1,741 research outputs found

    BiopSym: a simulator for enhanced learning of ultrasound-guided prostate biopsy

    Full text link
    This paper describes a simulator of ultrasound-guided prostate biopsies for cancer diagnosis. When performing biopsy series, the clinician has to move the ultrasound probe and to mentally integrate the real-time bi-dimensional images into a three-dimensional (3D) representation of the anatomical environment. Such a 3D representation is necessary to sample regularly the prostate in order to maximize the probability of detecting a cancer if any. To make the training of young physicians easier and faster we developed a simulator that combines images computed from three-dimensional ultrasound recorded data to haptic feedback. The paper presents the first version of this simulator

    Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours

    Full text link
    Background The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. Methods Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a ‘remote centre of motion’ (RCM) wrist and a non-RCM wrist, which is preferred in real applications. Results The needle placement accuracies were < 3 mm for both wrists in the mechanical phantom experiment. The target accuracy for the robot with the RCM wrist was improved to 1.6 ± 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 ± 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. Conclusion The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours. Copyright © 2010 John Wiley & Sons, Ltd.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78054/1/313_ftp.pd

    Validation of percutaneous puncture trajectory during renal access using 4D ultrasound reconstruction

    Get PDF
    "Progress in Biomedical Optics and Imaging, vol. 16, nr. 43"Background: An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging for security assessment of the percutaneous puncture trajectory (PPT). Methods: A PPT is first generated from the skin puncture site towards an anatomical target, using the information retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render transfer functions were used. Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3 frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT. Conclusions: The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.The authors acknowledge to Foundation for Science and Technology (FCT) - Portugal for the fellowships with references: SFRH/BD/74276/2010.info:eu-repo/semantics/publishedVersio

    Biomechanical Modeling and Inverse Problem Based Elasticity Imaging for Prostate Cancer Diagnosis

    Get PDF
    Early detection of prostate cancer plays an important role in successful prostate cancer treatment. This requires screening the prostate periodically after the age of 50. If screening tests lead to prostate cancer suspicion, prostate needle biopsy is administered which is still considered as the clinical gold standard for prostate cancer diagnosis. Given that needle biopsy is invasive and is associated with issues including discomfort and infection, it is desirable to develop a prostate cancer diagnosis system that has high sensitivity and specificity for early detection with a potential to improve needle biopsy outcome. Given the complexity and variability of prostate cancer pathologies, many research groups have been pursuing multi-parametric imaging approach as no single modality imaging technique has proven to be adequate. While imaging additional tissue properties increases the chance of reliable prostate cancer detection and diagnosis, selecting an additional property needs to be done carefully by considering clinical acceptability and cost. Clinical acceptability entails ease with respect to both operating by the radiologist and patient comfort. In this work, effective tissue biomechanics based diagnostic techniques are proposed for prostate cancer assessment with the aim of early detection and minimizing the numbers of prostate biopsies. The techniques take advantage of the low cost, widely available and well established TRUS imaging method. The proposed techniques include novel elastography methods which were formulated based on an inverse finite element frame work. Conventional finite element analysis is known to have high computational complexity, hence computation time demanding. This renders the proposed elastography methods not suitable for real-time applications. To address this issue, an accelerated finite element method was proposed which proved to be suitable for prostate elasticity reconstruction. In this method, accurate finite element analysis of a large number of prostates undergoing TRUS probe loadings was performed. Geometry input and displacement and stress fields output obtained from the analysis were used to train a neural network mapping function to be used for elastopgraphy imaging of prostate cancer patients. The last part of the research presented in this thesis tackles an issue with the current 3D TRUS prostate needle biopsy. Current 3D TRUS prostate needle biopsy systems require registering preoperative 3D TRUS to intra-operative 2D TRUS images. Such image registration is time-consuming while its real-time implementation is yet to be developed. To bypass this registration step, concept of a robotic system was proposed which can reliably determine the preoperative TRUS probe position relative to the prostate to place at the same position relative to the prostate intra-operatively. For this purpose, a contact pressure feedback system is proposed to ensure similar prostate deformation during 3D and 2D image acquisition in order to bypass the registration step

    Identification of the Elastic Modulus of an Organ Model Using Reactive Force and Ultrasound Image

