1,897 research outputs found

    OPED reconstruction algorithm for limited angle problem

    Full text link
    The structure of the reconstruction algorithm OPED permits a natural way to generate additional data, while still preserving the essential feature of the algorithm. This provides a method for image reconstruction for limited angel problems. In stead of completing the set of data, the set of discrete sine transforms of the data is completed. This is achieved by solving systems of linear equations that have, upon choosing appropriate parameters, positive definite coefficient matrices. Numerical examples are presented.Comment: 17 page

    Evolution PDEs and augmented eigenfunctions. I finite interval

    Get PDF
    The so-called unified method expresses the solution of an initial-boundary value problem for an evolution PDE in the finite interval in terms of an integral in the complex Fourier (spectral) plane. Simple initial-boundary value problems, which will be referred to as problems of type~I, can be solved via a classical transform pair. For example, the Dirichlet problem of the heat equation can be solved in terms of the transform pair associated with the Fourier sine series. Such transform pairs can be constructed via the spectral analysis of the associated spatial operator. For more complicated initial-boundary value problems, which will be referred to as problems of type~II, there does \emph{not} exist a classical transform pair and the solution \emph{cannot} be expressed in terms of an infinite series. Here we pose and answer two related questions: first, does there exist a (non-classical) transform pair capable of solving a type~II problem, and second, can this transform pair be constructed via spectral analysis? The answer to both of these questions is positive and this motivates the introduction of a novel class of spectral entities. We call these spectral entities augmented eigenfunctions, to distinguish them from the generalised eigenfunctions introduced in the sixties by Gel'fand and his co-authors

    On the resolution power of Fourier extensions for oscillatory functions

    Full text link
    Functions that are smooth but non-periodic on a certain interval possess Fourier series that lack uniform convergence and suffer from the Gibbs phenomenon. However, they can be represented accurately by a Fourier series that is periodic on a larger interval. This is commonly called a Fourier extension. When constructed in a particular manner, Fourier extensions share many of the same features of a standard Fourier series. In particular, one can compute Fourier extensions which converge spectrally fast whenever the function is smooth, and exponentially fast if the function is analytic, much the same as the Fourier series of a smooth/analytic and periodic function. With this in mind, the purpose of this paper is to describe, analyze and explain the observation that Fourier extensions, much like classical Fourier series, also have excellent resolution properties for representing oscillatory functions. The resolution power, or required number of degrees of freedom per wavelength, depends on a user-controlled parameter and, as we show, it varies between 2 and \pi. The former value is optimal and is achieved by classical Fourier series for periodic functions, for example. The latter value is the resolution power of algebraic polynomial approximations. Thus, Fourier extensions with an appropriate choice of parameter are eminently suitable for problems with moderate to high degrees of oscillation.Comment: Revised versio

    Adaptive multiquadric collocation for boundary layer problems

    Get PDF
    AbstractAn adaptive collocation method based upon radial basis functions is presented for the solution of singularly perturbed two-point boundary value problems. Using a multiquadric integral formulation, the second derivative of the solution is approximated by multiquadric radial basis functions. This approach is combined with a coordinate stretching technique. The required variable transformation is accomplished by a conformal mapping, an iterated sine-transformation. A new error indicator function accurately captures the regions of the interval with insufficient resolution. This indicator is used to adaptively add data centres and collocation points. The method resolves extremely thin layers accurately with fairly few basis functions. The proposed adaptive scheme is very robust, and reaches high accuracy even when parameters in our coordinate stretching technique are not chosen optimally. The effectiveness of our new method is demonstrated on two examples with boundary layers, and one example featuring an interior layer. It is shown in detail how the adaptive method refines the resolution

    Regularity Theory and Superalgebraic Solvers for Wire Antenna Problems

    Get PDF
    We consider the problem of evaluating the current distribution J(z)J(z) that is induced on a straight wire antenna by a time-harmonic incident electromagnetic field. The scope of this paper is twofold. One of its main contributions is a regularity proof for a straight wire occupying the interval [1,1][-1,1]. In particular, for a smooth time-harmonic incident field this theorem implies that J(z)=I(z)/1z2J(z) = I(z)/\sqrt{1-z^2}, where I(z)I(z) is an infinitely differentiable function—the previous state of the art in this regard placed II in the Sobolev space W1,pW^{1,p}, p>1p>1. The second focus of this work is on numerics: we present three superalgebraically convergent algorithms for the solution of wire problems, two based on Hallén's integral equation and one based on the Pocklington integrodifferential equation. Both our proof and our algorithms are based on two main elements: (1) a new decomposition of the kernel of the form G(z)=F1(z)ln ⁣z+F2(z)G(z) = F_1(z) \ln\! |z| + F_2(z), where F1(z)F_1(z) and F2(z)F_2(z) are analytic functions on the real line; and (2) removal of the end-point square root singularities by means of a coordinate transformation. The Hallén- and Pocklington-based algorithms we propose converge superalgebraically: faster than O(Nm)\mathcal{O}(N^{-m}) and O(Mm)\mathcal{O}(M^{-m}) for any positive integer mm, where NN and MM are the numbers of unknowns and the number of integration points required for construction of the discretized operator, respectively. In previous studies, at most the leading-order contribution to the logarithmic singular term was extracted from the kernel and treated analytically, the higher-order singular derivatives were left untreated, and the resulting integration methods for the kernel exhibit O(M3)\mathcal{O}(M^{-3}) convergence at best. A rather comprehensive set of tests we consider shows that, in many cases, to achieve a given accuracy, the numbers NN of unknowns required by our codes are up to a factor of five times smaller than those required by the best solvers previously available; the required number MM of integration points, in turn, can be several orders of magnitude smaller than those required in previous methods. In particular, four-digit solutions were found in computational times of the order of four seconds and, in most cases, of the order of a fraction of a second on a contemporary personal computer; much higher accuracies result in very small additional computing times

    Modal characterization of the ASCIE segmented optics testbed: New algorithms and experimental results

    Get PDF
    New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications
    corecore