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Abstract

The so-called unified method expresses the solution of an initial-boundary value problem for
an evolution PDE in the finite interval in terms of an integral in the complex Fourier (spectral)
plane. Simple initial-boundary value problems, which will be referred to as problems of type I,
can be solved via a classical transform pair. For example, the Dirichlet problem of the heat
equation can be solved in terms of the transform pair associated with the Fourier sine series.
Such transform pairs can be constructed via the spectral analysis of the associated spatial
operator. For more complicated initial-boundary value problems, which will be referred to as
problems of type II, there does not exist a classical transform pair and the solution cannot
be expressed in terms of an infinite series. Here we pose and answer two related questions:
first, does there exist a (non-classical) transform pair capable of solving a type II problem,
and second, can this transform pair be constructed via spectral analysis? The answer to both
of these questions is positive and this motivates the introduction of a novel class of spectral
entities. We call these spectral entities augmented eigenfunctions, to distinguish them from
the generalised eigenfunctions introduced in the sixties by Gel’fand and his co-authors.

MSC: 35P10 (primary), 35C15, 35G16, 47A70 (secondary).

1 Introduction

Consider the following initial-boundary value problems for the linearized Korteweg-de Vries (LKdV)
equation:
Problem 1

qt(x, t) + qxxx(x, t) = 0 (x, t) ∈ (0, 1)× (0, T ), (1.1a)

q(x, 0) = f(x) x ∈ [0, 1], (1.1b)

q(0, t) = q(1, t) = 0 t ∈ [0, T ], (1.1c)

qx(1, t) = qx(0, t)/2 t ∈ [0, T ]. (1.1d)

Problem 2

qt(x, t) + qxxx(x, t) = 0 (x, t) ∈ (0, 1)× (0, T ), (1.2a)

q(x, 0) = f(x) x ∈ [0, 1], (1.2b)

q(0, t) = q(1, t) = qx(1, t) = 0 t ∈ [0, T ]. (1.2c)
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Figure 1: Contours for the linearized KdV equation.

It is shown in [4, 9, 10, 11] that these problems are well-posed and that their solutions can be
expressed in the form

q(x, t) =
1

2π

{∫
Γ+

+

∫
Γ0

}
eiλx+iλ3t ζ

+(λ)

∆(λ)
dλ+

1

2π

∫
Γ−

eiλ(x−1)+iλ3t ζ
−(λ)

∆(λ)
dλ, (1.3)

where, Γ0 is the circular contour of radius 1
2 centred at 0, Γ± are the boundaries of the domains

{λ ∈ C± : Im(λ3) > 0 and |λ| > 1} as shown on figure 1, α is the root of unity e2πi/3, f̂(λ) is the
Fourier transform ∫ 1

0

e−iλxf(x) dx, λ ∈ C (1.4)

and ζ±(λ), ∆(λ) are defined as follows for all λ ∈ C:
Problem 1

∆(λ) = eiλ + αeiαλ + α2eiα
2λ + 2(e−iλ + αe−iαλ + α2e−iα

2λ), (1.5a)

ζ+(λ) = f̂(λ)(eiλ + 2αe−iαλ + 2α2e−iα
2λ) + f̂(αλ)(αeiαλ − 2αe−iλ)

+ f̂(α2λ)(α2eiα
2λ − 2α2e−iλ), (1.5b)

ζ−(λ) = −f̂(λ)(2 + α2e−iαλ + αe−iα
2λ)− αf̂(αλ)(2− e−iα

2λ)− α2f̂(α2λ)(2− e−iαλ). (1.5c)

Problem 2

∆(λ) = e−iλ + αe−iαλ + α2e−iα
2λ, (1.6a)

ζ+(λ) = f̂(λ)(αe−iαλ + α2e−iα
2λ)− (αf̂(αλ) + α2f̂(α2λ))e−iλ, (1.6b)

ζ−(λ) = −f̂(λ)− αf̂(αλ)− α2f̂(α2λ). (1.6c)

For evolution PDEs defined in the finite interval, x ∈ [0, 1], one may expect that the solution
can be expressed in terms of an infinite series. However, it is shown in [9, 10] that for generic
boundary conditions this is impossible. The solution can be expressed in the form of an infinite
series only for a particular class of boundary value problems; this class is characterised explicitly
in [10]. In particular, problem 2 does not belong to this class, in contrast to problem 1 for which
there exists the following alternative representation:

q(x, t) =
1

2π

∑
σ∈C+:

∆(σ)=0

∫
Γσ

eiλx+iλ3t ζ
+(λ)

∆(λ)
dλ+

1

2π

∑
σ∈C−:
∆(σ)=0

∫
Γσ

eiλ(x−1)+iλ3t ζ
−(λ)

∆(λ)
dλ, (1.7)
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where Γσ is a circular contour centred at σ with radius 1
2 ; the asymptotic formula for σ is given

in [11]. By using the residue theorem, it is possible to express the right hand side of equation (1.7)
in terms of an infinite series over σ.

We note that even for problems for which there does exist a series representation (like prob-
lem 1), the integral representation (1.3) has certain advantages. In particular, it provides an
efficient numerical evaluation of the solution [3].

Generic initial-boundary value problems for which there does not exist an infinite series repre-
sentation will be referred to as problems of type II, in contrast to those problems whose solutions
possess both an integral and a series representation, which will be referred to as problems of type I,

existence of a series representation: type I
existence of only an integral representation: type II.

Transform pair

Simple initial-boundary value problems for linear evolution PDEs can be solved via an appropriate
transfrom pair. For example, the Dirichlet and Neumann problems of the heat equation on the
finite interval can be solved with the transform pair associated with the Fourier-sine and the
Fourier-cosine series, respectively. Similarly, the series that can be constructed using the residue
calculations of the right hand side of equation (1.7) can be obtained directly via a classical transform
pair, which in turn can be constructed via standard spectral analysis.

It turns out that the unified method provides an algorithmic way for constructing a transform
pair tailored for a given initial-boundary value problem. For example, the integral representa-
tion (1.3) gives rise to the following transform pair tailored for solving problems 1 and 2:

f(x) 7→ F (λ) : Fλ(f) =

{∫ 1

0
φ+(x, λ)f(x) dx if λ ∈ Γ+ ∪ Γ0,∫ 1

0
φ−(x, λ)f(x) dx if λ ∈ Γ−,

(1.8a)

F (λ) 7→ f(x) : fx(F ) =

{∫
Γ0

+

∫
Γ+

+

∫
Γ−

}
eiλxF (λ) dλ, x ∈ [0, 1], (1.8b)

where for problems 1 and 2 respectively, φ± are given by

φ+(x, λ) =
1

2π∆(λ)

[
e−iλx(eiλ + 2αe−iαλ + 2α2e−iα

2λ) + e−iαλx(αeiαλ − 2αe−iλ)

+e−iα
2λx(α2eiα

2λ − 2α2e−iλ)
]
, (1.8c)

φ−(x, λ) =
−e−iλ

2π∆(λ)

[
e−iλx(2 + α2e−iαλ + αe−iα

2λ) + αe−iαλx(2− e−iα
2λ)

+α2e−iα
2λx(2− e−iαλ)

]
(1.8d)

and

φ+(x, λ) =
1

2π∆(λ)

[
e−iλx(αe−iαλ + α2e−iα

2λ)− (αe−iαλx + α2e−iα
2λx)e−iλ

]
, (1.8e)

φ−(x, λ) =
−e−iλ

2π∆(λ)

