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A B S T R A C T

Photoacoustic imaging has shown great potential for guiding minimally invasive procedures by accurate
identification of critical tissue targets and invasive medical devices (such as metallic needles). The use
of light emitting diodes (LEDs) as the excitation light sources accelerates its clinical translation owing
to its high affordability and portability. However, needle visibility in LED-based photoacoustic imaging is
compromised primarily due to its low optical fluence. In this work, we propose a deep learning framework
based on U-Net to improve the visibility of clinical metallic needles with a LED-based photoacoustic and
ultrasound imaging system. To address the complexity of capturing ground truth for real data and the
poor realism of purely simulated data, this framework included the generation of semi-synthetic training
datasets combining both simulated data to represent features from the needles and in vivo measurements
for tissue background. Evaluation of the trained neural network was performed with needle insertions into
blood-vessel-mimicking phantoms, pork joint tissue ex vivo and measurements on human volunteers. This
deep learning-based framework substantially improved the needle visibility in photoacoustic imaging in vivo
compared to conventional reconstruction by suppressing background noise and image artefacts, achieving
5.8 and 4.5 times improvements in terms of signal-to-noise ratio and the modified Hausdorff distance,
respectively. Thus, the proposed framework could be helpful for reducing complications during percutaneous
needle insertions by accurate identification of clinical needles in photoacoustic imaging.
. Introduction

Ultrasound (US) imaging is widely used for guiding minimally
nvasive percutaneous procedures such as peripheral nerve blocks [1],
umour biopsy [2] and fetal blood sampling [3]. During these pro-
edures, a metallic needle is inserted percutaneously into the body
owards the target under real-time US guidance. Accurate and efficient
dentification of the target and the needle are of paramount importance
o ensure the efficacy and safety of the procedure. Despite a number
f prominent advantages associated with US imaging such as its real-
ime imaging capability, high affordability and accessibility, it suffers
rom intrinsically low soft tissue contrast that sometimes results in in-
ufficient visibility of critical tissue structures such as nerves and small
lood vessels. Moreover, visibility of clinical needles with US imaging
s strongly dependent on the insertion angle and depth of the needle.

∗ Corresponding author.
E-mail address: wenfeng.xia@kcl.ac.uk (W. Xia).

With steep insertion angles, US reflections can be readily outside the
transducer aperture, leading to poor needle visibility. Loss of visibility
of tissue targets or the needle can cause significant complications [4].

Various methods have been developed for enhancing needle visu-
alisation with US imaging, including echogenic needles [5], Doppler
imaging [6], electromagnetic tracking [7], and ultrasonic needle track-
ing [8–10]. Although promising results have been reported, these meth-
ods usually require specialised equipment. Image-based needle tracking
algorithms leveraging linear features of needles in US images have also
been investigated such as random sample consensus [11,12], Hough
Transform [13,14], line filtering [15,16], and graph cut [17]. However,
it is challenging to automate these algorithms on US images with a
variety of tissue backgrounds and needle contrasts. Deep learning (DL)
based models especially convolutional neural networks have demon-
strated competitive robustness and accuracy [18–20], however, large
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clinical datasets with fine annotations are usually required for clinical
applications but difficult to obtain.

Photoacoustic (PA) imaging has been of growing interest in the past
two decades for its various potential preclinical and clinical applica-
tions, owing to its unique ability to resolve spectroscopic signatures
of tissues at high spatial resolution and depths [21–23]. In recent
years, several research groups have proposed the combination of US
and PA imaging for guiding minimally invasive procedures by of-
fering complementary information to each other, with US imaging
providing tissue structural information and PA imaging identifying
critical tissue structures and invasive surgical devices such as metal-
lic needles [24–27]. Recently, laser diodes (LDs) and light emitting
diodes (LEDs) have shown promising results as an alternative to solid-
stated lasers that are commonly used as PA excitation sources due to
their favourable portability and affordability, which is of advantage to
clinical translation [28–30].

