold cross-validation

with K = 4, by determining the accuracy A and precision P according to Eq. (5.1)

and Eq. (5.2) [291] based on the true positives (TP), the true negatives (TN), the

false positives (FP) and the false negatives (FN). The classifier is to be trained only
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Figure 5.4: ITK-Snap annotation tool.

once with a large and diverse training data set and used for PS segmentation on all

unseen data.

A =
TP + TN

TP + FP + FN + TN
(5.1)

P =
TP

TP + FP
(5.2)

5.4.2 PS actigraphy

For the evaluation of the proposed video actigraphy algorithm in Section 5.3.2, ground

truth annotations (‘true’ for PS movement, ‘false’ for no PS movement or bed partner

movement) are compared with wrist and video actigraphy results.

The accuracy (see Eq. (5.1)) is determined for 40 short video clips of 5-7 frames.

These 40 clips consist of representative movements (when both thin and thick blankets

were used) with both small (single arm, single leg and head movements) and large

movements (turning, moving both arms and legs) performed by the PS and the bed

partner, one at a time and also simultaneously. If there is at least a single movement
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magnitude above a threshold in the video actigraph or wrist actigraph signal, it is

assumed to be a PS movement and is labeled positive (1). Otherwise, it is labeled

negative (0).

5.4.3 PS breathing

Basic peak detectors (combination of findpeaks() and peakdet() in Matlab) are used

to detect peaks from both the video and the two reference breathing waveforms. All

the peaks in the reference signals are assumed correct and serve as ground truth.

TPs, FNs and FPs of the video peaks are computed based on a tolerance interval of

∆ti = ±1s from the reference peak (see Fig. 5.5). The reference signals are obtained

from inductive respiratory chest and abdominal belts as described in Section 5.2.

TP, see case (a) in Fig. 5.5: A video peak is detected within the tolerance interval

of ±1s (expected to be acceptable from experiments) from the reference peak.

FP, see case (b) in Fig. 5.5:

• Video peaks outside the tolerance intervals of the reference peaks.

• All video peaks detected within the same tolerance interval as an already

detected video peak minus 1.

FN, see case (c) in Fig. 5.5: No video peak in the tolerance interval of a reference

peak.

Based on the determined true positives, false positives, and false negatives, the

sensitivity S (or recall rate), and precision P (or positive predictive value) are com-

puted according to Eq. (5.3) and Eq. (5.2) (see [291]). The sensitivity measures

the proportion of correctly detected peaks among all the actual peaks. The positive

predictive value P measures the proportion of the correctly detected peaks among all

the detected inhalation peaks.

S =
TP

TP + FN
(5.3)

The mean breathing rate correspondence (BR) is assessed based on the number

of detected peaks within the epoch where vp and rp denote the breathing rate in one

mode from the video signal v and the reference signal r, respectively. As shown in Eq.

(5.4), the rate is computed as the ratio of the number of breathing cycles (number of

peaks - 1) detected in an epoch to the time duration between the first and the last

detected peak. The mean breathing rate correspondence should ideally approach the

value of 1.

BR = 1− |vp − rp|
rp

(5.4)
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(a) 

(b) 

(c) 

Tolerance interval 

Tolerance interval 

Tolerance interval 

Computed 

Reference 

Computed 

Reference 

Computed 

Reference 

Figure 5.5: Computed breathing waveforms: (a) Presence of a TP. (b) Presence of 2 FPs around

the first reference peak and 1 FP around the second reference peak. (c) Presence of a

FN. The tolerance interval ∆ti is set to ±1s.

5.5 Results and discussion

In this section the results of the separate experiments are presented. First, the PS

segementation results are discussed in Section 5.5.1, followed by the evaluation results

of the actigraph and breathing measurements in Sections 5.5.2 and 5.5.3.

5.5.1 Segmentation

The PS classifier performance has been determined by measuring the accuracy and

precision as defined by Eq. (5.1) and Eq. (5.2) respectively, using K-fold cross-
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Figure 5.6: Example frames with PS segmentation results. The boundary between PS and back-

ground has been highlighted with a white line.

validation on the data sets using K = 4. The AdaBoost classifier was trained 4 times

using each time three of the four data sets (DATA Home1, DATA Home2, DATA

Synt1, or DATA Synt2) and applying the classifier to the fourth. The evaluation

results are summarized in Table 5.1. An accuracy between 87% and 90% is obtained

Training set Test set A [%] P [%]

DATA Home2, DATA

Synt1, DATA Synt2

DATA Home1 90 83

DATA Home1, DATA

Synt1, DATA Synt2

DATA Home2 89 63

DATA Home1, DATA

Home2, DATA Synt2

DATA Synt1 87 90

DATA Home1, DATA

Home2, DATA Synt1

DATA Synt2 88 82

Average 88 79

Table 5.1: Accuracy and precision results of the PS segmentation.

for these data sets, with a precision between 63% and 90%. Some examples of the

segmentation results on separate frames are shown in Fig. 5.6. More qualitative in-

sight in the classification accuracy has been obtained by determining the accumulated

classification error at each pixel location. The normalized accumulation results are

illustrated in Fig. 5.7, showing most classification errors occur at the border between

background and PS.

The obtained average segmentation accuracy of 88% is promising for the considered

application of home monitoring from a bedside table. Larger field tests, however, are

required to obtain quantitative results for comparing with e.g., monitoring methods

with ceiling mounted cameras. The segmentation of the PS should decrease the false

positive rate induced by bed partner movements. Its impact on the actigraphy signal

has been validated in Section 5.5.2.

5.5.2 Actigraphy

The comparison of the video actigraph with and without segmentation to the wrist

actigraph are shown in Fig. 5.8. We have separately analyzed the influence of bed
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(a) (b) 

(c) (d) 

Figure 5.7: Accumulated normalized classification errors for each data set (a) DATA Home1 (b)

DATA Home2 (c) DATA Synt1 (d) DATA Synt2. Brighter intensities indicate a higher

average error.

partner motions by determining the video actigraph when only the bed partner is

moving.

The top image in Fig. 5.8 shows the actigraphs generated from the video sequence

where only the PS moves. It can be seen that roughly for all peaks in the wrist

actigraph signal (shown in red) there are corresponding peaks in the video actigraph

signal (blue). In other measurements, additional peaks in the video actigraph signal

originate from moving body parts of the body other than the wrist, which makes

video actigraphy more sensitive for the entire body than wrist actigraphy. At times,

the wrist actigraph records large movements while the video actigraph only registers

small motions. These differences are typically due to the large movements by the arm

or wrist alone, compared to full body motions.

The bottom image in Fig. 5.8 shows a concatenation of PS motion, followed by

bed partner motion, for the wrist and video actigraphs. It can be seen that there is no

wrist actigraph signal when the bed partner is moving, while motion is visible in the

video actigraph. This graph also indicates that motion due to bed partner motion is

relatively low compared to PS motion and that segmentation of the PS helps to reduce

the influence of bed partner movements further. By thresholding, as indicated in the
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Figure 5.8: Comparison of wrist actigraph (a.u.) with video actigraph (a.u.) generated with and

without segmentation of the PS. Top: There is a high correlation between the video

actigraph (plot on the negative vertical axis) generated without segmentation to that

of wrist actigraphy (plot on the positive vertical axis). Bottom: On the right of the

red dashed line, the PS lies in supine position and the bed partner moves without

any restrictions. There is no wrist actigraph signal as there is no PS movement. The

segmentation yields a lower magnitude.
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WA VA VA

without segm. with segm.

Avg. A [%] 75 70 85

Table 5.2: Average accuracy A of wrist actigraphy (WA) and video actigraphy (VA), with and

without segmentation (segm.).

bottom image of Fig. 5.8, the generated video actigraph signal (with segmentation)

could trigger only PS movements. For the example shown at the bottom of Fig. 5.8,

a threshold value of 1.5 was empirically determined that would remove false triggers

from the bed partner. From the 40 manually annotated video clips, an accuracy of 75%

was found for the wrist actigraphy, while the video actigraphy without segmentation

scored a 70% accuracy and the video actigraphy with segmentation a 85% accuracy

(see Table 5.2).

In a shared bed it is common to share a blanket. We observed instances when the

blanket covering the PS moved due to movements originating from the bed partner.

This caused a false positive for the video actigraphy signal even after segmentation.

An initial algorithm compensating for the blanket movement from the bed partner has

been implemented. Due to the camera placement, a small directional movement to

the top or left of the image was assigned to the bed partner movement instead of the

PS. This first attempt increased the video actigraphy accuracy to 93%. More video

clips consisting of blanket movement need to be selected and examined regarding

robustness of this initial method.

These results show that the segmentation improves the video actigraphy when a

bed partner is present and has a better performance compared to wrist actigraphy.

5.5.3 Breathing

The proposed video breathing (VB) algorithm is compared with the Horn-Schunck

based optical flow (OF) implementation of [278] commonly used for video-based

breathing analysis and the projection correlation (ProCor) method [286], a more re-

cent method. The results obtained with the proposed video breathing algorithm, OF

and ProCor are shown in Tables 5.3, 5.4, 5.5 and 5.6 with the chest belt as reference

signal (similar results are obtained with the abdominal reference signal). Overall,

the proposed VB method scores high, at around 90% for all three measures (see Ta-

ble 5.3). The breathing rate correspondence achieves a correspondence of 93%. The

BR between the two reference signals chest and abdomen are only slightly higher

(98%). ProCor shows likewise high results for S = 87% with a clear drop in P = 79%

and BR = 72%. In contrast, OF yields lower S = 76% and higher P = 86%, with high

scores for BR (91%). The main problems observed with the state-of-the-art methods

are the at times indistinct breathing signals of OF and very noisy signals of ProCor

(see Fig. 5.9).

Lying on the right when the chest faces the camera, is consistently the most
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Prop. method VB ProCor OF

Avg. S [%] 87 87 76

Avg. P [%] 90 79 86

Avg. BR [%] 93 72 91

Table 5.3: Overall average sensitivity S, precision P and breathing rate correspondence BR of the

proposed method VB, ProCor and OF.

challenging position with generally the lowest evaluation results for VB, ProCor, and

OF (see Table 5.4). VB performs above 90% for the other body positions in S, P

and BR but achieves only 72%, 76% and 75% respectively in the ‘on right’ position.

Similarly, ProCor generally achieves results above 80% for the ‘prone’, ‘supine’, ‘on

left’ body positions, but suffers severe cuts to S = 49%, P = 37% and BR = 34% for

the ‘on right’ position. This is most likely due to the counter movements of head and

chest/arms that become most apparent in this position.

Concerning the inter-subject variability (see Table 5.5), there is a slight tendency

of subject 3 to perform worst for VB and ProCor. This is particularly visible in

the sensitivity results of VB and the precision and breathing rate results of ProCor.

As subject 3 has a BMI in the normal range we do not expect the video breathing

algorithm to be sensitive to differences in BMI. The cause for the worse performance

needs to be investigated in future work.

Regarding the results per breathing mode in Table 5.6, the respiration rate cor-

respondence is high for VB throughout all breathing modes contrary to the state-of-

the-art algorithms. BR is lower for ProCor and OF in the natural mode, the high

breathing rate mode (23 bpm) and in the deep-sigh mode. Subjects’ breathing could

be very irregular at the beginning of the experiment when the subjects just transi-

tioned to a rest phase from an active phase out of the bed. There, inconsistencies

Left Right Prone Supine

VB S [%] 95 72 90 92

ProCor S [%] 96 49 96 97

OF S [%] 90 49 70 94

VB P [%] 98 76 93 94

ProCor P [%] 88 37 85 97

OF P [%] 99 58 86 99

VB BR [%] 95 75 93 95

ProCor BR [%] 80 34 74 95

OF BR [%] 95 88 85 95

Table 5.4: Average sensitivity S, precision P and breathing rate correspondence BR of the proposed

method VB, ProCor and OF for the different body positions lying on the left, lying on

the right, prone and supine.
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S1 S2 S3 S4 S5

VB S [%] 94 94 78 87 84

ProCor S [%] 82 78 86 90 97

OF S [%] 69 67 75 83 85

VB P [%] 98 95 85 90 84

ProCor P [%] 78 75 64 83 93

OF P [%] 77 76 85 95 95

VB BR [%] 96 94 91 92 94

ProCor BR [%] 81 84 41 63 91

OF BR [%] 87 92 91 91 93

Table 5.5: Average sensitivity S, precision P and breathing rate correspondence BR of the proposed

method VB, ProCor and OF for the different subjects S1, S2, S3, S4 and S5.

in the video breathing signal were observed. In the high breathing rate mode (23

bpm) some subjects found it difficult to follow the metronome. It was the first mode

to follow and get used to with a fast pace making it more difficult to follow than a

slower pace. This is also the cause for lower S and P values which all methods suffer

from. In low breathing rates (12 and 10 breaths per minute), peaks may be found

just outside the accepted one-second interval resulting in lower S and P values. Deep

and shallow breathing can be both robustly captured by VB as seen from the positive

results of ‘15 bpm deep’ and ‘15 bpm shallow’. ProCor and OF had more difficulties

with shallow breathing.

