3,383 research outputs found

    Real Time Railway Traffic Management Modeling Track-Circuits

    Get PDF
    The real time railway traffic management seeks for the train routing and scheduling that minimize delays after an unexpected event perturbs the operations. In this paper, we propose a mixed-integer linear programming formulation for tackling this problem, modeling the infrastructure in terms of track-circuits, which are the basic components for train detection. This formulation considers all possible alternatives for train rerouting in the infrastructure and all rescheduling alternatives for trains along these routes. To the best of our knowledge, we present the first formulation that solves this problem to optimality. We tested the proposed formulation on real perturbation instances representing traffic in a control area including the Lille Flandres station (France), achieving very good performance in terms of computation time

    Infrastructure Modeling and Optimization to Solve Real-time Railway Traffic Management Problems

    Get PDF
    Rail transportation helps to reach the global climate targets because it is characterized by low emission. The passenger and freight volumes on the railway increase yearly in line with EU targets. However, delays of passenger and freight trains decrease the punctuality and the reliability of the railway sector and the development of the infrastructure is not enough to increase the average speed of trains. Delays mean cost to the passengers, railway operators, infrastructure managers, and all railway undertakers. Therefore, the reason for the most significant optimization target is to minimize delays. In this paper, a possible solution has been described to solve the real-time railway traffic management problems by applying a mixed-integer linear programming approach. For validation of the research result, one simplified case study has been presented. Based on the result, the presented solution can provide effective support to dispatchers in solving real-time traffic management problems

    Issues on simulation of the railway rolling stock operation process – a system and literature review

    Get PDF
    Railway traffic simulation, taking into account operation and maintenance conditions, is not a new issue in the literature. External effects in such networks (eg. level crossings) were not taken into account in studies. The used models do not take into account sufficiently the process of degradation and recovery of the network. From the technical side, currently carried out simulations are made using similar approaches and techniques as in the initial stage of research. Well-established work in this area could be the basis for evaluation of new solutions. However, the progress in simulation tools during the last years, especially in performance and programming architecture, attempt to create a modern simulation tool. In the paper were presented the main assumptions for the evaluated event-based simulation method, with application to stiff-track transportation network

    Transmission-Based Signaling Systems

    Get PDF
    In this chapter, we describe the principal communication systems applied to the transmission-based signaling (TBS) systems for railways. Typical examples are communication-based train control (CBTC), European Rail Traffic Management System (ERTMS), and distance to go (DTG). Moreover, to properly address some of the challenges that need to face these systems, we will provide a deep insight on propagation issues related to all the environments (urban, suburban, rural, tunnel, etc.). We will highlight all the communication-related issues and the operational as well. Finally, a detailed survey on the directions of research on all these topics is provided, in order to properly cover this interesting subject. In this research, hot topics like virtual coupling are explained as well

    A survey on future railway radio communications services: challenges and opportunities

    Full text link
    Radio communications is one of the most disruptive technologies in railways, enabling a huge set of value-added services that greatly improve many aspects of railways, making them more efficient, safer, and profitable. Lately, some major technologies like ERTMS for high-speed railways and CBTC for subways have made possible a reduction of headway and increased safety never before seen in this field. The railway industry is now looking at wireless communications with great interest, and this can be seen in many projects around the world. Thus, railway radio communications is again a flourishing field, with a lot of research and many things to be done. This survey article explains both opportunities and challenges to be addressed by the railway sector in order to obtain all the possible benefits of the latest radio technologies

    Optimal Train Rescheduling in Oslo Central Station

    Get PDF
    Real-time train dispatching (i.e., rescheduling and replatforming) in passenger railway stations is a very important and very challenging task. In most major stations, this task is carried out by hand by highly trained dispatchers who use their extensive experience to find near-optimal solutions under most conditions. With several simultaneous deviations from the timetable, however, the traffic situation may become too complex for any human to handle it far beyond finding feasible solutions. As part of a prototype for a dispatching support tool developed in collaboration with Bane NOR (Norwegian rail manager), we develop an approach for Optimal Train Rescheduling in large passenger stations. To allow for replatforming, we extend the standard job-shop scheduling approach to train-scheduling, and we develop and compare different MILP formulations for this extended approach. With this approach, we can find, in just a few seconds, optimal plans for our realistic instances from Oslo Central Station, the largest passenger train hub in Norway. The prototype will be tested by dispatchers in the greater Oslo area, starting from the fall of 2021.publishedVersio

    AN AUTOMATED RAILWAY STATION TRAFFIC CONTROL SYSTEM

    Get PDF
    Majority of accidents experienced with railway transportation involve collision with automobiles or other vehicles and collision with other trains. These collisions can be averted by putting safety measures in place. Part of the measures can be achieved by using computerized railway station traffic control systems that use microcontrollers and electromechanical devices to shift traffic from one rail lane to another and also to operate the level crossing gate. The two major stages of the system being described here are thus the track switching stage and the level crossing gate stage.  The system makes use of microcontrollers for decision making. The microcontrollers are programmed to detect signals from sensors and to output the processed signals to control electromagnetic devices through motor drivers. The codes for the microcontrollers were written in PIC Basic programming language and were debugged and compiled using Micro Code Studio Integrated Development Environment. The resultant Hex files were programmed into the memory of the microcontrollers with the aid of a universal programmer. Software simulation was carried out using the Proteus virtual system modeling software. A scaled down prototype of the system was built and tested. The prototype was able to execute all the decisions required to control the given railway station. A practical real life system would require the scaling up of the power required to drive the various motors; the logic of the system would however remain unchanged. The inclusion of the automated traffic control lighting system at the level crossing gate in the system eliminates the fatigue and tedium associated with a manually controlled traffic system. The computerized railway station traffic control system which helps in track switching and level crossing gate traffic control is capable of improving reliability, speed, operational safety and efficiency of the railway transportation system.
    • …
    corecore