

Joona Luoma

MULTI-TENANT HYBRID CLOUD
ARCHITECTURE

Faculty of Information Technology and Communication Sciences
Master of Science Thesis

September 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/280341763?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Joona Luoma: Multi-tenant hybrid cloud architecture

Master of Science Thesis

Tampere University

Master’s Degree Programme in Information Technology

September 2019

This paper examines the challenges associated with the multi-tenant hybrid cloud architecture
and describes how this architectural approach was applied in two software development projects.
The motivation for using this architectural approach is to allow developing new features on top of
monolithic legacy systems – that are still in production use – but without using legacy technolo-
gies. The architectural approach considers these legacy systems as master systems that can be
extended with multi-tenant cloud-based add-on applications. In general, legacy systems are run
in customer-operated environments, whereas add-on applications can be deployed to cloud plat-
forms. It is thus imperative to have a means connectivity between these environments over the
internet. The technology stack used within the scope of this thesis is limited to the offering of the
.NET Core ecosystem and Microsoft Azure.

In the first part of the thesis work, a literature review was carried out. The literature review
focused on the challenges associated with the architectural approach, and as a result, a list of
challenges was formed. This list was utilized in the software development projects of the second
part of the thesis. It should be noted that there were very few high-quality papers available focus-
ing exactly on the multi-tenant hybrid cloud architecture, so, in the end, source material for the
review was searched separately for multi-tenant and for hybrid cloud design challenges. This
factor is noted in the evaluation of the review.

In the second part of the thesis work, the architectural approach was applied in two software
development projects. Goals were set for the architectural approach: the add-on applications
should be developed with modern technology stacks; their delivery should be automated; their
subscription should be straightforward for customer organizations and they should leverage multi-
tenant resource sharing.

In the first project a data quality management tool was developed on top of a legacy dealership
management system. Due to database connectivity challenges, confidentiality of customer data
and authentication requirements, the implemented solution does not fully utilize the architectural
approach, as having the add-on application hosted in the customer environment was the most
reasonable solution. Despite this, the add-on application was developed with a modern technol-
ogy stack and its delivery is automated. The subscription process does involve certain manual
steps and, if the customer infrastructure changes over time, these steps must be repeated by the
developers. This decreases the scalability of the overall delivery model.

In the second project a PDA application was developed on top of a legacy vehicle maintenance
tire hotel system. The final implementation fully utilizes the architectural approach. Support for
multi-tenancy was implemented using ASP.NET Core Dependency Injection and Finbuckle.Mul-
tiTenancy-library. Azure Relay Hybrid Connection was used for hybrid cloud connectivity between
the add-on application and the master system. The delivery model incorporates the same chal-
lenges regarding subscription and customer infrastructure changes as the delivery model of the
data quality management tool. However, the manual steps associated with these challenges must
be performed only once per customer – not once per customer per application. In addition, the
delivery model could be improved to support customer self-service governance, enabling the del-
egation of any customer environment installations to the customers themselves. Even further, the
customer environment installation could potentially cover an entire product family. As an example,
instead of just providing access for the PDA application, the installation could provide access for
all vehicle maintenance family add-on applications. This would make customer environment man-
agement easier and developing new add-on applications faster.

Keywords: multi-tenant, hybrid cloud, SaaS, Azure, .NET

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Joona Luoma: Moniosapuolihybridipilviarkkitehtuuri

Diplomityö

Tampereen yliopisto

Tietotekniikan diplomi-insinöörin tutkinto-ohjelma

Syyskuu 2019

Tässä diplomityössä tutkitaan moniosapuolihybridipilviarkkitehtuuriin liittyviä haasteita ja ku-
vataan arkkitehtuurimallin soveltamista kahdessa ohjelmistokehityshankkeessa. Arkkitehtuuri-
mallin soveltamisen varsinainen syy on tarve jatkaa pitkään kehitettyjen, monella asiakasyrityk-
sellä edelleen käytössä olevien perintöjärjestelmien toiminnallisuuksien kehittämistä ilman, että
kehitystä tarvitsee suorittaa perintöteknologioilla suoraan perintöjärjestelmään. Arkkitehtuurimal-
lissa perintöjärjestelmä nähdään pääjärjestelmänä, jonka oheen voidaan kehittää moniosapuoli-
sia pilvipohjaisia lisäarvojärjestelmiä. Perintöjärjestelmää ajetaan tyypillisesti asiakkaan omassa
ympäristössä, kun taas lisäarvojärjestelmiä on tarkoitus ajaa pilvipohjaisesti, mikä luo tarpeen
näiden ympäristöjen yhteen liittämiselle hybridipilviteknologioin.

Työn ensimmäisessä vaiheessa suoritettiin kirjallisuuskatsaus arkkitehtuurimallin haasteisiin,
ja sen lopputuloksena saatiin tarkistuslistanomainen joukko haasteita, jota hyödynnettiin työn toi-
sen vaiheen ohjelmistokehityshankkeissa. Huomionarvoista on, että kirjallisuudesta löytyy run-
saasti tapausesimerkkejä liittyen erikseen moniosapuolisuus- ja hybridipilvisovelluksiin, mutta
täsmälleen moniosapuolihybridipilviarkkitehtuurimalliin liittyen aiempia laadukkaita tutkimuksia ei
löytynyt. Tästä syystä kirjallisuuskatsauksessa etsittiin lähdemateriaalia näihin kahteen menetel-
mään liittyen erikseen. Tämä seikka otetaan huomioon katsauksen tuloksen arvioinnissa.

Työn toisessa vaiheessa arkkitehtuurimallia sovellettiin kahdessa kehityshankkeessa. Kehi-
tyshankkeita varten arkkitehtuurimallin soveltamiselle asetettiin tavoitteita, joiden toteutumista ar-
vioidaan kunkin kehityshankkeen arviointiosioissa. Tavoitteena oli luoda lisäarvojärjestelmät mo-
dernilla teknologiapinolla; automatisoida lisäarvojärjestelmien toimittaminen; tehdä lisäarvojärjes-
telmien tilaamisesta asiakasyrityksille suoraviivaista ja hyödyntää pilviresurssien jakamista asia-
kasyritysten kesken moniosapuolisuuden avulla.

Ensimmäisessä kehitysprojektissa kehitettiin datan laadunhallintasovellus asiakastiedonhal-
lintapääjärjestelmän oheen. Asiakastiedon luottamuksellisuudesta ja tietokantayhteyteen sekä
käyttäjien autentikointiin liittyvistä syistä johtuen arkkitehtuurimallia ei hyödynnetty tässä kehitys-
projektissa kokonaisvaltaisesti. Kehitettyä lisäarvojärjestelmää ajetaan kunkin asiakkaan omassa
ympäristössä, mutta se hyödyntää toimitusautomaatiosta, ja se on kehitetty nykyaikaisella tekno-
logiapinolla. Lisäarvojärjestelmän tilaamien pitää sisällään manuaalisia toimitustoimenpiteitä, ja
mahdolliset muutokset asiakkaan infrastruktuurissa voivat johtaa näiden manuaalisten toimitus-
toimenpiteiden toistamiseen. Nämä manuaaliset toimitustoimenpiteet vaativat kehittäjien panos-
tusta ja ne vähentävät siksi toimitusprosessin skaalautuvuutta.

Toisessa kehitysprojektissa kehitettiin käsipäätesovellus ajoneuvohuollon rengashotellipää-
järjestelmän oheen. Kehitetty lisäarvosovellus hyödyntää arkkitehtuurimallia. Sovelluksen moni-
osapuolisuus toteutettiin ASP.NET Core -verkkosovelluskehykseen sisäänrakennetun riippu-
vuusinjektiokontin ja Finbuckle.Multitenancy-kirjaston avulla. Azure Relay Hybrid Connection -
palvelua hyödynnettiin hybridiyhteyden muodostamiseen lisäarvojärjestelmästä pääjärjestel-
mään. Sovelluksen toimitusmalli pitää sisällään samat tilaukseen ja asiakasympäristön infrastruk-
tuurin muutoksiin liittyvät haasteet kuin ensiksi mainitun kehityshankkeen toimitusmalli. Haasteet
ovat kuitenkin osin kertaluonteisia: niihin liittyvät mahdolliset manuaaliset toimenpiteet tulee suo-
rittaa vain kerran kutakin asiakasta kohden, ei kerran kutakin asiakasta ja järjestelmää kohden.
Järjestelmän toimitusmallia voidaan kuitenkin jatkokehittää sellaiseksi, että vastuu asiakasympä-
ristöasennusten hallinnoinnista siirtyisi asiakkaan ylikäyttäjille palveluntarjoajan kehittäjien sijaan.
Toimitusmallia on mahdollista jatkokehittää jopa tuoteperhetasoiseksi: esimerkiksi ajoneuvoliike-
toiminnan laajuudella asiakasympäristöasennukset voitaisiin suorittaa vain kerran, mikä yksinker-
taistaisi asiakasympäristöasennusten hallinnointia ja kehittämistä.

Avainsanat: moniosapuoli, hybridipilvi, SaaS, Azure, .NET

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

Writing this thesis has been an extraordinary experience: a true grand final for my edu-

cational journey. All ups and downs included, writing the paper, conducting the research

and implementing the applications have taught me a lot about – not only cloud paradigms

– but also about time and complexity management. I am happy with the final results and

I have absolutely no doubt that the know-how gained during the process will be beneficial

in oncoming endeavors too.

I would like to thank the examiner of this thesis, asst. prof. Davide Taibi, for providing

valuable guidance especially in the early stages of the process. Finally, I would like to

thank everyone who have been supporting me through the writing process: my family,

my friends and my colleagues.

Tampere, 28 September 2019

Joona Luoma

iv

CONTENTS

1. INTRODUCTION... 1

2. CLOUD SERVICE MODELS ... 5

3. MULTI-TENANCY ... 8

4. HYBRID CLOUD ... 13

5. LITERATURE REVIEW ... 15

5.1 Definition of research questions ... 15

5.2 Definition of search terms... 16

5.3 Definition of inclusion criteria & filtering .. 16

5.4 Gathering & merging the MTHC challenges 17

5.5 Multi-tenancy design challenges .. 18

5.5.1 Infrastructure variability ... 18
5.5.2 Application level variability .. 19
5.5.3 Persistence variability ... 20
5.5.4 Variability over the lifecycle of the application 23
5.5.5 Self-service variability ... 23
5.5.6 Performance degradation by tenant interference......................... 24
5.5.7 SLA variability ... 25
5.5.8 Tenant isolation .. 25
5.5.9 Compliance to regulations ... 26

5.6 Hybrid cloud design challenges .. 27

5.6.1 Network security ... 27
5.6.2 Authorization ... 27
5.6.3 Compliance to regulations ... 28
5.6.4 Governance .. 28
5.6.5 Data partitioning .. 29
5.6.6 Application partitioning .. 30
5.6.7 Connectivity technology .. 31
5.6.8 Performance ... 31

6. TECHNOLOGIES.. 33

6.1 ASP.NET Core ... 33

6.1.1 Dependency injection .. 33
6.1.2 Authentication ... 35
6.1.3 Finbuckle.MultiTenancy .. 37

6.2 Azure ... 37

6.2.1 Azure Virtual Network ... 38
6.2.2 Azure Relay Hybrid Connection .. 38
6.2.3 Azure App Service .. 39

6.3 Azure Pipelines .. 40

7. CASE: DQM TOOL ... 42

7.1 MTHC design challenges ... 43

7.2 Alternative solution and evaluation ... 44

8. CASE: TIRE HOTEL PDA ... 46

v

8.1 MTHC design challenges ... 48

8.2 Evaluation .. 55

9. SUMMARY & EVALUATION ... 57

REFERENCES ... 60

vi

LIST OF SYMBOLS AND ABBREVIATIONS

AACS Azure App Configuration Service
AppConfig ASP.NET Core Application Configuration
API Application Programming Interface
ASP Application Service Providing
CD Continuous Delivery
CI Continuous Integration
CRM Customer Relationship Management
CSP Cloud Service Provider
DevOps Development Operations
DI Dependency Injection
DMS Dealership Management System
DQM Data Quality Management
EAV Entity-Attribute-Value
ERP Enterprise Resource Planning
FaaS Function as a Service
IaaS Infrastructure as a Service
IIS Internet Information Services
IP Internet Protocol
JSON JavaScript Object Notation
JWT JSON Web Token
LoT Level of Tenancy
MTEL Multi-Tenancy Enablement Layer
MTHC Multi-Tenant Hybrid Cloud
NIST the National Institute of Standards and Technology
NoSQL Not only SQL
ODBC Open Database Connectivity
on-prem On-premises
OTS/ASP Off-The-Shelf Application Service Providing
PaaS Platform as a Service
PDA Personal Digital Assistant
RDB Relational Database
RDBMS Relational Database Management System
SaaS Software as a Service
SLA Service Level Agreement
SMS Systematic Mapping Study
SPL Software Product Line
SQL Structured Query Language
SSO Single Sign-On
THPDA Tire Hotel Personal Digital Assistant
THS Tire Hotel System
URL Uniform Resource Locator
VNET Azure Virtual Network
VPN Virtual Private Network

1

1. INTRODUCTION

In the Software as a Service (SaaS) service model, software vendors host software ap-

plications in the cloud in order to make them accessible over the internet. It is a cost-

effective alternative to the traditional Application Service Providing (ASP) service model,

in which the application is installed on the customer organization’s premises and the

customer must take responsibility of maintaining its own infrastructure in order to keep

the application running. Having to maintain only a single scalable multi-tenant production

environment is also beneficial for software vendors. According to Gartner, the increasing

adoption of cloud-first strategies has brought the worldwide SaaS revenue to its all-time

high, to 94.8 billion U.S. dollars in 2019, and the number will rise to 110.5 billion U.S

dollars by 2020 [11].

Still, over the last decades, many legacy systems that have evolved organically into ma-

jestic ecosystems are still located on-premises, meaning that the system is operated and

runs on servers on the premises of the organization using the software, rather than at a

remote facility such as a server farm or cloud. According to Moyle, a legacy application

is a technology that is difficult to replace, and which would be developed with different

technologies today [59]. These systems are very high value for the business, which is

the reason why they are kept and maintained by organizations [59].

This thesis was conducted as a research project for a Finnish IT service provider and

software vendor (referred throughout this paper as the company). The company has

faced the aforementioned challenge with a handful of mature legacy systems. On one

hand, these legacy systems provide high value, because they have been well adapted

to the existing business processes over the years, they maintain organizational

knowledge and therefore provide significant competitive advantage [19], but on the other

hand these systems are developed with technologies that are no longer widely mastered,

and therefore there are less knowledgeable professionals available. Their deployment

models often do not scale well due to including manual stages and customer environ-

ment specific quirks. Despite these challenges, the world keeps revolving and business

requirements keep evolving, which poses a great need to keep expanding these systems

and to add more features. Not unlike other software service providers, the company of-

2

fers many of these applications off the shelf (OTS/ASP), meaning that they are not en-

tirely tailored for each customer’s specific needs, but instead each system is offered and

provided to several customers with instances of the same system running on each cus-

tomer’s premises, i.e. in each customer’s environment, with customer specific configu-

rations. This manual delivery to each customer’s on-premises environments is portrayed

in Figure 1.

