134 research outputs found

    Extended grey wolf optimization–based adaptive fast nonsingular terminal sliding mode control of a robotic manipulator

    Get PDF
    This article proposes a novel hybrid metaheuristic technique based on nonsingular terminal sliding mode controller, time delay estimation method, an extended grey wolf optimization algorithm and adaptive super twisting control law. The fast convergence is assured by nonsingular terminal sliding mode controller owing to its inherent nonlinear property and no prior knowledge of the robot dynamics is required due to time delay estimation. The proposed extended grey wolf optimization algorithm determines an optimal approximation of the inertial matrix of the robot. Moreover, adaptive super twisting control based on the Lyapunov approach overcomes the disturbances and compensate the higher dynamics not achievable by the time delay estimation method. First, the fast nonsingular terminal sliding mode controller relying on time delay estimation is designed and is combined with super twisting control for chattering attenuation. The constant gain matrix of the time delay is determined by the proposed extended grey wolf optimization algorithm. Second, an adaptive law based on Lyapunov stability theorem is designed for improving tracking performance in the presence of uncertainties and disturbances. The novelty of the proposed method lies in the adaptive law where the prior knowledge of parametric uncertainties and disturbances is not needed. Moreover, the constant gain matrix of time delay estimation method is obtained using the proposed algorithm. The control method has been tested in simulation on a 3-degrees of freedom robotic manipulator in trajectory tracking mode in the presence of control disturbances and uncertainties. The results obtained confirmed the effectiveness, robustness and the superior precision of the proposed control method compared to the classical ones

    A robust super twisting fractional-order sliding mode-based control of vehicle longitudinal dynamic subjected to a constant actuator fault

    Get PDF
    This paper deals with the design and analysis of a super twisting fractional-order sliding mode controller (ST-FOSMC) to adjust the vehicle longitudinal dynamic when braking. While vehicle loading, road types, and modeling uncertainties are time-varying parameters, the control law must be robust against these disturbances. Also, the aging of the brake plate may introduce a difference between the control output and the actuator response that should be considered. The proposed control strategy has been used to enable the anti-lock braking system (ABS) to track the desired wheel slip value despite the presence of disturbances and constant actuator fault. The design of this controller is presented and the system stability is guaranteed by applying the Lyapunov theory. We carried out a simulation example that makes a comparison between our controller and the one based on the fractional-order sliding mode control to investigate which one of them outperforms the other. The results exhibit the superiority of the super twisting fractional order controller over the traditional fractional-order sliding mode controller during the braking phase

    Decoupled Fractional Super-Twisting Stabilization of Interconnected Mobile Robot Under Harsh Terrain Conditions

    Get PDF
    The four-wheel omnidirectional mobile robot usually suffers disturbed or unstable lateral motion under harsh terrain conditions (such as uneven or oiled ground). Generally for such a challenging situation, the lumped disturbances and interconnected states render available coupling solutions difficult to achieve demand-satisfied performance. This paper proposes a novel decoupled fractional super-twisting sliding mode control (FST-SMC) method by (i) constructing an inverse system-based decoupling to form a pseudolinear composition system; (ii) presenting an enhanced nominal sliding law for chattering mitigation and (iii) designing an unbiased multi-layer fuzzy estimator with gain-learning capacity to compensate for the lumped disturbances actively. Given that the identified disturbances can be directly reflected in the FST-SMC law, this method guarantees an accurate and robust control without causing gain overestimation. Theoretical analysis is offered to verify the asymptotic stability. Under harsh terrain conditions, experimental results validate the effectiveness of the proposed FST-SMC method

    Optimized state feedback regulation of 3DOF helicopter system via extremum seeking

    Get PDF
    In this paper, an optimized state feedback regulation of a 3 degree of freedom (DOF) helicopter is designed via extremum seeking (ES) technique. Multi-parameter ES is applied to optimize the tracking performance via tuning State Vector Feedback with Integration of the Control Error (SVFBICE). Discrete multivariable version of ES is developed to minimize a cost function that measures the performance of the controller. The cost function is a function of the error between the actual and desired axis positions. The controller parameters are updated online as the optimization takes place. This method significantly decreases the time in obtaining optimal controller parameters. Simulations were conducted for the online optimization under both fixed and varying operating conditions. The results demonstrate the usefulness of using ES for preserving the maximum attainable performance

    Controlador híbrido robusto basado en red neuronal fuzzy de intervalo tipo 2 y modo deslizante de alto orden para robots manipuladores

    Get PDF
    Industrial arms should be able to perform their duties in environments where unpredictable conditions and perturbations are present. In this paper, controlling a robotic manipulator is intended under significant external perturbations and parametric uncertainties. Type-2 fuzzy logic is an appropriate choice in the face of uncertain environments, for various reasons, including utilizing fuzzy membership functions. Also, using the neural network (NN) can increase robustness of the controller. Although neural network does not basically need to build its type-2 fuzzy rules, the initial rules based on sliding surface of higher order sliding mode controller (HOSMC) can improve the system's performance. In addition, self-regulation feature of the controller, which is based on the existence of the neural network in the central type-2 fuzzy controller block, increases the robustness of the method even more. Effective performance of the proposed controller (IT2FNN-HOSMC) is shown under various perturbations in numerical simulations.Los brazos industriale deben poder realizar sus tareas en entornos donde existen condiciones y perturbaciones impredecibles. En este artículo, el control de un manipulador robótico está bajo perturbaciones externas significativas e incertidumbres paramétricas. La lógica difusa de tipo 2 es una opción adecuada frente a entornos inciertos, por varias razones, incluida la utilización de funciones de membresía difusas. Además, el uso de la red neuronal (NN) puede aumentar la robustez del controlador. Aunque la red neuronal no necesita básicamente construir sus reglas difusas tipo 2, las reglas iniciales basadas en la superficie deslizante del controlador de modo deslizante de orden superior (HOSMC) pueden mejorar el rendimiento del sistema. Además, la función de autorregulación del controlador, que se basa en la existencia de la red neuronal en el bloque central del controlador difuso tipo 2, aumenta aún más la robustez del método. El rendimiento efectivo del controlador propuesto (IT2FNN-HOSMC) se muestra bajo varias perturbaciones en simulaciones numéricas

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering
    corecore