Most of the problems with VB arise due to a wrong selection of the reference

frame. A frame during a breathing peak is then selected as a reference frame instead of

selecting it during an expiratory pause. S and P due to the wrong peak locations can

drop to 56% in such cases. Future work needs to investigate improvements regarding

the computation of the reference frame.

When adapting ProCor to incorporate the band-pass filter and peak detector used

in the proposed method VB, average results have improved to S = 86%, P = 87%,

BR = 97%.

5.6 Conclusions

A contactless video-based activity and respiration monitoring system for home sleep

analysis is proposed. The aim is to perform video-based monitoring of activity and

breathing of a Primary Subject (PS) in the common shared bed scenario. The camera

is placed on the bedside table to make the use case as convenient as possible for the

user. The use of a video camera and intelligent algorithms for segmenting the PS, for

calculating the PS’ activity level and for extracting the breathing signal is validated.

The segmentation algorithm has been benchmarked on subjects in both a natural

unrestricted sleeping environment at home, and with a fixed movement protocol both

at home and at a sleep laboratory. The benchmark was done using an annotation
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Na- 23 19 15 bpm 15 bpm 12 10 3 deep

tural bpm bpm shallow deep bpm bpm sighs

VB S [%] 83 80 91 91 91 86 85 93

ProCor S [%] 80 89 90 86 90 87 86 84

OF S [%] 70 68 78 80 84 82 73 70

VB P [%] 83 91 96 96 94 89 85 90

ProCor P [%] 70 82 83 75 83 77 68 94

OF P [%] 81 89 90 85 89 85 76 89

VB BR [%] 91 89 94 95 96 96 94 92

ProCor BR [%] 59 85 82 70 85 70 48 80

OF BR [%] 89 81 92 95 99 97 99 73

Table 5.6: Average sensitivity S, precision P and breathing rate correspondence BR of the proposed

method VB, ProCor and OF for the different breathing rates natural, 23 bpm, 19 bpm,

15 shallow bpm, 15 deep bpm, 12 bpm, 10 bpm and 3 deep sighs.

tool called ITK-SNAP which allows pixel accurate manual annotation. On average,

the proposed algorithm gives an accuracy of 88% at a precision of 79%, with the most

errors occurring at the PS and background border. In future work, by training the

classifier once with large and diverse (sleeping poses, lighting conditions, texture of

blankets, with and without blankets) training data set, the classifier is expected to

generalize to any unseen data yielding significant PS segmentation results.

The proposed video actigraphy system can detect movements up to an accuracy of

85% while outperforming wrist actigraphy at 75% accuracy. An initial method com-

pensating for blanket movement from the bed partner yielded an even higher accuracy

of 93%. Further research would benefit from compensating for blanket movement.

Regarding the video breathing algorithm, data collection with 5 test subjects with

different BMIs, in 4 body positions, was performed where two respiration belts (chest

and abdominal as used in traditional polysomnography to obtain the respiration sig-

nal) were used as reference. The video-based breathing algorithms faced challenges

such as the use of a blanket, different breathing frequencies, breathing depths, and

body positions. The proposed algorithm outperformed state-of-the-art algorithms for

video-based breathing analysis. An overall sensitivity of 87%, precision of 90%, and

breathing rate correspondence of 93% were obtained. Given a 98% breathing rate cor-

respondence between the reference signals, the results of the proposed video method

are well in range.

In future work, larger field tests are required to obtain quantitative results for

comparing with e.g., monitoring methods with ceiling mounted cameras.
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Figure 5.9: Computed breathing waveforms of two typical cases. Top: OF breathing signal becomes

inaccurate at times, good alignment of VB and ProCor with reference signal. Bottom:

Very noisy ProCor output, good alignment of VB and OF with reference signal.
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Chapter 6

Robust and sensitive video motion

detection for sleep analysis

Abstract

In this paper, we propose a camera-based system combining video motion detection,

motion estimation and texture analysis with machine learning for sleep analysis. The

system is robust to time-varying illumination conditions while using standard cam-

era and infrared illumination hardware. We tested the system for Periodic Limb

Movement (PLM) detection during sleep, using EMG-signals as a reference. We eval-

uated the motion detection performance both per frame and with respect to movement

event classification relevant for PLM detection. The Matthews Correlation Coefficient

(MCC) improved with a factor of 2, compared to a state-of-the-art motion detection

method, while sensitivity and specificity increased with 45% and 15%, respectively.

Movement event classification improved by a factor of 6 and 3 in constant and highly

varying lighting conditions, respectively. On 11 PLM patient test sequences, the pro-

posed system achieved a 100% accurate PLM index (PLMI) score with a slight tem-

poral misalignment of the starting time (<1s) regarding one movement. We conclude

that camera-based PLM detection during sleep is feasible and can give an indication

of the PLMI score.

This chapter is published as: A. Heinrich, D. Geng, D. Znamenskiy, J. Vink, G. de Haan;

Robust and sensitive video motion detection for sleep analysis, IEEE Journal of Biomedical and

Health Informatics, vol. 18, no. 3, pp. 1-9, May 2014.
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Introduction

6.1 Introduction

Body movements are an important behavioral aspect during sleep as shown in [292].

They can be associated to sleep states [293] and connected to sleep state transitions

[294]. It was concluded in [295] that frequency and duration of body movements are

important characteristics for sleep analysis. Moreover, various somatic and mental

disorders are associated with movements during sleep and several clinical syndromes of

pathological movements exist [296], like restless leg syndrome, periodic limb movement

disorder, and movement disorders under parasomnias such as disorders of arousal and

sleep-wake transitions.

The screening of sleep is typically obtrusive using contact sensors, like accelerome-

ters, electrodes, wrist watches, headbands, and often requires visits to the sleep clinic

to apply the various contact sensors. Also significant time and effort from sleep clini-

cians are involved, including working night shifts. Consequently, waiting lists for sleep

screening are common, while possible skin irritations and disturbed sleep due to the

detachment from the natural sleeping habitat frequently occur.

The use of a video camera to analyze movement patterns of a sleeping subject

promises an attractive alternative, as it is inherently unobtrusive, and may be used in

a home setting. State-of-the-art motion detection methods have been developed and

are applied successfully in systems for surveillance and tracking, e.g., [297, 298].

Our main challenge was to design a system robust to dynamic illumination con-

ditions. The generally low light conditions for sleep monitoring render the system

sensitive to light pollution and changes. Hardware solutions for light robustness typi-

cally involve a short camera-integration and a synchronously flashing IR light source

to overpower ambient illumination and shadows [299]. As we aim at using existing

camera and lighting installations, as applied in sleep clinics, hospitals, and surveillance

systems, we propose a video analysis software solution.

Dynamic illumination conditions can be manifested by global lighting changes and

pose a smaller challenge than local dynamic illumination conditions. Of particular

concern regarding local dynamic illumination are moving shadows, e.g., caused by

a family member, outside tree branches or moving curtains (see Fig. 6.1) in an un-

controlled setting (due to e.g., street lighting, moonlight, sunlight, indoor lighting).

Previous research imposed various restrictions on the camera [300], the shadow area

properties related to the background characteristics [298, 301], or the background

itself [302–304]. For the application targeted in this work, only a static camera is

assumed, while further assumptions are relaxed. This is relevant, since the bed is

typically non-planar due to the force on the beddings exhibited by the subject and

beddings lying loosely on and around the subject. Moreover, the background changes

dynamically, as subject movements change the folds’ location and appearance of the

beddings, while fold appearance (texture) varies with moving cast shadows. Local in-

tensity changes of 25% between consecutive frames are observed due to cast shadows

vs. a 10% change due to subject movement.

For the application of sleep monitoring including the interference of moving shad-
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Figure 6.1: Lighting variations between two consecutive images due to moving cast shadows. Edges

in bedding folds become visible in the bottom left quadrant of the bed.

ows, typically two illumination sources and conditions are present as is depicted in

Fig. 6.2. The first illumination source is a constant near infrared light source to

monitor sleeping subjects (object 1 in Fig. 6.2) both at daytime and nighttime in a

constant lighting condition. The second illumination condition is variable due to in-

terfering moving objects (object 2 in Fig. 6.2) in front of another artificial light source

or sunlight producing moving cast shadows. The darker regions on the background

of the objects consist of two parts, umbra and penumbra. Umbra is the centre part

of the cast shadow which is not directly illuminated by any light source. Penumbra is

the soft transition from dark to bright and partly illuminated by a light source. The

length of this transition is referred to as edge width in [302].

In summary, we present a motion detector robust to moving cast shadows that can

deal with fewer scene assumptions and limitations compared to other shadow detection

methods and uses standard hardware. As a home sleep monitoring case study, we

discuss the design of a near infrared video movement detection (VMD) system that

can compete with on-body electromyography (EMG) movement detection for periodic

limb movements in sleep (PLMS) and for periodic limb movement disorder (PLMD).

To estimate true subject movement, the amplitude of the EMG signal is used for

quantifying PLM as it indicates the electric activity in a muscle.

Section 6.2 discusses the state-of the-art motion detection methods, while our

proposed VMD system robust to moving cast shadows is presented in Section 6.3.

The experimental setup is described in Section 6.4 and the evaluation of the proposed

VMD system is discussed in Section 6.5. Conclusions are drawn in Section 6.6.
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Figure 6.2: Formation of cast shadow with object 1 being close to the background and object 2 far

away from the background.

6.2 Existing methods

The accumulation of absolute values of temporal frame differences is a widely used

change detector, also applied to the movement analysis during sleep [305]. It is how-

ever not designed to be illumination insensitive and, more importantly, to distinguish

between subject movements and a moving interfering shadow (IS). Different constant

lighting levels are analyzed in [306]. In order to simulate lighting changes at dawn,

global artificial light changes were added to the sleep videos in [307]. With the aim

to detect the presence of shadows, the shading model

Ri(x, y) =
Ei−1(x, y)

Ei(x, y)
=
Ii−1(x, y)Si−1(x, y)

Ii(x, y)Si(x, y)
(6.1)

is introduced by [308]. The underlying assumption is that the image luminance value

Ei(x, y) at pixel location (x, y) in frame i is the product of the irradiance Ii(x, y)

and the reflectance Si(x, y). The irradiance is the received light power per illumi-

nated object surface and changes when an illumination change takes place, e.g., when

a shadow moves over an object. When an object moves, the reflectance changes

depending on object structure. It takes into account the surface material and the ge-

ometrical arrangement of camera, light source and object. For shadow detection, the

reflectance remains constant in Eqn. (6.1) (Si−1(x, y) = Si(x, y)) and the luminance

values between a current frame i and a reference or previous frame i−1 are compared

with each other. In the case of a reference frame, typically a background and/or

shadow model is computed and pixel values in the current image are compared with

the corresponding pixel values in the reference model(s), e.g., [297, 307, 309]. This
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is a very common approach confirmed in [300] and [303] where the majority of the

50 selected shadow detection methods computes a background model. A background

and/or shadow model cannot be learned for the application discussed in this paper

due to the dynamic and non-planar background yielding edges at different locations

and at times larger intensity variations under the influence of moving cast shadows

compared to subject movement.

The deterministic method described in [302] compares the previous and current

frame by computing the local variance of the intensity ratios. The probability for

shadow presence increases with small local variance V

Vi(bx, by) =
1

n

∑
(s,t)∈B(bx,by)

(Ri(s, t)− µi(bx, by))2, (6.2)

where (s, t) are the n pixels in block B with center coordinates (bx, by) and mean µ

defined as

µi(bx, by) =
1

n

∑
(s,t)∈B(bx,by)

Ri(s, t). (6.3)

One drawback of this approach is that uniform regions are considered as potential

shadows. The same effect is observed in [310] using a similar approach. Stauder et al.

[310] correctly stressed the assumption of textured objects and a planar background

which does not hold for the application at hand. Folds in beddings and blankets

yield a non-planar background. Texture differences that may be clearly visible in

daylight may be greatly reduced in the infrared image (see Fig. 6.3). In order to

deal with none or low-textured objects, an addition to the variance V is proposed

in [311] and similarly used in [312]. The interior of appearing homogeneous objects

on homogeneous background is on one hand detected for a relatively large luminance

difference (i.e., when object motion is present) and is on the other hand illumination

invariant for a relatively small luminance difference (i.e., in the case of moving cast

shadows). We refer to it here as Variance Plus (VP) and later as VP orig. which is

defined as

VPi(bx, by) = VP+
i (bx, by) + VP−i (bx, by), (6.4)

where

VP+
i (bx, by) = 1

n

∑
(s,t)∈B(bx,by)

(
R2

i (s, t)−Ri(s, t)
)

= Vi(bx, by) + µ2
i (bx, by)− µi(bx, by)

(6.5)

and
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Figure 6.3: Loss of texture when the same scene is captured with an infrared camera (right) com-

pared to a visible light camera in the presence of visible light (left).