 The OTS/ASP deployment model. Delivering new application versions in-
cludes manual steps performed by system administrators and developers.

Cloud migration is the process of partially or completely moving digital assets, services,

IT resources or applications to a cloud platform with an intent to improve certain quality

attributes, such as scalability, maintainability and performance [61]. Given the long-term

benefits of cloud migration, many organizations and IT service providers decide to do so.

Cloud migration does not come without risks. Especially with legacy applications it may

require costly rewrites and be time-consuming [28]. In addition to the challenges, mature

legacy systems also have perceived benefits, such as reliability and stability, which is

why many businesses still host their most mission-critical applications on-premises, such

as Enterprise Resource Planning (ERP), Customer Relationship Management (CRM)

and payroll [23].

The challenges involved with a fully-fledged cloud migration can be mitigated by using a

hybrid cloud deployment model [48]. In a hybrid cloud deployment, some system com-

ponents are in the public cloud and the rest on-premises. This implies that there must be

a mean of communication over the internet between these two environments. In the con-

text of the company, this would mean that the monolithic legacy systems (i.e. master

3

systems) and their existing ecosystems could potentially be left untouched, and any new

functionality could be developed as add-on applications with modern technologies and

deployed to the public cloud. Because all the master systems are OTS/ASP, i.e. they are

deployed to several customer environments, the new add-on applications could leverage

a multi-tenant approach, making it necessary to have only a single multi-tenant instance

of each add-on application running in the public cloud, shared by multiple customers.

Figure 2 portrays this basic idea of the Multi-Tenant Hybrid Cloud (MTHC) architecture:

 The MTHC architecture. A multi-tenant add-on application, deployed with
Azure DevOps Pipelines and running in Azure, must have hybrid cloud connec-
tivity to on-premises resources owned by the master system.

In this thesis the MTHC architecture is considered in two new add-on application pro-

jects. The add-on applications are:

• Case 1: Data Quality Management (DQM) application with Dealership Man-
agement System (DMS) as the master system

• Case 2: Tire Hotel Personal Digital Assistant (THPDA) application with Tire
Hotel System (THS) as the master system.

4

The specifics of these applications are discussed in chapters 7 and 8 respectively. Cer-

tain goals were set for the MTHC architecture. Reaching these goals is assessed in the

evaluation section of each of the cases. The goals are:

• Goal 1: Develop the add-on applications with modern technologies: Allow
developers to use technologies that are widely supported and that they are al-
ready familiar with. This makes it easier to incorporate new developers to these
software projects.

• Goal 2: Make delivery automated: In order to make the delivery process scala-
ble and manageable despite the number of customer organizations using each
add-on application, i.e. subscribed to each application, the application delivery
processes must be automated.

• Goal 3: Make subscription automated: Including new customers should not
require complex manual operations. Ideally it should be only a question of con-
nectivity between the add-on application and the master system.

• Goal 4: Share cloud resources between all customer organizations: The de-
ployment model of the add-on applications should support sharing their allocated
cloud resources between all customer organizations, providing cost savings and
decreasing the applications’ cost-per-customer as the number of subscribing cus-
tomer organizations increases.

In chapters 2, 3 and 4, the theoretical concepts behind cloud computing and MTHC are

discussed and the essential concepts related to the MTHC design are introduced. Chap-

ter 5 explores the MTHC design challenges with a literature review. The aim of this liter-

ature review is to gain an understanding of the challenges, which would be beneficial

considering the planning and implementation of the development projects. In chapter 6

MTHC enabling technologies are discussed. Due to organizational reasons, the cloud

technologies are limited to Microsoft Azure offering and the add-on application develop-

ment stack will be ReactJS/ASP.NET Core. Git version control and the CI/CD pipelines

are provided by Azure DevOps. Chapters 7 and 8 present the two software development

projects from the point of view of the MTHC architecture. In chapter 9 the study is sum-

marized and evaluated.

5

2. CLOUD SERVICE MODELS

Something as a Service is a category of service models in which a Cloud Service Pro-

vider (CSP), such as Microsoft Azure, or a software vendor delivers scalable cloud-based

services on-demand over the internet [31]. From the CSP’s point of view, something as

a service utilizes resource pooling to serve multiple customers over the same infrastruc-

ture, and should be well measured in order to enable quick on-demand scalability and to

provide transparency over the resource usage to its customers [31]. Something as a

Service recognizes a large amount of different technologies, tools and products. The

National Institute of Standards and Technology (NIST), an organization that develops

standards and guidelines, recognizes three service models: Software as a Service

(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS).

In SaaS, customers are provided the capability to use software vendor’s applications that

run in a cloud environment [31]. The applications are accessible from various client de-

vices, typically through a web browser or a local program interface [31] (e.g. Microsoft

Outlook [55]). There is a great deal of SaaS applications available for personal use for

free and for organizational use as paid services, including many sophisticated business

applications such as CRM and ERP applications [55]. The consumer organization does

not manage or control the underlying cloud infrastructure, such as network, servers, op-

erating systems or storage [31]. In many cases it is beneficial for organizations to have

their applications client-free and data stored in the cloud, available from anywhere [55].

According to NIST, PaaS allows the consumer to deploy consumer-created or acquired

applications – created using programming languages, libraries, services, and tools sup-

ported by the CSP – onto the cloud infrastructure [31]. This means that PaaS permits

developers to create and deploy applications using built-in software components pro-

vided by the CSP, with many cloud features such as scalability, high-availability and

multi-tenant capability included within the platform, reducing the amount of code that

developers must write [54]. In PaaS, the level of service abstraction is lower than in

SaaS, because – despite not having to manage or control the infrastructure – the con-

sumer has control over the deployed applications and possibly configuration settings for

the hosting environment [31]. As an example, Azure App Service [40] and Heroku are

PaaS offerings.

NIST describes IaaS as a capability that allows the consumer to provision processing,

storage, networks and other necessary computing resources [31]. The consumer can

6

run arbitrary software on top of the provisioned infrastructure, including operating sys-

tems and applications [31]. The consumer does not manage CSP’s physical cloud infra-

structure, but has control over the provisioned virtualized infrastructure, such as virtual

machines, networks, storage and deployed applications [31]. Being able to provision vir-

tualized infrastructure easily can make it less expensive and less complex to manage

and deploy applications, such high-performance computing, big data analysis and plain

web applications, compared to a situation where the consumer has to manage physical

hardware by itself [53]. This also makes it easier to innovate rapidly and to set up and

dismantle test and development environments, bringing new applications to market

faster [53].

The NIST definitions were published in 2011 and the cloud paradigm has evolved quite

a bit ever since. Especially serverless or Function as a Service (FaaS) has become an

established service model since then. FaaS (e.g. Azure Functions, AWS Lambda) allows

executing a small piece of software, a function, without requiring the software service

provider to manage servers or complex operational aspects [57].

The NIST model’s validity has been challenged by, for example, Miyachi [57]. Instead of

differentiating service models based on the service abstraction, Miyachi’s model differ-

entiates them based on the applications they are suitable to be used for and by the end

user they are used by. These Miyachi’s service models are presented in Table 1.

Service model Applications End user

App Services Cloud apps, Social media apps Any user

Built-up PaaS Business as a Process, Data Analytics Rapid developers

Serverless Computing Speed developers

PaaS Developers

Foundational PaaS Containers, Messaging, Object Storage DevOps

Software Defined Virtual Machines, Software Defined Networks Infrastructure engineers

Hardware Services, Switches, Routers, Storage

Miyachi’s model does not include IaaS per se, but instead has separated it into three

levels of virtualization, Hardware level being the least and Foundational PaaS being the

most virtualized levels. Miyachi’s model differentiates traditional Software Defined ser-

vice models (e.g. virtual machines) from the more recent, cloud native Foundational

PaaS based delivery models (e.g. application containers). Due to being focused on de-

ployment of binaries, Foundational PaaS can be viewed as a traditional platform as a-

service for Development Operations (DevOps) purposes, whereas Miyachi’s PaaS and

Built-up PaaS are platforms for coders (focus is on the deployment of code) and for

Table 1. Miyachi's service models [57].

7

power users (focus is on the deployment of higher-level business models) respectively.

Due to abstracting out most of the infrastructural concerns of PaaS, Miyachi positions

Serverless Computing between PaaS and Built-up PaaS. The highest level of abstraction

is App Services, which includes applications that are meant to be used by business users

without technical know-how.

8

3. MULTI-TENANCY

Software vendors often adopt SaaS as their primary service model because SaaS allows

them to offer their software services over the network, reaching a global market. How-

ever, in order to gain the cost efficiency of a shared infrastructure, the offered software

applications must be multi-tenant [73].

According to the systematic mapping study carried out by Kabbedjik et al., “multi-tenancy

is a property of a system where multiple customers, so-called tenants, transparently

share the system’s resources, such as services, applications, databases, or hardware,

with the aim of lowering costs, while still being able to exclusively configure the system

to the needs of the tenant” [27]. The term “transparency” in this definition implies that the

end-user should not be required to be aware of any multi-tenancy aspects of the system,

but instead the user experience should be equivalent to the one of a dedicated system,

e.g. OTS/ASP.

In their paper, Bezemer & Zaidman claim that the definitions for multi-tenancy found in

literature are vague and therefore they define the concept by themselves as follows: “A

multi-tenant application lets customers (tenants) share the same hardware resources, by

offering them one shared application and database instance, while allowing them to

configure the application to fit their needs as if it ran on a dedicated environment” [3].

According to Bezemer & Zaidman, a “tenant” is both an organizational entity which rents

a multi-tenant SaaS solution and a group of users that are the stakeholders in the organ-

ization [3].

Chong & Carraro define multi-tenancy through an example: when a user from one or-

ganization uses a multi-tenant CRM application service to access her employer’s cus-

tomer data, the application instance that the user connects to may be accommodating

users from dozens, or even hundreds, of other organizations, all completely oblivious to

each other [8]. This requires an architecture that maximizes the sharing of resources

across tenants, but that is still able to differentiate data belonging to different customer

organizations. In their paper focusing on multi-tenant variability, Walraven et al. refer to

this definition of multi-tenancy [72].

The systematic literature mapping of Kabbedjik et al. provides a definition of multi-ten-

ancy that aggregates several distinct literature sources, but they still remark that there

may be research bias in their results [27]. Their study also includes both Bezemer &

Zaidman’s and Chong & Carraro’s definitions. Bezemer & Zaidman formulated their own

9

definition for needs of their study, but this was mainly due to their study focusing on

concrete caveats of multi-tenant architectures, and they claim that the abstract definitions

found in literature were too vague for their purposes [3].

According to Walraven et al., the main benefit of the multi-tenant approach is that the

system’s operational costs can be significantly reduced by using hardware and software

resources more efficiently, multiplexed across customers, and by simplifying the overall

maintenance effort [72]. Maintenance is simpler and more scalable, because upgrading

the software can be performed for all tenants at once [72]. On the other hand, there are

several challenges, such as having to manage an expanding set of variations in the soft-

ware implementation as well as in configurations. Variability is the extent that a software

component functionality can be manipulated with tenant-specific customization and con-

figuration. Components with no variability always produce the same outcome for all ten-

ants. The challenges are elaborated further in the literature review in chapter 5.

According to Kabbedjik et al., the difference between multi-instance (i.e. instance per

tenant) systems (e.g. traditional OTS/ASP) and multi-tenant systems is that for multi-

instance systems it is not by definition necessary to have shared resources, because a

new system instance can be deployed for each customer separately [27]. On the other

hand, the key difference between multi-user and multi-tenant systems is that in multi-

user systems the same invariable functionality is provided for all customers, whereas in

multi-tenant systems the application functionality may be differ between users of different

tenants and, on the contrary, be alike between users of a single tenant [27]. A software

vendor may, for example, customize its multi-tenant application offering to suit the needs

of one of its customers without the other customers experiencing any difference.

Walraven et al. elaborate the division between multi-instance and multi-tenant systems

even further, dividing multi-tenancy to three Levels of Tenancy (LoT): shared infrastruc-

ture, shared middleware and shared application [72]. In addition to these three, this the-

sis considers the lack of multi-tenancy, i.e. having an instance per tenant, as the lowest

level of tenancy. The comparison between these four is shown in Figure 3.

10

 The levels of tenancy.

In the shared infrastructure approach, as the name says, only the infrastructure (e.g.

virtual machines) is shared between the application processes dedicated to different ten-

ants. On the contrary, if the shared middleware approach is used, the application pro-

cesses are shared between tenants, and thus also the operating system, but application

services are not. Walraven et al. do not describe in detail any operational aspects of a

“middleware”, but in the context of this paper it is reasonable to consider a middleware

as a web application request middleware, which will be explained in detail in subchapter

6.1.2. With the shared middleware approach, the initial engineering complexity is shifted

from the application service level to a reusable middleware layer [72]. This implies sep-

arate application service instances for each tenant and therefore higher maintenance

costs [72]. In their paper, Walraven et al. propose the shared application approach for

building true multi-tenant applications with the flexibility to support tenant-specific re-

quirements [72]. Since all tenants are served by the same application services, the ser-

vices must be designed to support tenant-specific variability [72].

The shared application model proposed by Walraven et al. is essentially an architectural

pattern consisting of a specific multi-tenancy support layer that enables tenant variability.

Since this model is suitable for web applications and because the model introduces sev-

eral overarching concepts related to multi-tenant application design, the model is briefly

discussed in this subchapter. The model is presented in Figure 4. The very model pre-

sented in the figure substitutes the concept of Feature, used by Walraven et al., with

11

Service, because this is more in-line with the later implementation stages regarding this

thesis.

 Overview of the multi-tenancy support layer [72].

The Multi-Tenancy Enablement Layer (MTEL) consists of two components: a TenantFil-

ter and a TenantContext. For each incoming Hypertext Transfer Protocol (HTTP) re-

quest, the MTEL resolves the tenant linked to the request. Typically tenant specific re-

quests contain some tenant identifier, a TenantID, that the MTEL tries to extract. Once

the requesting tenant is resolved, a TenantContext is created. [72]

The current TenantContext bears the resolved TenantID. TenantContext is available for

all multi-tenant ApplicationServices, i.e. application service implementations, and thus

the actual functionality of each ApplicationService can vary between different tenants

(linked to different TenantIDs), depending on how each tenant is configured. In some

cases, the application can depend on an abstract IApplicationService instead of a spe-

cific implementation. Customized ApplicationService implementations can be bound to

each IApplicationService per-tenant basis. [72]

ApplicationServices and the TenantContext use a tenant specific Configuration as the

source of configuration settings for the tenant [72]. A Configuration instance is resolved

with the ConfigurationManager using the current TenantID. Each tenant has a single

dedicated Configuration instance. An example of a configuration setting would be any

12

tenant specific user interface theming or a tenant specific connection string to a tenant

specific database. The difference between configuration and customization is discussed

in subchapter 5.5.2. The TenantFilter is used for filtering multi-tenant database queries

and commands [72], so that, for example, only the Structured Query Language (SQL)

database table rows owned by the requesting tenant are considered during a query ex-

ecution.

Walraven et al. explain that in their proposed model the current the current TenantCon-

text can be made available to ApplicationServices using Dependency Injection (DI). In-

stead of instantiating ApplicationServices directly inside other ApplicationServices, the

flow of control is inverted: the life cycle management of ApplicationServices is controlled

by a DI container, the ServiceInjector [72]. ServiceInjector takes care of binding each

IApplicationService to a concrete ApplicationService for each tenant and providing them

the correct Configuration instance [72]. DI in ASP.NET Core context is discussed further

in chapter 6.