DL has been demonstrated as a powerful tool for signal and image
processing, leading to remarkable successes in medical imaging [31–
34]. DL-based approaches have been proposed for PA imaging en-
hancement, especially photoacoustic tomography [35], where they pro-
cess raw channel data for image reconstruction [36–38] and enhance-
ment [39,40] as well as reconstructed images for image segmentation
or classification [41,42].

DL has been recently used by several research groups for improv-
ing the imaging quality of LED-based PA/US imaging systems. Anas
et al. [43] exploited the use of a combination of a convolutional neural
network (CNN) and a recurrent neural network (RNN) to enhance
the quality of PA images by leveraging both the spatial features and
temporal information in repeated PA image acquisitions. Kuniyil Ajith
Singh et al. [29] proposed a U-Net model to improve the SNR by
training a neural network using PA images acquired by an improved PA
imaging system with a higher laser energy and broadband ultrasound
transducers. The pre-trained model was proven effective with LED-
based PA images acquired from phantoms. Hariri et al. [44] proposed
a multi-level wavelet-CNN to enhance noisy PA images associated with
low fluence LED illumination by learning from PA images acquired with
high fluence illumination sources. Enhancements were achieved on un-
seen in vivo data with improved image contrast. Most recently, Kalloor
Joseph et al. [45] developed a generative adversarial network (GAN)-
based framework for PA image reconstruction to mitigate the impact of
the limited aperture and bandwidth of the ultrasound transducer. The
proposed model was trained on simulated images from artificial blood
vessels and tested on in vivo measurements of the human forearm. The
proposed approach was able to remove artefacts caused by the limited
bandwidth and detection view.

Although prominent attention has been given to improving the visu-
alisation of tissue structures, notably, not much effort has been made to
improve the visualisation of invasive medical devices in PA imaging. In
this work, we proposed a DL-based framework to enhance the visibility
of clinical needles with PA imaging for guiding minimally invasive
procedures. As clinical needles have relatively simple geometries whilst
background biological tissues such as blood vessels are complex, as
opposed to using purely synthetic data [46–49], a hybrid method was
proposed for generating semi-synthetic datasets [50]. The DL model
was trained and validated using such semi-synthetic datasets and blind
to the test data obtained from tissue-mimicking phantoms, ex vivo tissue
and human fingers in vivo. The applicability of the proposed model on
diverse in vivo image data was further assessed on PA video sequences
and compared with the standard Hough Transform. To the best of our
knowledge, this is the first work that exploits DL for improving needle
visualisation with PA imaging as well as utilises semi-synthetic datasets
for DL in PA imaging.
2
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2. Material and methods

2.1. System description

A commercial LED-based PA/US imaging system (AcousticX, CY-
BERDYNE INC, Tsukuba, Japan) was used for acquiring experimental
data. Detailed description of it can be found elsewhere [51]. Briefly,
PA excitation is provided by two LED arrays that sandwich a linear
array US probe at a fixed angle. Each array consists of four rows of
LEDs with 36 elements of 1 mm × 1 mm on each row. The LED arrays
can be driven at different pulse repetition frequencies from 1 kHz to
4 kHz, and the maximum pulse energy from each array is 200 μJ. The
LED pulse duration is controllable between 30 ns to 150 ns. In this
study, a pulse width of 70 ns at 850 nm was selected for optimal energy
efficiency [52,53]. The illumination area formed by the LED arrays was
approximately a rectangle (50 mm × 7 mm), resulting in an optical
fluence of 0.11 mJ/cm2 at the maximum pulse energy of 400 μJ. The
US probe has 128 elements over a linear array distance of 40.3 mm,
with each element having a pitch of 0.315 mm, a central frequency of
7 MHz, and a −6 dB fractional bandwidth of 80.9%.

Radio-frequency (RF) data for PA and US imaging were collected
simultaneously from 128 channels on the probe with sampling rates
of 40 MHz and 20 MHz, respectively. Interleaved PA and US imaging
can be performed in real-time with image reconstruction performed
on a graphics processing unit (GPU). Meanwhile, a maximum of 1536
PA frames and 1536 US frames corresponding to a total duration of
20 s could be saved in memory at one time, available for offline
reconstruction.