VP−i (bx, by) = 1
n

∑
(s,t)∈B(bx,by)

(
R−2i (s, t)−R−1i (s, t)

)
. (6.6)

Motion is detected if the following criteria VP+
i (bx, by) > dVP or VP−i (bx, by) > dVP

are fulfilled where dVP is a threshold determined in 6.3.4.

Substantial research efforts have been made in determining shadow areas based

on edge and texture information [297, 298, 301, 304, 313]. It is assumed that textures

in background and shadow areas show high resemblance and/or that a foreground

object will have significant interior edges contrary to a shadow region. Tracking

moving objects has proven to be beneficial for shadow detection in [297] and [309].

6.3 Proposed video movement detection system

Although competing methods as discussed in Section 6.2 are not expected to be robust

enough in the varying lighting condition, they included important features such as

spectral knowledge of the shadows, spatio-temporal and motion information, which

we also incorporated in our proposed VMD method. We designed a motion detection

cascade as illustrated in Fig. 6.4, where the spectral components typical for IS have

been removed and we improved the VP method VP orig. discussed in Section 6.2. The

resulting motion mask is a first selection of potential motion areas. Thereafter, spatio-

temporal and motion compensated information is included in the underlying texture

in the texture model (TM) and the motion compensated texture model (MCTM) to

discern shadow movement from subject movement. At each stage of the cascade,

the numbers of detected motion blocks from the motion mask are given as input to

a machine learning classifier for the final subject motion detection result per video
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Figure 6.4: Block diagram of proposed VMD method, the dashed line refers to the feature selection

method described in Section 6.3.4.

frame. The cascade structure is chosen in order to minimize computation time as the

algorithmic complexity increases along the cascade. The run times per frame for the

single blocks are 0.094s for VP enhanced (VP enh.), 1.012s for TM and 6.601s for

MCTM (the methods are discussed in detail in the following sections).

We use a band-pass filter (BPF in Fig. 6.4) to remove the low-frequency edge

of the IS and high-frequency noise while preserving the medium-frequency texture

information of subjects and beddings. A Gaussian BPF is applied with a cut-off

frequency at 100 cycles per picture-width (c/pw) and per picture-height (c/ph). The

bandwidth is 180 c/pw and c/ph. Here we used an assumption that the size of the

interferring shadow edge is determined by the size of the penumbra and the size of

3D features which modulate the specular reflections in the scene. For artificial light

sources the lamp size is sufficiently large to produce a penumbra larger than the size

of 3D features. Thus, for example, for a lamp with a diameter of 10 cm at a distance

of 4 m and a moving object at a distance of 2 m the size of the cast shadow is 10

cm, while the background details like folds in the beddings are about 1 cm. If the

camera monitors the scene with a width of 100 cm, the size of the 3D features are

about 1% which motivates the use of a cut-off frequency at 100 cycles per picture-

width. The bandwidth of 180 c/pw and c/p was chosen as a compromise beween two

requirements: firstly, to keep sharp edges in the scene, and secondly, to reduce camera

noise in low lighting conditions.
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Figure 6.5: Motion mask of VP enhanced (VP enh.) without BPF (left) and with BPF (right)

when the right toe is moving (blue square).

6.3.1 VP enhanced

We implemented an enhanced version of VP orig. by using an illumination adaptive

threshold dVP to increase robustness. If only illumination changes and noise occur,

then

Ei−1(x, y) = αEi(x, y) +N, (6.7)

where α indicates the illumination change and N random noise. Substituting

Ei−1(x, y) in Eqn. (6.1) and the obtained result in Eqn. (6.5) results in

dVP(x, y) =

(
α+

N

Ei(x, y)
− 1

2

)2

− 1

4
, (6.8)

where α = 1 corresponds to no illumination change. The value for N is determined

in Section 6.3.4. The block size of VP enh. is set to 2× 2 pixels.

The influence of the BPF on VP enh. is shown in Fig. 6.5 where the motion mask is

indicated in white. The subject’s right big toe is moving, thus only the white regions

around the big toe and its shadows are actually ‘true’ subject movement. The rest is

caused by the moving IS. It is clearly visible that the number of misdetected motion

blocks due to the IS is reduced drastically by the BPF (right image) while preserving

the true subject motion.

6.3.2 Texture model (TM)

The output of VP enh. is given as input to the texture model TM which eliminates

misdetections in image areas where texture remains substantially stable over time.
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Figure 6.6: TM of subject movement (top) and moving IS (bottom). (a) and (d) are corresponding

blocks in consecutive frames, (b) and (e) are the corresponding SSDSs, (c) and (f) the

BSSDSs, (g) shows the error functions Ebi and Ewi in red and blue, respectively.

TM characterizes textures using sum of squared difference surfaces (SSDS) [314]

and two textures are considered substantially unchanged if their corresponding bina-

rized SSDS (BSSDS) differ less than the threshold value dTM determined in 6.3.4. In

[314], the SSDS is implemented to quantify the similarity across images or videos. It

is created by computing the total sum of squared differences (SSD) between a given

2 × 2 block and the blocks in its surrounding region. Fig. 6.6 top (a) and (d) illus-

trate the corresponding 18 × 18 pixel blocks between two consecutive frames. The

displacement of the dark object is caused by subject movement. The corresponding

SSDSs are shown in Fig. 6.6 top (b) and (e) respectively. We compare textures using
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Figure 6.7: MCTM of subject movement (top) and moving IS (bottom). (a) and (b) are corre-

sponding blocks in consecutive frames, (c) is the motion compensated block of (a), (d)

and (e) are the corresponding SSDSs of (c) and (b).

binarized summed squared difference surfaces (BSSDS) with two different binariza-

tion threshold approaches. The initial threshold for BSSDSi−1 is the mean value of

the corresponding SSDS. The BSSDS of the previous frame is shown in Fig. 6.6 (c).

The second binarization threshold for BSSDSi is selected such that the difference be-

tween BSSDSi−1 and BSSDSi is minimized. The minimized difference ETM is used

as the measure for texture similarity. The cross point in Fig. 6.6 (g) of the monotonic

error functions of the black block error Ebi (red line) at frame i (see Eqn. (6.9))

and the white block error Ew (blue line) is regarded as the minimum error ETM. If

ETM(bx, by) > dTM, the block (bx, by) is classified as motion. The black block error

Eb is computed as the conditional probability that a block is white in the current

BSSDS given it is black in the previous BSSDS. The white block error Ew is com-

puted analogueously. The number of blocks is denoted by nb. Fig. 6.6 bottom shows

the corresponding images for the case of an IS. The minimal error is clearly below the

error threshold.

Ebi(bx, by) =
nb|BSSDSi(bx, by) = 1 ∩ BSSDSi−1(bx, by) = 0

nb|BSSDSi−1(bx, by) = 0
(6.9)
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Figure 6.8: Motion masks (top) and accumulated motion masks (bottom) after applying VP enh.

(a), TM (b), MCTM (c) when the right toe is moving (blue square).

6.3.3 Motion compensated texture model (MCTM)

TM is able to remove the false positive detections where the textures of the corre-

sponding regions remain unchanged. However, the false positives along the sharp

edges due to the folds in the background are barely reduced. When the IS moves

to another image area and discloses texture which has previously been occluded due

to the non-planar background, there may be sudden texture changes. Therefore, we

introduce the motion compensated texture model (MCTM) which eliminates false

detections where the texture changes over time in an unpredictable manner. The

method is based on the assumption that when subject movement occurs, a motion

vector exists which renders a small difference between SSDSi and the motion com-

pensated SSDSi−1. The motion vectors within a search window of 24× 24 pixels are

estimated with the full search block matching technique on 8 × 8 pixel blocks and

a search step of 2 × 2 pixels (the block sizes are empirically determined). Fig. 6.7

(top) shows an example of MCTM when subject movement is present. Using the

motion vector a motion compensated image for the previous frame (a) can be calcu-

lated. Fig. 6.7 (d) and (e) show that the corresponding SSDSs are similar. Fig. 6.7

(bottom) shows an example of MCTM when there is only moving shadow. The tex-

tures in (a) and (b) are different due to the moving shadow. The texture of Fig. 6.7

(bottom) (e) shifts to the right compared to the texture in (d). To determine the
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similarity between the corresponding SSDSs Eqn. (6.9) is reused. If the minimum

error EMCTM(bx, by) < dMCTM determined in 6.3.4, the block (bx, by) is classified as

motion.

The white regions of (a), (b) and (c) in the top row of Fig. 6.8 are motion masks

of VP enh., TM and MCTM respectively. At this moment, the IS is moving from

bottom left to top right and the subject’s right big toe is moving upwards. From (a)

to (c) it can be clearly seen that the number of false positives due to the IS is greatly

reduced at the cost of a limited reduction of true positive detections.

The bottom row of Fig. 6.8 shows the accumulated motion masks over the whole

period of a training sequence using VP enh., TM and MCTM. In Fig. 6.8 (a), the

detected motion regions are spread over a large area, indicating that the specificity of

VP enh. is low. TM is good at classifying the image variations along the bed because

the textures in these regions are unchanged. Fig. 6.8 (c) depicts that MCTM can

eliminate the misdetections on the quilt. The remaining white areas in (c) represent

the subject movements best.

6.3.4 Subject motion classification and feature selection

A motion classifier determines, using the number of features, if a frame is detected as

a motion frame. To avoid suboptimal, manual selection of these features, we propose

to use supervised learning. Based on the extensive literature study and benchmark

in [315], cascaded AdaBoost was selected due to its potential in terms of achieved

performance and computational complexity. More information regarding the specific

implementation of the used cascaded AdaBoost can be found in [316].

We apply cascaded AdaBoost using the intermediate output of VP enh., TM and

MCTM sub-methods as features. Each sub-method of the cascade (VP enh., TM,

MCTM) detects ‘motion’ blocks using internal thresholds dVP, dTM, dMCTM. The

methods of the cascade are executed several times with different threshold combina-

tions, and the numbers of motion blocks per frame detected by VP enh., TM and

MCTM are used as features. A complete set of motion block thresholds is shown in

Table 6.1 where the specific values of the thresholds were found by analysing the influ-

ence of the sub-methods on the throughput of the cascade. First, for every method, a

minimal (maximal) threshold was found which effectively minimized (maximized) the

number of motion blocks passing to the next level of the cascade. Where the number

of motion blocks varied highly, a denser distribution of the thresholds was selected

(see regions with steep slope in Fig. 6.9). Thus, 10 thresholds for the VP enh. method

correspond to 10 VP enh. features. Since TM considers only ‘motion’ blocks detected

by VP enh., TM features correspond to combinations of 10 thresholds of VP enh.

and 9 thresholds of TM, which gives us another 10 · 9 = 90 TM features. Similarly,

MCTM features correspond to triples of VP enh., TM, and MCTM thresholds, where

we sub-sampled the threshold set in order to reduce the number of combinations (bold

values in Table 6.1). We selected thresholds which gave promising results when the

pure cascade, without AdaBoost classification, was considered as the motion detection
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method, see dashed line in Fig. 6.4.

The performance of the pure cascade with respect to the ground truth was eval-

uated on basis of Matthews Correlation Coefficient (MCC) [317] - used in machine

learning for assessing the performance of classification algorithms [318]. Only 6 VP

enh., 6 TM and 5 MCTM thresholds, giving a reasonable performance of the cascade,

were selected resulting in 6 · 6 · 5 = 180 MCTM features.

Then cascaded AdaBoost is applied to determine the most relevant features based

on 6 · 4 · 16 = 384 training frames (six test sequences, four ‘subject motion’/‘shadow

motion’ combinations, 16 frames per combination). Six feature combinations were

extracted for VMD (see Table 6.2). Consequently, these features were computed for

each test sequence. For the purpose of benchmarking, cascaded AdaBoost was also

applied to VP orig., using the initial set of thresholds given in the bottom row of

Table 6.1.

Figure 6.9: Motion block variation with different thresholds for VP orig., VP enh., TM, MCTM.

6.4 Experimental setup

Six video sequences were recorded with six different subjects simulating PLM activity

in bed. All subjects followed the motion scheme in Fig. 6.10 after being trained with

video clips from the ‘Video Guide for PLM’ [319]. The duration of each test sequence

was around 30 minutes where the volunteers repeated the same movement program
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Method Set of thresholds for AdaBoost training

VP enh. 2, 3, 3.5, 4, 4.5, 5, 6, 12, 25, 40

TM 0.1, 0.15, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6

MCTM 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.45

VP orig 0.01, 0.015, 0.02, 0.022, 0.025, 0.027, 0.03, 0.035, 0.04,

0.045, 0.05, 0.06, 0.08, 0.1, 0.12, 0.125, 0.13, 0.135, 0.14,

0.145, 0.15, 0.155, 0.16

Table 6.1: VP enh., TM, MCTM, and VP orig. thresholds for AdaBoost training. Bold thresholds

are in final selection.

twice: first, with constant NIR illumination only, and a second time with different

interfering light sources and moving shadows. Sunlight and street light were taken into

account by opening the curtains. The secondary ambient illumination was modeled

with a standing lamp. In front of the lamp, plastic plants were moved to simulate

a waving tree branch and its effects. Curtains were manually opened and closed to

simulate moving curtains. Legs were covered and uncovered randomly in between the

two specified time instances indicated in gray in Fig. 6.10.