[
e−iλx + αe−iαλx + α2e−iα

2λx
]
. (1.8f)

The alternative representation (1.7) gives rise to the following alternative transform pair tailored
for solving problem 1:

F (λ) 7→ f(x) : fΣ
x (F ) =

∑
σ∈C:

∆(σ)=0

∫
Γσ

eiλxF (λ) dλ, (1.9)
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where Fλ(f) is defined by equations (1.8a), (1.8c) and (1.8d) and Γσ is defined below (1.7).
The validity of these transform pairs is established in section 2. The solution of problems 1

and 2 is then given by

q(x, t) = fx

(
eiλ

3tFλ(f)
)
. (1.10)

Spectral representation

The basis for the classical transform pairs used to solve initial-boundary value problems for linear
evolution PDEs is the expansion of the initial datum in terms of appropriate eigenfunctions of the
spatial differential operator. The transform pair diagonalises the associated differential operator in
the sense of the classical spectral theorem. The main goal of this paper is to show that the unified
method yields an integral representation, like (1.3), which in turn gives rise to a transform pair
like (1.8), and furthermore the elucidation of the spectral meaning of such new transform pairs
leads to new results in spectral theory.

In connection with this, we recall that Gel’fand and coauthors have introduced the concept of
generalised eigenfunctions [6] and have used these eigenfunctions to construct the spectral repre-
sentations of self-adjoint differential operators [5]. This concept is inadequate for analysing the
IBVPs studied here because our problems are in general non-self-adjoint. Although the given
formal differential operator is self-adjoint, the boundary conditions are in general not self-adjoint.

In what follows, we introduce the notion of augmented eigenfunctions. Actually, in order to
analyse type I and type II IBVPs, we introduce two types of augmented eigenfunctions. Type I
are a slight generalisation of the eigenfunctions introduced by Gel’fand and Vilenkin and are also
related with the notion of pseudospectra [2]. However, it appears that type II eigenfunctions
comprise a new class of spectral functionals.

Definition 1.1. Let C be a linear topological space with subspace Φ and let L : Φ→ C be a linear
operator. Let γ be an oriented contour in C and let E = {Eλ : λ ∈ γ} be a family of functionals
Eλ ∈ C ′. Suppose there exist corresponding remainder functionals Rλ ∈ Φ′ and eigenvalues
z : γ → C such that

Eλ(Lφ) = z(λ)Eλ(φ) +Rλ(φ), ∀ φ ∈ Φ, ∀ λ ∈ γ. (1.11)

If ∫
γ

eiλxRλ(φ) dλ = 0, ∀ φ ∈ Φ, ∀ x ∈ [0, 1], (1.12)

then we say E is a family of type I augmented eigenfunctions of L up to integration along γ.
If ∫

γ

eiλx

z(λ)
Rλ(φ) dλ = 0, ∀ φ ∈ Φ, ∀ x ∈ (0, 1), (1.13)

then we say E is a family of type II augmented eigenfunctions of L up to integration along γ.

We note that the class of families of augmented eigenfunctions of a given operator is closed
under union.

Recall that in the theory of pseudospectra it is required that the norm of the functional Rλ(φ) is
finite, whereas in our definition it is required that the integral of exp(iλx)Rλ(φ) along the contour
γ vanishes. Recall that the inverse transform of the relevant transform pair is defined in terms of
a contour integral, thus the above definition is sufficient for our needs.

It will be shown in Section 4 that {Fλ : λ ∈ Γσ ∃ σ ∈ C : ∆(σ) = 0} is a family of type I
augmented eigenfunctions of the differential operator representing the spatial part of problem 1
with eigenvalue λ3. Similarly {Fλ : λ ∈ Γ0} is a family of type I augmented eigenfunctions of the
spatial operator in problem (1.2). However, {Fλ : λ ∈ Γ+ ∪ Γ−} is a family of type II augmented
eigenfunctions.
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Diagonalisation of the operator

Our definition of augmented eigenfunctions, in contrast to the generalized eigenfunctions of Gel’fand
and Vilenkin [6, Section 1.4.5], allows the occurence of remainder functionals. However, the con-
tribution of these remainder functionals is eliminated by integrating over γ. Hence, integrating
equation (1.11) over γ gives rise to a non-self-adjoint analogue of the spectral representation of an
operator.

Definition 1.2. We say that E = {Eλ : λ ∈ γ} is a complete family of functionals Eλ ∈ C ′ if

φ ∈ Φ and Eλφ = 0 ∀ λ ∈ γ ⇒ φ = 0. (1.14)

We now define a spectral representation of the non-self-adjoint differential operators we study
in this paper.

Definition 1.3. Suppose that E = {Eλ : λ ∈ γ} is a system of type I augmented eigenfunctions
of L up to integration over γ, and that∫

γ

eiλxEλLφ dλ converges ∀ φ ∈ Φ, ∀ x ∈ (0, 1). (1.15)

Furthermore, assume that E is a complete system. Then E provides a spectral representation of
L in the sense that∫

γ

eiλxEλLφdλ =

∫
γ

eiλxz(λ)Eλφdλ ∀ φ ∈ Φ, ∀ x ∈ (0, 1). (1.16)

Definition 1.4. Suppose that E(I) = {Eλ : λ ∈ γ(I)} is a system of type I augmented eigenfunctions
of L up to integration over γ(I) and that∫

γ(I)

eiλxEλLφdλ converges ∀ φ ∈ Φ, ∀ x ∈ (0, 1). (1.17)

Suppose also that E(II) = {Eλ : λ ∈ γ(II)} is a system of type II augmented eigenfunctions of L up
to integration over γ(II) and that∫

γ(II)

eiλxEλφdλ converges ∀ φ ∈ Φ, ∀ x ∈ (0, 1). (1.18)

Furthermore, assume that E = E(I) ∪ E(II) is a complete system. Then E provides a spectral
representation of L in the sense that∫

γ(I)

eiλxEλLφdλ =

∫
γ(I)

z(λ)eiλxEλφ dλ ∀ φ ∈ Φ, ∀ x ∈ (0, 1), (1.19a)∫
γ(II)

1

z(λ)
eiλxEλLφ dλ =

∫
γ(II)

eiλxEλφdλ ∀ φ ∈ Φ, ∀ x ∈ (0, 1). (1.19b)

According to Definition 1.3, the operator L is diagonalised (in the traditional sense) by the
complete transform pair (

Eλ,

∫
γ

eiλx · dλ

)
. (1.20)

Hence, augmented eigenfunctions of type I provide a natural extension of the generalised eigen-
functions of Gel’fand & Vilenkin. This form of spectral representation is sufficient to describe the
transform pair associated with problem 1. However, the spectral interpretation of the transform
pair used to solve problem 2 gives rise to augmented eigenfunctions of type II, which are clearly
quite different from the generalised eigenfunctions of Gel’fand & Vilenkin.

Definition 1.4 describes how an operator may be written as the sum of two parts, one of which
is diagonalised in the traditional sense, whereas the other possesses a diagonalised inverse.
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Theorem 1.5. The transform pairs (Fλ, fx) defined in (1.8a)–(1.8d) and (1.8a), (1.8b), (1.8e)
and (1.8f) provide spectral representations of the spatial differential operators associated with prob-
lems 1 and 2 respectively in the sense of Definition 1.4.

Theorem 1.6. The transform pair (Fλ, f
Σ
x ) defined in (1.8a), (1.8c), (1.8d) and (1.9) provides a

spectral representation of the spatial differential operator associated with problem 1 in the sense of
Definition 1.3.