2.2. Semi-synthetic dataset generation

The process of semi-synthetic dataset generation comprised three
main steps as shown in Fig. 1: (1) acquisition of in vivo data to account
for background PA signals originated from biological tissue; (2) gener-
ation of synthetic sensor data from needles; (3) image reconstruction
with raw channel data combining synthetic and measurement data.

In vivo data for background vasculature were collected by imaging
the fingers of 13 healthy human volunteers using AcousticX. Exper-
iments on human volunteers were approved by the King’s College
London Research Ethics Committee (study reference: HR-18/19-8881).
For each measurement, a total of 1536 PA frames and 1536 US frames
were saved to the hard drive of the system’s workstation for offline
reconstruction. The RF data of one PA or US frame was a 2D matrix
with dimensions of 1024 × 128. The first 150 (out of 1024) time steps
were zeroed to remove strong LED-induced noise that spanned across
the upper 5 mm depth in PA and US images. Averaging over 128 frames
was implemented for suppressing random noise in the background.
Reconstructed PA and US images corresponded to a field-of-view of
40.3 mm (X) × 39.4 mm (Z) according to the geometry of the linear
ransducer and the total number of time steps (1024) at a 40 MHz
ampling rate.

Simulations of the sensor data originated from the needle were
erformed using the k-Wave toolbox [54]. Initial pressure distribution
aps were created by simulating the optical fluence distributions on

he needle shaft using Monte Carlo simulations [55]. A 40.0 mm (X)
40.0 mm (Z) region with a grid size of 0.1 mm was constructed

o represent the background tissue. A uniform refractive index, op-
ical scattering coefficient and anisotropy of 1.4, 10 mm−1 and 0.9,
espectively, were assigned to this region [56]. Three optical absorption
oefficients of 1 mm−1, 1.5 mm−1, 2 mm−1 accounted for the variations
n standard tissue. A homogeneous photo beam with a finite size of
8.4 mm was applied to the surface of the simulation area. Each
imulation was run for around 10 min with approximate 100,000
hoton packets.

A linear array of 128 US transducer elements (with a pitch of
.315 mm over a total length of 40.3 mm) were assigned to a for-

ard model in k-Wave to receive the generated PA signals from the
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Fig. 1. Flowchart illustration of the process of semi-synthetic training dataset generation. Top row: acquisition of sensor data from human finger vasculature in vivo as background.
Bottom row: synthetic radio-frequency (RF) sensor data generation from a simulated needle.
initial pressure distributions maps. The US transducer was assigned
a central frequency of 7 MHz and a fractional −6 dB bandwidth of
80.9% according to the specifications of AcousticX. RF data collected
by the transducer elements were successively down-sampled to 40 MHz
to match the sampling rate of the measured data. Considering the
variations of needle insertions, simulations were conducted to account
for clinically-relevant needle insertion depths and angles, spanning
from 5 mm to 25 mm with an increment of 5 mm, and from 20 degrees
to 65 degrees with a step of 5 degrees, respectively.

To form a semi-synthetic image, the simulated RF data were nor-
malised to maximum amplitude of ex vivo needle signals collected by
AcousticX. Subsequently, a pair of 2D data matrices (1024 × 128)
consisted of RF data from a simulation on a needle and a measurement
on a human finger were added to form a single 2D data matrix and
then fed to a Fourier domain algorithm for image reconstruction [57].
The reconstructed images based on the semi-synthetic data were then
interpolated to 578 × 565 pixels with a uniform pixel size of 70 μm ×
70 μm. To facilitate network implementations, the images were cropped
to 512 × 512 pixels by removing the corresponding rows from top to
bottom and the same number of columns from left to centre and right
to centre respectively.

Finally, a total number of 2000 semi-synthetic images with sub-
stantial variations on both the needle and background were used for
model training with the corresponding initial pressure distributions as
the ground truths.

