5,606 research outputs found

    Cloud migration of legacy applications

    Get PDF

    Towards Process Support for Migrating Applications to Cloud Computing

    Get PDF
    Cloud computing is an active area of research for industry and academia. There are a large number of organizations providing cloud computing infrastructure and services. In order to utilize these infrastructure resources and services, existing applications need to be migrated to clouds. However, a successful migration effort needs well-defined process support. It does not only help to identify and address challenges associated with migration but also provides a strategy to evaluate different platforms in relation to application and domain specific requirements. This paper present a process framework for supporting migration to cloud computing based on our experiences from migrating an Open Source System (OSS), Hackystat, to two different cloud computing platforms. We explained the process by performing a comparative analysis of our efforts to migrate Hackystate to Amazon Web Services and Google App Engine. We also report the potential challenges, suitable solutions, and lesson learned to support the presented process framework. We expect that the reported experiences can serve guidelines for those who intend to migrate software applications to cloud computing.Muhammad Aufeef Chauhan, Muhammad Ali Baba

    Technical Report on Deploying a highly secured OpenStack Cloud Infrastructure using BradStack as a Case Study

    Full text link
    Cloud computing has emerged as a popular paradigm and an attractive model for providing a reliable distributed computing model.it is increasing attracting huge attention both in academic research and industrial initiatives. Cloud deployments are paramount for institution and organizations of all scales. The availability of a flexible, free open source cloud platform designed with no propriety software and the ability of its integration with legacy systems and third-party applications are fundamental. Open stack is a free and opensource software released under the terms of Apache license with a fragmented and distributed architecture making it highly flexible. This project was initiated and aimed at designing a secured cloud infrastructure called BradStack, which is built on OpenStack in the Computing Laboratory at the University of Bradford. In this report, we present and discuss the steps required in deploying a secured BradStack Multi-node cloud infrastructure and conducting Penetration testing on OpenStack Services to validate the effectiveness of the security controls on the BradStack platform. This report serves as a practical guideline, focusing on security and practical infrastructure related issues. It also serves as a reference for institutions looking at the possibilities of implementing a secured cloud solution.Comment: 38 pages, 19 figures

    Multi-tenant hybrid cloud architecture

    Get PDF
    This paper examines the challenges associated with the multi-tenant hybrid cloud architecture and describes how this architectural approach was applied in two software development projects. The motivation for using this architectural approach is to allow developing new features on top of monolithic legacy systems – that are still in production use – but without using legacy technologies. The architectural approach considers these legacy systems as master systems that can be extended with multi-tenant cloud-based add-on applications. In general, legacy systems are run in customer-operated environments, whereas add-on applications can be deployed to cloud platforms. It is thus imperative to have a means connectivity between these environments over the internet. The technology stack used within the scope of this thesis is limited to the offering of the .NET Core ecosystem and Microsoft Azure. In the first part of the thesis work, a literature review was carried out. The literature review focused on the challenges associated with the architectural approach, and as a result, a list of challenges was formed. This list was utilized in the software development projects of the second part of the thesis. It should be noted that there were very few high-quality papers available focusing exactly on the multi-tenant hybrid cloud architecture, so, in the end, source material for the review was searched separately for multi-tenant and for hybrid cloud design challenges. This factor is noted in the evaluation of the review. In the second part of the thesis work, the architectural approach was applied in two software development projects. Goals were set for the architectural approach: the add-on applications should be developed with modern technology stacks; their delivery should be automated; their subscription should be straightforward for customer organizations and they should leverage multi-tenant resource sharing. In the first project a data quality management tool was developed on top of a legacy dealership management system. Due to database connectivity challenges, confidentiality of customer data and authentication requirements, the implemented solution does not fully utilize the architectural approach, as having the add-on application hosted in the customer environment was the most reasonable solution. Despite this, the add-on application was developed with a modern technology stack and its delivery is automated. The subscription process does involve certain manual steps and, if the customer infrastructure changes over time, these steps must be repeated by the developers. This decreases the scalability of the overall delivery model. In the second project a PDA application was developed on top of a legacy vehicle maintenance tire hotel system. The final implementation fully utilizes the architectural approach. Support for multi-tenancy was implemented using ASP.NET Core Dependency Injection and Finbuckle.MultiTenancy-library. Azure Relay Hybrid Connection was used for hybrid cloud connectivity between the add-on application and the master system. The delivery model incorporates the same challenges regarding subscription and customer infrastructure changes as the delivery model of the data quality management tool. However, the manual steps associated with these challenges must be performed only once per customer – not once per customer per application. In addition, the delivery model could be improved to support customer self-service governance, enabling the delegation of any customer environment installations to the customers themselves. Even further, the customer environment installation could potentially cover an entire product family. As an example, instead of just providing access for the PDA application, the installation could provide access for all vehicle maintenance family add-on applications. This would make customer environment management easier and developing new add-on applications faster
    • …
    corecore