The scene was registered with a monochrome camera equipped with a NIR-pass

filter and an auxiliary NIR illumination source, positioned about 0.75 m above the bed

surface at the foot end of the bed. While a low frame rate can make the individual

frames more distinctive and therefore facilitate the detection of the slow motion,

a relatively high frame rate is necessary to capture fast limb movements. Human

voluntary movements are typically limited to 200/min (3.3 Hz) [320], however, human

involuntary movements (as can be the case of PLMS) may be faster [321]. Movements

in a frequency range larger than 5/s are caused by tremor and shivering [322]. In

order to disregard shivering movements, a frame rate of 10.9 Hz was chosen (the

possible camera setting larger than twice the acceptable movement frequency). In

our trial experiments, we found that the selected frame rate provided a sufficiently

good temporal resolution to capture subject movements.

For a direct comparison between the developed VMD method and a standard

PLMI score on a group of PLM patients, eleven video clips from [319] were processed.

For the first data set, classifier parameters were determined by performing leave-

one-subject-out cross-validation on the six test sequences. For the second data set

F1 F2 F3 F4 F5 F6

VP enh. 2 2 3 25 4 5

TM 0.45 0.2 0.4 0.45 0.2

MCTM 0.1 0.05 0.15 0.25

Table 6.2: Selected set of thresholds returning the VMD features.
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Time period between the two gray bars:  
Legs are randomly covered/uncovered PLM NPLM 

Figure 6.10: Program for limb movements to simulate PLMS.

where it is unknown whether one subject is involved in multiple test sequences we

perform leave-one-sequence-out cross-validation on the eleven test sequences.

6.5 Results and discussion

6.5.1 Frame based motion detection

Given the conditions of the current application, a universal state-of-the-art motion

detector robust to moving cast shadows is found in VP orig. [311] which is successfully

applied in [312].

The motion decision output of VP orig. and the proposed VMD method for each

frame are shown in Fig. 6.11, along with the ground truth, in red, green and black

respectively. The black curve represents the ground truth that has been extracted

from the EMG signal, (a) denotes the first half of the experiment where no IS was

present, (b) the second half with IS. Fig. 6.11 shows that VP orig. may underdetect

subject movement at times (e.g., 5(a)) and may at other times be highly sensitive

to moving IS (e.g., 2(b)). Most motion events are marked (with a large number

of classified motion frames in a motion event period) as motion by the proposed

method VMD. It is less sensitive to the moving IS and can preserve a larger number

of true positives (TP). The improved performance in distinguishing between subject

and shadow motion is illustrated well in subject 2. Even when the limbs are covered

(shaded areas in Fig. 6.11) VMD can detect several movements. Subject 4 presents

the largest subject motion challenge where the motion decisions between 620s and

820s in 4(a) show that both algorithms are unable to detect subject movements when

the subject’s legs were covered.

Regarding the quantitative results for frame-based motion detection, Table 6.3

shows the MCC, sensitivity and specificity scores of VP orig. and the proposed VMD

method. All the average scores are improved with VMD (MCC by factor 2, sensitivity
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MCC Sens. Spec.

VP orig

Mean 0.3 47.4% 84.2%

StD 0.2 30.8 10.7

VMD

Mean 0.7 68.5% 96.5%

StD 0.1 15.6 1.7

Table 6.3: MCC, sensitivity and specificity of VP orig and VMD.

by 45%, specificity by 15%) resulting in a MCC of 0.7, sensitivity of 68.5%, specificity

of 96.5%. Sequence 1 represents an outlier for VMD as the results are significantly

worse.

6.5.2 Event based PLMS detection on simulated data

This section evaluates the motion event classification with the investigated methods

VP orig. and the proposed VMD on an event basis. In this study, motion and non-

motion events are computed for the detection of PLM. The severity of PLM can be

quantified using the so-called periodic limb movement index (PLMI), see [323]. PLMI

is the total number of PLMS events divided by the total sleep time in hours. The

‘gold standard’ and the corresponding five rules for scoring PLMS events are defined in

[323] in terms of limb movement duration (LMD) and inter-movement interval (IMI),

which can be naturally identified in the EMG signal. The VMD signal can naturally

substitute the EMG signal in the detection and counting of the PLMS events, leading

to video-based PLMI (VPLMI).

Both video signals were filtered with a m-tap median filter to provide the mini-

mal possible root mean square (RMS) error with the EMG based movement events.

Table 6.4 shows the average performance for VP orig. with m = 13 and VMD with

m = 9 on six sub-sequences with constant illumination and with IS. One can see that

VMD scores better than VP orig. in both lighting conditions with an improvement

factor of 6 of the normalized average error in constant lighting and a factor of 4 in

challenging lighting while keeping the standard deviation small. Similarly, the RMS

error count is reduced from 9.7 to 1.8 and from 9.8 to 3.7. A comparison of the motion

detection output is given in Fig. 6.12.

6.5.3 Event based PLMS detection on patient data

Regarding the validation on PLM patient sequences, the same six features presented

in Table 6.2 are computed. Due to the (heavy) compression artifacts, the classifier

parameters were redetermined by performing cross-validation on the eleven test se-

quences. A 3-tap median filter returned the minimal RMS error. As the availabe video
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Figure 6.11: Frame based motion detection output of VP orig. (red) and proposed VMD (green),

groundtruth (black). (a) and (b) indicate the periods without and with moving IS

respectively. The shaded areas indicate the periods when the subject’s legs are cov-

ered.
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Figure 6.12: Comparison of filtered motion detection results for subject 3.

data consists of cut fragments that were subsequently concatenated, the gold stan-

dard IMI requirement [323] of 4s was relaxed to 2s. Due to the absence of the EMG

signal, ground truth was annotated according to frame based movement observation.

Similarly, an actigraphy based approach for detecting PLM is suggested and found

reliable and correct in [324] and [325]. Some problems with EMG measurements may

even be avoided with actigraphy sensors according to [324]. The results are presented

in Table 6.5. A total of 56 PLM movements were counted both with VMD and the

ground truth data. Ten out of eleven sequences accurately detected the timing of the

movement. One sequence showed a slight temporal misalignment (<1s) regarding the

start of the movement. The often uncovered and well visible body parts in the video

clips were favorable for our algorithm. Future work should include the validation of

the proposed VMD algorithm on several nights of multiple patients.

Mean StD RMS
|VPLMI-PLMI|

PLMI
|VPLMI-PLMI|

PLMI
error

No IS

VP orig 0.46 0.37 9.7

VMD 0.08 0.1 1.8

IS

VP orig 0.61 0.44 9.8

VMD 0.21 0.17 3.7

Table 6.4: Average PLMI performance difference of VP orig and VMD methods in constant lighting

conditions and with IS.
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Mean StD RMS
|VPLMI-PLMI|

PLMI
|VPLMI-PLMI|

PLMI
error

VMD 0 0 0.0373

Table 6.5: Average PLMI performance of proposed VMD method for compressed videos of 11 PLM

patients.

6.6 Conclusions

We proposed a video movement detection (VMD) system that can discriminate move-

ments caused by a sleeping subject from motion due to cast shadows on a non-planar,

dynamic background. The video processing integrates motion detection, motion es-

timation and texture analysis. The proposed cascade includes the variance plus (VP

enh.) motion detector, the texture model (TM) and motion compensated texture

model (MCTM) features efficiently aggregated in a strong classifier using cascaded

AdaBoost.

The proposed robust motion detector has been evaluated in a scenario combining

illumination changes and subject motions for the purpose of periodic limb movement

detection in sleep (PLMS). Simulated PLMS movements have been recorded on video

along with a reference EMG signal.

The motion detection performance per frame of the proposed system provides

an MCC improvement of a factor 2, an increase of 45% in sensitivity and 15% in

specificity, on six test sequences compared to a state-of-the-art method for shadow

robust motion detection.

Movement event classification for periodic limb movement detection improved with

the proposed VMD method by a factor of 6 and by a factor of 3 in constant and

highly varying lighting conditions, respectively, compared to state-of-the-art. A 100%

accurate PLMI score is obtained on eleven PLM patient test sequences due to favorable

viewing conditions. Only for one movement a slight misalignment (<1s) in starting

time was observed between the ground truth and VMD. We conclude that video-based

PLMS is feasible and can provide a coarse indication of the PLMI score.
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Chapter 7

Lifestyle applications from sleep research

Abstract

Most of the research performed in the area of movement analysis of sleeping subjects

has been targeted at sleep stage classification or monitoring of sleep disorders. In this

paper, we present an innovative approach and show how movement analysis of sleeping

subjects can be used to enable new lifestyle related applications. The first application

we propose targets an intelligent baby monitor that informs parents about changes of

their baby’s pose in its sleep. The second application shows how a sleeping subject’s

movement pattern can be used to build an intelligent wake-up light system. For the

two proposed systems, we present design considerations and initial results showing

the potential of camera-based movement analysis in sleep related applications outside

the common interest.

This chapter is published as: A. Heinrich, V. Jeanne, X. Zhao; Lifestyle applications from sleep

research, Journal of Ambient Intelligence and Humanized Computing, vol. 5, no. 6, pp. 829-842,

Apr. 2014.

171



Chapter 7: Lifestyle applications from sleep research

172



Introduction

7.1 Introduction

Body movements are an important behavioral aspect during sleep as shown in [326].

They can be associated to sleep states [327] and connected to sleep state transitions

[328]. It was concluded in [329] that frequency and duration of body movements are

important characteristics for sleep analysis. Moreover, various somatic and mental

disorders are associated with movements during sleep and several clinical syndromes of

pathological movements exist [330], like restless leg syndrome, periodic limb movement

disorder, and movement disorders under parasomnias such as disorders of arousal and

sleep-wake transitions. To this end, the movements of sleeping subjects are typically

analyzed with the aim to perform sleep/wake classification [331] or to screen for

diseases characterized by particular movement patterns [332].

Traditional sleep screening and sleep classification approaches are performed in

polysomnography (PSG) studies in sleep clinics. In the last decade, quite some re-

search efforts have been carried out to monitor sleeping subjects at home, in the

natural sleeping environment, while employing sensors that typically suffer from re-

duced accuracy, therefore offer more unobtrusiveness and easy installation at home.

These less obtrusive sensors include amongst others wrist actigraphy [331], pressure

sensors in the pillow [333], piezoelectric sensors, strain-gauge and electret foil sensors

[334]. A promising sensor gaining more and more attention in the recent years is the

video camera [335–337]. Attempts have been made to use the video camera and novel

video processing algorithms for sleep/wake classification [335, 338], sleep movement

disorder detection [339] and sleep breathing disorder detection [340].

In this paper, we propose to use the movement information for a different applica-

tion focus. Two lifestyle applications make use of the movement information recorded

with a camera sensor and processed with two novel algorithms. The first application

describes an intelligent baby monitor that informs the parents when their baby is

turning in its sleep and when it is sleeping on its belly (parents are currently advised

to have their baby sleep on its back as it is believed to be safer). The second appli-

cation describes an intelligent wake-up light adapting the lighting settings dependent

on the sleeping subject’s movement pattern.

Section 7.2 describes the intelligent baby monitor, Section 7.3 the intelligent wake-

up light system and Section 7.4 concludes this paper.

7.2 Intelligent baby monitor

We propose to analyze body movement information for baby monitoring to inform

parents when their baby has turned to his/her belly. This solution is interesting for

parents as 4500 infants in the United States alone die annually of sudden infant death

syndrome (SIDS) [341]. In order to reduce the risk for SIDS, parents are advised to

put their babies to sleep on their back (supine) and not on their stomach (prone).

Several baby monitors exist on the market that transmit the video image of the

sleeping baby to the parent unit. These devices do not perform any automatic analysis

173



Chapter 7: Lifestyle applications from sleep research

Input	
  
video	
  

Turning	
  movement	
  
es1ma1on	
  

Face	
  detec1on	
  

Pose	
  
es1ma1on	
  

Output	
  
pose	
  

Figure 7.1: Block diagram of proposed method to determine the infant’s sleeping pose.

of the available video data. In order to assist parents in unobtrusively monitoring their

baby with familiar technology and giving them a more reassured feeling when they

are not looking at the transmitted video, we propose an algorithm to detect turning

movements of the baby and the body position (prone or supine) the baby has turned

to. The system could then notify the parents when their baby has turned to a more

unsafe sleeping position.