2.3. Acquisition of phantom, ex vivo and in vivo data for evaluation

Evaluation of the trained neural network was performed on PA
images acquired with in-plane needle (20G, BD, USA) insertions into
blood-vessel-mimicking phantoms, pork joint tissue ex vivo and human
fingers in vivo (needle outside of tissue; see Supplementary Materials;
Video S1). It is noted that the fingers with needle insertions were used
to obtain representative real in vivo data, but there is no corresponding
clinical scenario.

The blood-vessel-mimicking phantoms were created by affixing sev-
eral carbon fibre bundles in a plastic box filled with 1% Intralipid dilu-
tion (Intralipid 20% emulsion, Scientific Laboratory Supplies, UK) that
had an estimated optical reduced scattering coefficient of 0.96 mm−1

at 850 nm [58]. The fibre bundles were randomly positioned to mimic
different orientations of blood vessels. The acquired PA images were
prepared following the pipeline used for processing the semi-synthetic
data.

2.4. Network implementation

The network architecture implemented in this work was derived
from the U-Net architecture proposed in Ref. [35]. In general, this
3

model followed the original U-Net architecture [59] but had fewer
scales and a reduced number of filters at each scale to accommodate
a small input size. Experiments about the model capacity (see Sup-
plementary Materials; Section 5) manifested that the model shown
in Fig. 2 was able to learn the regularities of the training data and
generalise well to unseen data. Besides, this model was built smaller
and lighter which could contribute to size and latency reduction that
are beneficial for real-time applications.

In Fig. 2, following an encoder path, each scale consisted of two
convolutional layers followed by a 2 × 2 max pooling layer. For the
decoder path, similarly, each scale contained two convolutional layers
but followed by a transposed convolutional layer with an up-sampling
factor of 2. The model was trained using the input pairs with a smaller
resolution of 128 × 128 pixels that adapted well to the receptive field
of the model by resizing from the initial size of 512 × 512 pixels via
bicubic interpolation and evaluated on the real images with a size of
256 × 256 (see 4. Discussion & Conclusions regarding the choice of the
image resolution).

Our network was implemented in Python using PyTorch v1.2.0.
The semi-synthetic dataset was randomly split into training, test, and
validation sets with a ratio of 8:1:1. Training was performed for 5000
iterations with a batch size of 4 that minimised the mean square error
(MSE) loss in the validation set using the ADAM optimiser [60] (initial
learning rate: 0.001) and NVIDIA Tesla V100 GPUs. The CosineAnneal-
ingLR learning rate scheme [61] was employed to steadily decrease the
learning rate during the training.

2.5. Post-processing

A post-processing algorithm based on maximum contour selec-
tion [62] was employed for further improving the outcomes of the
trained neural network and fitting the needle trajectory. It was assumed
that for all the experiments only in-plane placements with one single
needle was performed. The isolated outliers in the outputs of the U-Net
could be discriminated based on the region size differences from that of
the enhanced needle. Thus, the post-processing algorithm detected all
contours in the outputs of the proposed model and saved the maximum
contour as the one from the needle by counting the number of pixels
on each contour boundary.

2.6. Comparison method

As a further evaluation step considering processing multiple PA
frames from video sequences during dynamic needle insertions, the
performance of the trained neural network on needle identification
was compared with the standard Hough Transform (SHT), which is a
classical baseline method for line detection [63]. The SHT is designed
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Fig. 2. Architecture of the proposed network for improving needle visibility in photoacoustic imaging.
to identify straight lines in images. It employs the parametric represen-
tation of a straight line, which is also called the Hesse normal form and
can be expressed as:

𝑟 = 𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 (1)

where 𝑟 is the shortest distance from the origin to the line. 𝜃 measures
the angle between the 𝑥-axis and the perpendicular projection from the
origin point to the line. Therefore, a straight line can be associated
with a pair of parameters (𝑟, 𝜃), corresponding to a sinusoidal curve
in Hough space. A few points on the same straight line will produce a
set of sinusoidal curves that cross the same point (𝑟, 𝜃) which exactly
represents that line. In this study, the SHT was implemented by a two-
dimensional matrix whose columns and rows were used to save the 𝑟
and 𝜃 values, respectively. For each point in the image, 𝑟 was calculated
for each 𝜃, leading to increments of that bin in the matrix. Finally, the
potential straight lines in the image were extracted by selecting the
local maxima from the accumulator matrix.