Remark 1. Both problems 1 and 2 involve homogeneous boundary conditions. It is straight-
forward to extend the above analysis for problems with inhomogeneous boundary conditions, see
Section 3.1.

2 Validity of transform pairs

In section 2.1 we will derive the validity of the transform pairs defined by equations (1.8). In
section 2.2 we derive an analogous transform pair for a general IBVP.

2.1 Linearized KdV

Proposition 2.1. Let Fλ(f) and fx(F ) be given by equations (1.8a)–(1.8d). For all f ∈ C∞[0, 1]
such that f(0) = f(1) = 0 and f ′(0) = 2f ′(1) and for all x ∈ (0, 1), we have

fx(Fλ(f)) = f(x). (2.1)

Let Fλ(f) and fx(F ) be given by equations (1.8a), (1.8b), (1.8e) and (1.8f). For all f ∈ C∞[0, 1]
such that f(0) = f(1) = f ′(1) = 0 and for all x ∈ (0, 1),

fx(Fλ(f)) = f(x). (2.2)

Proof. The definition of the transform pair (1.8a)–(1.8d) implies

fx(Fλ(f)) =
1

2π

{∫
Γ+

+

∫
Γ0

}
eiλx

ζ+(λ)

∆(λ)
dλ+

1

2π

∫
Γ−

eiλ(x−1) ζ
−(λ)

∆(λ)
dλ, (2.3)

where ζ± and ∆ are given by equations (1.5) and the contours Γ+, Γ− and Γ0 are shown in figure 1.
The fastest-growing exponentials in the sectors exterior to Γ± are indicated on figure 2a. Each

of these exponentials occurs in ∆ and integration by parts shows that the fastest-growing-terms
in ζ± are the exponentials shown on figure 2a multiplied by λ−2. Hence the ratio ζ+(λ)/∆(λ)
decays for large λ within the sector π/3 6 arg λ 6 2π/3 and the ratio ζ−(λ)/∆(λ) decays for
large λ within the sectors −π 6 arg λ 6 −2π/3, −π/3 6 arg λ 6 0. The relevant integrands
are meromorphic functions with poles only at the zeros of ∆. The distribution theory of zeros of
exponential polynomials [7] implies that the only poles occur within the sets bounded by Γ±.

The above observations and Jordan’s lemma allow us to deform the relevant contours to the
contour γ shown on figure 2b; the red arrows on figure 2a indicate the deformation direction. Hence
equation (2.3) simplifies to

fx(Fλ(f)) =
1

2π

∫
γ

eiλx

∆(λ)

(
ζ+(λ)− e−iλζ−(λ)

)
dλ. (2.4)

Equations (1.5) imply, (
ζ+(λ)− e−iλζ−(λ)

)
= f̂(λ)∆(λ), (2.5)

where f̂ is the Fourier transform of a piecewise smooth function supported on [0, 1]. Hence the
integrand on the right hand side of equation (2.4) is an entire function, so we can deform the
contour onto the real axis. The usual Fourier inversion theorem completes the proof.

The proof for the transform pair (1.8a), (1.8b), (1.8e) and (1.8f) is similar.
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e−iρ

e−iω
2ρ e−iωρ

Γ0

Γ+Γ+

Γ−

γ

Figure 2a Figure 2b

Figure 2: Contour deformation for the linearized KdV equation.

Although
f0(Fλ(φ)) 6= f(0), f1(Fλ(φ)) 6= f(1), (2.6)

the values at the endpoints can be recovered by taking apporpriate limits in the interior of the
interval.

2.2 General

Spatial differential operator

Let C = C∞[0, 1] and Bj : C → C be the following linearly independent boundary forms

Bjφ =

n−1∑
k=0

(
bj kφ

(j)(0) + βj kφ
(j)(1)

)
, j ∈ {1, 2, . . . , n}. (2.7)

Let Φ = {φ ∈ C : Bjφ = 0 ∀ j ∈ {1, 2, . . . , n}} and {B?j : j ∈ {1, 2, . . . , n}} be a set of adjoint
boundary forms with adjoint boundary coefficients b?j k, β?j k. Let S : Φ → C be the differential
operator defined by

Sφ(x) = (−i)n dnφ

dxn
(x). (2.8)

Then S is formally self-adjoint but, in general, does not admit a self-adjoint extension because, in
general, Bj 6= B?j . Indeed, adopting the notation

[φψ](x) = (−i)n
n−1∑
j=0

(−1)j(φ(n−1−j)(x)ψ
(j)

(x)), (2.9)

of [1, Section 11.1] and using integration by parts, we find

((−id/ dx)nφ, ψ) = [φψ](1)− [φψ](0) + (φ, (−i d/ dx)nψ), ∀ φ, ψ ∈ C∞[0, 1]. (2.10)

If φ ∈ Φ, then ψ must satisfy the adjoint boundary conditions in order for [φψ](1) − [φψ](0) = 0
to be valid.
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Initial-boundary value problem

Associated with S and constant a ∈ C, we define the following homogeneous initial-boundary value
problem:

(∂t + aS)q(x, t) = 0 ∀ (x, t) ∈ (0, 1)× (0, T ), (2.11a)

q(x, 0) = f(x) ∀ x ∈ [0, 1], (2.11b)

q(·, t) ∈ Φ ∀ t ∈ [0, 1], (2.11c)

where f ∈ Φ is arbitrary. Only certain values of a are permissible. Clearly a = 0 is nonsensical
and a reparametrisation ensures there is no loss of generality in assuming |a| = 1. The problem
is guaranteed to be ill-posed (for the same reason as the reverse-time heat equation is ill-posed)
without the following further restrictions on a: if n is odd then a = ±i and if n is even then
Re(a) > 0 [4, 10].

A full characterisation of well-posedness for all problems (2.11) is given in [8, 10, 11]; For even-
order problems, well-posedess depends upon the boundary conditions only, but for odd-order it is
often the case that a problem is well-posed for a = i and ill-posed for a = −i or vice versa. Both
problems (1.1) and (1.2) are well-posed.

Definition 2.2. We classify the IBVP (2.11) into three classes using the definitions of [11]:

type I: if the problem for (S, a) is well-posed and the problem for (S,−a) is well-conditioned.

type II: if the problem for (S, a) is well-posed but the problem for (S,−a) is ill-conditioned.

ill-posed otherwise.

We will refer to the operators S associated with cases I and II as operators of type I and type II
respectively.

The spectral theory of type I operators is well understood in terms of an infinite series repre-
sentation. Here, we provide an alternative spectral representation of the type I operators and also
provide a suitable spectral representation of the type II operators.

Transform pair

Let α = e2πi/n. We define the entries of the matrices M±(λ) entrywise by

M+
k j(λ) =

n−1∑
r=0

(−iαk−1λ)rb?j r, (2.12a)

M−k j(λ) =

n−1∑
r=0

(−iαk−1λ)rβ?j r. (2.12b)

Then the matrix M(λ), defined by

Mk j(λ) = M+
k j(λ) +M−k j(λ)e−iα

k−1λ, (2.13)

is a realization of Birkhoff’s adjoint characteristic matrix.
We define ∆(λ) = detM(λ). From the theory of exponential polynomials [7], we know that

the only zeros of ∆ are of finite order and are isolated with positive infimal separation 5ε, say. We
define X l j as the (n− 1)× (n− 1) submatrix of M with (1, 1) entry the (l+ 1, j + 1) entry of M .

