899 research outputs found

    SCOOP magazine Fall 2012

    Get PDF

    The Grizzly, November 19, 2009

    Get PDF
    WVOU Gains Notoriety • UCTV Prepares for Second Show • Ursinus Involved in Main Street Program • Train Hopping: An Adventurous Way to Travel • Relay for Life Holds Open House to Recruit Teams for 2010 Event • Tau Sig Brings Cuts for a Cause to UC • Faculty and Staff Challenged to Improve Their Health and Fitness • Ursinus Students Rethinking, to Recreate • Philadelphia\u27s Own Revival Tour Hosts Chuck Ragan as Guest • Opinion: Men are From Mars, Women Read Cosmopolitan; Hello, I\u27d Like You to Meet My... : Dating vs. Friends with Benefits • Ursinus Men\u27s, Women\u27s Swimming Remain Undefeated • Buying Success: How Much is Too Much in College Athletics?https://digitalcommons.ursinus.edu/grizzlynews/1800/thumbnail.jp

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    Reconfigurable Vision Processing for Player Tracking in Indoor Sports

    Get PDF
    Ibraheem OW. Reconfigurable Vision Processing for Player Tracking in Indoor Sports. Bielefeld: Universität Bielefeld; 2018.Over the past decade, there has been an increasing growth of using vision-based systems for tracking players in sports. The tracking results are used to evaluate and enhance the performance of the players as well as to provide detailed information (e.g., on the players and team performance) to viewers. Player tracking using vision systems is a very challenging task due to the nature of sports games, which includes severe and frequent interactions (e.g., occlusions) between the players. Additionally, these vision systems have high computational demands since they require processing of a huge amount of video data based on the utilization of multiple cameras with high resolution and high frame rate. As a result, most of the existing systems based on general-purpose computers are not able to perform online real-time player tracking, but track the players offline using pre-recorded video files, limiting, e.g., direct feedback on the player performance during the game. In this thesis, a reconfigurable vision-based system for automatically tracking the players in indoor sports is presented. The proposed system targets player tracking for basketball and handball games. It processes the incoming video streams from GigE Vision cameras, achieving online real-time player tracking. The teams are identified and the players are detected based on the colors of their jerseys, using background subtraction, color thresholding, and graph clustering techniques. Moreover, the trackingby-detection approach is used to realize player tracking. FPGA technology is used to handle the compute-intensive vision processing tasks by implementing the video acquisition, video preprocessing, player segmentation, and team identification & player detection in hardware, while the less compute-intensive player tracking is performed on the CPU of a host-PC. Player detection and tracking are evaluated using basketball and handball datasets. The results of this work show that the maximum achieved frame rate for the FPGA implementation is 96.7 fps using a Xilinx Virtex-4 FPGA and 136.4 fps using a Virtex-7 device. The player tracking requires an average processing time of 2.53 ms per frame in a host-PC equipped with a 2.93 GHz Intel i7-870 CPU. As a result, the proposed reconfigurable system supports a maximum frame rate of 77.6 fps using two GigE Vision cameras with a resolution of 1392x1040 pixels each. Using the FPGA implementation, a speedup by a factor of 15.5 is achieved compared to an OpenCV-based software implementation in a host-PC. Additionally, the results show a high accuracy for player tracking. In particular, the achieved average precision and recall for player detection are up to 84.02% and 96.6%, respectively. For player tracking, the achieved average precision and recall are up to 94.85% and 94.72%, respectively. Furthermore, the proposed reconfigurable system achieves a 2.4 times higher performance per Watt than a software-based implementation (without FPGA support) for player tracking in a host-PC.Acknowledgments: I (Omar W. Ibraheem) would like to thank the German Academic Exchange Service (DAAD), the Congnitronics and Sensor Systems research group, and the Cluster of Excellence Cognitive Interaction Technology ‘CITEC’ (EXC 277) (Bielefeld University) not only for funding the work in this thesis, but also for all the help and support they gave to successfully finish my thesis

    iPulse: November 2015

    Get PDF
    Issues: November 2, 2015 November 4, 2015 November 6, 2015 November 11, 2015 November 13, 2015 November 16, 2015 November 18, 2015 November 20, 2015 November 30, 2015https://spiral.lynn.edu/studentnews/1210/thumbnail.jp

    Enhancing fan experience during live sports broadcasts through second screen applications

    Get PDF
    When sports fans attend live sports events, they usually engage in social experiences with friends, family members and other fans at the venue sharing the same affiliation. However, fans watching the same event through a live television broadcast end up not feeling so emotionally connected with the athletes and other fans as they would if they were watching it live, together with thousands of other fans. With this in mind, we seek to create mobile applications that deliver engaging social experiences involving remote fans watching live broadcasted sports events. Taking into account the growing use of mobile devices when watching TV broadcasts, these mobile applications explore the second screen concept, which allows users to interact with content that complements the TV broadcast. Within this context, we present a set of second screen application prototypes developed to test our concepts, the corresponding user studies and results, as well as suggestions on how to apply the prototypes’ concepts not only in different sports, but also during TV shows and electronic sports. Finally, we also present the challenges we faced and the guidelines we followed during the development and evaluation phases, which may give a considerable contribution to the development of future second screen applications for live broadcasted events

    v. 83, issue 18, April 14, 2016 (publication says issue 17)

    Get PDF

    Current, March 03, 1988

    Get PDF
    https://irl.umsl.edu/current1980s/1242/thumbnail.jp
    • …
    corecore