A solution for recognizing the pose of a sleeping subject is proposed in [342] where

the authors distinguish between lying on the side and lying in a supine/prone position.

However, their proposed method is not capable of distinguishing between supine and

prone. Reflective markers are attached to the baby’s sleeping bag in [343] which

makes it easier to monitor the movements and pose of a baby. Our goal is to stick

to existing consumer product environments with infrared baby monitors without the

need for markers in order to be most forthcoming to parents.

Traditional computer vision methods for face detection have been used for infants

in [344]. We found them ineffective in our setting due to the at times unfavorable face

pose/angle towards the camera (often non-frontal), low contrast in the infrared images

and the rather low quality video images. Therefore, we propose a solution adopting

information from both motion and face for infant pose detection. This approach is

illustrated in Fig. 7.1 where both turning movement estimation (described in detail

in Section 7.2.1) and face detection (described in Section 7.2.2) are used to determine

the infant’s sleeping pose (Section 7.2.3). The evaluation methods and user study

are outlined in Section 7.2.4 and Section 7.2.5, respectively. Results are presented in

Section 7.2.6.

7.2.1 Turning movement estimation

A turning movement can be regarded as a rotation around the body axis. Hence, the

proposed turning movement estimation relies heavily on body axis calculation and

motion estimation returning a motion vector per image block/pixel. An overview of

the turning movement estimation method is given in Fig. 7.2.
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Figure 7.2: Block diagram of proposed turning movement estimation method.

Body axis calculation

The body axis is computed by first, detecting the body area, and second, fitting a

line to this area by applying the least squares method. The part of the image the

body occupies is determined by the motion history image (MHI) method, also already

applied for video sleep analysis [337]. With MHI, detected movement pixels from an

image-time volume are compressed into a single image where more recent motion pixels

are assigned a larger value. MHI is adequate for large motion analysis in the sense

that temporally consistent motion areas can be determined and movements occurring

only in one frame discarded. Fig. 7.3 illustrates the detection of the majority of the

body with MHI versus few silhouette pixels with simple frame differencing.

We propose to fit a line on the MHI by applying the least squares method. The

fit line yields the body axis (see red line in the second and third row of Fig. 7.3).

Movement projection orthogonal to body axis

A turning movement is detected when the motion vectors between two consecutive

images yield a movement in the orthogonal direction of the body axis. Frequently

occurring movements such as kicking and waving arms may also occur in the said

direction and need to be neglected for the turning movement detection. In a turning

movement, the entire body is involved, namely also the infant’s trunk. Thus, two

conditions for a potential turning movement are required:

• A large movement area (number of motion blocks nm > dm with the threshold

dm),
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Figure 7.3: Detected motion pixels (blue) with frame differencing method (top row) and MHI (2nd

and 3rd row). The red bold line marks the calculated body axis.
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• involvement of the upper body in the movement. The upper body is set to the

upper 40% of the body area.

The motion vectors are computed for each 8×8 image block by employing the motion

estimation method developed for sleep movement analysis in [338].

When the two conditions for a potential turning movement are satisfied, all the

motion vectors in the image are projected to an orthogonal vector (the vector with the

direction orthogonal to the body axis). When the infant rolls over, most vectors would

have a large projection of vectors orthogonal to the body axis (from hereon called

orthogonal vector). The summation of the projections on the orthogonal vector is used

as a measure for the extent that the body moves along this orthogonal direction. This

is illustrated in Fig. 7.4 where the yellow arrows are the computed motion vectors,

the green arrow is the orthogonal vector, the thin red arrows are the orthogonal

projections and the bold red arrow represents the summation of projections on the

orthogonal vector.

The low-pass filtered (with a 5-tap moving average filter with equal coefficient

values of 1) accumulation T over time of the sum of these orthogonal projections is

depicted in Fig. 7.5. Local minima and maxima represent supine and prone positions,

respectively. Depending on the infant’s initial pose, the positions associated with min-

ima and maxima could just as well be reversed. Therefore, including the information

of face detection is beneficial.

7.2.2 Face detection

Face detection is a popular technique in computer vision allowing fast and reliable

detection of human faces in a natural environment. One requirement of the proposed

application is that the face has to be detected in any possible orientation since babies

move heavily during sleep. This complicates the task of performing robust face detec-

tion since most face detectors will allow the detection of a face only when it is more or

less facing upward or when the baby is lying on its tummy and looking to the side. To

fulfill our requirements, one could apply a multi-view face detection algorithm [345].

However the complexity of such an algorithm reduces significantly its attractiveness.

For this reason, we propose to use a dedicated framework, based on Viola-Jones face

detector in [346], allowing fast and efficient face detection regardless of the baby pose.

The proposed framework, illustrated in Fig. 7.6, is composed of the following main

elements: an automatic region of interest (ROI) selection based on the computed body

axis and body area, an image rotation module and face detector module. The basic

flow is as follows: the proposed framework firstly focuses on a specific part of the

image (ROI), then performs the face detection process for several image orientations,

and stops when the face detection module produces satisfactory results or when all

possible image orientations have been scanned. This reduction of the image to a

relevant ROI allows the system to remain efficient by running several face detectors

on small images.
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Figure 7.4: Sum (bold red arrow) of motion vector (yellow arrows) projections (thin red arrows)

orthogonal (green arrow) to body axis (blue line).

ROI selection

The body area information from the MHI image is used to select automatically the

relevant ROI. The body area information is divided into two parts: the upper body

and lower body. Each part accounts respectively for 40% and 60% of the body area,

see example in Fig. 7.7 top right.

The upper body region is selected as ROI. Doing so, the detection speed of the

face detector is tremendously increased. Furthermore, by focusing only on the relevant

ROI, the number of false detections significantly decreases.
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Figure 7.5: Low-pass filtered accumulation T over time of the sum of orthogonal projections.

Image rotation

The original face detector [346] ensures optimal performance for frontal face detection.

To be able to detect faces in several orientations, our framework rotates the above

defined ROI to ensure that the face is present in an upright position.

In an initial rotation the face is rotated into a favorable orientation by rotating the

ROI according to the body axis as defined in Section 7.2.1. However, due to inherent

inaccuracies of the body axis calculation the face might not be exactly in an upright

position after this initial rotation. Therefore, extra rotations are needed to maximize

the detection performance. These rotations are defined over a ±15◦range, centered

on the body axis angle, with a step of 3◦. These values have been found empirically

and showed the best performance in our framework.

Figure 7.7 shows an example input image with the baby lying in an arbitrary

position (top left), the body axis and relevant ROI based on the MHI calculation (top

right), the ROI after the initial rotation (bottom left) and finally the optimized ROI

after the rotation iterations.
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Figure 7.6: Face detection framework.

Face detection

The proposed framework uses the OpenCV [347] implementation of the Viola-Jones

face detector. This choice is first based on the availability of this open source library

and also on the very fast and efficient implementation of the Viola-Jones method.

To provide more robustness regarding face pose, we use two Viola-Jones cascades,

one to cope with frontal faces and another one to cope with left profiles. In order to

detect faces showing a right profile, the ROI is mirrored by an image flip operation.

This step provides a binary output per incoming image (0 being the absence of a

face in the ROI). To remove jitter due to false alarm or no detection, a smoothing

function similar to the one introduced in Section 7.2.1 is applied to this output. This
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Figure 7.7: Subsequent steps in the face detection process.

smoothed output is referred to as the face function F(t).

Fig. 7.8 shows the output result of the face detection process on a test sequence

containing 450 frames. The reference ground truth data is shown in red (based on

manual annotation) versus the output produced by our framework (green). Higher

values indicate the presence of a face. The main observation from Fig. 7.8 is that the

proposed face detection mechanism is not robust in all situations. We noticed that

different kinds of artifacts affect the performance. These artifacts originate mostly

from objects surrounding the baby (e.g., face of a stuffed animal or doll). This shows

that face detection, as proposed, cannot be used on its own to provide accurate

measures on the baby pose. In Section 7.2.3 we investigate the combination of this

output with the turning movement estimation.

7.2.3 Pose estimation

From the time a face is reliably detected, the supine position is used as a starting point

and the following turning movement events are used to estimate the lying pose of the

infant (i.e., after the first turning event the prone position is returned, thereafter the

supine position, etc.). The face detection output is only used in the following pose
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Figure 7.8: Face detection results on a test sequence. The reference ground truth data is shown

in red (based on manual annotation) versus the output produced by our framework

(green). Higher values indicate the presence of a face.

estimation periods when it is reliable enough as the Viola-Jones face detector is rather

unstable as mentioned in Section 7.2.2. A reliable detection of a face is obtained when

the face function F (t) exceeds the threshold df = 0.9. The pose estimation function

P (t) for frame t is calculated as

P (t) =


1, if F (t) > df

|P (t− 1)− 1|, if local maximum/minimum

detected in T (t)

(7.1)

where 1 indicates a supine position and 0 a prone lying pose.

7.2.4 Evaluation methods

A quantitative evaluation regarding turning movement detection and pose estima-

tion is formulated as follows. The detection rate of total turning movements dT is

computed as

dT =
nT
nG

, (7.2)

where nT corresponds to the number of detected turning movements and nG to the

number of annotated turning movements (ground truth). The accuracy rate of the

pose estimation method aP is calculated by
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Seq. 1 Seq. 2 Seq. 3 Seq. 4 Avg., StD

dT 100% 100% 100% 100% 100% ±0

aP 100% 53.5% 100% 74.1% 81.9% ±22.5

aPF
87.9% 67.4% 53.9% 73.7% 70.7% ±14.1

Table 7.1: Turning detection rate dT and pose estimation accuracy rate aP of the proposed method

and aPF
of a face detection method suggested in [344] on four video clips. The proposed

pose estimation method combines turning movement detection and face detection results.

aP =

nt∑
t=st

|pd(t)− pg(t)|
nt − st + 1

, (7.3)

where t denotes the frame number, st the starting frame of reliable face detection, nt
the total number of frames, pd the detected pose and pg the annotated ground truth

pose.

7.2.5 User study

Six 1 to 2 hour recordings (approved by the internal ethics committee of Philips

Research) were made of 4 babies aged 3 months to 1 year. All the videos were recorded

by the infants’ parents at home using a near infrared camera (monochrome uEye UI-

1220SE from IDS Imaging) and light source. The camera was positioned at the foot

end of the bed and videos at 5 frames per second and a resolution of 600× 400 pixels

were shot. In three recordings, the infants did not change their sleeping pose. In the

end, only two different recording days with the same infant could be used. Segments

from these recordings were used as training data for developing the algorithm. Four

different turning movement clips were cropped out of the two remaining recordings

and were used to evaluate the proposed pose estimation algorithm.

7.2.6 Results

Quantitative results regarding turning movement detection and pose estimation are

given in Table 7.1. The proposed pose estimation method combines turning movement

detection and face detection results. A competing method based only on face detection

is described in [344] and is denoted as aPF
in Table 7.1.

From Table 7.1, we can see that all turning movements are correctly detected

(when the time delay is neglected). The average accuracy rate of the proposed pose

estimation method amounts to 82%. It is high in sequences 1 and 3 (100%), but drops

in sequences 2 (54%) and 4 (74%). When comparing with the face detection solution

proposed in [344], an average performance improvement of 11% is observed with our

proposed method.
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Figure 7.9: Pose estimation output (magenta) with higher value indicating supine, lower value

prone position. Turning movement estimation T(t) (blue), face detection function F(t)

(green). The red line represents the ground truth (higher value indicates supine, lower

value prone position).

Fig. 7.9 shows a pose estimation output of sequence 2 along with the turning

movement estimation, the face detection function and the ground truth signal. From

the time a face is reliably detected (around frame 112), the turning movement esti-

mation shows correct turning events. A delay can occur as is the case around frame

230 and frame 350. This results in a delay in the pose estimation function. Currently,

a turning event is detected when a local maximum or minimum is computed. This

should be replaced with a more sophisticated turning detection function which would

highly increase the accuracy rate of the pose estimation method. A similar behavior

is observed in sequence 4. Moreover, future work should investigate a more robust

face detection method sensitive to baby faces with a high specificity (i.e., insensitive

to face-like features in stuffed animals and dolls). This would be of advantage for de-

creasing the unstable phase at the beginning of the video clip and increase robustness

in the pose estimation function thereafter.
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7.3 Intelligent wake-up light

The second application in this paper also makes use of the body movement information

of a sleeping subject. An important factor influencing the subjective sleep quality is

the wake-up experience. Sleep inertia is a common phenomenon when waking up.

It can be characterized by confusion, disorientation, sleepiness and grogginess, with

reduced cognitive and physical performances [348]. The use of a so-called artificial

dawn wake-up light (e.g., Philips HF3490, [349]) that aims at waking up a person in a

gradual manner has been found to result in a better wake-up experience [348, 350–352]

with reduced sleep inertia. In these studies, existing wake-up light products were used

that start shining around 30 minutes before the set wake-up time and continuously

increase their brightness. Subjective sleepiness decreased while subjective activation

and alertness increased. Benefits have been found in terms of wake-up quality, easy

rising, energetic feeling, the mood after waking up, social interactions, concentration

and productivity.