2.7. Evaluation protocol and performance metrics

The needles in the acquired PA images from three different media
(phantoms, pork joint tissue ex vivo, and human fingers) were manually
labelled as line segments by an experienced observer. The line needle
segment was generated by connecting two points in the needle: the
needle tip and the farthest point to the tip on the needle shaft that
was visualised in a PA image. The needle tip had a good contrast on
US images when it was surrounded by water in the liquid-based tissue-
mimicking phantoms, but had poor visibility for ex vivo and in vivo
measurements. Therefore, solid glass spheres (0–63 μm, Boud Minerals
Limited, UK) were injected through the needle after being diluted with
water to enhance the contrast of the tip, thus improving the accuracy
and precision of manual labelling. For each medium, 20 representative
measurements with different backgrounds and needle locations were
used for metrics calculation.

To access the accuracy of needle extraction using the proposed
DL-based approach, a metric called the modified Hausdorff distance
(MHD) was employed [64]. The MHD was adapted from the gener-
alised Hausdorff distances proposed for object matching with improved
discriminatory power and greater robustness to outliers. Considering
two point sets  = {𝑎1,… , 𝑎𝑁𝑎

} and  = {𝑏1,… , 𝑏𝑁𝑏
}. The distance

between a point 𝑎 from  and a set of points from  was defined as
𝑑(𝑎,) = 𝑚𝑖𝑛𝑏∈‖𝑎 − 𝑏‖. The directed distance measure 𝑑(,) was
defined as:

𝑑(,) = 1 ∑

𝑑(𝑎,) (2)
4

𝑁𝑎 𝑎∈
Then, the directed distance measures 𝑑(,) and 𝑑(,) were com-
bined in the following way, resulting in the definition of the MHD as:

MHD = 𝑚𝑎𝑥(𝑑(,), 𝑑(,)) (3)

The MHD was defined in the unit of pixels which could be converted
to real distance considering the pixel size of 70 μm per pixel. Signal-to-
noise ratio (SNR) was also used to assess the performance of the needle
enhancement and was defined as SNR = S / 𝜎, where S is the mean
amplitude over the needle region and 𝜎 is the standard deviation of the
background. The mean amplitude of the needle region was calculated
by taking the average of the pixel values over the line segment. The
background was defined as one of the largest rectangular regions that
excluded the needle pixels.

3. Results

3.1. Blood-vessel-mimicking phantoms

The results of imaging on blood-vessel-mimicking phantoms are
shown in Fig. 3. Compared to conventional reconstructions, noticeable
improvements in terms of removing background noise and artefacts
can be observed in the outputs of the U-Net. The proposed model
successfully identified the needle insertion without being perturbed by
the background vessels that shared similar line-shape features. The false
positives in the U-Net enhanced images were further suppressed by the
post-processing. Besides, the proposed model demonstrated robustness
to noise and strong artefacts (e.g., Fig. 3(d)). The composite images in-
dicated that the proposed model was able to detect the needle insertion
with good correspondence to the conventional reconstructions and the
US images.

The performance of the proposed model was quantified with SNR
and MHD (Table 1). Compared to the conventional reconstruction, the
proposed model achieved a significant improvement in SNR by a factor
of 8.3 (𝑝 < .0001). The MHD had large values as the noise level and
artefacts increased. The proposed U-Net led to an initial 2.4 times
decrease in MHD (from 63.2 ± 15.9 to 26.4 ± 23.3) and was further
optimised by the successive post-processing to achieve the smallest
MHD of 1.4 ± 1.3.