8



Figure 3: Definition of the contour Γ.

The transform pair is given by

f(x) 7→ F (λ) : Fλ(f) =

{
F+
λ (f) if λ ∈ Γ+

0 ∪ Γ+
a ,

F−λ (f) if λ ∈ Γ+
0 ∪ Γ+

a ,
(2.14a)

F (λ) 7→ f(x) : fx(F ) =

∫
Γ

eiλxF (λ) dλ, x ∈ [0, 1], (2.14b)

where, for λ ∈ C such that ∆(λ) 6= 0,

F+
λ (f) =

1

2π∆(λ)

n∑
l=1

n∑
j=1

detX l j(λ)M+
1 j(λ)

∫ 1

0

e−iα
l−1λxf(x) dx, (2.15a)

F−λ (f) =
−e−iλ

2π∆(λ)

n∑
l=1

n∑
j=1

detX l j(λ)M−1 j(λ)

∫ 1

0

e−iα
l−1λxf(x) dx, (2.15b)

and the various contours are defined by

Γ = Γ0 ∪ Γa, (2.16a)

Γ0 = Γ+ ∪ Γ−, (2.16b)

Γ+
0 =

⋃
σ∈C+:

∆(σ)=0

C(σ, ε), (2.16c)

Γ−0 =
⋃

σ∈C−:
∆(σ)=0

C(σ, ε), (2.16d)

Γa = Γ+
a ∪ Γ−a , (2.16e)

Γ±a is the boundary of the domain{
λ ∈ C± : Re(aλn) > 0

}
\
⋃
σ∈C:

∆(σ)=0

D(σ, 2ε). (2.16f)

Figure 3 shows the position of the contours for some hypothetical ∆ with zeros at the black
dots. The contour Γ+

0 is shown in blue and the contour Γ−0 is shown in black. The contours Γ+
a

9



and Γ−a are shown in red and green respectively. This case corresponds to a = −i. The figure
indicates the possibility that there may be infinitely many zeros lying in the interior of the sectors
bounded by Γa. For such a zero, Γa has a circular component enclosing this zero with radius 2ε.

The validity of the transform pairs is expressed in the following proposition:

Proposition 2.3. Let S be a type I or type II operator. Then for all f ∈ Φ and for all x ∈ (0, 1),

fx(Fλ(f)) =

{∫
Γ+
0

+

∫
Γ+
a

}
eiλxF+

λ (f) dλ+

{∫
Γ−0

+

∫
Γ−a

}
eiλxF−λ (f) dλ = f(x). (2.17)

Proof. A simple calculation yields

∀ f ∈ C, ∀ S, F+
λ (f)− F−λ (f) =

1

2π
f̂(λ). (2.18)

As shown in [10], the well-posedness of the initial-boundary value problem implies F±λ (f) =
O(λ−1) as λ→∞ within the sectors exterior to Γ±a . The only singularities of F±λ (f) are isolated
poles hence, by Jordan’s Lemma,{∫

Γ+
0

+

∫
Γ+
a

}
eiλxF+

λ (f) dλ+

{∫
Γ−0

+

∫
Γ−a

}
eiλxF−λ (f) dλ

=
∑
σ∈C:

Im(σ)>ε,
∆(σ)=0

{∫
C(σ,ε)

−
∫
C(σ,2ε)

}
eiλxF+

λ (f) dλ+
∑
σ∈C:

Im(σ)<ε,
∆(σ)=0

{∫
C(σ,ε)

−
∫
C(σ,2ε)

}
eiλxF−λ (f) dλ

+

∫
γ

eiλx
(
F+
λ (f)− F−λ (f)

)
dλ, (2.19)

where γ is a contour running along the real line in the increasing direction but perturbed along
circular arcs in such a way that it is always at least ε away from each pole of ∆. The series on
the right hand side of equation (2.19) yield a zero contribution. As f ∈ Φ, its Fourier transform f̂
is an entire function hence, by statement (2.18), the integrand in the final term on the right hand
side of equation (2.19) is an entire function and we may deform γ onto the real line. The validity
of the usual Fourier transform completes the proof.

3 True integral transform method for IBVP

In section 3.1 we will prove equation (1.10) for the transform pairs (1.8). In section 3.2, we establish
equivalent results for general type I and type II initial-boundary value problems.

3.1 Linearized KdV

Proposition 3.1. The solution of problem 1 is given by equation (1.10), with Fλ(f) and fx(F )
defined by equations (1.8a)–(1.8d).

The solution of problem 2 is given by equation (1.10), with Fλ(f) and fx(F ) defined by equa-
tions (1.8a), (1.8b), (1.8e) and (1.8f).

Proof. We present the proof for problem 2. The proof for problem 1 is very similar.
Suppose q ∈ C∞([0, 1] × [0, T ]) is a solution of the problem (1.2). Applying the forward

transform to q yields

Fλ(q(·, t)) =

{∫ 1

0
φ+(x, λ)q(x, t) dx if λ ∈ C+,∫ 1

0
φ−(x, λ)q(x, t) dx if λ ∈ C−.

(3.1)
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The PDE and integration by parts imply the following:

d

dt
Fλ(q(·, t)) =

∫ 1

0

f±(x, λ)qxxx(x, t) dx

= −∂2
xq(1, t)φ

±(1, λ) + ∂2
xq(0, t)φ

±(0, λ) + ∂xq(1, t)∂xφ
±(1, λ)− ∂xq(0, t)∂xφ±(0, λ)

− q(1, t)∂xxφ±(1, λ) + q(0, t)∂xxφ
±(0, λ) + iλ3Fλ(q(·, t)). (3.2)

Rearranging, multiplying by e−iλ
3t and integrating, we find

Fλ(q(·, t)) = eiλ
3tFλ(f) + eiλ

3t
2∑
j=0

(−1)j
[
∂2−j
x φ±(0, λ)Qj(0, λ)− ∂2−j

x φ±(1, λ)Qj(1, λ)
]
, (3.3)

where

Qj(x, λ) =

∫ t

0

e−iλ
3s∂jxq(x, s) ds. (3.4)

Evaluating ∂jxφ
±(0, λ) and ∂jxφ

±(1, λ), we obtain

Fλ(q(·, t)) = eiλ
3tFλ(f) +

eiλ
3t

2π

[
Q1(1, λ)iλ(α− α2)

eiαλ − eiα2λ

∆(λ)

+Q0(0, λ)λ2 2e−iλ − αe−iαλ − α2e−iα
2λ

∆(λ)

+Q0(1, λ)λ2 (1− α2)eiαλ + (1− α)eiα
2λ

∆(λ)
+Q2(0, λ) +Q1(0, λ)iλ

]
, (3.5)

for all λ ∈ C+ and

Fλ(q(·, t)) = eiλ
3tFλ(f) +

eiλ
3t

2π

[
Q1(1, λ)iλ

e−iλ + α2e−iαλ + αe−iα
2λ

∆(λ)

+Q0(0, λ)λ2 3

∆(λ)
−Q0(1, λ)λ2 e

−iλ + e−iαλ + e−iα
2λ

∆(λ)
+Q2(1, λ)e−iλ

]
, (3.6)

for all λ ∈ C−.
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Hence, the validity of the transform pair (Proposition 2.1) implies

q(x, t) =

{∫
Γ0

+

∫
Γ+

+

∫
Γ−

}
eiλx+iλ3tFλ(f) dλ

+
1

2π

{∫
Γ0

+

∫
Γ+

}
eiλx+iλ3t

[
Q1(1, λ)iλ(α− α2)

eiαλ − eiα2λ

∆(λ)