An individual passes through sleep cycles which consist of five sleep stages. One

of these sleep stages is referred to as Rapid Eye Movement (REM). If a person is

woken up after the REM sleep stage, he/she feels more conscious and alert than when

woken up from a deeper sleep stage [353, 354]. From sleep studies, an increased rate of

body movements is observed in the lighter sleep phases and REM sleep [327]. These

insights are used in [355] where an intelligent alarm clock wakes up the sleeping sub-

ject when he/she transitions through the light sleep phase within 30 minutes before

the set wake-up time. When the subject does not pass through the light sleep phase

in the mentioned time frame, the intelligent alarm clock behaves as any traditional

alarm clock. In that case, the subject is still woken up in an abrupt manner by the

alarm clock. A similar approach is implemented in the ‘iwaku’ product [356]. As a

user-friendly enhancement of current propositions and products [349, 355, 356] where

the subject still gets most of his/her sleeping time, we propose to guide the sleeping

subject into a light sleep phase starting 30 minutes before the set wake-up time and let

the subject wake up only at the preferred wake-up time. This is achieved by adapting

the exposed light intensity level according to the sleeping subject’s unconscious reac-

tion to it. We have not come across any similar propositions in literature or product

implementations.

Wake-up light products follow a fixed luminance curve in the 30 minutes prior to

the set wake-up time, which means the lamp is not responsive to the person’s reaction.

If the sleeping subject is very sensitive to light, he/she would be woken up by the

light earlier than his/her planned wake-up time, and this situation is not desired. By

monitoring the sleeping person’s activity level, a system is proposed and designed to

adapt the lamp’s luminance value to it. Furthermore, we suggest adding more colors

to the wake-up light, for the reason that certain colors (e.g., blue) have more potential

to make people feel alert [357].
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Figure 7.10: System architecture of the proposed wake-up light system.

7.3.1 Proposed wake-up light system

We propose a personalized wake-up system that exposes the sleeping subject to a col-

ored light that is increasing in intensity over time according to the subject’s measured

activity level. Therefore, a system which can detect the sleeping person’s activity, pro-

cess this data, and control the light needs to be designed.

The proposed intelligent wake-up light system is shown in Fig. 7.10. It is composed

of three parts: a camera, a processing unit and remote LivingColors lamps (including

their controller). Inside the processing unit, there are three blocks. The acquisition

system block communicates with the camera. It reads in the picture data at 10 frames

per second from the infrared camera UI-1220SE-M, sends this picture data to the

activity estimation block when requested, and at the same time, the video capturing

block stores all the picture data on the hard disk for further offline analysis. The

activity estimation block reads in picture data from the video capturing block, does the

activity estimation process based on the method proposed in [338] and then sends this

outcome to the lamp controller. For the reason that the employed motion estimation

version usually takes more time than the interval between two frames, a two way

communication is set up between these two blocks. Only after the activity estimation

block has finished its processing work will it request for the next frame. The lamp

controller is implemented based on a proportional-integral-derivative (PID) controller

[358] discussed in Section 7.3.3. PID controllers are widely used in industrial control

systems. A PID controller calculates an ‘error’ value as the difference between a

measured process variable and a desired setpoint. The controller attempts to minimize

the error by adjusting the process control inputs. In this project, the setpoint is not a
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Figure 7.11: System architecture of the open loop perception test to determine reference activity

trajectory.

fixed number but a desired wake-up activity trajectory or reference activity trajectory

over time. A reference activity trajectory is presented in Section 7.3.2 based on a user

study involving four participants. A more personalized reference could be computed

in practice by having the same user evaluate his/her wake-up experience at more

instances and during a longer period of time.

The experiments and choices made to come to an intelligent and personalized wake-

up light illustrate one of many design possibilities of the wake-up light. This work is

meant to show a creative and meaningful sleep enhancement solution. The authors

would like to stress the potential that comes with the activity level information of a

sleeping subject.

In Section 7.3.2, a reference activity trajectory is computed which is used in the

controller for regulating the light exposure towards the sleeping subject. The feedback

control design is described in Section 7.3.3 and results are discussed in Section 7.3.4.

7.3.2 Reference activity trajectory

The aim of this section is to determine a wake-up activity trajectory that corresponds

to a good wake-up experience. The system as shown in Fig. 7.11 is designed in order

to find the reference activity curve for the PID controller to follow. Contrary to

the system architecture shown in Fig. 7.10, we use this open loop system without

a lamp controller block. The acquisition system records the sleeping person’s video

data over night from which the activity levels are derived (dependent variable). The

‘Fixed luminance curve’ program is triggered by the system clock when it reaches 30

minutes before the set wake-up time. It controls the remote lamps’ controller and lets

them follow the luminance curve of the wake-up light which is proven to improve the

average wake-up experience [348].
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Different light colors may have different impact on the user. Therefore, different

colors were included in the user study, however, not with the goal to find one color

working best for all users. A good wake-up experience can be evoked with one color

for user A, whereas another color works best for user B. We increased the chance

to provide a good wake-up experience for each user by exposing the same user to

different colors.

Three important physiological factors and a cultural factor play important roles

in the color perception process. These are

• the closed eyelids filtering the amount of light to pass dependent on the light’s

wavelength [359],

• the number of cone photoreceptors being activated depends on the exposed light

spectrum [360],

• the melanopsin receptors influencing melatonin production dependent on the

light’s wavelength [361–363],

• the different culture conventions resulting in various preferences for colors and

associations with feeling relaxed [364].

Closed eyelids act as an attenuator for blue and green light (estimated transmis-

sion is 0.3%). Red light is transmitted through the eyelids at a level of 5.6% [359].

Cone photoreceptors are photoreceptor cells in the retina of the eye with a varying

sensitivity depending on the frequency of the incoming light. Human beings have

three types of cone cells with maximal absorption efficiency at wavelengths of 420 nm

(blue, S cones), 530 nm (green, M cones) and 560 nm (orange, L cones) [360]. Each of

the three cone classes has an absorption ability across a range of wavelengths which

may have considerable overlap. Additionally, the three cone classes are not equally

represented. The L cones make up 63%, the M cones 31% and the S cones only 6%.

Human beings are thus more responsive to green, yellow and red, and less sensitive

to blue light. The third physiological factor influencing the color perception is given

by the melanopsin receptors which mediate the production of melatonin. Melatonin

is a hormone promoting sleepiness [361]. It has been proven in [362] that blue light

is the most potent color for melatonin suppression. Not neglectable is the cultural

impact on the color preference. Experiments have shown that people have different

preferences for colors they like and colors making them feel relaxed [364]. From the

above it becomes apparent that there is no clear winner for the wake-up color.

Experiment

We conducted a within-subjects design user study to determine the desired wake-up

activity trajectory or reference activity trajectory. Four participants, 3 males and 1

female, not color blind nor suffering from any sleep disorders, were selected for this

home study. Their age ranged from 24 to 29. As discussed in the previous paragraph,
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it is not uncommon for people to have different associations with the same color.

Since we aim for a good wake-up experience and since the color of the light is the first

thing the subjects see when they wake up, we let the test subjects choose in advance

the wake-up light colors (independent variables) that they perceived as alerting and

soothing, respectively. Similarly to [348], every test person did the experiment for 3

or 4 mornings (Tuesday, Wednesday, Thursday and Friday, when people’s circadian

rhythms are more regular). One morning the subject was exposed to the soothing

color, another morning to the alerting color, another morning to the blue color (peak

wavelength at 462 nm) due to its melatonin suppression feature (if it has not yet been

selected) and one morning no light was used. The order of preference was left up

to the test subject. As a wake-up light in this experiment, two Philips LivingColors

(model 6914360PH) lamps were used due to the possibility to set different colors and

to control its luminance output from a laptop. The LivingColors lamps were put on

each side of the bed in order to make sure the light can reach the subject’s face. 30

minutes before the set wake-up time, the lamps would turn on and follow the intensity

curve of a Philips Wake-up Light HF3490. Upon wake-up, a commonly used rating

scale (Karolinska Sleepiness Scale (KSS) according to [365], dependent variable) had

to be completed to self-assess the subjective level of sleepiness at 1 minute, 15, 30, 60,

90 minutes after waking up, respectively, evaluating the sleepiness level subjectively.

A wake-up experience is classified as ‘good’ when the test subject reports to feel

alert (as a criterion grade 3 on the KSS scale was set, where 1 qualifies as extremely

alert and 9 as very sleepy) 30 minutes after waking up and does not decrease in

alertness thereafter. Among the 15 recorded nights, five wake-up experiences satisfied

these criteria. The low-pass filtered activity levels of a test subject’s entire night are

given in Fig. 7.12. An averaging filter with a large window size (6000, corresponding to

approximately 10 minutes) has been applied in order to understand the low-frequent

behavior. It would be rather difficult to generate a high-frequent behavior at the

subject’s side based on light exposure during wake-up. The test subject reacted quite

soon after the lamps turned on at 6.45 a.m. and even more at 6.56 a.m. Approximately

10 minutes later, the activity level drops clearly. This behavior is a typical example

of other test subjects in our experiment and is similarly observed in [348] according to

which people tend to fall asleep again 10 minutes after the artificial light has turned

on. From the corresponding activity curves, an average reference activity trajectory

(see left most column in Fig. 7.16) was computed by applying a mean filter with a

window size of 10 minutes.

The subjects showed a clear preference for selecting the red light as wake-up color,

sometimes as soothing, sometimes as alerting color. Nevertheless, there was no dom-

inating color in the pool of ‘good’ wake-up experiences.

From the obtained results, we conclude that the wake-up light controller should

regulate the light output such that an initial activity phase is stimulated in the sleeping

subject, followed by a ‘quiet’ phase before increasing the light output to a level that

produces rather high activity levels for the definite wake-up.
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Figure 7.12: Low-pass filtered activity level of a test subject’s entire night. An averaging filter with

window size of approximately 10 minutes has been applied in order to understand the

low-frequent behavior. The wake-up lamps are turned on at 6.45 a.m.

7.3.3 Feedback control design

The same gradual changes in light intensity are not perceived in the same way for low

light intensities as for high light intensities. Thus, different reactions are expected

when a subject is exposed to a light increase in low light intensities than to the same

increase in high light intensities. It is crucial for the controller to have a model of the

perceived light so that the lamps are steered with the appropriate intensities. There-

fore, a perception test with five test subjects has been carried out where the perceived

strength is measured of red light (due the strong preference of red light among the

test subjects in the reference activity trajectory user study) gradually intensifying in

a dark room. The eyes were closed while the light intensity was gradually increased

and the test subjects graded the perceived strength of the light from 1 to 9. The

resulting perception model shows that increases up to one third of the total intensity

is felt strongly. Later differences are not perceived that strongly. This is in accordance

with the response function of the human visual system [366]. For the controller, a

reaction model in Fig. 7.13 is deduced from the perceived light strength. It consists

of two linear functions where the first linear graph ends at 67% chance of reaction at

one third of the total luminance, and the second linear graph with a less steep slope

continues up to 100% chance of reaction at full light luminance.

The lamp controller in Fig. 7.10 is implemented as a PID controller where the

differential gain is neglected as its primary purpose is to take influence on short-

term changes (we do not expect the light to have immediate effect on the user).

The PI controller computes the ‘error’ between the reference activity trajectory and

the measured activity level which is given as feedback signal to the controller. The

controller then attempts to decrease this error by adjusting the light intensity output.
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Figure 7.13: Expected reaction model to increasing luminance where 1 indicates the strongest

reaction.

The light intensity output is determined based on the current error (P) and the

accumulation of past errors (I). The designed control loop model is given in Fig. 7.14

and in the first three blocks in Fig. 7.15. The first non-linear gain block in Fig. 7.15

determines the luminance increase/decrease based on the input error, which is added

in the integral block 1/s to the current luminance. The saturation block ensures a

luminance output between 0 and 1 (maximum normalized luminance for the lamp).

These three blocks form the actuator. Originally, a stair case gain was envisioned

instead of the first non-linear block. However, the staircase block is highly non-linear

and can contribute much more to instability. Therefore, we approximated it with a

non-linear gain where the normalized luminance gain is 0.002 if the error is smaller

than 1 and 0.01 when it is larger than 1.

7.3.4 Results

A stability analysis of the control system and simulation results are given in this

section. Therefore, a process model needs to be included in the control loop as is

done with two rightmost blocks in Fig. 7.15. As a simplified model of a sleeping

subject’s reaction, the reaction probability model in Fig. 7.13 is used in the non-

linear gain block following the delay block of 5 seconds. The delay is empirically

determined and accounts for the delayed reaction time due to the sleeping state of
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Figure 7.14: Control loop diagram.

the subjects.