3.2. Pork joint tissue ex vivo

The proposed model was also applied to images acquired from
needle insertions into ex vivo tissue. Fig. 4 shows the representative
results comparing the conventional reconstruction and the proposed
model. The proposed model robustly enhanced the needle visibility
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Fig. 3. Photoacoustic imaging with needle insertions into a blood-vessel-mimicking phantom with conventional reconstruction, U-Net enhancement and U-Net enhancement with
post-processing.
Table 1
Quantitative evaluation of the trained neural network using blood-vessel-mimicking
phantoms. These performance metrics are expressed as mean ± standard deviations
from 20 measurements acquired from different phantoms and needle positions.

Metrics Conventional
reconstruction

U-Net
enhancement

U-Net enhancement
with post-processing

SNR 8.7 ±2.3 72.1 ± 40.1 –
MHD 63.2 ± 15.9 26.4 ± 23.3 1.4 ± 1.3

Table 2
Quantitative evaluation of the trained neural network using ex vivo needle images.
These performance metrics are expressed as mean ± standard deviations from 20
measurements acquired from different spatial locations of the ex vivo tissue and needle
positions.

Metrics Conventional
reconstruction

U-Net
enhancement

U-Net enhancement
with post-processing

SNR 19.0 ± 9.7 91.3 ±47.3 –
MHD 28.7 ± 16.3 6.3 ±9.1 4.5 ± 7.0

with different insertion depths and angles, and significantly suppressed
image artefacts and background noise. It also achieved a 4.8 times
improvement in SNR compared to the conventional reconstruction (𝑝 <
.00001)( Table 2). The MHD substantially decreased from 28.7 ± 16.3
to 4.5 ± 7.0 after post-processing the output of the U-Net (𝑝 < .00001).

It is worth noting that the performance of the proposed model was
slightly degraded with visualising the region near the needle tip, which
could be attributed to the large depths at around 2.5 cm (Fig. 4(b)
and (d)). However, within smaller imaging depths, the proposed model
was still effective for increasing the imaging speed by reducing the
number of averages required to visualise the needle with a high SNR
(see Supplementary Materials; Figure S4).
5

3.3. In vivo imaging

Fig. 5 shows the results of PA imaging with a 20G needle inserted
between two fingers of a human volunteer immersed in a water tank
(needle outside of the fingers). A main digital artery which has a two-
layered feature is apparent on PA images (marked by hollow triangle
wide arrows). A 22 s video consisting of 128 frames was saved during
the needle insertions (see Supplementary Materials; Video S2). Fig. 5
shows four frames acquired at different time points with the conven-
tional reconstructions and the overlays of PA and US images after the
U-Net enhancement and SHT. The SHT was able to detect the needle,
but resulted in excessive false positives. This is because the performance
of the SHT is sensitive to the specifications of hyperparameters, such as
the detectable length of line segments and the searching resolution of
𝑟 and 𝜃. Fine-tuning of the hyperparameters based on the observations
of the needle on a frame by frame basis is not trivial. In comparison,
the proposed model manifested a good ability of robustness and gener-
alisation. The in vivo results demonstrated it is insensitive to constantly
changing lengths and angles of the needle, and images with excessive
noise and artefacts.

Quantitative results are summarised in Table 3. An average of 5.8
times improvement in SNR was observed in the U-Net enhancement
versus conventional reconstruction at different time points during the
insertion (𝑝 < .00001). For MHD, the proposed model outperformed
the conventional reconstruction and the SHT with a 4.5- and 2.9-fold
reduction, respectively (𝑝 < .00001 for the conventional reconstruction;
𝑝 < .0001 for the SHT). The post-processing algorithm effectively
suppressed the outliers in the output of the U-Net, leading to the MHD
as small as 0.6.

To further evaluate the model performance, needle detection rate
was measured with three in vivo PA sequences (Table 4; Supplementary
Materials; Video S3). For each sequence containing 128 frames, the
number of frames with the identifiable needle was counted by the
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Fig. 4. Photoacoustic imaging with needle insertions into ex vivo tissue with conventional reconstruction, U-Net enhancement, and U-Net enhancement with post-processing.
Table 3
Quantitative evaluation of the trained neural network using in vivo needle im-
ages. These performance metrics are expressed as mean ± standard deviations from
20 measurements acquired at different time points during the insertion.

