5 research outputs found

    Reachability problems for PAMs

    Get PDF
    Piecewise affine maps (PAMs) are frequently used as a reference model to show the openness of the reachability questions in other systems. The reachability problem for one-dimentional PAM is still open even if we define it with only two intervals. As the main contribution of this paper we introduce new techniques for solving reachability problems based on p-adic norms and weights as well as showing decidability for two classes of maps. Then we show the connections between topological properties for PAM's orbits, reachability problems and representation of numbers in a rational base system. Finally we show a particular instance where the uniform distribution of the original orbit may not remain uniform or even dense after making regular shifts and taking a fractional part in that sequence.Comment: 16 page

    Reachability problems in low-dimensional nondeterministic polynomial maps over integers

    Get PDF
    We study reachability problems for various nondeterministic polynomial maps in Zn. We prove that the reachability problem for very simple three-dimensional affine maps (with independent variables) is undecidable and is PSPACE-hard for both two-dimensional affine maps and one-dimensional quadratic maps. Then we show that the complexity of the reachability problem for maps without functions of the form ±x+a0 is lower. In this case the reachability problem is PSPACE for any dimension and if the dimension is not fixed, then the problem is PSPACE-complete. Finally we extend the model by considering maps as language acceptors and prove that the universality problem is undecidable for two-dimensional affine maps

    Reachability problems for systems with linear dynamics

    Get PDF
    This thesis deals with reachability and freeness problems for systems with linear dynamics, including hybrid systems and matrix semigroups. Hybrid systems are a type of dynamical system that exhibit both continuous and discrete dynamic behaviour. Thus they are particularly useful in modelling practical real world systems which can both flow (continuous behaviour) and jump (discrete behaviour). Decision questions for matrix semigroups have attracted a great deal of attention in both the Mathematics and Theoretical Computer Science communities. They can also be used to model applications with only discrete components. For a computational model, the reachability problem asks whether we can reach a target point starting from an initial point, which is a natural question both in theoretical study and for real-world applications. By studying this problem and its variations, we shall prove in a formal mathematical sense that many problems are intractable or even unsolvable. Thus we know when such a problem appears in other areas like Biology, Physics or Chemistry, either the problem itself needs to be simplified, or it should by studied by approximation. In this thesis we concentrate on a specific hybrid system model, called an HPCD, and its variations. The objective of studying this model is twofold: to obtain the most expressive system for which reachability is algorithmically solvable and to explore the simplest system for which it is impossible to solve. For the solvable sub-cases, we shall also study whether reachability is in some sense easy or hard by determining which complexity classes the problem belongs to, such as P, NP(-hard) and PSPACE(-hard). Some undecidable results for matrix semigroups are also shown, which both strengthen our knowledge of the structure of matrix semigroups, and lead to some undecidability results for other models

    Reachability games and related matrix and word problems

    Get PDF
    In this thesis, we study different two-player zero-sum games, where one player, called Eve, has a reachability objective (i.e., aims to reach a particular configuration) and the other, called Adam, has a safety objective (i.e., aims to avoid the configuration). We study a general class of games, called Attacker-Defender games, where the computational environment can vary from as simple as the integer line to n-dimensional topological braids. Similarly, the moves themselves can be simple vector addition or linear transformations defined by matrices. The main computational problem is to decide whether Eve has a winning strategy to reach the target configuration from the initial configuration, or whether the dual holds, that is, whether Adam can ensure that the target is never reached. The notion of a winning strategy is widely used in game semantics and its existence means that the player can ensure that his or her winning conditions are met, regardless of the actions of the opponent. It general, games provide a powerful framework to model and analyse interactive processes with uncontrollable adversaries. We formulated several Attacker-Defender games played on different mathematical domains with different transformations (moves), and identified classes of games, where the checking for existence of a winning strategy is undecidable. In other classes, where the problem is decidable, we established their computational complexity. In the thesis, we investigate four classes of games where determining the winner is undecidable: word games, where the players' moves are words over a group alphabet together with integer weights or where the moves are pairs of words over group alphabets; matrix games on vectors, where players transform a three-dimensional vector by linear transformations defined by 3×3 integer matrices; braid games, where players braid and unbraid a given braid; and last, but not least, games played on two-dimensional Z-VAS, closing the gap between decidable and undecidable cases and answering an existing open problem of the field. We also identified decidable fragments, such as word games, where the moves are over a single group alphabet, games on one-dimensional Z-VASS. For word games, we provide an upper-bound of EXPTIME , while for games on Z-VASS, tight bounds of EXPTIME-complete or EXPSPACE-complete, depending on the state structure. We also investigate single-player systems such as polynomial iteration and identity problem in matrix semigroups. We show that the reachability problem for polynomial iteration is PSPACE-complete while the identity problem for the Heisenberg group is in PTIME for dimension three and in EXPTIME for higher dimensions
    corecore