    Get PDF
    制度:新 ; 報告番号:甲3418号 ; 学位の種類:博士(工学) ; 授与年月日:2011/7/28 ; 早大学位記番号:新574

    Full 3D motion control for programmable bevel-tip steerable needles

    Get PDF
    Minimally invasive surgery has been in the focus of many researchers due to its reduced intra- and post-operative risks when compared to an equivalent open surgery approach. In the context of minimally invasive surgery, percutaneous intervention, and particularly, needle insertions, are of great importance in tumour-related therapy and diagnosis. However, needle and tissue deformation occurring during needle insertion often results in misplacement of the needles, which leads to complications, such as unsuccessful treatment and misdiagnosis. To this end, steerable needles have been proposed to compensate for placement errors by allowing curvilinear navigation. A particular type of steerable needle is the programmable bevel-tip steerable needle (PBN), which is a bio-inspired needle that consists of relatively soft and slender segments. Due to its flexibility and bevel-tip segments, it can navigate through 3D curvilinear paths. In PBNs, steering in a desired direction is performed by actuating particular PBN segments. Therefore, the pose of each segment is needed to ensure that the correct segment is actuated. To this end, in this thesis, proprioceptive sensing methods for PBNs were investigated. Two novel methods, an electromagnetic (EM)-based tip pose estimation method and a fibre Bragg grating (FBG)-based full shape sensing method, were presented and evaluated. The error in position was observed to be less than 1.08 mm and 5.76 mm, with the proposed EM-based tip tracking and FBG-based shape reconstruction methods, respectively. Moreover, autonomous path-following controllers for PBNs were also investigated. A closed-loop, 3D path-following controller, which was closed via feedback from FBG-inscribed multi-core fibres embedded within the needle, was presented. The nonlinear guidance law, which is a well-known approach for path-following control of aerial vehicles, and active disturbance rejection control (ADRC), which is known for its robustness within hard-to-model environments, were chosen as the control methods. Both linear and nonlinear ADRC were investigated, and the approaches were validated in both ex vivo brain and phantom tissue, with some of the experiments involving moving targets. The tracking error in position was observed to be less than 6.56 mm.Open Acces

    Improving needle visibility in LED-based photoacoustic imaging using deep learning with semi-synthetic datasets

    Get PDF
    Photoacoustic imaging has shown great potential for guiding minimally invasive procedures by accurate identification of critical tissue targets and invasive medical devices (such as metallic needles). The use of light emitting diodes (LEDs) as the excitation light sources accelerates its clinical translation owing to its high affordability and portability. However, needle visibility in LED-based photoacoustic imaging is compromised primarily due to its low optical fluence. In this work, we propose a deep learning framework based on U-Net to improve the visibility of clinical metallic needles with a LED-based photoacoustic and ultrasound imaging system. To address the complexity of capturing ground truth for real data and the poor realism of purely simulated data, this framework included the generation of semi-synthetic training datasets combining both simulated data to represent features from the needles and in vivo measurements for tissue background. Evaluation of the trained neural network was performed with needle insertions into blood-vessel-mimicking phantoms, pork joint tissue ex vivo and measurements on human volunteers. This deep learning-based framework substantially improved the needle visibility in photoacoustic imaging in vivo compared to conventional reconstruction by suppressing background noise and image artefacts, achieving 5.8 and 4.5 times improvements in terms of signal-to-noise ratio and the modified Hausdorff distance, respectively. Thus, the proposed framework could be helpful for reducing complications during percutaneous needle insertions by accurate identification of clinical needles in photoacoustic imaging

    Image moments-based ultrasound visual servoing

    Get PDF
    International audienceA new visual servoing method based on B-mode ultrasound images is proposed to automatically control the motion of a 2D ultrasound probe held by a medical robot in order to reach a desired B-scan image of an object of interest. In this approach, combinations of image moments extracted from the current observed object cross-section are used as feedback visual features. The analytical form of the interaction matrix, relating the time variation of these visual features to the probe velocity, is derived and used in the control law. Simulations performed with a static ultrasound volume containing an egg-shaped object, and in-vitro experiments using a robotized ultrasound probe that interacts with a rabbit heart immersed in water, show the validity of this new approach and its robustness with respect to modeling and measurements errors
    corecore