Metrics CRa U-Net Enhancement U-Net Enhancement
with Post-processing

SHTb

SNR 8.8 ± 1.5 51.0 ± 11.8 – –
MHD 87.7 ± 24.4 19.4 ± 5.0 0.6 ± 0.1 55.7 ± 38.5

aConventional reconstruction.
bStandard hough transform.

Table 4
Quantitative performance on three PA video sequences in vivo with the proposed
model.

Sequence 1 Sequence 2 Sequence 3

Frames with needle/Total frames 92/128 53/128 99/128
Frames without needle/Total frames 36/128 75/128 29/128
Needle missed 0 5 3
True positives 92 48 96
False positives 0 1 1
True positive rate (%) 100 90.6 97.0
False positive rate (%) 0 1.3 3.4

observer as the reference for calculation. It is worth noting that the
proposed model enhanced almost all the frames that contained the
needle with a true positive rate up to 100%, 90.6%, and 97.0%,
respectively.

3.4. Impact of the needle diameter

To further assess the generalisability of the proposed model, in-
plane insertions of needles with different diameters (16G, 18G, 20G,
BD, USA; 25G, 30G, Meso-relle, Italy) were imaged with AcousticX
during in plane insertions into pork joint tissue ex vivo. The results (see
6

Supplementary Materials; Figure S5) were consistent with the previous
results of the 20G needle. For the needles with small diameters, the
acquired PA images readily suffered from lower SNRs. However, as
expected, the proposed model yielded robust enhancement on the
needles at different contrast levels. For SNR and MHD, the proposed
model outperformed the conventional reconstruction with an average
of 11.2 and 6.5 times improvement, respectively (see Supplementary
Materials; Table S1).

4. Discussion

Previous works on DL in PA imaging mainly focused on improving
the visualisation of the vasculature by denoising and artefacts removal.
However, the performances of DL networks are highly dependent on
the training dataset. Networks that are specifically trained to enhance
the visualisation of vasculature usually have poor performance on vi-
sualising needles due to their different image features. In this work, we
are the first to apply DL to specifically improve the needle visualisation
with PA imaging for minimally invasive guidance. Considering the rel-
atively simple geometries of clinical needles compared to vasculature,
a prominent contribution of this work is that we developed a semi-
synthetic approach to address the challenges associated with obtaining
ground truth for in vivo data as well as the poor realism of purely
simulated data.

According to our experimental results (not shown for the sake of
brevity), the simulated optical fluence distribution had a minimal effect
on the performance of the proposed model when evaluated on unseen
real needle images even with deep insertion angles. This is because the
DL-based method was able to enhance the visualisation of the needle
by learning its relatively simple spatial features that remained largely
consistent. In addition, we found that the inference performance of
the trained model on the real images did not benefit from a higher
resolution input data than that is currently used (128 × 128 pixels;
See Supplementary Materials; Figure S7). The low resolution images
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Fig. 5. Photoacoustic (PA) imaging with needle insertions into human fingers in vivo with conventional reconstruction, U-Net enhancement, and standard Hough Transform. Signals
from the skin surface are indicated by triangle wide arrows, and signals that may be from digital arteries are indicated by hollow triangle wide arrows. The outcomes of U-Net
enhancement and standard Hough Transform are denoted by green lines in PA and ultrasound (US) overlays. (a) - (d) are from a reconstructed PA image sequence recorded during
needle insertions in real time.
performed sufficiently well considering the lightweight model and
simple features of the input data. Compared to a high resolution input, a
low resolution input is also advantageous in terms of the computational
costs; the inferring time for one image was around 90 ms using one GPU
(NVIDIA GeForce RTX 2070 Max-Q). Further reduction on the inferring
time could be realised by using more powerful GPUs for real-time
applications.