The control loop model is not a linear time-invariant (LTI) system. For the stabil-

ity analysis, the non-linear blocks are approximated with a linear gain. The behavior

of the feedback system is determined by the closed loop transfer function. The transfer

function H(s) is expressed as the ratio of the Laplace transform of the output vari-

able to the Laplace transform of the input variable of the system [358]. The transfer

function of a system such as in Fig. 7.15 with an actuator Ac and a process model

Pm is described as

H(s) =
Ac(s) · Pm(s)

1 +Ac(s) · Pm(s)
. (7.4)

Incorporating the linear gain, an integral part and a delay block leads to

Process model of the 

sleeping subject's reactionActuator

Reference 

activity 

trajectory 

Nonlinear gainSaturationNon-linear gain

_

+ Delay

5 s∑
1

s

 

Figure 7.15: Control loop model where the first three blocks form the actuator and the last two

the process model of the sleeping subject’s reaction.
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H(s) =
0.01· 1s ·1·e

−5s·2
1+0.01· 1s ·1·e−5s·2 =

A· 1s ·e
−5s

1+A· 1s ·e−5s

= A·e−5s

s+A·e−5s ,

(7.5)

with the linear gain A = 0.02 and a delay of 5 s. It consists of the highest gain in the

first non-linear block in Fig. 7.15 (0.01), a gain of 1 from the saturation block and a

maximum gain of 2 from the second non-linear gain block. There are two poles, both

in the left half plane (-0.0224 and -0.7154) indicating a stable system.

Simulation results of the control loop model in Fig. 7.15 are shown in Fig. 7.16.

Three conditions are simulated (one condition per row). The first condition assumes

a sleeping subject to react as given by the process model. The second condition rep-

resents a subject not reacting to the light influence at all, and the third condition

incorporates a person with an initially quick reaction. The columns show leftmost

the reference activity trajectory or set points, in the middle the measured activity

level of the sleeping subject and rightmost the luminance output of the lamps. The

simulation results show a system behaving in the envisioned way for the three condi-

tions. Contrary to the alternative attempt to use a staircase block instead of the first

non-linear gain block, this system does not oscillate in the first condition (see Fig.

7.17).

The final wake-up light system shows promising initial results with a stable con-

trol system that exposes sleeping subjects to the wake-up light with different intensity

progressions depending on their personal wake-up state. A real-time implementation

of the final wake-up light system needs to be validated with test subjects to con-

firm its benefits. Based on self-rated experiences, new personalized reference activity

trajectories can be computed building on multiple nights of the same subject.

7.4 Conclusions

In this paper, we proposed to use movement information of sleeping subjects for a

different application focus than is commonly done. Two lifestyle applications making

use of movement information recorded with a camera sensor and processed with two

novel algorithms are presented. Design considerations as well as algorithmic details

are presented.

The first application illustrates an intelligent baby monitor that informs the par-

ents when their baby is turning in its sleep and when it is sleeping on its belly. Such

an application enables real-time feedback to parents about the sleeping pose of their

baby which can be critical regarding SIDS. Using advanced computer vision tech-

niques and motion analysis we determine the infant’s sleeping pose. The average

accuracy rate of the proposed pose estimation method amounted to 82%, 11% better

than a method based solely on face detection. Our future work will focus on reducing

false detections mostly caused by delayed/instable face detections as the face detector
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Figure 7.16: Rows: Simulation results of three test conditions. (1) Subject reacts as computed

by the process model, (2) subject does not react, (3) subject reacts immediately.

Columns: Set points (reference activity trajectory), measured activity level of the

sleeping subject, luminance output of the wake-up light.
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Figure 7.17: Simulation result of the alternative model with the staircase block and the subject

reacting as predicted by the process model. Note the oscillating luminance output of

the wake-up light.

reacted sensitive to objects with face-like properties such as stuffed animals and dolls

in bed.

The second application describes an intelligent wake-up light adapting the lighting

settings based on the sleeping subject’s movement pattern. Our main contributions

are the introduction of a reference activity trajectory and the design of a controller

for a personalized wake-up experience. The proposed system shows promising ini-

tial results where sleeping subjects are exposed to different wake-up light intensity

progressions depending on their personal wake-up state. In a next step, a real-time

implementation of the system needs to be validated with test subjects to confirm its

benefits. Based on self-rated experiences, new personalized reference activity trajec-

tories can be computed building on multiple nights of the same subject.
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Chapter 8

Conclusion

8.1 Main conclusions

This thesis has addressed video motion analysis advances for the fields of TV picture

enhancement and sleep analysis. The conclusions for each research question RQ are

discussed in the following.

RQ1: How can a large range of parameter values, parameter types, and interaction

of different parameter choices be taken into account in the optimization of motion

estimators for picture rate conversion?

We developed a method to efficiently analyze and validate different parameter

combinations in motion estimation methods. On the example of hierarchical

3-Dimensional Recursive Search (3DRS), we explored the extensive parameter space

of 13000 motion estimators and provided insights with respect to the importance and

the influence of the individual parameters. The variations ranged from parameters

related to different scaling factors and block sizes, parameters influencing spatial

smoothness and convergence speed of vector fields, different candidate structures,

up to multi-scale vs. multi-grid motion estimation. We found that the motion

estimators optimized with the proposed validation scheme are superior to multiple

existing techniques as well as standard 3DRS with regard to performance at a low

computational complexity. The proposed hierarchical motion estimators achieve

a complexity reduction of 38% while outperforming 3DRS on average by 0.7 dB.

This holds particularly for the unconverged state with an improvement of more

than 1 dB and 7% in consistency. Even a sophisticated motion estimation method

with 3-picture estimates is surpassed in the unconverged state (peak signal-to-noise

ratio (PSNR) difference of 0.9 dB). However, in the steady state, this more complex

motion estimator shows a clearly better performance than any of the hierarchical

motion estimators. The benchmark further showed that the non-predictive search

methods such as Full Search are generally unsuitable for picture rate conversion. As

these methods purely optimize for minimal ‘residue’ in the match criterion, they

produce highly inconsistent vector fields. The predictive search methods generally

perform better, as they (implicitly) enforce vector field consistency, with the methods
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Enhanced Predictive Zonal Search (EPZS) and Multiresolution-Spatio-Temporal

Correlations (MRST) achieving the best steady-state PSNR performance (slightly

below the proposed MEs). Among these, when taking the computational complexity

into account, EPZS is identified as the ME achieving the best compromise between

performance and complexity. Yet, its spatial inconsistency (SI) is more than 50%

larger than the SI values of the proposed MEs, and this has a large impact on the

perceived picture quality.

RQ2: Can high quality robust motion estimators be identified while applying

metrics with limited validity?

Since no objective criterion has been accepted in the literature as a standard

metric for evaluating ME methods, we developed a motion estimator design

methodology that can operate with performance measures that model the human

perception poorly. Still, a good correspondence with subjectively perceived picture

quality is achieved. The conducted perception test with subjective scoring of

motion compensated test sequences confirmed that the components of the proposed

methodology are well chosen and yield motion estimators with a good picture

rate conversion performance. We have analyzed sub-parts of the methodology and

gained the following insights. Viewers rated motion estimators that were located

within the computed attractive segment (‘well performing’ range) according to the

proposed methodology significantly higher on quality than the motion estimators

outside the attractive segment. Additionally, the results of the perception test

demonstrated the mismatch between the performance measure scores and the per-

ceived picture quality. No significant difference in perceived picture quality has been

found between motion estimators on the contour line (the curve with optimal mo-

tion estimators according to two performance measures) and other motion estimators.

In the emerging application area of video-based sleep analysis, we have explored

the feasibility of using a camera as a remote and reliable sensor. To analyze movements

during sleep in different situations, we developed several algorithms.

Test data for evaluating the designed methods in this thesis are mostly limited to

a handful of test subjects. Where possible, we have recorded new data (i.e., for move-

ment monitoring compared with actigraphy, shared-bed home monitoring of move-

ments and breathing, adaptive wake-up light, and infant pose detection). Besides

the video signal, we measured the accepted reference signal(s) for sleep monitoring

or made use of available databases containing both the video recording and the cor-

responding reference signal (i.e., recordings of periodic limb movement patients and

night recordings for sleep efficiency computations with video and wrist actigraphy).

The employed evaluation methods are taken either from accepted evaluation

methods in the literature in the sleep research field or from similar type problems

described in other research areas (e.g., computer vision, machine learning). In some

instances, we were forced to design our own evaluation method. When this was
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the case, we included expert annotations to cross-check the quantitative objective

validation.

RQ3: How does video actigraphy compare to wrist actigraphy and is it more

sensitive to movements originating from body parts other than the wrist?

We designed a contactless, off-body video actigraphy system to monitor a sleeping

subject’s movements. With the aim to analyze competitiveness with wrist actigraphy,

we conducted a differentiated comparison of video and wrist actigraphy on 188 move-

ment events (zero, small, medium, large movements) taken from five nights of sleep

(one night of each participant). The two different methods were compared in a Bland-

Altman plot. Furthermore, the sleep efficiency measure computed with video, wrist

actigraphy and PSG were compared with each other.

The Bland-Altman analysis demonstrated that different types of motion from dif-

ferent body parts were detected with video actigraphy and correspond to the refer-

ence wrist actigraphy results in 60% of the cases. The difference in the remaining

movements is for a large part caused by an advantage in the video system, that can

discern more movements than wrist actigraphy. Visual inspection shows that video

actigraphy contains more comprehensive information and is generally more sensitive

than wrist actigraphy. This is especially true for the 20% of body motions correctly

detected by the video actigraphy system and missed by the reference wrist sensor.

Five participants installed the video monitoring system individually at home. On the

sleep dataset of these five participants we found that the video actigraphy method

is sensitive to movements originating from under the blanket, is robust to various

sleeping positions, different illumination conditions, viewing angles, and types of beds

and blankets.

Concerning the estimation of sleep efficiency from activity patterns, the average

PSG to video-based sleep efficiency error amounts to 5.8% vs. 4.5% with wrist

actigraphy. These results can be regarded as quite positive, given that the sleep-

wake classification algorithm has been optimized for wrist actigraphy. In [367],

a video-based sleep monitoring technique is proposed based on frame differencing

and compared with both PSG and wrist actigraphy. Liao and Yang report an 8%

performance difference between video and PSG and a 1% performance difference

between wrist actigraphy and video actigraphy. The achieved performance scores

with our proposed video actigraphy system are in the same range (6% error between

PSG and video, 1% error difference between video and wrist actigraphy). Besides

contributing with a competing video system to state-of-the-art video systems for

sleep analysis, our framework provides the opportunity to reuse motion estimation

results for other sleep analysis solutions. Such potential applications were discussed

in this thesis, e.g., body part movement analysis, periodic limb movement detection,

segmentation of person of interest in a shared-bed environment, infant pose and

turning movement estimation.
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RQ4: What are meaningful descriptors for motion vector clustering given the

large variety of motion vector field properties produced by the varying recording

conditions in sleep monitoring?

In order to discriminate movements of different body parts, we developed an

enhanced K-Means clustering approach for motion vectors. Our multi-distance

clustering algorithm is not only based on spatial distances between data points but

also on motion vector angle and length. When performing ME on sleep sequences,

large environmental variations between recording situations such as viewing angles,

blanket types, zoom factors and illumination conditions, can yield different motion

vector fields for similar movements. Therefore, for each video, an automatic content-

dependent optimization of the dissimilarity measure (based on spatial distances,

and motion vector angle and length) was applied to optimally balance between the

different descriptors. We were able to produce several dissimilarity measures with

promising first clustering results where motion vectors of one body part movement

are assigned to the same cluster. We have performed the evaluation according

to three aspects, namely the clustering ability (inspired by [368]) among different

dissimilarity measures, and the quantitative and qualitative agreement with expert

cluster annotations. The clustering ability counts motion vector pairs not belonging

to the same cluster. With a satisfactory clustering algorithm, a high occurrence rate

is expected for large dissimilarities and a low occurrence rate for small dissimilarities

(as these would ideally occur in the same cluster). As the type of quantitative

evaluation is new to this field, we stress the necessity of qualitative expert ground

truth annotations. Although still at an early stage, this adaptive clustering method

can enable multiple applications in sleep research (e.g., body part segmentation,

person segmentation, sleep disorder analysis).

RQ5: Is a user-convenient camera placement on the bedside table acceptable for

measuring actigraphy and breathing of a sleeping subject in a shared bed?

To realize an easy-to-install system for the end user, we investigated an installa-

tion where the camera is not mounted high up on the wall or ceiling overlooking the

bed. Contrary to other existing methods, the camera is more conveniently placed

on the bedside table of the primary subject who is to be monitored. It can be a

standalone device or integrated in existing bedside table products, such as a wake-up

light. The developed shared bed video system has an average accuracy of 88% at a

precision of 79% for segmentation of the primary subject. It can detect movements

with an accuracy of 85% while outperforming wrist actigraphy at 75% accuracy.