+Q0(0, λ)λ2 2e−iλ − αe−iαλ − α2e−iα
2λ

∆(λ)
+Q0(1, λ)λ2 (1− α2)eiαλ + (1− α)eiα

2λ

∆(λ)

]
dλ

+
1

2π

∫
Γ−
eiλx+iλ3t

[
Q1(1, λ)iλ

e−iλ + α2e−iαλ + αe−iα
2λ

∆(λ)

+Q0(0, λ)λ2 3

∆(λ)
−Q0(1, λ)λ2 e

−iλ + e−iαλ + e−iα
2λ

∆(λ)

]
dλ

+
1

2π

{∫
Γ0

+

∫
Γ+

}
eiλx+iλ3t [Q2(0, λ) +Q1(0, λ)iλ] dλ

+
1

2π

∫
Γ−

eiλ(x−1)+iλ3tQ2(1, λ) dλ. (3.7)

Integration by parts yields
Qj(x, t) = O(λ−3), (3.8)

as λ → ∞ within the region enclosed by Γ±. Hence, by Jordan’s lemma, the final two lines of
equation (3.7) vanish. The boundary conditions imply

Q0(0, λ) = Q0(1, λ) = Q1(1, λ) = 0, (3.9)

so the second, third, fourth and fifth lines of equation (3.7) vanish. Hence

q(x, t) =

{∫
Γ0

+

∫
Γ+

+

∫
Γ−

}
eiλx+iλ3tFλ(f) dλ. (3.10)

The above proof also demonstrates how the transform pair may be used to solve a problem
with inhomogeneous boundary conditions: consider the problem,

qt(x, t) + qxxx(x, t) = 0 (x, t) ∈ (0, 1)× (0, T ), (3.11a)

q(x, 0) = φ(x) x ∈ [0, 1], (3.11b)

q(0, t) = h1(t) t ∈ [0, T ], (3.11c)

q(1, t) = h2(t) t ∈ [0, T ], (3.11d)

qx(1, t) = h3(t) t ∈ [0, T ], (3.11e)

for some given boundary data hj ∈ C∞[0, 1]. Then Q0(0, λ), Q0(1, λ) and Q1(1, λ) are nonzero, but
they are known quantities, namely t-transforms of the boundary data. Substituting these values
into equation (3.7) yields an explicit expression for the solution.

3.2 General

Proposition 3.2. The solution of a type I or type II initial-boundary value problem is given by

q(x, t) = fx

(
e−aλ

ntFλ(f)
)
. (3.12)

12



Lemma 3.3. Let f ∈ Φ. Then there exist polynomials P±f of degree at most n− 1 such that

F+
λ (Sf) = λnF+

λ (f) + P+
f (λ), (3.13a)

F−λ (Sf) = λnF−λ (f) + P−f (λ)e−iλ. (3.13b)

Proof. Let (φ, ψ) be the usual inner product
∫ 1

0
φ(x)ψ(x) dx. For any λ ∈ Γ, we can represent F±λ

as the inner product F±λ (f) = (f, φ±λ ), for the function φ±λ (x), smooth in x and meromorphic in λ,
defined by

φ+
λ (x) =

1

2π∆(λ)

n∑
l=1

n∑
j=1

detX l j(λ)M+
1 j(λ)e−iα

l−1λx, (3.14a)

φ−λ (x) =
−e−iλ

2π∆(λ)

n∑
l=1

n∑
j=1

detX l j(λ)M−1 j(λ)e−iα
l−1λx. (3.14b)

As φ±λ , Sf ∈ C∞[0, 1] and α(l−1)n = 1, equation (2.10) yields

F±λ (Sf) = λnF±λ (f) + [fφ±λ ](1)− [fφ±λ ](0). (3.15)

If B, B? : C∞[0, 1]→ Cn, are the real vector boundary forms

B = (B1, B2, . . . , Bn), B? = (B?1 , B
?
2 , . . . , B

?
n), (3.16)

then the boundary form formula [1, Theorem 11.2.1] guarantees the existance of complimentary
vector boundary forms Bc, B

?
c such that

[fφ±λ ](1)− [fφ±λ ](0) = Bf ·B?cφ±λ +Bcf ·B?φ±λ , (3.17)

where · is the sesquilinear dot product. We consider the right hand side of equation (3.17) as a
function of λ. As Bf = 0, this expression is a linear combination of the functions B?kφ

±
λ of λ,

with coefficients given by the complementary boundary forms.
The definitions of B?k and φ+

λ imply

B?kφ
+
λ =

1

2π∆(λ)

n∑
l=1

n∑
j=1

detX l j(λ)M+
1 j(λ)B?k(e−iα

l−1λ·)

=
1

2π∆(λ)

n∑
l=1

n∑
j=1

detX l j(λ)M+
1 j(λ)Ml k(λ).

But
n∑
l=1

detX l j(λ)Ml k(λ) = ∆(λ)δj k, (3.18)

so

B?kφ
+
λ =

1

2π
M+

1 k(λ). (3.19a)

Similarly,

B?kφ
−
λ =

−e−iλ

2π
M−1 k(λ). (3.19b)

Finally, by equations (2.12), M±1 k are polynomials of order at most n− 1.
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of Proposition 3.2. Let q be the solution of the problem. Then, since q satisfies the partial differ-
ential equation (2.11a),

d

dt
F+
λ (q(·, t)) = −aF+

λ (S(q(·, t))) = −aλnF+
λ (q(·, t))− aP+

q(·,t)(λ), (3.20)

where, by Lemma 3.3, P+
q(·,t) is a polynomial of degree at most n− 1. Hence

d

dt

(
eaλ

ntF+
λ (q(·, t))

)
= −aeaλ

ntP+
q(·,t)(λ). (3.21)

Integrating with respect to t and applying the initial condition (2.11b), we find

F+
λ (q(·, t)) = e−aλ

ntF+
λ (f)− ae−aλ

nt

∫ t

0

eaλ
nsP+

q(·,s)(λ) ds. (3.22)

Similarly,

F−λ (q(·, t)) = e−aλ
ntF−λ (f)− ae−iλ−aλ

nt

∫ t

0

eaλ
nsP−q(·,s)(λ) ds, (3.23)

where P−q(·,t) is another polynomial of degree at most n− 1. The validity of the type II transform

pair, Proposition 2.3, implies

q(x, t) =

∫
Γ+

eiλx−aλ
ntF+

λ (f) dλ+

∫
Γ−

eiλ(x−1)−aλntF−λ (f) dλ

− a
∫

Γ+
0

eiλx−aλ
nt

(∫ t

0

eaλ
nsP+

q(·,s)(λ) ds

)
dλ

− a
∫

Γ−0

eiλ(x−1)−aλnt
(∫ t

0

eaλ
nsP−q(·,s)(λ) ds

)
dλ

− a
∫

Γ+
a

eiλx−aλ
nt

(∫ t

0

eaλ
nsP+

q(·,s)(λ) ds

)
dλ

− a
∫

Γ−a

eiλ(x−1)−aλnt
(∫ t

0

eaλ
nsP−q(·,s)(λ) ds

)
dλ. (3.24)

As P±q(·,s) are polynomials, the integrands

eiλx−aλ
nt

(∫ t

0

eaλ
nsP+

q(·,s)(λ) ds

)
and eiλ(x−1)−aλnt

(∫ t

0

eaλ
nsP−q(·,s)(λ) ds

)
are both entire functions of λ. Hence the third and fourth terms of equation (3.24) vanish. Inte-
gration by parts yields

eiλx−aλ
nt

(∫ t

0

eaλ
nsP+

q(·,s)(λ) ds

)
= O(λ−1) as λ→∞ within the region

enclosed by Γ+
a ,

eiλ(x−1)−aλnt
(∫ t

0

eaλ
nsP−q(·,s)(λ) ds

)
= O(λ−1) as λ→∞ within the region

enclosed by Γ−a .