13

4. HYBRID CLOUD

According to NIST, there are four cloud deployment models: private cloud, community

cloud, public cloud and hybrid cloud. In a private cloud deployment, the cloud infrastruc-

ture is provisioned exclusively for a single organization [31]. This cloud deployment can

be owned, managed and operated either by the organization itself or by a third party,

and it may exist on-premises (or just on-prem) or off-premises [31]. Often “on-premises”

is used as an opposite of SaaS, meaning that if something is performed on-premises, it

is performed within an internal corporate network, disconnected from any cloud-based

SaaS services. Private clouds are often used by mid- to large-size organizations with

business-critical operations, seeking enhanced control and security over their environ-

ment [48].

NIST defines community cloud as a cloud infrastructure that is provisioned for exclusive

use by a specific community of consumers from organizations with common concerns,

such as requirements for security or policy compliance [31]. Like a private cloud infra-

structure, a community cloud infrastructure can be managed by the community organi-

zations themselves or by a third-party service provider, and it may reside on- or off-

premises [31].

Public cloud is the most common deployment model for cloud computing [48]. According

to NIST, a public cloud infrastructure is provisioned for open use by the general public,

and it is owned, managed and operated by a CSP (i.e. not the consuming organization)

[31]. Public clouds are multi-tenant services, meaning that multiple organizations (ten-

ants) share the same physical infrastructure, such as servers and network devices [48].

As opposed to private cloud, costs are generally lower with a public cloud infrastructure,

because hardware is not necessary to be purchased and maintained by the tenants [48].

Public clouds offer near-unlimited scalability, because resources like computing capacity

are available on-demand [48].

NIST defines hybrid cloud as a cloud infrastructure that is a composition of two or more

distinct (cloud) infrastructures that remain unique entities, but are bound together by a

standardized or a proprietary technology that enables data and application portability

between the environments [31]. By combining on-premises resources with public clouds,

organizations can reap the advantages of both. One can, for instance, use public cloud

for high-volume, lower-security needs (such as web-based email) and the private

cloud/on-premises environment for sensitive, business-critical operations like financial

14

reporting [48]. In addition to this vertical positioning, which means that the services lo-

cated in the public cloud and on-premises are not the same, horizontal positioning is also

used in some scenarios. Horizontal positioning means that the services located in differ-

ent environments are equal. One motivation for using horizontal positioning is cloud

bursting in which a service runs on-premises until there is a spike in demand (such as a

seasonal event like online shopping), at which point the services can “burst through” to

the public cloud to tap into extra computing resources [48].

15

5. LITERATURE REVIEW

The literature review was conducted using the Systematic Mapping Study (SMS) process

described by Petersen et al. [63] as the basis for the process. The difference between

the process described by Petersen et al. and the exact process used in this literature

review is that the goal of this literature review was to gather a set of challenges related

to the MTHC architecture. For this reason, the final mapping step was replaced with

reporting of the classification results using the source literature. Figure 5 illustrates the

study process flow.

 The literature review process.

Petersen et al. point out that SMS is suitable for gaining a coarse-grained overview of a

research area [63]. Lacking enough knowledge about MTHC design challenges, the main

goal for the literature review was to form a general understanding about this subject.

Hence, SMS was a suitable choice as the basis for the process model. The subchapters

of this chapter walk through the steps of the literature review process and describe how

they were carried out.

5.1 Definition of research questions

The ultimate goal of the literature review was to form a more thorough and applicable

understanding on the caveats of the MTHC architecture. For example, what information

security challenges does a multi-tenant hybrid cloud design pose? This “challenge”

standpoint was used in forming the research question:

Research question: What software design challenges should be considered particularly

when a vertical hybrid cloud deployment model is used for accessing on-premise re-

sources in a multi-tenant application?

16

The answer to the research question would preferably be an elaborate classification of

non-functional considerations.

5.2 Definition of search terms

The search was conducted using Scopus as the bibliographical source. Initially, the

search focused specifically on the MTHC architecture. Unexpectedly, this led to very little

and mostly irrelevant results. Ultimately, the search was conducted in two parts: one

search for multi-tenancy and one for hybrid cloud. This approach worked sufficiently well,

because the two concepts are very independent.

Table 2 describes the search terms that were used for each concept. It also displays the

numbers of search results and papers after the filtering was performed.

Concept Search term
of search
results

of papers
after filtering

Multi-tenancy

(“multi-tenan*” OR “multitenant*”)
AND (“per tenant” OR “tenant?specific”
 OR “each tenant” OR “all tenants”)
AND “cloud”
AND (LIMIT-TO(SUBJAREA, “COMP“))

28 17

Hybrid cloud

TITLE-ABS-KEY(
 “hybrid cloud”
 AND (“on?premise*”
 OR “internal” OR “intra”
 OR “enterprise”))

191 15

The focus within multi-tenancy literature varies a lot. Some papers give multi-tenancy a

very brief honorary mention, whereas some give major attention to very specific aspects

of multi-tenancy. The set of search results was possible to be refined by including search

terms that are typical for literature that focuses specifically on multi-tenancy (and not just

briefly mention the concept). This excluded lots of false positives.

Considering hybrid cloud, the result set was not possible to be narrowed down as much,

so the final set of search results contained more false positives. The search terms at-

tempt to emphasize specifically vertical hybrid cloud positioning.

5.3 Definition of inclusion criteria & filtering

Filtering was done in three phases, each phase reducing the size of the set of papers.

First, the initial set of papers was evaluated by their titles. Then the resulting set was

evaluated by abstracts and finally this set was evaluated by body texts. In each phase

the inclusion criteria were the following:

Table 2. Search terms.

17

Title/abstract/paper addresses general design patterns or architectural aspects of hybrid
cloud or multitenancy

AND is available via Scopus
AND considering multi-tenancy literature

• is not focused around a specific technology offering.

AND considering hybrid cloud literature

• is not focused solely on cloud bursting, offloading, high availability or achieving
better quality of service with a hybrid cloud deployment

• is not focused just generally on cloud computing

• is not focused solely on hybrid storage

• involves the perspective of software service provider (instead of CSP)

• is not focused on hybrid IaaS or cloud desktops.

The filtering process ended up with 32 papers: 17 papers for multi-tenancy and 15 papers

for hybrid cloud. Figure 6 displays the publish years of the chosen 32 papers.

 Paper publish years.

As shown in the figure, both of the concepts have been around for about a decade. The

publication frequency has sustained quite stable over time. This is not a surprise, be-

cause multi-tenancy is a very typical pattern in cloud SaaS applications, and on the other

hand, hybrid cloud is a typical deployment model for cloud migration.

5.4 Gathering & merging the MTHC challenges

According to Petersen et al., keywording is done in two steps: first the reviewers read

the abstracts and look for keywords and concepts that reflect the contribution of the pa-

per [63]. When this is done, the sets of keywords are combined together in order to

develop a high-level understanding about the nature and contribution of the research

[63]. The final set of keywords can be clustered and used to form the categories for the

systematic map [63]. In this literature review, keywording was performed during step 7

(see Figure 5). Then this relatively duplicated set of miscellaneous keywords was

cleaned by merging overlapping keywords together. This process resulted with a classi-

fication of the MTHC architecture design challenges shown in Table 3.

0

1

2

3

4

5

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Multi-tenancy Hybrid cloud

18

Multi-tenancy Hybrid cloud

• Variability
a. Over the application architecture

i. Infrastructure variability
ii. Application level variability
iii. Persistence variability

b. Over the application lifecycle
c. Self-service variability

• Service Level Agreement (SLA)
a. Tenant interference
b. SLA variability

• Security
a. Tenant isolation
b. Compliance to regulations

• Security
a. Network security
b. Authorization
c. Compliance to regulations
d. Governance

• Partitioning
a. Data
b. Application

• Connectivity
a. Connectivity technology
b. Performance

One downside of this classification, compared to results of typical systematic mapping

studies, is that this classification does not take into consideration the importance of each

challenge. Typical systematic mapping studies report the number of papers focusing on

each entry in the classification. In case of this literature review, formulating these statis-

tics would have been difficult, because, as will be discussed in subchapters 5.5 and 5.6,

the final classification is quite interdependent, meaning that certain challenges occur to-

gether or affect each other in some ways. From the point of view of the business goal of

the literature review, i.e. forming a set of design challenges to assist the actual design

and implementation efforts in the oncoming software projects, this is not an issue.

5.5 Multi-tenancy design challenges

This subchapter reports the classified set of design challenges related to multi-tenancy.

The quality of multi-tenancy literature varies quite a lot. Some papers focus on very spe-

cific problems, whereas some papers, such as the one produced by Walraven et al.

[72][73], provides more exhaustive perspectives on the challenges related to multi-tenant

design. For this reason, the papers by Walraven et al. are referred to quite a bit through-

out this subchapter.

5.5.1 Infrastructure variability

According to Walraven et al., tenants may demand that the underlying application pro-

cesses of their SaaS subscriptions should be executed in specific environments [73]. For

example, some tenants may require a lower level of latency or ability to decide the loca-

tion of their data storage. Therefore, not only application’s functionality may vary among

tenants, but also the cloud infrastructure itself is subject to variability. Horcas et al. add

Table 3. The classification of MTHC architecture design challenges.

19

that making the application independent of an exact infrastructure decreases SaaS ven-

dor lock-in from the customer’s point of view [22].

Cloud infrastructure variability is an essential factor also in the context of hybrid cloud

applications, as will be discussed in subchapter 5.6. For example, it may be crucial for

some tenants to be able to behold their business-critical data on-premises, whereas it

may not be as critical for others.

5.5.2 Application level variability

In the literature, two kinds of application level variability approaches were discussed:

build-time static variability by customizing the implementation; and runtime dynamic var-

iability with configuration.

Customization (or tailoring), involving code modifications and an inevitable application

deployment, is a more traditional approach for enabling application level variability

[5][10][58]. Customization is used for satisfying tenant-specific requirements that cannot

be achieved with the one-size-fits all core functionality of a SaaS application [72][73].

Configuration, on the other hand, supports application level variability by parameteriza-

tion [10][73] that affects the application execution during runtime. It can be performed

with e.g. configuration files, that the application reads during runtime, environment vari-

ables or command line parameters. According to Walraven et al., compared to customi-

zation, configuration is generally the less expensive approach for service providers be-

cause tailored implementations introduce a new layer of complexity and additional

maintenance overhead [72]. It should be noted that enabling and maintaining a configu-

rability model in a multi-tenant application may be a non-trivial issue as well, as is later

discussed in this chapter.

When designing the strategy for application level variability, the LoT of the application

must be considered. Correia et al. claim that the traditional ASP models of software de-

ployment benefit from customization, because separate builds that include their dedi-

cated customizations can be deployed for each individual customer separately [10]. As

discussed, this approach uses the instance per tenant LoT. On the other hand, if the

shared application LoT is used, implementing customizations for one tenant comes with

a risk of having unintentional side-effects for other tenants [5]. They may be manifested

as, for example, downtime during deployment, performance interference, fault propaga-

tion or as new bugs in existing shared functionality. Hence, service providers should

make sure that any tenant specific customizations are not applied at the expense of

tenant isolation [73].

20

There are major trade-offs between customization and configuration. On one hand, with

customization, a specific customer requirement can be satisfied without a sophisticated

configurability model [73]. On the other hand, it implies adding customer-tailored imple-

mentation to the code base which has to be maintained [70][72]. A configurability model

can easily become overly complex and make the application difficult to maintain [58][70]

and increasingly difficult to be validated as the model evolves [17][70]. Variability model

evolution is further discussed in subchapter 5.5.4.

In the literature, several techniques are proposed for enabling application level variability.

Considering the instance per tenant approach, Software Product Line (SPL) techniques

are proposed for customization management [10][58][73]. According to Babar et al., a

SPL is a set of software-intensive systems that share a common set of core features for

satisfying the needs of a particular market segment, making it possible to reduce soft-

ware development cost by reusing code assets [2]. In the context of multi-tenant appli-

cations, a SPL would be beneficial for satisfying the specific needs of a particular tenant

instead of a particular market segment. It should be noted that with SPL the burden of

ensuring tenant isolation is not eliminated but shifted from application runtime to build-

time: Applications should be built in such a way that the tenant specific customizations

are included within tenant specific builds and deployments. In addition to this build-time

isolation, several ways of implementing SPLs are proposed in the literature. Object-ori-

ented programming patterns discussed in the literature include reflection, aspect-ori-

ented programming and dependency injection [73].

If a SaaS application uses the shared application approach, it has to include a MTEL

[5][72][73]. In web applications this means request time instantiation of tenant specific

objects, parametrized with tenant specific configuration, as was discussed in chapter 3.

5.5.3 Persistence variability

According to Correia et al., tenant specific data model extensions are a form of multi-

tenant application customization, including new entity attributes (e.g. new table columns)

and new entity types (e.g. new tables) [10]. Data model extensions must be combined

with any necessary application level customizations or, possibly, with the application’s

configurability model that integrates the additional attributes to the functionality of the

application [10]. Data models are extended due to some tenant specific functionality re-

quiring attributes that are not present in the one-size-fits-all core functionality of a SaaS

application [25]. Relational Databases (RDB) are typically too strict to enable this [25].

According to Foping et al., this is due to the concept of multi-tenancy not being a first-

class citizen in any well-known persistence technology offering [17]. Support for multi-

21

tenant persistence and variability must be implemented case by case or by utilizing a

third-party application level variability middleware offering.

In the literature, similar LoT approaches are considered for persistence as were pro-

posed for application instances [17][25][68][74][75]:

• separate databases (or shared machine)

• shared databases (or separate schemas, shared process, table prefix)

• shared tables (or shared schemas).

In each of the three approaches, tenant specific data is organized differently, so they

vary in terms of tenant isolation. In a database modeled according to the shared tables

approach, tenant isolation is the lowest, because each tenant’s data is stored in tables

that are shared between all tenants [68]. Data ownership is distinguished by a column

containing the TenantID, which is interpreted and used by the application logic [68], i.e.

the TenantFilter.

Persistence variability goals can be achieved in several ways. In the literature, three

approaches were discussed: Entity-Attribute-Value-model (EAV-model), extension ta-

bles and custom columns. The literature focused mainly on RDBs, but there is no reason

why these models could not be applied with other data storage paradigms too.

EAV-model [25] (or pivot tables [73], name-value pairs [10]) extends the core data model

of a SaaS application with a key-value structure. An EAV-extension table is joinable to

relational tables and still avoids any static modeling (customization) of tenant specific

entity attributes and types. Downsides of this approach are not widely discussed in the

literature, but naturally, it would not be able to benefit as much from the optimization

methods provided by traditional Relational Database Management Systems (RDBMS)

such as indexing. If the underlying type system was desired to be used, the EAV-model

approach would also not organize the data according to the business domain but by data

types (i.e. one EAV-extension table for integers, one for timestamps and one for strings).

Figure 7 portrays an example EAV-model. In the example Vehicle table is extended with

EavExtension table. EavExtension entries are joinable to Vehicle entries by VehicleId.