During minimally invasive procedures, accurate and clear visualisa-
tion of the needle is essential for successful outcomes. Needle visibility
has been greatly improved by PA imaging as compared to US imaging,
but the image quality in terms of SNR with the LED light source is
still sub-optimum due to the low pulse energy. Frame averaging is
effective for reducing background noise, but at the cost of the imaging
speed and introduces movement artefacts. Further, blood vessels in the
background with similar line-shape structures to the needle are readily
regarded as visual disturbances for clinicians to identify the needle
trajectory. Finally, line artefacts above or beneath the needle shaft are
often non-negligible that can lead to misinterpretation of the needle
position. Therefore, in this work, PA images of needle insertions into
different types of blood-vessel-mimicking phantoms, ex vivo tissue, and
in vivo human fingers were acquired to evaluate the proposed model.

Qualitative results demonstrated that our proposed model was able
to achieve substantial enhancement on the needle visualisation re-
garding noise suppression, artefacts removal, and needle detection.
The enhancement was further quantified by the SNR and MHD. Per-
formance of the proposed model was compared to the conventional
reconstruction and the standard Hough transform on images acquired
from blood-vessel-mimicking phantoms, ex vivo pork joint tissue, and
7

human fingers as shown in Supplementary Materials (Figure S1; Figure
S2; Figure S3). For SNR, our proposed model achieved 8.3, 4.8, and 5.8
times enhancement for phantom, ex vivo, and in vivo data respectively.
The MHD as a measure of similarity of two objects was employed for
its great robustness and discriminatory power. It was observed that
the MHD had the smallest values with our proposed model compared
to the conventional reconstruction and the SHT (1.4, 4.5, and 0.6 for
phantom, ex vivo, and in vivo data respectively). Additionally, it is
evidenced that the post-processing method based on maximum contour
selection was effective to remove the false positives of the U-Net
enhancement while preserving the needle pixels.

We also compared the proposed model with a conventional line
detection algorithm, SHT, with in vivo video sequences. The SHT per-
formed quite well on some cases with carefully chosen critical hyper-
parameters, but its performance was readily affected by imperfection
errors from the former edge detection step and sensitive to some deci-
sion criteria such as empirical values of 𝑟 and 𝜃 that are directly related
to the detection efficiency. Fine-tuning of these hyperparameters is
impractical for real-time applications where the effective length and
angle of the needle placements could constantly vary in each frame.
In contrast, our proposed model can efficiently improve the needle
visualisation on a variety of PA images from in vivo measurements in
near real-time.

Nonetheless, the DL-based enhancement was sensitive to the SNRs
of the images. More importantly, the visibility of the needle, especially
its tip was still limited to a depth of around 1 cm with in vivo mea-
surements. In the future, deep neural networks could be applied for
real-time denoising [44] as an alternative to frame-to-frame averaging



Photoacoustics 26 (2022) 100351M. Shi et al.

a
e

to improve the imaging depth. For needle tip visualisation, a fibre-
optic US transmitter could be integrated within the needle cannula so
that the needle tip can be unambiguously visualised in PA imaging
with high SNRs [10]. Light-absorbing coatings based on elastomeric
nanocomposites could also be applied to the needle shaft for enhancing
its visualisation for guiding minimally invasive procedures [65].

5. Conclusions

In this work, we provided a DL-based framework for enhancing
needle visualisation with PA imaging. The DL-model was built using
only semi-synthetic data generated by combining simulated data and
in vivo measurements. Evaluation was performed on unseen real data
cquired by inserting needles into blood-vessels-mimicking phantoms,
x vivo tissue and human fingers (needle outside tissue). Compared to

the conventional reconstruction, the proposed framework substantially
improved the needle visualisation with PA imaging. It also outper-
formed the standard Hough Transform on PA in vivo videos with
improved robustness and generalisability. Therefore, our framework
could be useful for guiding minimally invasive procedures that involve
percutaneous needle insertions by accurate identification of clinical
needles.
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