Hence, by Jordan’s Lemma, the final two terms of equation (3.24) vanish.

Remark 2. The same method may be used to solve initial-boundary value problems with inho-
mogeneous boundary conditions. The primary difference is that statement (2.18) must be replaced
with [10, Lemma 4.1].
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4 Analysis of the transform pair

In this section we analyse the spectral properties of the transform pairs using the notion of aug-
mented eigenfunctions.

4.1 Linearized KdV

Augmented Eigenfunctions

Let S(I) and S(II) be the differential operators representing the spatial parts of the IBVPs 1 and 2,
respectively. Each operator is a restriction of the same formal differential operator, (−i d/dx)3 to
the domain of initial data compatible with the boundary conditions of the problem:

D(S(I)) = {f ∈ C∞[0, 1] : f(0) = f(1) = 0, f ′(0) = 2f ′(1)}, (4.1)

D(S(II)) = {f ∈ C∞[0, 1] : f(0) = f(1) = f ′(1) = 0}. (4.2)

A simple calculation reveals that {Fλ : λ ∈ Γ0,∆(σ) = 0} (where Fλ is defined by equa-
tions (1.8a), (1.8c) and (1.8d)) is a family of type I augmented eigenfunctions of S(I). Indeed,
integration by parts yields

Fλ(S(I)f) =


λ3Fλ(f) +

(
− i

2π
f ′′(0) +

λ

2π
f ′(0)

)
λ ∈ C+,

λ3Fλ(f) +

(
− i

2π
f ′′(1) +

λ

2π
f ′(1)

)
λ ∈ C−.

(4.3)

For any f , the remainder functional is an entire function of λ and Γ0 is a closed, circular contour
hence (1.12) holds.

In the same way {Fλ : λ ∈ Γ0} (where Fλ is defined by equations (1.8a), (1.8c) and (1.8d)) is
a family of type I augmented eigenfunctions of S(II). Indeed

Fλ(S(II)f) =


λ3Fλ(f) +

(
− i

2π
f ′′(0)− λ

2π
f ′(0)

)
λ ∈ C+,

λ3Fλ(f) +

(
− i

2π
f ′′(1)

)
λ ∈ C−,

(4.4)

so the remainder functional is again entire.
Furthermore, the ratio of the remainder functionals to the eigenvalue is a rational function with

no pole in the regions enclosed by Γ± and decaying as λ → ∞. Jordan’s lemma implies (1.13)
hence {Fλ : λ ∈ Γ+ ∪ Γ−} is a family of type II augmented eigenfunctions of the corresponding
S(I) or S(II).

Spectral representation of S(II)

We have shown above that {Fλ : λ ∈ Γ0} is a family of type I augmented eigenfunctions and
{Fλ : λ ∈ Γ+ ∪ Γ−} is a family of type II augmented eigenfunctions of S(II), each with eigenvalue
λ3. It remains to show that the integrals∫

Γ0

eiλxFλ(Sf) dλ,

∫
Γ+∪Γ−

eiλxFλ(f) dλ (4.5)

converge.
A simple calculation reveals that Fλ(ψ) has a removable singularity at λ = 0, for any ψ ∈ C.

Hence the first integral not only converges but evaluates to 0. Thus, the second integral represents
fx(Fλ(f)) = f and converges by Proposition 2.1.

This completes the proof of Theorem 1.5 for problem 2.
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Spectral representation of S(I)

By the above argument, it is clear that the transform pair (Fλ, fx) defined by equations (1.3)
provides a spectral representation of S(I) in the sense of Definition 1.4, verifying Theorem 1.5 for
problem 1.

It is clear that {Fλ : λ ∈ Γ±} is not a family of type I augmented eigenfunctions, so the
representation (1.3) does not provide a spectral representation of S(I) in the sense of Definition 1.3.
However, equation (1.7) does provide a representation in the sense of Definition 1.3. Indeed,
equation (1.7) implies that it is possible to deform the contours Γ± onto⋃

σ∈C:
∆(σ)=0

Γσ.

It is possible to make this deformation without any reference to the initial-boundary value problem.
By an argument similar to that in the proof of Proposition 2.1, we are able to ‘close’ (whereas in
the earlier proof we ‘opened’) the contours Γ± onto simple circular contours each enclosing a single
zero of ∆. Thus, an equivalent inverse transform is given by (1.9). It is clear that, for each σ a
zero of ∆, {Fλ : λ ∈ Γσ} is a family of type I augmented eigenfunctions of S(I) up to integration
over Γσ.

It remains to show that the series ∑
σ∈C:

∆(σ)=0

∫
Γσ

eiλxFλ(Sf) dλ (4.6)

converges. The validity of the transform pair (Fλ, f
Σ
x ) defined by equations (1.8a), (1.8c), (1.8d)

and (1.9) is insufficient to justify this convergence since, in general, Sf may not satisfy the boundary
conditions, so Sf may not be a valid initial datum of the problem. Thus, we prove convergence
directly.

The augmented eigenfunctions Fλ are meromorphic functions of λ, represented in their defini-
tion (1.8a), (1.8c), (1.8d) as the ratio of two entire functions, with singularities only at the zeros
of the exponential polynomial ∆. The theory of exponential polynomials [7] implies that the only
zeros of ∆ are of finite order, so each integral in the series converges and is equal to the residue
of the pole at σ. Furthermore, an asymptotic calculation reveals that these zeros are at 0, αjλk,
αjµk, for each j ∈ {0, 1, 2} and k ∈ N, where

λk =

(
2k − 1

3

)
π + i log 2 +O

(
e−
√

3kπ
)
, (4.7)

µk = −
(

2k − 1

3

)
π + i log 2 +O

(
e−
√

3kπ
)
. (4.8)

Evaluating the first derivative of ∆ at these zeros, we find

∆′(λk) = (−1)k+1
√

2ei
√

3
2 log 2e

√
3π(k−1/6) +O(1), (4.9)

∆′(µk) = (−1)k
√

2e−i
√

3
2 log 2e

√
3π(k−1/6) +O(1). (4.10)

Hence, at most finitely many zeros of ∆ are of order greater than 1. A straightforward calculation
reveals that 0 is a removable singularity. Hence, via a residue calculation and integration by parts,
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we find that we can represent the tail of the series (4.6) in the form

i

∞∑
k=N

{
1

λk∆′(λk)

[
eiλkx ((Sf)(1)Y1(λk)− (Sf)(0)Y0(λk))

+ α2eiαλkx ((Sf)(1)Y1(αλk)− (Sf)(0)Y0(αλk))

−αeiα
2λk(x−1)

(
(Sf)(1)Z1(α2λk)− (Sf)(0)Z0(α2λk)

)]
+

1

µk∆′(µk)

[
eiµkx ((Sf)(1)Y1(µk)− (Sf)(0)Y0(µk))

− α2eiαµk(x−1) ((Sf)(1)Z1(αµk)− (Sf)(0)Z0(αµk))

+αeiα
2µkx

(
(Sf)(1)Y1(α2µk)− (Sf)(0)Y0(α2µk)

)]
+O(k−2)

}
, (4.11a)

where

Y1(λ) = 3 + 2(α2 − 1)eiαλ + 2(α− 1)eiα
2λ, (4.11b)

Y0(λ) = eiλ + eiαλ + eiα
2λ − 4e−iλ + 2e−iαλ + 2e−iα

2λ, (4.11c)

Z1(λ) = αeiαλ + 2e−iαλ + α2eiα
2λ + 2e−iα

2λ, (4.11d)

Z0(λ) = 6 + (α2 − 1)e−iαλ + (α− 1)e−iα
2λ. (4.11e)

As Yj , Zj ∈ O(exp(
√

3πk)), the Riemann-Lebesgue lemma guarantees conditional convergence for
all x ∈ (0, 1).