22

 EAV-model for persistence variability. The EavExtension table allows ex-
tending the static model of the Vehicle table.

An extension table is a customized table created for the specific needs of a single tenant

[25][74][75]. Extension tables are relational tables that refer to the tables that are part of

the core SaaS functionality, and therefore can benefit from the RDBMS’s optimization

features. On the downside, this technique is less dynamic than the EAV-technique: ex-

tending the data model requires static schema modifications.

In the custom column and sparse table approaches core tables are extended with tenant-

specific custom columns [5][10][17]. On the downside, if this approach is used in a

shared tables data model, it may lead to tenant specific columns being shared by all

tenants, decreasing the level of tenant isolation or at least shifting the responsibility to

the application logic.

According to Walraven et al., one of the key requirements for a multi-tenant execution

platform is that all tenant-specific variations should be applied in an isolated way, without

affecting the service that is delivered to other tenants [73]. Tenants should not be able

to experience each other’s customizations, such as custom columns, or access each

other’s data. The current TenantContext bears and provides the current TenantID that

can be used by data access objects, implementing the TenantFilter, for filtering data that

is stored in shared tables [73]. A data access object is an object for accessing data in a

data storage, and it can be implemented with several software development patterns,

such as object-relational mappers [74]. As an example, EF Core 2.0 is an object-rela-

tional mapper that implements the TenantFilter with its Global Query Filters: A multi-

tenant entity type should define an attribute for the TenantID and Global Query Filters

ensure that within the current TenantContext only the data entries owned by the tenant

can be queried and modified [43].

As mentioned, the literature does not explore the possibilities of more dynamic persis-

tence techniques, such as document stores. Jastrow & Preuss claim that NoSQL (Not

Only SQL), lacking many of the benefits of a RDBMS, would offer sufficient extensibility

[25], but they do not dive into the details of this issue. For example, Cosmos DB, which

is a multi-paradigm cloud native NoSQL storage offering in Microsoft Azure, supports

multi-tenancy with its isolation-ensuring partition keys [37].

23

5.5.4 Variability over the lifecycle of the application

As the complexity of a multi-tenant SaaS application increases over time, it becomes

gradually more difficult to refine without affecting the service continuity [22][71]. The evo-

lution and versioning of its variability must be able to be maintained. According to

Walraven et al., in successful SaaS offerings, increasing amounts of variability is pro-

duced to service increasing amounts of tenants [73]. There are two key components that

increase the difficulty of managing variability evolution in SaaS applications: the number

of served tenants and the variability complexity.

This explosion of variability complexity also means that supporting and implementing

functionality for new requirements is a challenge [73]. Supporting new features in a soft-

ware application may require modifying the existing components, which may lead to un-

expected, hard-to-debug effects on the existing features due to variability complexity

[73]. Configuration and the configurability model itself must be able to be validated by

the SaaS provider in order to ensure that modifications have not broken any existing

configurations [73].

In the literature, especially SPL based approaches are proposed for resolving the issue

of variability evolution [22][58][73]. According to Walraven et al., a SPL would support

maintaining co-existing tenant-specific configurations and facilitate the development and

management of customizable multi-tenant SaaS applications without compromising

scalability [73]. SPL seems to be a concept that, even in the recent years, is discussed

in-depth in the literature, but there are few implementations and libraries out in the public.

The SPL based approaches proposed in the literature each emphasize different chal-

lenges in variability management. For example, Horcas et al. point out that typical SPL

based approaches suffer from not focusing on automating the evolution at the architec-

tural level and from being obsessed on variability management in the scope of a single

tenant [22]. This makes it more difficult to perform changes automatically and consist-

ently, because it increases the complexity of changing the existing configurations for all

tenants at the same time. In addition to SPL approaches, Walraven et al. briefly point out

that enabling backwards compatibility in the internal and external interfaces of an appli-

cation is a simple way to cope with evolution requirements in less complex scenarios

[73]. Walraven et al. claim that, while being simpler than creating a SPL, ensuring back-

wards compatibility does not scale as well as the variability complexity increases [73].

5.5.5 Self-service variability

In some applications, it may be imperative to allow tenants’ users (or at least super users

or administrators) themselves to setup the configuration for their SaaS subscription

24

[5][10][25][72]. In these scenarios, the SaaS provider is responsible for providing cus-

tomer support to the administrators [72]. Self-service configuration tasks are performed

in tenant-isolated administrative user interfaces, e.g. dashboards or consoles [5]. Chang

et al. point out that including self-service configurability is especially important if the SaaS

application is offered for small-to-medium businesses [5]. This is because such busi-

nesses are generally readier to comply with one-size-fits-all models inherent to SaaS

applications with high scalability and low customizability. SaaS providers, on the other

hand, may offer customization as a paid service for those tenants who are less thrilled

to conform to this model [5].

5.5.6 Performance degradation by tenant interference

Since the data and the workloads of multiple tenants coexist within the same infrastruc-

ture, multi-tenancy may lead to performance degradation experienced by one tenant

caused by another [5][65][76]. Occasional peaks at workloads and user amounts are

typical causes for performance degradation in shared execution environments [65].

As mentioned, delivering customizations for one tenant may manifest itself indirectly as

downtime, new bugs, fault propagation or performance degradation for other tenants [5].

According to Chang et al. [5] and Yaish & Goyal [75], SaaS providers should put more

effort in preventing this from happening. Chang et al. [5] and Su et al. [68] also claim that

availability is one of the most important Service Level Agreement (SLA) metrics for

hosted applications (such as SaaS), and therefore creates a challenge for multi-tenant

systems. Downtime may lead to considerable financial losses for multiple customers [68].

This means that fault isolation (preventing faults propagating across tenant boundaries)

is a key requirement for multi-tenant systems [5].

Fault isolation should be regarded from the point of view of the used LoT model: if the

level of tenancy is low, faults have less opportunity to propagate over tenant boundaries.

Despite being better for fault isolation, Walraven et al. point out that a low LoT has sub-

stantial disadvantages from the point of view of scalability [72].

The role of scaling out was not addressed in the literature. Despite that, having multiple

instances of the same stateless service, multi-tenant or not, behind a load balancer does

certainly increase the availability of the service and decreases the possibility of fault

propagation. For example, if one process crashes due to a fault, the rest of them are still

up and serving.

25

5.5.7 SLA variability

Not all tenants are equal: for some, disruptions are costlier than for others [71]. A SLA is

by definition an agreement, which defines a quality compromise between the tenant and

the SaaS provider [5][71]. Tenants may want to gain more control over the delivered

service by imposing additional availability and performance requirements [68]. For this

reason, the SLA itself can be a point of variability.

Little is discussed about how a SLA is transformed into a point of variability, but, for

example, Walraven et al. propose that this is one of the challenges that can be resolved

with SPLs [73]. A SaaS provider could naturally dedicate resources and, on the other

hand, throttle each tenant according to the tenant-specific SLAs.

5.5.8 Tenant isolation

Multi-tenant SaaS applications should aim to isolate the data owned by one tenant from

other tenants for preventing unauthorized access [5], because tenants do not trust each

other by nature [5]. Due to the risks associated with unauthorized access, outsourcing to

multi-tenant environments is still viewed risky by organizations [75]. In the literature, ten-

ant isolation is seen as a concern of performance interference and data leakage due to

shared data storage platforms [17][58][74][75] and shared computing platforms [5][75].

Requirement for tenant isolation can vary among tenants. For example, some tenants

may approve storing their data in a shared storage, while others, who are more con-

cerned about confidentiality, may pose a requirement for a physically separated storage

in order to fully isolate themselves from other tenants [58][73]. Even further, in some

scenarios some tenants may require an isolated computing environment [5]. According

to Yaish & Goyal, it is unlikely that tenants would risk their business-critical data in favor

of reducing the total cost of ownership with SaaS applications [75]. Chang et al. point out

that isolation requirements are correlated with tenant sizes: a large enterprise may prefer

to pay a premium for isolated application or storage instances to avoid any risks associ-

ated with resource sharing, whereas small-to-medium businesses may prefer investing

in services with a reasonable quality at a lower cost, being less worried about the risks

associated with the tenant isolation practice [5].

As was discussed earlier, there are three LoT approaches for persistence: separate da-

tabases, shared databases and shared tables. Chang et al. point out that the choice

between shared and dedicated instances is always a compromise between scalability

and tenant isolation (among other security concerns) [5]. In a shared application, since

tenants desire to access and use the service as if they were the sole users [5], this com-

26

promise is generally dealt with data level and application level security. Data level secu-

rity aims to secure the access to the data storage with methods such as data encryption

by tenant specific encryption keys [5] and fine-grained authorization policies [75]. The

TenantFilter, discussed in subchapter 5.5.3, ensures application level data security.

Comparing the two approaches, data level security is at least the more reliable approach

for ensuring tenant isolation, because it relies on the authorization methods provided by

the data storage itself (such as a RDBMS login and user access system). Application

level security, on the other hand, can be more dynamic, more portable and easier to

implement, as it is independent of and does not require utilizing data storage technology

specific security techniques.

5.5.9 Compliance to regulations

Multi-tenant applications are constrained in many ways by legal and business-centric

policies [30]. General Data Protection Regulation is one example of regulations that

should be considered by both SaaS providers and customer organizations. It regulates

the processing of personal and organizational data related to individuals in the European

Union [13]. Isolation due to business-critical data processing may be extremely critical

for some tenants, as was discussed in subchapter 5.5.1.

Compliance to regulations is also a point of variability. Tenants may have business poli-

cies and other drivers for integrating the SaaS application to their own internal monitoring

or reporting systems [5]. Tenant specific authentication, especially, is a variability point

of this kind [5][12][22]: it may be essential to allow tenants to authenticate using an iden-

tity authority of their choice. In practice, this may require creating integrations to the Sin-

gle Sign-On (SSO) services, federating tenant user accounts to cloud identity manage-

ment systems [5] or possibly leveraging a completely tenant-specific mechanism for user

and tenant authorization (e.g. access policies) [12][22]. Decat et al. point out that sup-

porting this is inherently complex, because the authorization should be able to be man-

aged by different parties: SaaS provider should be able to manage authorization at the

level of tenants and each tenant should be able to manage access at the level of users

[12]. In addition, as mentioned, the authentication method itself may vary among tenants

[12][22]. Not discussed in the literature, but many organizations have some SSO offering

already in use, that can often be used as the identity authority (e.g. Azure Active Direc-

tory). An identity authority is a service that is able to authenticate identities either directly,

e.g. check the username and password, or indirectly, e.g. issue JSON web tokens (JWT,

explained in subchapter 6.1.2). Naturally, one should not assume that this is the case for

all tenants.

27

5.6 Hybrid cloud design challenges

This subchapter reports the classified set of design challenges related to the hybrid cloud

deployment model.

5.6.1 Network security

In a hybrid cloud deployment, the communication between the on-premises environment

and the cloud resources must be secured, as the public network is used for data trans-

mission [69]. For ensuring end-to-end security, enterprises must develop and manage

secure interfaces with their SaaS providers [21][67]. Depending on the setup, SaaS pro-

viders may be able to provide this as a separate service to their customers [21]. Regard-

less of the specifics of the setup, SaaS providers must secure their endpoints and, as an

example, ensure that incoming requests are authorized. Authorization will be further dis-

cussed in subchapter 5.6.2.

Customers must be able to comply with the client-side requirements of the SaaS pro-

vider. It is not unlikely for customers to be required to setup firewall rules for their internal

environments, so that hybrid cloud applications may have access to their internal re-

sources [7][62][69]. This issue is made more difficult to cope with by the fact that public

cloud applications in a public network may have dynamic Internet Protocol (IP) ad-

dresses or use a range of IPs, complicating the management of firewall rules [62]. This

is true for many inherently multi-tenant platforms, such as Azure App Service plan, which

has several outbound IP addresses, depending on the physical server on which the pro-

cess is currently being executed on [44]. In addition, according to Toosi & Buyya, assign-

ing public IP addresses to all servers in a hybrid cloud SaaS application is not feasible

in many cases and would be waste of resources [69]. Depending on the internal network

setup of the enterprise, there may also be network address translation policies that pre-

vent any attempted access to the internal resources from the public network [69].

In the literature, Virtual Private Network (VPN) is often proposed as a solution for the

aforementioned networking challenges [6][67][69]. It resolves the challenges associated

with the dynamic nature of the public network and makes it possible to deny public ac-

cess to the network itself. Connectivity technologies are further discussed in subchapter

5.6.7.

5.6.2 Authorization

SaaS providers and customers rely on each other to provide accurate, correct requests:

ones that can be authenticated (the requesting user or process can be identified) and

28

authorized (the requesting user or process is allowed to perform the attempted actions)

[21]. The SaaS provider is responsible for implementing and providing interfaces with

appropriate policies for authentication and authorization. In a SaaS application, each

request will trigger several actions before the request itself can be fulfilled: the application

must authenticate both the request (so that its origin is valid, i.e. the correct tenant) and

the requestor. The SaaS application must be aware of the user identities of each tenant

and therefore the user lifecycle management of each tenant must be extended to cover

the requirements of the application [21], which is one of the key challenges in hybrid

cloud integrations [20][66]. As was discussed for multi-tenant applications, cloud feder-

ation or the existing SSO services could be leveraged here for authentication.

5.6.3 Compliance to regulations

As discussed in chapter 4, one of the benefits of the hybrid cloud approach is the ability

to keep sensitive data and sensitive operations on-premises. This facilitates protecting

the privacy of data and to comply with requirements for data location and regulatory

requirements [7][18][29][69]. On the other hand, a large amount of enterprise data may

not be too business critical or sensitive for storing within and accessing from a hybrid

cloud deployment [69].

One approach is to keep the master version of data on-premises and project a necessary

subset to the cloud [29]. For instance, sensitive databases (e.g. related to credit card

processing) could be located on-premises, while less sensitive components could be

migrated to the cloud [4].

5.6.4 Governance

While initial fears of potential cloud adopters focused on the security of cloud environ-

ments in general, most analysis has now shifted its focus to governance aspects [21]. In

organizations, there is still a lack of understanding of what changes when moving to the

cloud and how to demonstrate compliance of these environments for regulatory purposes

[21]. According to Hinton, customers who do not have a tradition of paying attention to

security, or who believe that they have “good enough” security, may be unpleasantly

surprised when their “good enough” for the internal environment is not good enough for

cloud [21].

In a hybrid cloud deployment, organizations will essentially store data on platforms and

locations which either organizations or users have little control over [66]. From organiza-

tional point of view, it is important to either have trust on the platform or to be able to

verify the transitions and storage locations of its data [66]. Organization must decide

29

which data can safely be transferred to public cloud and to maintain accurate information

about which data has been processed by which clouds [66][67]. Data asset value must

be expressed clearly and in detail and possible risks and other side effects with third-

party involvement must be evaluated [67]. Hinton adds that if an organization does not

already have sophisticated governance practices in place, then migration to a hybrid

cloud setup can be a great risk for them [21].

Generally, organizations want to have greater visibility to the platforms that are integrated

with their on-premises environments for ensuring that their data and resources are not

compromised [4]. One reason for this is the multi-tenant nature of many cloud environ-

ments [4] and, for example, the risk of data breach. For gaining better visibility, a hybrid

cloud deployment could be integrated with existing organizational tooling [4], or the SaaS

provider could include e.g. an easy-to-access security dashboard [67] to their providing.