Hence, even in the presence of a bed partner and with a more challenging camera

viewing angle, we were able to reconfirm the findings of the earlier research question

RQ3 that video actigraphy accomplishes comparable results to wrist actigraphy. We

designed a method sensitive to small scale movements so that not only activity levels

are monitored but also the respiratory waveform can be computed. Since also tidal
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volume [369] and respiratory waveform regularity [370] are important characteristics

for sleep, we included the measures sensitivity and positive predictive value for

the peak locations besides the mean breathing rate correspondence. Therefore, the

number and location of the inhalation peaks in the video and reference breathing

waveforms were compared. Our breathing analysis method performed admirably with

an overall sensitivity of 87%, precision of 90%, and a breathing rate correspondence

of 93%, surpassing the results of state-of-the-art video based breathing algorithms.

Given the variation in the reference signals themselves (breathing rate correspondence

of 98%), the results of the proposed video method are promising.

RQ6: How can subject movement be distinguished from moving cast shadows for

the case of periodic limb movements?

To discriminate small movements of a subject from moving cast shadows on a

non-planar and dynamic background, our video processing method integrates motion

detection, motion estimation and texture analysis, efficiently aggregated in a strong

classifier using cascaded AdaBoost. The designed motion detector can deal with fewer

scene assumptions and limitations compared to other shadow detection methods while

using standard hardware. Our proposed approach incorporates a motion detection

cascade which is inspired by moving object tracking and the resemblance between

background and shadow areas.

By enhancing an existing motion detection method fewer false positives are de-

tected in the first stage of the cascade. The output of this first stage is given as

input to the second stage which eliminates misdetections in image areas where tex-

ture remains substantially stable over time. However, the false positives along the

sharp edges due to the folds in the background are barely reduced. When the shadow

moves to another image area and discloses texture which has previously been occluded

due to the non-planar background, there may be sudden texture changes. Therefore,

a motion compensated texture model is introduced which eliminates false detections

where the texture changes over time in an unpredictable manner. The method is

based on the assumption that when subject movement occurs, a motion vector ex-

ists which renders a small difference between an image patch and the corresponding

motion compensated image patch in the previous frame.

The subject motion detection system has been evaluated in a scenario combining

illumination changes and subject motions for the purpose of periodic limb movement

(PLM) detection in sleep (PLMS). The motion detection performance per frame

of the proposed system provides a Matthews Correlation Coefficient improvement

of a factor 2, an increase of 45% in sensitivity and 15% in specificity, on six test

sequences compared to a state-of-the-art method for shadow robust motion detection

[371]. Movement event classification for periodic limb movement detection improved

with the proposed method by a factor of 6 and by a factor of 3 in constant and

highly varying lighting conditions, respectively, compared to state-of-the-art. A 100%

accurate PLM index score was obtained on all eleven PLM patient test sequences.
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Although lighting variations were limited in the PLM patient test sequences, we

infer from these results that video-based PLMS is feasible and can provide a coarse

indication of the PLMI score.

RQ7: How can we detect when a baby is turning from the supine to the prone

sleeping pose?

One of the investigated lifestyle applications is an intelligent baby monitor that

warns parents when their baby is turning in its sleep to its belly. Such an application

enables real-time feedback to parents about the sleeping pose of their baby which can

be critical regarding sudden infant death syndrome (SIDS). By designing a turning

movement detector and combining its information with face detection, we determined

the infant’s sleeping pose. Motion estimation has been useful in detecting a turning

movement. Motion vectors between two consecutive images yield movements in the

orthogonal direction of the body axis. Summation of the projections on the orthogonal

vector was used as a measure for the extent that the body moves along this orthogonal

direction. We combined this information with a Viola-Jones face detector which

is designed to work fast and efficiently on high quality images. By automatically

reducing the video images to a relevant region of interest, we were able to design

a working system by running the face detection algorithm designed for high quality

images on multiple rotations of our small, low quality images of the region of interest.

We computed the accuracy rate per frame with the annotated ground truth in

four infant test sequences recorded at home. Additionally, we benchmarked our

developed method with a face detection solution to understand if robustness is

improved by combining turning movement analysis with face detection. The average

accuracy rate of the proposed pose estimation method amounted to 82%, 11%

better than a method based solely on face detection. In particular, this argues for

using information from both motion and face for infant pose detection. Issues were

observed with an at times instable face detection output (faces of dolls and stuffed

toys were falsely detected as infant faces).

RQ8: How can we create a good wake-up experience with light?

A personalized wake-up system is envisioned that exposes the sleeping subject to

light that is increasing in intensity over time according to the subject’s measured ac-

tivity level. Therefore, we developed a system which can detect the sleeping person’s

activity and controls the light output such that the subject’s behavior corresponds to

an activity trajectory of a favorable wake-up experience. Wake-up experiences were

classified as favorable based on high subjective scoring of multiple wake-up experiences

in an open-loop wake-up light system. Based on the favorable wake-up experiences,

we computed a reference activity trajectory for the wake-up light controller to follow.

We found that it corresponds well with reactions during a good wake-up experience

found by another independent study [372]. The proportional-integral (PI) [373] lamp
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controller computes the ‘error’ between the reference activity trajectory and the mea-

sured activity level which is given as feedback signal to the controller. The controller

then attempts to decrease this error by adjusting the light intensity output. The light

intensity output is determined based on the current error (P) and the accumulation

of past errors (I). In the control loop model we approximated the actuator and a pro-

cess model of the sleeping subject’s reaction. We managed to design a stable control

system with all the poles in the left half plane according to the stability criteria for

linear time-invariant systems [373]. Also simulations were conducted to validate the

choice of the control system elements.

8.2 Future work

In the following sections, we discuss future work for both TV picture enhancement

and sleep analysis.

TV picture enhancement

Besides hierarchical 3DRS, alternative motion estimation method combinations

can be considered. We expect promising results from blending the sophisticated mo-

tion estimator with 3-picture estimates [374] with hierarchical 3DRS or optical flow

motion estimation with hierarchical 3DRS. Performance-critical optical flow param-

eters that are not too costly could yield a low-cost motion estimation method with

superior performance compared to current motion estimators.

In the methodology for robust motion estimation design, more weight is assigned

to the PSNR measure than to the inconsistency measure. A higher impact of

the PSNR measure compared to the inconsistency measure is also observed in the

conducted user study. Regression models for the quality as a function of 1/PSNR

and Inconsistency SI were estimated. These models explained 59%-68% of the

variance in quality. For MEs with lower PSNR (sequences A and C in Chapter

3), the PSNR measure plays the only role in assessing the ME quality. Users may

not see the difference in inconsistency when the PSNR is too low. For sequence

B with the highest PSNR MEs, a slight influence of the spatial inconsistency (SI)

measure became visible (6% improvement compared to PSNR only at 60% explained

variance). A clear degradation in performance is observed for motion estimators with

large SI values. These should be discarded and therefore, the vertical cut-off line

limiting the attractive segment should be well chosen. Still, the regression models

explained only up to 68% of the variance in quality. Other performance measures

should be investigated in future work to increase the explained variance in the ME

quality.

Sleep analysis

The feasibility studies conducted for sleep analysis would need to be followed up
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with larger user validation studies. This would serve the verification of the proposed

methods and insight would be gained into the acceptance level of the proposed system.

The employed sleep-wake classification algorithm has been optimized for wrist

actigraphy. Future work can include the design of a dedicated video sleep-wake clas-

sifier and improve the activity-count method as the amplitude dynamics are clearly

larger than for wrist actigraphy and the time resolution much higher than the usual

minute or 30-second epochs.

Additional descriptors are worth examining for an enhanced multi-distance mo-

tion vector clustering algorithm. Promising descriptors are body part labels and a

temporal descriptor where the cluster history is taken into account. Additionally, a

comparison with a non-adaptive clustering method should be performed to verify the

benefit of the designed content-dependent method.

Regarding the new lifestyle applications, future work for the intelligent baby mon-

itor should focus on reducing false detections mostly caused by delayed/instable face

detections as the face detector reacted sensitively to objects with face-like properties

such as stuffed animals and dolls in bed. The intelligent wake-up light system needs

to be validated in a closed-loop real-time setting with test subjects to confirm its ben-

efits. Based on self-rated experiences, new personalized reference activity trajectories

can be computed building on multiple nights of the same test subject.

Video-based sleep analysis solutions are rather new and therefore the performance

levels to accept such a video system are still undefined. Where possible, we compared

with performance levels of accepted on-body sensors, like wrist actigraphy, respiratory

belts and EMG sensors. More knowledge on acceptance levels for e.g., infant sleeping

pose monitoring, would be beneficial.

With the aim to support the diagnosis of sleep disorders that are expressed with

particular body movement patterns, the approaches described in this thesis can be

extended and tailored to detect relevant and abnormal movement behavior. A video-

based motion analysis system could be especially interesting for parasomnias. Some

parasomnias have a high prevalence in (young) children, such as rhythmic movement

disorder (up to 59%) [375], sleepwalking (up to 17%) [376], and sleep terrors (up

to 35%) [376]. The advent of a video camera integrated in baby monitors poses an

opportunity to process the video of the sleeping child. Features helping in the dif-

ferentiation of parasomnias from nocturnal frontal lobe epilepsy [377, 378] can be

computed, such as number of attacks per night, time of episodes during sleep, dura-

tion of an episode, stereotyped vs. complex motor patterns [379, 380]. In an expert

clinical interview, the history is carefully obtained [380], yet, patient and witness re-

ports may be limited due to the nocturnal occurrences [380, 381]. The inter-observer

reliability in the diagnosis of parasomnias has been investigated in [381]. The diag-

noses are based solely on the interviews according to the minimal diagnostic criteria

provided by the American Academy of Sleep Medicine in the International Classifi-

cation of Sleep Disorders-Revised [382]. The parasomnias sleepwalking, sleep terrors,

nightmares, and REM sleep behavior disorder scored an unsatisfactory inter-observer

reliability. These parasomnias have the expression of complex movement behaviors in
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common where video analysis can aid in the detection of specific features visible in the

recorded images. Moreover, the video-based approach has the potential to assist in

the detection of sleep-related movement disorders [379], such as restless leg syndrome

and periodic limb movement disorder.

Besides reducing manual work of sleep technicians with the automatic analysis of

recorded video streams in the sleep lab, the video system offers a long-term home

monitoring solution that allows for a better understanding of a subject’s sleeping

behavior. The use of home video recordings for an improved diagnosis has been

suggested in [379, 383] since complex movement episodes are less likely to occur in

the sleep laboratory (as observed in e.g. sleep walking in [383] and [379]). Similarly

to the Somnolyzer [384], a clinically validated automatic sleep scoring system, the

automatic home video system could report deviations from the patient’s sleep profile

with respect to movements and breathing. The home monitoring system can analyze

the sleep habits with regard to circadian rhythm disorders. Times of going to bed

and rising can be linked to delayed sleep-phase syndrome and advanced sleep-phase

syndrome [376].

The proposed TV methodology for optimizing motion estimators may provide

an inspiration for similarly complex multi-dimensional optimization tasks with

suboptimal objective metrics in videos of sleep. This may form the next milestone

for video-based sleep algorithms where also the optimization of motion algorithms

may become more important as research matures in this area. By replacing the

performance measures with those relevant for sleep applications, a similar parameter

optimization methodology can be applied to motion estimation for sleep applications.

The above insights and uncertainties lead to research questions that could be

addressed in future work:

Does a low-cost motion estimation method with superior performance exist when

combining the sophisticated HRNM motion estimator or optical flow with hierarchical

3DRS?

Can the insights for the robust motion estimation design methodology be confirmed

by a larger user study?

Can other performance measures than the ones used in this thesis for TV picture

rate conversion increase the explained variance in ME quality?

Would a dedicated sleep/wake classifier based on activity levels derived from the video

signal improve the current sleep/wake classification performance?

Can the multi-distance clustering algorithm be successfully enhanced by additional

descriptors, such as body part identification and/or temporal descriptors for the

cluster history?
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How does the sleep/wake classification performance change when respiration features

extracted from the video signal are added to the video actigraphy features?

What is the benefit of the wake-up light control system when tested on a larger user

group?

Do personalized reference activity trajectories based on multiple night recordings

improve the wake-up experience with the intelligent wake-up light?

Can a face detection method be designed with high specificity for objects with face-like

properties while being sensitive to infant faces, rotations and partial occlusions thereof

by utilizing photoplethysmography-signal recognition (e.g., [385])?

Can a similar optimization method be applied to the motion analysis algorithms for

sleep as is successfully done for TV?

What are the user requirements and acceptance levels of a video monitoring system

for the different challenges (e.g., baby pose monitoring, PLM detection, sleep disorder

detection, sleep/wake classification in the home setting)?
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