This completes the proof of Theorem 1.6.

Remark 3. We observed above that 0 is removable singularity of Fλ defined by (1.8a), (1.8c)
and (1.8d). The same holds for Fλ defined by (1.8a), (1.8e) and (1.8f). Hence, for both problems 1
and 2, ∫

Γ0

eiλxFλ(f) dλ = 0 (4.12)

and we could redefine the inverse transform (1.8b) as

F (λ) 7→ f(x) : fx(F ) =

{∫
Γ+

+

∫
Γ−

}
eiλxF (λ) dλ, x ∈ [0, 1]. (4.13)

This permits spectral representations of both S(I) and S(II) via augmented eigenfunctions of type II
only, that is spectral representations in the sense of Definition 1.4 but with E(I) = ∅.

4.2 General

We will show that the transform pair (Fλ, fx) defined by equations (2.14) represents spectral
decomposition into type I and type II augmented eigenfunctions.

Theorem 4.1. Let S be the spatial differential operator associated with a type II IBVP. Then the
transform pair (Fλ, fx) provides a spectral representation of S in the sense of Definition 1.4.

The principal tools for constructing families of augmented eigenfunctions are Lemma 3.3, as
well as the following lemma:

Lemma 4.2. Let F±λ be the functionals defined in equations (2.15).

(i) Let γ be any simple closed contour. Then {F±λ : λ ∈ γ} are families of type I augmented
eigenfunctions of S up to integration along γ with eigenvalues λn.
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(ii) Let γ be any simple closed contour which neither passes through nor encloses 0. Then {F±λ :
λ ∈ γ} are families of type II augmented eigenfunctions of S up to integration along γ with
eigenvalues λn.

(iii) Let 0 6 θ < θ′ 6 π and define γ+ to be the boundary of the open set

{λ ∈ C : |λ| > ε, θ < arg λ < θ′}; (4.14)

similarly, γ− is the boundary of the open set

{λ ∈ C : |λ| > ε, −θ′ < arg λ < −θ}. (4.15)

Both γ+ and γ− have positive orientation. Then {F±λ : λ ∈ γ±} are families of type II
augmented eigenfunctions of S up to integration along γ± with eigenvalues λn.

Proof.

(i) & (ii) By Lemma 3.3, the remainder functionals are analytic in λ within the region bounded
by γ. Cauchy’s theorem yields the result.

(iii) The set enclosed by γ+ is contained within the upper half-plane. By Lemma 3.3,∫
γ+

eiλxλ−n(F+
λ (Sf)− λnF+

λ (f)) dλ =

∫
γ+

eiλxλ−nP+
f (λ) dλ, (4.16)

and the integrand is the product of eiλx with a function analytic on the enclosed set and
decaying as λ → ∞. Hence, by Jordan’s Lemma, the integral of the remainder functionals
vanishes for all x > 0. For γ−, the proof is similar.

Remark 4. If we restrict to the case 0 < θ < θ′ < π then the functionals F±λ form families of type I
augmented eigenfunctions up to integration along the resulting contours but this is insufficient for
our purposes. Indeed, an infinite component of Γa lies on the real axis, but∫ ∞

−∞
eiλxP+

f (λ) dλ (4.17)

diverges and can only be interpreted as a sum of delta functions and their derivatives.

Let (S, a) be such that the associated initial-boundary value problem is well-posed. Then there
exists a complete system of augmented eigenfunctions associated with S, some of which are type I
whereas the rest are type II. Indeed:

Proposition 4.3. The system

F0 = {F+
λ : λ ∈ Γ+

0 } ∪ {F
−
λ : λ ∈ Γ−0 } (4.18)

is a family of type I augmented eigenfunctions of S up to integration over Γ0, with eigenvalues λn.
The system

Fa = {F+
λ : λ ∈ Γ+

a } ∪ {F−λ : λ ∈ Γ−a } (4.19)

is a family of type II augmented eigenfunctions of S up to integration over Γa, with eigenvalues
λn.

Furthermore, if an initial-boundary value problem associated with S is well-posed, then F =
F0 ∪ Fa is a complete system.
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Proof. Considering f ∈ Φ as the initial datum of the homogeneous initial-boundary value problem
and applying Proposition 3.2, we evaluate the solution of problem (2.11) at t = 0,

f(x) = q(x, 0) =

∫
Γ+
0

eiλxF+
λ (f) dλ+

∫
Γ−0

eiλxF−λ (f) dλ. (4.20)

Thus, if F±λ (f) = 0 for all λ ∈ Γ0 then f = 0.
By Lemma 4.2 (i), F0 is a system of type I augmented eigenfunctions up to integration along

Γ+
0 ∪ Γ−0 .

Applying Lemma 3.3 to Fa, we obtain

F±λ (Sf) = λnF±λ (f) +R±λ (f), (4.21)

with
R+
λ (f) = P+

f (λ), R−λ (f) = P−f (λ)e−iλ. (4.22)

By Lemma 4.2 (ii), we can deform the contours Γ±a onto the union of several contours of the form
of the γ± appearing in Lemma 4.2 (iii). The latter result completes the proof.

of Theorem 4.1. Proposition 4.3 establishes completeness of the augmented eigenfunctions and
equations (1.19), under the assumption that the integrals converge. The series of residues∫

Γ0

eiλxF±λ (Sf) dλ = 2πi
∑
σ∈C:

∆(σ)=0

eiσx Res
λ=σ

F±λ (Sf), (4.23)

whose convergence is guaranteed by the well-posedness of the initial-boundary value problem [11].
Indeed, a necessary condition for well-posedness is the convergence of this series for Sf ∈ Φ. But
then the definition of F±λ implies

Res
λ=σ

F±λ (f) = O(|σ|−j−1), where j = max{k : ∀ f ∈ Φ, f (k)(0) = f (k)(1) = 0},

so Resλ=σ Fλ(Sf) = O(|σ|−1) and the Riemann-Lebesgue lemma gives convergence. This verifies
statement (1.17). Theorem 2.3 ensures convergence of the right hand side of equation (1.19b).
Hence statement (1.18) holds.

Remark 5. Suppose S is a type I operator.
By the definition of a type I operator (more precisely, by the properties of an associated type I

IBVP, see [11]), F±λ (φ) = O(λ−1) as λ→∞ within the sectors interior to Γ±a . Hence, by Jordan’s
Lemma, ∫

Γ+
a

eiλxF+
λ (φ) dλ+

∫
Γ−a

eiλxF−λ (φ) dλ = 0. (4.24)

Hence, it is possible to define an alternative inverse transform

F (λ) 7→ f(x) : fΣ
x (F ) =

∫
Γ0

eiλxF (λ) dλ, (4.25)

equivalent to fx. The new transform pair (Fλ, f
Σ
x ) defined by equations (2.14) and (4.25) may be

used to solve an IBVP associated with S hence

F0 = {F+
λ : λ ∈ Γ+

0 } ∪ {F
−
λ : λ ∈ Γ−0 } (4.26)

is a complete system of functionals on Φ.
Moreover, F0 is a family of type I augmented eigenfunctions only. Hence, F0 provides a spectral

representation of S in the sense of Definition 1.3. Via a residue calculation at each zero of ∆, one
obtains a classical spectral representation of S as a series of (generalised) eigenfunctions.