From a security standpoint, SaaS providers are responsible for managing the data place-

ment and computations in the cloud environment and to respect customer organizations’

security policies and the SLAs [21][66]. Encryption solutions and well-thought-out ap-

proach to identity and access management will be essential to protect data in a cloud

environment [67]. SaaS providers may be required to agree with audit requirements

posed by customer organizations and third parties [66]. One scalable strategy for the

SaaS provider is to make their audit reports available to all clients (under a non-disclo-

sure agreement) [21]. These reports, proving compliance with clearly defined, interna-

tional standards, would work as incentives for progressing past cloud migration [21].

5.6.5 Data partitioning

As mentioned, privacy is one of the most defining schemes of data partitioning, i.e. de-

ciding data location in a hybrid cloud deployment. Enterprises desire to maintain sensi-

tive data and processes within their internal network boundaries, whereas it could be

beneficial to store less sensitive data in a public cloud [20][28] and run less sensitive

processes in the cloud [7]. This is true for datasets, but also for data projections: it could

be viable to create business requirement specific projections of datasets and entries and

store the projections in the cloud [29], as sensitive entries or attributes could be excluded

from these projections.

In addition to privacy concerns, cost and performance optimization are key factors when

making decision about data location [14][18][28]. If throughput, latency and confidential-

ity are considered minor issues for a certain set of data, then storing it in a public cloud

could be a cost saving solution [14]. In general, partitioning data over multiple clouds will

30

increase the application latency compared to a scenario in which the whole application

resides within a single network [20].

If real-time data synchronization is not feasible, data could be partitioned by time: data

with little or no demand for being real-time can be synchronized between environments

in batches and/or asynchronously [14][29]. In hybrid cloud SaaS applications data gen-

erality could also be a viable partitioning scheme: data that is shared between tenants

could be located in the public cloud and tenant-specific data on-premises [66].

5.6.6 Application partitioning

Migrating all legacy application components to a public cloud could be infeasible or it

could end up being too expensive [28], making a hybrid approach more attractive. In a

hybrid cloud deployment, networking will affect the overall performance, because the

system is inherently distributed. It has to be decided which components are feasible to

be located in the public cloud and which components should be located on-premises

[20][28]. To make this decision, it is necessary to understand both the existing deploy-

ment models of the application and the behavior of the application’s components [28]. In

this context, component behavior consists of both the behavior within a component and

the interaction between components [20][28].

According to Karthikeyan & Nandhini, when only some of the components of a legacy

application are migrated into a hybrid cloud deployment, hidden optimization (i.e. ones

that are manifested only when the component is a part of a monolithic single-environment

setup) may have a major negative impact on the performance and scalability of the ap-

plication [28]. Considering a green-field hybrid cloud SaaS application, connectivity with

the existing legacy applications must be planned in advance: differences between tech-

nologies may cause significant refactoring, testing and need for reintegration with the

legacy parts [28].

Not unlike in the case of data partitioning, optimization of cost and performance is a key

consideration also from the point of view of application partitioning [28]. Locating storage

intensive components near data storages that they interact extensively with reduces wide

area network communication costs and response times [20]. On the other hand, compute

intensive components should be located to an environment with sufficient computing re-

sources [20].

31

5.6.7 Connectivity technology

In every hybrid cloud deployment, the issue of inter-cloud connectivity has to be over-

come to allow secure communications for a system distributed across two or more net-

works [6][66][69]. As mentioned in subchapter 5.6.1, this challenge should be solved by

the SaaS provider by whom the customers are given instructions and requirements about

the means of connectivity [21]. From the customer’s point of view, it would be beneficial

to use as little separate connectivity technologies as possible, because an increasing

amount of these technologies can lead to infrastructure fragmentation, device sprawl and

duplication of integration processes [4]. A hybrid cloud deployment should be extensible

and easy to integrate with on-premises systems [4].

In the literature, the following technologies were mentioned to solve the connectivity chal-

lenge at least partially and some solution models were discussed in depth:

• Service Bus (Enterprise Service Bus [62], Cloud Service Bus [77])

• VPN [4][6][7][20][77].

The following technologies were briefly mentioned to solve the connectivity challenge at

least partially:

• API (Application Programming Interface) Management [62]

• iPaaS (integration PaaS) [62]

• EAI (Enterprise Application Integration) [62]

• REST API [29].

According to Chen et al., VPN is a common solution for bridging private and public clouds

together [6]. VPN is proposed as a solution model by Chent et al. [6] and Cheung [7] and

is briefly mentioned as a solution model by Breiter & Naik [4], Hajjat et al. [20] and Zou

& Deng [77].

A service bus is itself a complex application, consisting of several layers related to mes-

saging, routing, monitoring and service registering [77]. It is proposed a solution model

by Zou & Deng [77] and briefly mentioned as a solution model by Pathak & Khandelwal

[62].

Azure’s virtual network solution, Azure VNET, and the service bus based Azure Service

Bus Relay are discussed in subchapters 6.2.1 and 6.2.2 respectively.

5.6.8 Performance

As mentioned, performance may be an issue in vertical hybrid cloud deployments. It is

expected that, when requesting and transferring data across a wide area network, the

throughput will be much less than in a local area network [20][28]. This is both due to

32

smaller bandwidth but also due to greater latency between separate distributed system

components [28]. In their study Faul et al. present an empirical comparison of latencies

between the two scenarios: in one scenario the application is located entirely in a single

LAN, whereas in the other scenarios the application is distributed across a variety of

cloud environments [14]. The results are not analyzed here in depth, but they clearly

indicate that communication within a single environment is much more performant than

communication between different cloud platforms or within a single cloud platform. The

results highlight the importance of analysis of data and application partitioning. For better

performance, components with high interdependency should be located near each other

[20].

33

6. TECHNOLOGIES

In this chapter, MTHC enabling technologies are presented. These technologies are lim-

ited to what will be used or considered in the case examples, discussed in chapters 7

and 8, and by the organizational limitations described in the introduction chapter.

6.1 ASP.NET Core

ASP.NET Core is a cross-platform, open source redesign of ASP.NET, Microsoft’s web

development framework for building web apps on the .NET platform [49].

6.1.1 Dependency injection

ASP.NET Core has a built-in DI framework that makes configured services available to

an application’s classes [33]. In ASP.NET Core, application services are objects that are

used by the application (e.g. logging service, data access service) [33]. A dependency

is any object that another object requires [41]. Examine the following example. Sales-

PersonProvider is an application service that has a method called GetSalesPerson for

getting an object of type SalesPerson that matches the given salesPersonId.

2

3

4

5

public class SalesPersonProvider
{
 private readonly IStorage storage;
 public SalesPersonProvider(IStorage storage)
 => this.storage = storage;

 public SalesPerson GetSalesPerson(string salesPersonId)
 => storage.QuerySalesPerson(salesPersonId);
}

SalesPersonProvider has a dependency on IStorage, which is an abstraction of a stor-

age implementation that implements at least the method QuerySalesPerson that re-

ceives salesPersonId and returns the matching SalesPerson instance. Both SalesPer-

sonProvider and IStorage can be configured as application services during application

startup:

2

services.AddTransient<SalesPersonProvider>();
services.AddTransient<IStorage, SqlServerStorage>();

Once an application service has been configured, it can be requested from the DI con-

tainer called service provider, as follows:

2

var spProvider = serviceProvider.GetService<SalesPersonProvider>();
var salesPerson = spProvider.GetSalesPerson("123");

34

Since IStorage is a dependency for SalesPersonProvider, it is also requested. In

ASP.NET Core DI, each requested dependency in turn requests its own dependencies

[41]. The DI container resolves the dependencies in the graph and returns the fully re-

solved application service [41]. The set of dependencies that must be resolved is typically

referred to as a dependency tree, dependency graph or object graph [41].

In the example above, the application services were configured with a transient lifetime.

ASP.NET Core DI has three options for lifetime: transient, scoped and singleton. Appli-

cation services with a transient lifetime are instantiated each time they are requested,

whereas singleton services are instantiated only once and the same object instance is

provided for each request thorough the lifetime of the service provider [41]. Scoped ser-

vices are instantiated once per client request [41] (e.g. once for each incoming HTTP

request). As an example, HttpContextAccessor is one of the scoped lifetime application

services that are provided out-of-box by the ASP.NET Core framework. During an HTTP

request, if an application service requests HttpContextAccessor from the DI container,

the resolved HttpContextAccessor instance will be able to provide an HttpContext in-

stance for the requesting application service. HttpContext contains information about the

current HTTP request context, such as the request Uniform Resource Locator (URL),

HTTP method, HTTP headers and request body.

As discussed in chapter 3, Walraven et al. claim that support for tenant specific custom-

ization, i.e. the ServiceInjector, can be implemented with DI. In the simplistic example

above, SqlServerStorage (=ApplicationService) will be resolved for IStorage (=IApplica-

tionService), but any additional TenantID dependent logic can be added within this DI

configuration. Consider Program 1:

2

4

6

8

10

12

14

16

services.AddTransient<SqlServerStorage>();
services.AddTransient<PostgreSqlStorage>();
services.AddScoped<IStorage>(serviceProvider =>
{
 // Resolve the current TenantID
 var currentTenantId = serviceProvider
 .GetService<HttpContextAccessor>().HttpContext
 .ResolveCurrentTenantIdFromHttpContext();

 // Resolve the ApplicationService
 if (currentTenantId == "tenantA")
 return serviceProvider.GetService<SqlServerStorage>();
 else if (currentTenantId == "tenantB")
 return serviceProvider.GetService<PostgreSqlStorage>();
 else
 throw new NotImplementedException();

});

Program 1. ServiceInjector example with ASP.NET Core DI. The scoped IStorage can
be resolved as SqlServerStorage or as PostgreSqlStorage, depending on the tenant.

35

Now, if the resolved tenant is tenantA, then the resolved ApplicationService will be

SqlServerStorage, and if tenantB, then it will be PostgreSqlStorage. This means that the

ServiceInjector, as Walraven et al. described it, can be implemented with ASP.NET Core

DI if the tenant can be resolved from the current HttpContext with some method like

ResolveCurrentTenantIdFromHttpContext(). Tenant resolution from the current Http-

Context is discussed in subchapter 6.1.3.

6.1.2 Authentication

ASP.NET Core includes many application services within the framework. As an example,

there are several application services for user authentication purposes. In ASP.NET

Core, authentication functionality is configured as an application service with ASP.NET

Core DI and enforced with a middleware. The ASP.NET Core request pipeline consists

of a sequence of request delegates called one after the other [34]. These request dele-

gates are called web application request middleware, or just middleware. Figure 8

demonstrates the concept. The thread of execution follows the arrows.

 ASP.NET Core middleware pipeline. Each middleware has access to the
incoming HTTP request and the outgoing HTTP response and can perform mid-
dleware specific application logic. Together the pieces of middleware form a
middleware pipeline.

36

Each middleware can perform middleware-specific actions before and after the next one

[34]. UseAutentication middleware adds authentication to the request pipeline, and if au-

thentication fails, the request does not get further in the pipeline.

The framework provides several authentication schemes that can be used to configure

the authentication service. JWT Bearer authentication scheme configures the authenti-

cation service to require a valid JWT from each incoming HTTP request. A JWT is a

compact, URL-safe means of representing claims to be transferred between two parties.

The claims in a JWT are encoded as a JavaScript Object Notation (JSON) object that is

used as the payload of a JSON Web Signature structure or as the plaintext of a JSON

Web Encryption structure, enabling the claims to be digitally signed or integrity protected

with a Message Authentication Code and/or encrypted [26].

OpenID Connect authentication scheme allows authentication service to enforce OpenID

Connect based authentication. OpenID Connect is a simple identity layer on top of the

old OAuth 2.0 protocol. It allows client applications to verify the identity of the user based

on the authentication performed by an external identity authority, as well as to obtain

basic profile information about the user in an interoperable and REST-like manner.

OpenID Connect allows client applications of all types, including Web-based, mobile,

and JavaScript clients, to request and receive information about authenticated sessions

and end-users. [60]

OpenID Connect authentication scheme assumes that there is an external OpenID Con-

nect authentication flow supporting authentication service (such as IdentityServer4 [24]

or a social authentication service such as Azure Active Directory or Google Identity) ex-

tending SSO capabilities to the ASP.NET Core application. On the other hand, JWT

Bearer authentication scheme requires only that some validation process for the incom-

ing JWT token has been configured. This means that the validation can be performed,

for example, using an external authentication service, functioning as the identity author-

ity, or using an in-process identity management. To add an in-process identity manage-

ment to an ASP.NET Core application, ASP.NET Core Identity service must be config-

ured with DI.

ASP.NET Core Identity is a membership system that adds login functionality to ASP.NET

Core applications [45]. User accounts and their login information can be stored either in

an ASP.NET Core Identity configured storage or an external login provider can be con-

figured [45]. ASP.NET Core Identity can be configured using, for example, a SQL Server

database to store usernames, password hashes, and profile data. Alternatively, any

other custom implementation can be used [45]. The possibility to use a custom identity

37

storage implementation is beneficial regarding the MTHC architecture, as master sys-

tems often have their own existing identity management systems in place and the add-

on applications are required to comply with the existing authentication methods.

6.1.3 Finbuckle.MultiTenancy

In addition to implementing the ServiceInjector with ASP.NET Core DI, there are few

open-source multitenancy enablement layer libraries available for ASP.NET Core. On

one hand, there are comprehensive framework-like solutions such as ASP.NET Boiler-

plate Framework [1] and cloudscribe [9], but these tend to dominate the total application

architecture and be very biased in that. Finbuckle.MultiTenancy is one of the few low

intrusion multitenancy enablement libraries for ASP.NET Core.

Not unlike ASP.NET Core Authentication, Finbuckle.MultiTenancy is configured as an

application service with ASP.NET Core DI and enforced with a middleware. When con-

figuring the application service, a tenant resolution strategy and a tenant configuration

storage accessor must be provided [15]. A tenant resolution strategy describes how the

requesting tenant should be resolved. As an example, one could receive the claimed

TenantID from the current HTTP request’s URL’s subdomain or from a claim in the JWT

in the request Authorization header. Tenant configuration storage accessor is used to

access the tenant-specific configuration using the resolved TenantID as the key.

The model provided by Finbuckle.MultiTenant is very similar to the model proposed by

Walraven et al. (discussed in chapter 3). As a concept, tenant resolution strategy is

equivalent to MTEL. Tenant configuration storage accessor, i.e. the ConfigurationMan-

ager in the model proposed by Walraven et al., provides instances of Configuration. In

addition, Finbuckle.MultiTenancy provides methods for extracting a MultiTenantContext,

i.e. TenantContext, from the current HttpContext in any application service. Fin-

buckle.MultiTenancy does not inherently support multi-tenant customization, i.e. resolv-

ing different ApplicationServices for each IApplicationService per-tenant basis, but, as

already discussed, this can be performed with plain ASP.NET Core DI.

6.2 Azure

Microsoft Azure is a cloud computing service created by Microsoft for building, testing,

deploying, and managing applications and services through Microsoft-managed data

centers. It provides SaaS, PaaS, IaaS and supports many different programming lan-

guages, tools and frameworks, including both Microsoft-specific and third-party software

and systems.

38

6.2.1 Azure Virtual Network

Azure provides Azure Virtual Network (VNET) IaaS for building virtual private networks

in Azure. VNET allows many types of Azure resources, such as Azure Virtual Machines,

to securely communicate with each other, the internet, and on-premises networks. VNET

is like traditional VPNs that one would operate in one’s own data center, but brings along

additional benefits of Azure’s infrastructure, such as scalability, availability and isolation.

[52]

There are three options for connecting on-premises resources to a VNET: Point-to-site

VPN connection, Site-to-site VPN connection and Azure ExpressRoute [52]. Point-to-

site VPN connection establishes a secure connection between the VNET and an individ-

ual client computer, and it is useful for telecommuters, i.e. people who want to connect

to Azure VNETs from a remote location, such as from home or a conference [56]. Site-

to-site VPN connection is established between customer’s on-premises VPN device and

Azure VNET [52]. This connection type makes it possible for any authorized on-premises

process to access the hybrid cloud’s virtual network [52], which makes it suitable for

hybrid cloud scenarios. The communication between the on-premises VPN device and

the VNET is performed through an encrypted tunnel over the internet [52]. ExpressRoute

makes it possible to extend on-premises networks into Microsoft’s cloud services, such

as Azure, Office 365, and CRM Online [52].

When creating a VNET, a custom private IP address space must be specified for the

VNET to use [52]. For example, if a VNET was created with a block 10.0.0.0/16, then the

VNET address space would include IP addresses 10.0.0.0-10.0.255.255. By convention,

VNET address space must be further divided into subnets, to which Azure resources can

be deployed. If, for example, a subnet with block 10.0.128.0/24 was created to the men-

tioned VNET address space, then a resource such as a virtual machine could be de-

ployed in it, and the virtual machine would be assigned a private IP like 10.0.128.4.

According to Microsoft, one of the best practices of VNET planning is to make sure ahead

of time that the chosen subnet IP address range does not overlap with other network

ranges of the client organization [52], i.e. the customer environment. In an MTHC sce-

nario, it can be difficult to plan this in advance because each tenant may have very het-

erogenous internal network setups and reserved IP address ranges, and new tenants

are added to the system over time.

6.2.2 Azure Relay Hybrid Connection

Azure Relay (or Azure Service Bus Relay) makes it possible to securely expose services

that run within a corporate network to the public cloud. Unlike Azure VNET, this can be

39

done without opening a port in the corporate firewall or making other intrusive changes

to the corporate network infrastructure. VNET and other VPN solutions are used for in-

frastructure level resource exposing (e.g. ports on a machine), whereas Azure Relay

exposes only application level listeners, such as C# methods [51]. Having access to only

application level listeners can make Azure Relay more secure, as the access can be

limited to only a very specific set of functionalities, but it is also a limitation since any

arbitrary HTTP endpoints cannot be directly requested without making the listeners to

explicitly support this.

According to Microsoft, Azure Relay can be used for traditional one-way request/re-

sponse communication; event distribution to enable publish/subscribe scenarios; and bi-

directional and unbuffered socket communication across network boundaries [51]. Azure

Relay is based on the relayed data transfer pattern, which involves the following steps

[51]:

1. An on-premises service connects to the relay service through an outbound port

2. It creates a bi-directional socket for communication tied to a URL (provided by
Azure Relay)

3. The client can then communicate with the on-premises service by sending traffic
to the relay service targeting that URL

4. The relay service then relays data to the on-premises service through the bi-di-
rectional socket dedicated to the client. The client does not need a direct connec-
tion to the on-premises service. It does not need to know the location of the ser-
vice and the on-premises service does not need any inbound ports open on the
firewall.

Azure Relay Hybrid Connection is a secure, open-protocol evolution of Azure Relay and

abstraction on top of Azure Relay. It allows sending requests and receiving responses

to/from Azure Relay using HTTP(S) or web sockets [51]. In the MTHC scenario this would

mean that the on-premises master system could be sent requests via HTTP from add-

on applications running in the public cloud and the master system could respond back.

6.2.3 Azure App Service

Azure App Service is an HTTP-based PaaS for hosting web applications, REST APIs,

and mobile backends. Azure App Service supports several different development tech-

nologies, be it .NET, .NET Core, Java, Ruby, Node.js, PHP, or Python. Being PaaS, it

provides many utilities for making application development and hosting easier, such as

load balancing, autoscaling, and management automation. [32]

In App Service, each web application runs in an App Service Plan. The compute re-

sources used by the web applications are defined by their App Service Plans. These

compute resources are analogous to the server farms in conventional web hosting. One

40

or more applications can be configured to run on the same computing resources, i.e.

within the same App Service Plan. [36]

App Service includes App Service Hybrid Connections within the platform. As described,

Hybrid Connection is also a separate feature within Azure Relay service. Within App

Service, Hybrid Connections provide access from the applications running on the App

Service Plan to resources in other networks. Figure 9 displays the basic setup for App

Service Hybrid Connections. [35]

 To allow the Web App to access on-premises resources using App Ser-
vice Hybrid Connections, Hybrid Connection Manager is required to be installed
on-premises.

When Hybrid Connections are enabled for App Service, an instance of Azure Relay is

allocated, because App Service Hybrid Connections uses Azure Relay for indirect com-

munication. This process is invisible to the App Service user. Unlike Azure Relay, App

Service Hybrid Connections require Hybrid Connection Manager to be installed to a Win-

dows machine in the on-premises network. The instance of Azure Relay that get allo-

cated relies on web sockets for connectivity. Web sockets are only available on Windows

Server 2012 or later. Thus, Hybrid Connection Manager is not supported on anything

earlier than Windows Server 2012. [35]

6.3 Azure Pipelines

Azure DevOps is a successor to Microsoft’s Visual Studio Team Services which is the

online version of Team Foundation Server. Originally a source code management tool

where development teams could share and work on code collectively, Azure DevOps

has grown to become a platform where development projects can be managed, tested,

built and released.

Part of Azure DevOps providing, Azure DevOps Pipelines or just Azure Pipelines is a

service that combines Continuous Integration (CI) and Continuous Delivery (CD) to con-

stantly and consistently test and build code and ship it to any target. In Azure Pipelines,

build pipelines, e.g. CI pipelines, test and build code and produce deployable artifacts,

41

which include both infrastructure and application binaries. Release pipelines consume

these artifacts to deploy new versions to the configured targets. Targets can include

container registries, virtual machines, Azure services and any on-premises or cloud en-

vironments. [50]

In Azure Pipelines, an Azure Pipelines Agent, or just agent, is an installable piece of

software that can run jobs, each job consisting of tasks [39]. For example, a build agent

can be installed on a virtual machine and the build agent can then be used to run jobs,

such as building or testing code. The build agent downloads code to the virtual machine,

performs the job and uploads the job results (e.g. binaries or test results) back to Azure

Pipelines. Agents can also be used for deploying release artifacts, such as binaries.

When an agent is used to deploy artifacts to a server or a set of servers, it must have

“line of sight” connectivity to those servers [42]. For example, if an artifact is desired to

be deployed to an on-premises environment that resides behind a private network fire-

wall, the deploy agent must first be installed to the private network on a server that allows

outbound connections to the Azure Pipelines service over the internet [42]. Figure 10

displays this setup. As shown in the figure, the on-premises deploy agent must have a

“line of sight” to both Azure Pipelines and to the target on-premises servers.

 Azure Pipelines on-premises deploy agent setup. The agent in-
stalled on-premises can download release artifacts from Azure DevOps Pipelines
using an outbound connection.

Azure Pipelines Agents have several installation prerequisites. If installed on a machine

with Windows 7 or Windows 8.1 or Windows Server from 2008 R2 SP1 to Windows

Server 2012 R2, the machine must also have at least PowerShell 3.0 or higher and .NET

Framework x64 4.5 or higher. For Windows 10 and Windows Server 2016 and higher

there are no prerequisites. [38]

42

7. CASE: DQM TOOL

DMS is a system included in the company’s dealership management service offering. It

combines personal data from several data sources, both internal and external. These

different versions of personal data are first stored in the personal data storage. A sched-

uled batch job attempts to aggregate these pieces of data into combined customer en-

tries. Figure 11 displays the overall data flow from data sources to DMS.

 Data flow to DMS. Personal data storage contains personal data
from several data sources. A batch job attempts to aggregate these pieces of
data into combined customer entries for DMS to consume. Since the batch job
does not produce accurate results all the time, DQM is designed to complement
it.

The aggregation that the batch process performs is based on heuristics that do not al-

ways end up with the desired result due to unexpected corner cases and flaws in the

source data. Duplicates and false matches end up to DMS. Therefore, manual data pro-

cessing efforts are required for taking care of these exceptions. A new DQM tool is de-

signed to assist a knowledgeable user in these manual tasks.

DMS is an OTS/ASP, meaning that instances of personal data storage and DMS have

been installed on each customer’s premises, as is displayed in Figure 12. Therefore, the

MTHC architecture can be a viable option. In this case, DQM would be the add-on appli-

cation and DMS would be the OTS/ASP master system.

43

Personal data storage is an IBM DB2 for i database without any HTTP APIs available for

data access. In addition, each customer has a Windows Server (at least 2008 R2) avail-

able if any on-premises deployment is required. These Windows Servers have the IBM

DB2 for i Open Database Connectivity (ODBC) drivers readily installed.

 A sketch of the MTHC architecture for DQM. DQM would be a multi-
tenant add-on application accessible over the internet. Hybrid cloud connectivity
would be required in order to access the personal information storages on each
customer’s premises.

IBM DB2 for i is an IBM’s implementation of the DB2 RDBMS, which comes with IBM i

operating system. IBM i runs on IBM's Power Systems and Pure Systems for minicom-

puters and enterprise servers. It is targeted for mid-sized to large enterprise businesses

and is designed for ease of use, easy deployment and maintenance of reliable server

operations. [64]

ODBC is a widely accepted API for database access. It uses SQL as its database access

language. ODBC is designed for maximum interoperability, i.e. the ability of a single ap-

plication to access RDBMs with the same source code. Database applications call func-

tions in the ODBC interface, which are implemented in database-specific modules called

drivers. [47]

7.1 MTHC design challenges

There were three design challenges that turned out to be major issues considering a

potential MTHC architecture. These issues were compliance to regulations, connectivity

and authorization.

44

Having customer data processed and possibly metadata and application logs stored in

a public cloud caused issues regarding compliance to regulations: The personal data

storage contains personal data combined from several different data sources with their

own regulations and service agreements.

Connectivity turned out to be a slight issue, as there is no HTTP API directly available

for executing remote procedure calls to the personal data storage. This means that either

the IBM DB2 for i ODBC driver would have been necessary to be installed to the Azure

App Service PaaS platform interface or a separate HTTP API application would have to

be deployed on each customer’s premises, that would translate HTTP calls from the

DQM application running on Azure App Service to SQL queries. Installing the ODBC

drivers on Azure App Service PaaS is impossible due to the high level of service abstrac-

tion of the platform. Another option would have been to install the drivers on a dedicated

virtual machine and use that machine as a multi-tenant gateway, but that would have

introduced additional infrastructure that should have been maintained, which was not

desirable.

In addition, one requirement for DQM was that the users should be authenticated with

their internal Windows Active Directory authentication and authorized based on whether

a user belongs to a local Active Directory group or not.

7.2 Alternative solution and evaluation

Due to the deal breakers mentioned, an MTHC approach was not fully applied in the

case of DQM. All three issues were resolved by having DQM installed locally on cus-

tomer’s premises: data stays within organizational network and ODBC drivers Active Di-

rectory are readily available. Figure 13 displays the final delivery model that was imple-

mented. Unlike required by Goal 4, there is no multi-tenant application instance, but in-

stead the build and release pipelines for each customer are based on the same Azure

Pipelines tasks and merely configured per-customer. This means that, even though a

shared multi-tenant instance was not a viable solution, reusability was achieved in the

level of build and release pipelines.

When a new version of DQM is released with Azure DevOps Pipelines, the agent in each

customer’s environment downloads the release artifacts and performs the deployment

job: installs the new version of DQM on the local Internet Information Services (IIS) and

performs smoke tests. IIS is a Web Server for Windows Server. Therefore, DQM can still

benefit from CI/CD, even though the application is not running on Azure App Service.

Hence, Goals 1 and 2 were reached.

45

 The final deployment model of DQM. DQM add-on application is run
on IIS locally on each customer’s premises. Deploy agents are installed in these
same environments, which enables continuous delivery.

There are a few downsides to this. Azure Pipelines Agent, IIS and .NET Core Runtime

must be installed in each customer’s environment, which to some extent is a manual

process. .NET Core Runtime is a system-wide installation of .NET Core framework re-

quired by .NET Core applications. Depending on the environment, these prerequisites

may have some prerequisites of their own, such as those for Azure Pipelines Agent men-

tioned in subchapter 6.3. These problems make the initial deployment to each customer’s

environment a manual and therefore non-scalable process, as unpredictable environ-

ment specific issues must be resolved. In addition, changes in customer infrastructure

may require performing these manual installation steps again. Instructing customers

themselves to do these installation steps as a self-service could be an option to consider,

but customer environment specific peculiarities render it extremely difficult to create an

exhaustive set of instructions. Therefore Goal 3 was not fully reached, as including new

customers requires some manual efforts.

DQM application itself has very little requirements for variability per customer, the only

few variability points being infrastructure related configuration, such as connection string

to the database. These configuration settings are stored in Azure Pipelines as plaintext

or as secrets, depending on the confidentiality of each setting, and included to the build

during release. Another option would be to store configuration as environment variables

to each customer’s environment, but this would make it harder to update and version

control them, as they would be only key-value-pairs within the environments themselves.

46

8. CASE: TIRE HOTEL PDA

The company’s dealership software service portfolio also includes an OTS/ASP tire hotel

system, THS. THS is used by certain car dealer and maintenance businesses that offer

tire hotel services. This means that they offer seasonal tire changing services and stor-

age for the changed tires. Previously, the total process of changing tires; transportation

between workshops and storages; storage; and storage organization involved cumber-

some manual steps in order to track the status of each set of tires. Therefore, THPDA is

designed to quicken this process. In the minimum-viable-product stage, THPDA should

streamline the process by allowing tire sets to be tracked by merely reading barcodes

that have been put on each of them. Figure 14 illustrates this total process.

 The tire hotel process. In a nutshell, customers bring their cars in
for tire changing. After the tires have been changed, they are transported to
storages. While stored, tires may be reorganized. The barcode icons indicate
the points when barcodes are read from tires.

THS is run in the exact same environment as DMS using the OTS/ASP deployment

model. THS owns the state of each set of tires in its internal storage and provides an

HTTP API for querying and altering these states. Figure 15 shows an overview of the

THS deployment.

As shown in the figure, THS, like many legacy systems, use its own identity management

system called ASUSER. Specifically, ASUSER is an identity management system for the

vehicle maintenance and after-sales family of dealership portfolio systems, containing

user identities for vehicle maintenance, transport and storage personnel.

47

 Overview of the THS deployment. THS itself provides an HTTP API
and uses the HTTP API of the ASUSER identity management system for user
authentication. THS stores tire sets’ states in an internal database.

The PDA device used for THPDA is Zebra TC-25. By default, it has Android 7.1.2 and

supports Wi-Fi and 5G internet connection.