We emphasize that this spectral representation without type II augmented eigenfunctions is
only possible for a type I operator.
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Remark 6. By definition, the point 3ε/2 is always exterior to the set enclosed by Γ. Therefore
introducing a pole at 3ε/2 does not affect the convergence of the contour integral along Γ. This
means that, the system F ′ = {(λ− 3ε/2)−nFλ : λ ∈ Γ} is a family of type I augmented eigenfunc-
tions, thus no type II augmented eigenfunctions are required; equation (1.16) holds for F ′ and the
integrals converge. However, we cannot show that F ′ is complete, so we do not have a spectral
representation of S through the system F ′.

Remark 7. There may be at infinitely many circular components of Γa, each corresponding to
a zero of ∆ which lies in the interior of a sector enclosed by the main component of Γa. It is
clear that in equations (2.17) and (3.12), representing the validity of the transform pair and the
solution of the initial-boundary value problem, the contributions of the integrals around these
circular contours are cancelled by the contributions of the integrals around certain components
of Γ0, as shown in Figure 3. Hence, we could redefine the contours Γa and Γ0 to exclude these
circular components without affecting the validity of Propositions 2.3 and 3.2.

Our choice of Γa is intended to reinforce the notion that S is split into two parts by the
augmented eigenfunctions. In Γ0, we have chosen a contour which encloses each zero of the charac-
terstic determinant individually, since each of these zeros is a classical eigenvalue, so F0 corresponds
to the set of all generalised eigenfunctions. Hence Fa corresponds only to the additional spectral
objects necessary to form a complete system.

Remark 8. As Γa encloses no zeros of ∆, we could choose a R > 0 and redefine Γ±aR as the
boundary of {

λ ∈ C± : |λ| > R, Re(aλn) > 0
}
\
⋃
σ∈C:

∆(σ)=0

D(σ, 2ε), (4.27)

deforming Γa over a finite region. By considering the limit R→∞, we claim that Fa can be seen
to represent spectral objects with eigenvalue at infinity.

Remark 9. By Lemma 4.2(ii), for all σ 6= 0 such that ∆(σ) = 0, it holds that {F±λ : λ ∈ C(σ, ε)}
are families of type II augmented eigenfunctions. Hence, the only component of Γ0 that may not
be a family of type II augmented eigenfunctions is C(0, ε). If

γ+
a = Γ+

a ∪
⋃

σ∈C+:
σ 6=0,

∆(σ)=0

C(σ, ε), (4.28a)

γ−a = Γ−a ∪
⋃

σ∈−C−:
∆(σ)=0

C(σ, ε), (4.28b)

γ0 = C(0, ε), (4.28c)

then
F ′a = {F+λ : λ ∈ γ+

a } ∪ {F−λ : λ ∈ γ−a } (4.29)

is a family of type II augmented eigenfunctions and

F ′0 = {F+λ : λ ∈ γ0} (4.30)

is a family of type I augmented eigenfunctions of S. For S type I or type II, F ′a ∪ F ′0 provides
a spectral representation of S in the sense of Definition 1.4, with minimal type I augmented
eigenfunctions. (Note that it is possible to cancel certain circular components of γ±a .)

Assume that 0 is a removable singularity of F+
λ . Then F ′a provides a spectral representation of

S in the sense of Definition 1.4 with E(I) = ∅. We have already identified the operators S(I) and
S(II) for which this representation is possible (see Remark 3).
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Remark 10. The validity of Lemmata 3.3 and 4.2 does not depend upon the class to which S
belongs. Hence, even if all IBVPs associated with S are ill-posed, it is still possible to construct
families of augmented eigenfunctions of S. However, without the well-posedness of an associated
initial-boundary value problem, an alternative method is required in order to analyse the complete-
ness of these families. Without completeness results, it is impossible to discuss the diagonalisation
by augmented eigenfunctions.

5 Conclusion

In the classical separation of variables, one makes a particular assumption on the form of the
solution. For evolution PDEs in one dimension, this is usually expressed as

“Assume the solution takes the form q(x, t) = τ(t)ξ(x) for all (x, t) ∈ [0, 1]× [0, T ] for
some ξ ∈ C∞[0, 1] and τ ∈ C∞[0, T ].”

However, when applying the boundary conditions, one superimposes infinitely many such solutions.
So it would be more accurate to use the assumption

“Assume the solution takes the form q(x, t) =
∑
m∈N τm(t)ξm(x) for some sequences of

functions ξm ∈ C∞[0, 1] which are eigenfunctions of the spatial differential operator,
and τm ∈ C∞[0, T ]; assume that the series converges uniformly for (x, t) ∈ [0, 1]×[0, T ].”

For this ‘separation of variables’ scheme to yield a result, we require completeness of the eigen-
functions (ξm)m∈N in the space of admissible initial data.

The concept of generalized eigenfunctions, as presented by Gelfand and coauthors [5, 6] allows
one to weaken the above assumption in two ways: first, it allows the index set to be uncountable,
hence the series is replaced by an integral. Second, certain additional spectral functions, which are
not genuine eigenfunctions, are admitted to be part of the series.

An integral expansion in generalized eigenfunctions is insufficient to describe the solutions of
IBVPs obtained via the unified transform method for type II problems. In order to describe these
IBVPs, we have introduced type II augmented eigenfunctions. Using these new eigenfunctions, the
assumption is weakened further:

“Assume the solution takes the form q(x, t) =
∫
m∈Γ

τm(t)ξm(x) dm for some functions
ξm ∈ C∞[0, 1], which are type I and II augmented eigenfunctions of the spatial differ-
ential operator, and τm ∈ C∞[0, T ]; assume that the integral converges uniformly for
(x, t) ∈ [0, 1]× [0, T ].”

It appears that it is not possible to weaken the above assumption any further. Indeed, it has
been established in [4] that the unified method provides the solution of all well-posed problems.
The main contribution of this paper is to replace the above assumption with the following theorem:

“Suppose q(x, t) is the C∞ solution of a well-posed two-point linear constant-coefficient
initial-boundary value problem. Then q(x, t) =

∫
m∈Γ

τm(t)ξm(x) dm, where ξm ∈
C∞[0, 1] are type I and II augmented eigenfunctions of the spatial differential operator
and τm ∈ C∞[0, T ] are some coefficient functions. The integral converges uniformly for
(x, t) ∈ [0, 1]× [0, T ].”

In summary, both type I and type II IBVPs admit integral representations like (1.3), which give
rise to transform pairs associated with a combination of type I and type II augmented eigenfunc-
tions. For type I IBVPs, it is possible (by appropriate contour deformations) to obtain alternative
integral representations like (1.7), which give rise to transform pairs associated with only type I
augmented eigenfunctions. Furthermore, in this case, a residue calculation yields a classical series
representation, which can be associated with Gel’fand’s generalised eigenfunctions.

The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7-REGPOT-2009-1) under grant agreement n◦ 245749.
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