If THPDA is considered an add-on application and THS is considered the master system,

the MTHC architecture could be a viable option, especially since the PDA devices could

access a “THPDA web application” over the internet via browser or an Android hybrid

application. Figure 16 shows a sketch of this MTHC architecture.

 A sketch of the MTHC architecture for THPDA. A multi-tenant
THPDA Web App would provide the backend for the user interface used via the
PDA devices. Accessing THS on each customer’s premises would require hybrid
cloud connectivity.

48

THPDA Web App would be the multi-tenant add-on application. Being a hybrid cloud

deployment, THPDA Web App could access each customer’s THS and thus allow chang-

ing tire sets’ statuses as barcodes are read with the PDA devices.

8.1 MTHC design challenges

In order to change tire sets’ statuses, THPDA Web App would need to have connectivity

from Azure to each customer’s environment. The customer organizations of dealership

solutions vary a lot in size and in IT capability, so the connectivity solution should be non-

intrusive and easy to set up. The presented connectivity options provided by Azure, Az-

ure VNET and the Hybrid Connection solutions, differ in the ease of implementation and

intrusiveness. The Hybrid Connection solutions do not require enterprise firewall config-

uration efforts, unless its required outbound ports are blocked, which is unlikely. Unlike

Azure VNET, Azure Relay does not require reserving a subnet of IP addresses for the

application, which could very likely lead to collisions with other subnets as new customer

organizations with their own infrastructure setups subscribe to THPDA (as was dis-

cussed in subchapter 6.2.1), rendering infrastructure management unnecessarily com-

plex.

THPDA Web App requires access only to THS HTTP API, meaning that having applica-

tion level access to a listener that forwards incoming HTTP requests to THS HTTP API

would be sufficient. This makes the Hybrid Connection based solutions more desirable,

since they provide application level access, whereas Azure VNET provides infrastructure

level access, as was discussed in subchapter 6.2.1.

Comparing the two Hybrid Connection solutions, Azure Relay Hybrid Connection and

App Service Hybrid Connections, the former would require implementing a separate lis-

tener application and deploying it on each customer’s premises, which implies additional

development efforts. The latter would require installing Hybrid Connection Manager on

each customer’s premises, which is not viable, because Hybrid Connection Manager has

several prerequisites that some of the customers are unable to fulfill with a reasonable

amount of effort and investment. Therefore, Azure Relay Hybrid Connection was chosen

as the connectivity technology for THPDA. In the scope of the project, the on-premises

process that runs the application level access enabling listener is called OnPremGate-

way.

As mentioned, Azure Relay Hybrid Connection is based on Azure Service Bus, meaning

that the messaging between OnPremGateway and THPDA Web App in Azure will be

asynchronous. Compared to Azure VPN, requesting is more expensive as the volume of

49

requests and the size of each request increase, and less performant. This is not an issue

in THPDA as the expected volume of requests (the number of barcodes read) should be

relatively low and the payloads of each request are very lightweight. There are also no

strict requirements for request latencies, but, if the latencies end up being too large, the

client-side processing can be refactored to be asynchronous instead of being strictly

synchronous (i.e. the PDA user would not have to wait for each request to complete). An

overview of the selected Azure Relay Hybrid Connection based approach is displayed in

Figure 17.

 THPDA Relay Hybrid Connection setup. THPDA Web App, which
provides the backend for the PDA frontend, can access on-premises APIs indi-
rectly using Azure Relay Hybrid Connections and the instance of OnPremGate-
way that should also reside on-premises. The instance of Azure Relay used by
THPDA Web App is called THPDA Relay.

As shown in the figure, all requests from THPDA Web App are targeted to THPDA Relay,

which is an instance of Azure Relay with a Hybrid Connection assigned for each cus-

tomer. OnPremGateway is a Windows Service installed on-premises, which listens

THPDA Relay for new messages. As new messages appear, OnPremGateway requests

the local HTTP APIs (i.e. THS HTTP API). After getting a response for a request (e.g.

whether changing the state succeeded or not), OnPremGateway pushes the response

to THPDA Relay which gets forwarded to THPDA Web App as a response for the original

request.

THPDA requires no own data storages because all state is stored in THS. This means

that data partitioning or storage variability are no issues in this application, as no data is

stored and therefore it is not necessary to be partitioned across the hybrid cloud, and

due to storage being completely owned by the OTS/ASP master system, with the exact

same storage model being provisioned for each customer. Considering that Azure Relay

Hybrid Connection is used for connectivity, application partitioning is still something to

consider, as one part of this distributed system resides in THPDA Web App in Azure and

the other part in OnPremGateway on-premises. This partitioning problem can be solved

by making THPDA Web App capture all business logic and the details of local HTTP

50

APIs and by making OnPremGateway merely a proxy. OnPremGateway forwards HTTP

requests to the configured local HTTP endpoints and pushes the responses back to the

configured THPDA Relay. This means that even if the local HTTP APIs change and

evolve, only THPDA Web App must be changed and redeployed. Naturally, if the on-

premises infrastructure changes drastically, OnPremGateway must be also redeployed.

Like with the DQM project, variance among customer environments is an issue with

THPDA project as well, because OnPremGateway must be installed on-premises. Azure

Pipelines Agents were installed in customer environments already for DQM and they can

be used for deploying OnPremGateway as well, because Azure DevOps allows sharing

agents between projects. OnPremGateway itself has certain prerequisites, such as a

newer version of .NET Core Runtime that was installed for DQM. Fortunately, the runtime

prerequisite problem can be eliminated by compiling OnPremGateway as a self-con-

tained deployment. Unlike a traditional framework-dependent deployment, a self-con-

tained deployment does not depend on the presence of shared components, such as

.NET Core Runtime, on the target system [46]. All shared components are included with

the application and are isolated from other .NET Core applications [46]. Self-contained

deployment does lead to larger deployment sizes and does still depend compiling to

target the correct operating system and processor architecture [46], so these have to be

addressed build-time. Since OnPremGateway does not need have HTTP interfaces, but,

being a listener, needs to be long-running, it can be executed without IIS as a Windows

Service. This renders IIS, too, no longer a prerequisite.

Considering authorization, one functional requirement for THPDA was that its users

should be able to log in to THPDA Web App using the same credentials as they use for

THS. This means that ASUSER should be the identity authority for THPDA. As discussed

in subchapter 5.6.2, authorization is one of the biggest challenges in hybrid cloud sys-

tems, and the security mechanisms, such as authentication, often are not cloud-ready

[21]. This is true also for THS: as an example, there are no strict complexity requirements

for passwords, and therefore there is a risk for user accounts to get compromised. In

addition, even though THPDA Web App is an Azure App Services based web application

in the public network, it is not desirable to authorize anyone who is not accessing the

application using the browsers on the exact PDA devices. These two problems require

an additional level of authentication. One solution would be to have the barcode readers

and THPDA Web app in same VPN, rendering any external access impossible. Another

less intrusive solution would be to use client certificate authentication on top of user au-

thentication. It is an authentication method used to authenticate clients during the secure

51

sockets layer handshake with X.509 certificates. A negative aspect of using client certif-

icate authentication is that it requires client certificate installation on each PDA device,

but in the scope of this project this is a reasonable prerequisite, as there are also other

unrelated manual configuration tasks that must be performed on the devices before pro-

duction use. Since ASUSER provides an HTTP API for checking user credentials (as

shown in Figure 15), THPDA Web App can access it via OnPremGateway similarly as it

accesses THS HTTP API (as shown in Figure 17).

ASP.NET Core DI and Finbuckle.MultiTenant library were used for tenant isolation. This

was mainly due to lack of other strong options, as was discussed in chapter 6.1.3. As

mentioned, the current TenantContext can be resolved with any arbitrary tenant resolu-

tion strategy. In THPDA Web App, the tenant should be resolved from the incoming

HTTP request’s client certificate thumbprint during login and from the incoming HTTP

request’s JWT bearer token (authorization header) after login. Client certificate authen-

tication is used only during login, because the way the user should choose the correct

client certificate depends completely on the user’s browser. For example, Google

Chrome asks for the client certificate only once, whereas Firefox seems to ask it for all

requests. Therefore, by requiring the client certificate only during login, the client certifi-

cate will be asked only during login and not for all subsequent requests after login, which

would impair the usability of the user interface. Figure 18 displays these processes.

Please note that all layers of hybrid connectivity have been removed from the figure for

brevity. After the client certificate has been validated, the tenant is resolved using the

certificate thumbprint. The certificates installed on the PDA devices are tenant specific,

so each tenant has its own certificate and therefore a certificate thumbprint. Only after

the certificate is validated and the tenant is resolved, the incoming username and pass-

word are checked using the ASUSER instance on the very tenant’s premises that was

resolved. This way client certificate works also as a technique for achieving tenant isola-

tion: the same login screen can be used for all tenants, because the sent client certificate

is tenant specific and thus specifies which tenant’s user is attempting to log in.

52

 THPDA authentication and tenant resolution during and after login.
On the left-hand side, the login-time tenant resolution and user authentication
are displayed. On the right-hand side, the authentication process during all sub-
sequent requests is displayed. During login, the user credentials are checked
using ASUSER on the resolved tenant’s premises. During all subsequent re-
quests, authentication is performed by inspecting the incoming JWT bearer to-
ken.

If login succeeds, the client is responded with a JWT token. The client must attach this

JWT token as a bearer token for each oncoming request after login. The token contains

the TenantID that can be used for TenantContext resolution for each subsequent re-

quest. This can be achieved with a Finbuckle.MultiTenancy library’s Delegate tenant res-

olution strategy:

2

4

6

services.AddMultiTenant().
 WithDelegateStrategy(context =>
 {
 var tenantId =
 GetTenantIdFromRequestJwt((HttpContext)context).Request);
 return Task.FromResult(tenantId.ToString());
 })

If a TenantID can be extracted using one of the configured strategies, then the library

maps the TenantID into the corresponding TenantInfo object [16] (which represents the

current tenant’s Configuration in Finbuckle.MultiTenancy). The TenantInfo objects for

each tenant are stored in a multi-tenant store, such as in-memory store, which holds all

TenantInfo objects in the application memory. An in-memory store must be configured

as follows:

53

2

services.AddMultiTenant()
 .WithInMemoryStore(Configuration
 .GetSection(“InMemoryStoreConfig”))

This way TenantInfo objects can be stored using ASP.NET Core Application Configura-

tion (AppConfig). Finbuckle.MultiTenant library requires a specific format from the Ap-

pConfig section that is used as a source for TenantInfo objects. For example, if a piece

of JSON is used as an AppConfig source, then the InMemoryStoreConfig section should

be formatted as shown in Program 2.

2

4

6

8

10

12

14

16

18

20

22

23

{
 “InMemoryStoreConfig”: {
 “TenantConfigurations”: [
 {
 “Id”: “unique-id-for-tenant1”,
 “Identifier”: “tenant1”,
 “Name”: “Tenant 1 Organization Name”
 “Items”: {
 “ClientCertThumbprint”: “abc123”,
 “RelayHybridConnectionString”: “connstring&key={Key}”,
 }
 },
 {
 “Id”: “unique-id-for-tenant2”,
 “Identifier”: “tenant2”,
 “Name”: “Tenant 2 Organization Name”
 “Items”: {
 “ClientCertThumbprint”: “def456”,
 “RelayHybridConnectionString”: “connstring&key={Key}”,
 }
 },
]
 }
}

Program 2. TenantInfo configuration example in JSON format. The configuration in-
cludes two tenants, each having their dedicated client certificate thumbprints and
Azure Relay Hybrid Connection connection strings. The configuration section is
called InMemoryConfig, because the tenant configurations inside it will be loaded
and cached in-memory during application start-up. The configuration data is stored
in-memory as TenantInfo objects.

If the current TenantID is one of the configured identifiers, then a TenantInfo object can

be extracted from the current HttpContext in any application service. In the minimum-

viable-product stage of THPDA, THPDA Web App contains only one application service

that requires the TenantInfo object: TenantHybridConnectionClientFactory. TenantHy-

bridConnectionClientFactory is used to build HybridConnectionClient objects, which are

used to communicate with the OnPremGateway instances on each tenant’s premises via

THPDA Relay (see Figure 17). As opposed to THPDA Web App, OnPremGateway con-

tains a HybridProxyListener object, which listens to the tenant’s Hybrid Connection in

54

THPDA Relay and forwards requests to the local HTTP APIs (THS, ASUSER) as they

are produced by TenantHybridConnectionClient in THPDA Web App.

Using Finbuckle.MultiTenant library’s tenant resolution strategies and having a dedicated

Hybrid Connection for each tenant together resolve the challenge of tenant isolation from

the point of view of security. It does not address tenant interference. In THPDA, the vol-

ume of traffic is expected to be relatively low, consisting only of lightweight tire set status

change commands, so performance and therefore tenant interference are not expected

to be issues. If performance turns out to be an issue, the App Service Plan can be scaled

up. In addition, the amount of variability is low, the only variation points being the tenant

specific sections in AppConfig for client certificate and the Relay Hybrid Connection con-

nection string. If configured or implemented incorrectly, these could potentially cause

tenant interference issues, but the risk for this can be minimized with testing and test

automation.

The data processed by THPDA is non-confidential and, excluding AppConfig and appli-

cation logs, no tenant specific data is stored in cloud. Configuration and logs are only

accessible by developers participating the project, and application logs do not store any

personal information, except for username. Other than legal regulations for personal in-

formation management, there are no requirements for compliance to regulations. Figure

19 shows the MTHC architecture of the overall THPDA solution.

55

 The overall THPDA MTHC architecture. Vehicle maintenance per-
sonnel use PDA devices to access THPDA Web App. THPDA Web App is indi-
rectly connected to the OnPremGateway instances on each customer’s premises
via Azure Relay Hybrid Connections. THPDA Web App and the overall Azure
infrastructure is deployed directly using Azure DevOps Pipelines. The OnPrem-
Gateway instances are deployed indirectly using Azure DevOps Pipelines and
the deploy agents installed on-premises.

Serving all tenants, THPDA Web App requires all tenants’ AppConfigs, whereas each

tenant’s dedicated OnPremGateway requires only tenant-specific AppConfigs. Each ten-

ants’ AppConfigs are managed in Azure DevOps, so both of the applications can be built

and deployed using Azure Pipelines.

8.2 Evaluation

THPDA was developed with the ReactJS/ASP.NET Core stack and it runs on Azure Web

App as a multi-tenant application, so Goals 1 and 4 were met. Considering Goal 2, the

56

deployment model is completely automated, but it involves the same challenges regard-

ing changing customer infrastructure as DQM. Luckily, since the deploy agents are

shared between the two and any other future projects, this challenge, if ever realized,

would have to be resolved only once per customer – not once per project per customer.

Considering Goal 3, the current deployment model of THPDA does not fully respect the

ease of introduction philosophy of multi-tenant SaaS. In order to introduce a new tenant,

the AppConfig must be manually extended, and a new version of the application must

be built and deployed. This model is enough for the time being but could still be improved.

A very trivial improvement would be to use Azure App Configuration Service (AACS) for

storing tenant configurations. AACS would provide a centralized place for storing tenant

specific configuration: instead of THPDA Web App and OnPremGateways consuming

configuration directly from configuration files produced build-time, they would consume

it from a remote AACS instance. If a new customer subscribed to the application, its

configuration settings would be written manually only in AACS and then synchronized to

the applications automatically. This would remove the need for a build on tenant sub-

scription. Using AACS would also require very little changes to the existing application

logic, as only a new ASP.NET Core Configuration Provider would have to be registered.

Using AACS is still a trade-off, because having a version-controlled AppConfigs in Azure

DevOps provides a version history and makes it trivial to connect a specific configuration

version to a specific build and release.

In addition to these configuration steps, the current deployment model requires installing

OnPremGateway to the customer environment using the local agent. If a customer envi-

ronment changes – which is a rare occasion – this installation must be done again by

the developers. This manual upkeeping does not scale as the number of tenants and

tenant environments increase, so a better model would be to allow tenants themselves

to install and uninstall their OnPremGateways as they please (i.e. self-service govern-

ance).

Being a minimum-viable-product and having very little variability requirements to come

anytime soon, variability over the application lifecycle was considered a non-issue and

the variability model evolution was not given much attention. Still, one point of variability

that should have been considered is the method of authentication. The current imple-

mentation allows users to use ASUSER as the identity authority, but in the dealership

business there are several new ongoing projects that are starting to use the company’s

homebrew OpenID SSO service for user login. Allowing each customer to choose the

method of authentication would require some changes to the application, but for the time

being, there has not been an explicit demand to support this.

57

9. SUMMARY & EVALUATION

This thesis focused on implementing new functionality with new technologies on top of

old legacy systems using the multi-tenant hybrid cloud architecture. The aim of this ap-

proach was to make the deployment model more scalable and automated, and to make

development with modern tooling possible. These aspects would potentially provide cost

savings and a more familiar toolset for e.g. any new developers.

First, a literature review was conducted in order to explore the challenges and caveats

related to the architectural approach. A classification of design challenges was formed.

This classification was to be used as a reference when implementing actual add-on ap-

plications based on the multi-tenant hybrid cloud architecture. Surprisingly, very few apt

case examples focusing exactly on the multi-tenant hybrid cloud architecture were found.

There were plenty of papers focusing either on multi-tenancy or on hybrid cloud deploy-

ment, so the classification was formed based on these two separately. The lack of multi-

tenant hybrid cloud focused papers would indicate that this subject should be further

explored by future studies. Proposals for future studies:

• Hybrid cloud connectivity: How to integrate tenants’ on-premises resources

to the multi-tenant systems securely and with little intrusion while still allowing

tenants themselves to have control and responsibility over the connectivity (i.e.

allowing them to conduct any installation or uninstallation steps themselves).

• Multi-tenant hybrid cloud as a cloud migration pattern: As legacy OTS/ASP

systems are migrated to cloud, the multi-tenant hybrid cloud architecture could

be used as a migration pattern. For example, a legacy application could be re-

factored progressively to cloud native microservices using the strangler pattern.

It would be extremely beneficial to have a process for applying the strangler

pattern in a multi-tenant hybrid cloud context.

The current lack of multi-tenant hybrid cloud literature may have a negative effect on the

final classification. An extra iteration of snowballing could have led to discovery of papers

with more focus on the exact subject. In addition, the scope of the literature review should

have been more focused, as now it covers everything from hybrid cloud connectivity

security to multi-tenant feature management. Despite these potential disadvantages, the

final classification does offer an applicable set of challenges to consider. It was a bene-

ficial checklist when designing the case example applications. And, even though the

breadth of the overall subject was not ideal for the thesis, the two concepts, multi-tenancy

58

and hybrid cloud, go together regarding the architecture and thus having this approach

was beneficial from the business perspective.

The technologies that were considered in the scope of this paper were limited to .NET

Core stack and Azure services. This was due to both organizational guidelines and to

keep the study more focused. Other cloud service providers may have some tooling in

their providing that could be even more beneficial regarding multi-tenant hybrid cloud

architecture. This also meant that some popular hybrid connectivity enabling solutions

were left out of the scope of this paper, such as OpenVPN and ngrok.

Next, two case examples were presented. In these case examples, the multi-tenant hy-

brid cloud architecture was explored as a potential solution model. The first case exam-

ple presented the design process of a DQM application. Due to data confidentiality and

connectivity reasons a full multi-tenant hybrid cloud architecture would not have been

viable. In the end, the application uses the traditional OTS/ASP deployment model, but,

despite that, some development scalability was still able to be achieved by using contin-

uous delivery to customer environments.

The second case example focused on a PDA application for supporting the business

process of a tire hotel service. As discussed in chapter 8, the multi-tenant hybrid cloud

architecture was chosen for the application. A multi-tenancy model was designed, and a

hybrid connectivity technology was chosen.

Considering the goals set for the multi-tenant hybrid cloud architecture, Goal 1 was

reached in both projects, as they were both developed with the ReactJS/ASP.NET Core

stack. Goal 2 was mostly reached in both projects. The deployment models still suffer

from the risk of changing customer infrastructure, which would mean that the customer

environment would have to be set up again. The root cause for this challenge, lack of

self-service governance capabilities, made Goal 3 only partially reachable in both pro-

jects, as subscription requires certain manual efforts for setting up the customer environ-

ment. Because DQM was decided to be an OTS/ASP deployment and THPDA was de-

cided to be run as a multi-tenant Azure App Service deployment, Goal 4 was only

reached by THPDA.

Instead of requiring developers to set up each new customer’s environment – or an ex-

isting customer’s new environment – self-service governance capabilities could be de-

signed. Ideally, these capabilities would allow customers to perform all customer envi-

ronment specific setup efforts by themselves. As an example, an installer could be pro-

vided to those who administer the customer’s environment, which would setup and

59

launch the local OnPremGateway instance. These administrators could own the cus-

tomer specific configuration and maintain it, for example, via AACS or via local environ-

ment variables. Since, as discussed, OnPremGateway is “merely a proxy”, not contain-

ing any business domain specific logic, it practically never has to be redeployed, i.e. it

does not benefit much from release automation and the deploy agent. A single installa-

tion with an installer would be enough. Because, in this scenario, a deploy agent would

not be necessary, and because OnPremGateway is a self-contained application, there

are very few customer environment prerequisites left in order to get OnPremGateway up

and running. The installer could setup OnPremGateway as a Windows Service or even

as a Linux Daemon. Having as little prerequisites as possible would make the subscrip-

tion process more straightforward and, in many cases, more desirable.

Even further, OnPremGateway could cover an entire product portfolio instead of just a

single product. For example, instead of just supporting THPDA, OnPremGateway could

support all dealership multi-tenant hybrid cloud applications. This would make it no

longer necessary to implement a separate on-premises gateway for each project case-

by-case and the customer would have to deal with only one on-premises gateway in-

stance, making duplication of integration processes less of a concern. The product port-

folio point of view was not considered in the scope of this thesis, but surely is something

that should be explored more in the future.

The discovered list of multi-tenant hybrid cloud design challenges should be assessed

case by case. There were some design challenges that were not covered by either of

these cases. Neither of the add-on applications had a storage of their own, so storage

variability was not an issue. The variability requirements for both applications were quite

low, so no complex multi-tenant configurability models had to be designed. In the on-

coming projects with multi-tenant hybrid cloud as a potential approach, these uncovered

challenges must be given extra attention.

60

REFERENCES

[1] ASP.NET Boilerplate, Multi-Tenancy, [Online], Available (accessed 15.9.2019):
https://aspnetboilerplate.com/Pages/Documents/Multi-Tenancy

[2] M. Babar, L. Chen, F. Shull, Managing Variability in Software Product Lines,
IEEE Software, Vol. 27, Issue 3, May-June, 2010, pp. 89-91.

[3] C.-P. Bezemer, A. Zaidman, Multi-tenant SaaS applications: Maintenance
dream or nightmare?, Proceedings of the 4th International Joint ERCIM/IWPSE
Symposium on Software Evolution, New York, USA, 2010, pp. 88-92.

[4] G. Breiter, V.K. Naik, A framework for controlling and managing hybrid cloud
service integration, Proceedings of the 1st IEEE International Conference on
Cloud Engineering, San Francisco, California, United States, March 25.-28.,
2013.

[5] J.G. Chang, W. Sun, Y. Huang, H.W. Zhi, B. Gao, A framework for native multi-
tenancy application development and management, Proceedings of the 9 th IEEE
International Conference on E-Commerce Technology, Tokyo, Japan, July 23.-
26., 2007, pp. 551-558

[6] S. Chen, Y. Qian, X. Zang, R. Peng, A Proxy Based Connection Mechanism for
Hybrid Cloud Virtual Network, Proceedings of the 3rd IEEE International Confer-
ence on Big Data Security on Cloud, 3rd IEEE International Conference on High
Performance and Smart Computing and 2nd IEEE International Conference on
Intelligent Data and Security, Beijing, China, May 26.-28., 2017, pp. 80-85.

[7] S.K.S. Cheung, Hybrid cloud deployment of an ERP-based student administra-
tion system, 17th Asia-Pacific Web Conference, Guangzhou, China, September
18.-20., 2015.

[8] F. Chong, G. Carraro, Building Distributed Applications: Architecture Strategies
for Catching the Long Tail, MSDN Library, 2006.

[9] cloudscribe, Multi-Tenant Support, [Online], Available (accessed 15.9.2019):
https://www.cloudscribe.com/multi-tenant-support

[10] A. Correia, J.R. Penha, A.M.R. Da Cruz, An architectural model for customizing
the business logic of SaaS applications, Proceedings of the 8 th International
Joint Conference on Software Technologies, Reykjavik, Iceland, July 29.-31.,
2013, pp. 162-268.

[11] K. Costello. Gartner Forecasts Worldwide Public Cloud Revenue to Grow 17.5
Percent in 2019, Gartner, [Online], Available (accessed 8.9.2019):
https://www.gartner.com/en/newsroom/press-releases/2019-04-02-gartner-fore-
casts-worldwide-public-cloud-revenue-to-g

[12] M. Decat, J. Bogaerts, B. Lagaisse, W. Joosen, Amusa: Middleware for efficient
access control management of multi-tenant SaaS applications, Proceedings of
the ACM Symposium on Applied Computing, Salamanca, Spain, April 13.-17.,
2015, pp. 2141-2148.

61

[13] European Comission, What does the General Data Protection Regulation
(GDPR) govern? [Online], Available (accessed 15.9.2019): https://ec.eu-
ropa.eu/info/law/law-topic/data-protection/reform/what-does-general-data-pro-
tection-regulation-gdpr-govern_en

[14] F. Faul, R. Arizcorreta, F. Dudouet, T.M. Bohnert, Application splitting in the
cloud: A performance study, Proceedings of the 6th International Conference on
Cloud Computing and Services Science, Rome, Italy, April 23.-25., 2016, pp.
245-252.

[15] Finbuckle.MultiTenant, Getting Started, [Online], Available (accessed
15.9.2019): https://www.finbuckle.com/MultiTenant/Docs/GettingStarted

[16] Finbuckle.MultiTenant, MultiTenant Stores, [Online], Available (accessed
15.9.2019): https://www.finbuckle.com/MultiTenant/Docs/Stores

[17] F.S. Foping, I.M. Dokas, J. Feehan, S. Imran, A new hybrid schema-sharing
technique for multitenant applications, 4th International Conference on Digital In-
formation Management, Ann Arbor, Michigan, United States, November 1.-4.,
2009, pp. 210-215.

[18] U. Ganguly, C. Ray, A secured and cost-effective method for processing queries
using cloud resources optimally at hybrid cloud, International Conference on
Computer, Electrical and Communication Engineering, Kolkata, India, Decem-
ber 16.-17., 2017, Article number 8009566.

[19] M.F. Gholami, F. Daneshgar, G. Beydoun, F. Rabhi, Key challenges during leg-
acy software system migration to cloud computing platforms – an empirical
study, Information Systems, Vol. 67, 2017, pp. 100-113.

[20] M. Hajjat, X. Sun, Y.-W.E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, M. Ta-
warmalani, Cloudware bound: Planning for beneficial migration of enterprise ap-
plications to the cloud, Proceedings of the ACM SIGCOMM 2010 conference,
New Delhi, India, August 30. – September 3., 2010, pp. 243-254.

[21] H. Hinton, Cyber Security and Threats: Concepts, Methodologies, Tools and Ap-
plications, IBM Coproration, United States, 2018, pp. 102-131.

[22] J.-M. Horcas, M. Pinto, L. Fuentes, Product Line Architecture for Automatic Evo-
lution of Multi-Tenant Applications, 2016 IEEE 20th International Enterprise Dis-
tributed Object Computing Conference (EDOC), Vienna, Austria, September 5.-
9., 2016, pp. 99-108.

[23] IBM, Mainframe Concepts: IBM, 2005, [Online], Available (accessed 25.8.2019):
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zmain-
frame/zmainframe_book.pdf

[24] IdentityServer4, The Big Picture, [Online], Available (accessed 8.9.2019):
http://docs.identityserver.io/en/latest/intro/big_picture.html

[25] T. Jastrow, T. Preuss, The Entity-Attribute-Value Data Model in a Multi-tenant
Shared Data Environment, Proceedings of the 10th International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, Krakow, Poland, November
4.-6., 2015, pp. 494-497.

62

[26] M. Jones, J. Bradley, N. Sakimura, RFC 7519: JSON Web Token (JWT), 2015,
[Online], Available (accessed 25.8.2019): https://tools.ietf.org/html/rfc7519

[27] J. Kabbedjik, C.-P. Bezemer, S. Jansen, A. Zaidman, Defining Multi-Tenancy: A
Systematic Mapping Study on the Academic and the Industrial Perspective,
Journal of Systems and Software, Vol. 100, 2015, pp. 139-148.

[28] T. Karthikeyan, T. Nandhini, Dependent component cost model of legacy appli-
cation for hybrid cloud, Proceedings of IEEE International Conference on Cir-
cuit, Power and Computing Technologies, Nagercoil, India, March 18.-19., 2016,
Article number 7530154.

[29] A. Leff, J.T. Rayfield, Integrator: An Architecture for an Integrated Cloud/On-
Premise Data-Service, Proceedings of the IEEE International Conference on
Web Services, New York, United States, June 27. through July 2., 2015, pp. 98-
104.

[30] P.-J. Maenhaut, H. Moens, V. Ongenae, F. De Turck, Scalable user data man-
agement in multi-tenant cloud environments, Proceedings of the 10th Interna-
tional Conference on Network and Service Management, Rio de Janeiro, Brazil,
November 17.-21., 2014, pp. 268-271.

[31] P. Mell, T. Grance. The NIST Definition of Cloud Computing. USA: National In-
stitute of Standards and Technology, 2011.

[32] Microsoft, App Service overview, [Online], Available (accessed 8.9.2019):
https://docs.microsoft.com/en-us/azure/app-service/overview

[33] Microsoft, ASP.NET Core fundamentals, [Online], Available (accessed
8.9.2019): https://docs.microsoft.com/fi-fi/aspnet/core/fundamen-
tals/?view=aspnetcore-2.2

[34] Microsoft, ASP.NET Core Middleware, [Online], Available (accessed 8.9.2019):
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middle-
ware/?view=aspnetcore-2.2

[35] Microsoft, Azure App Service Hybrid Connections, [Online], Available (accessed
1.9.2019): https://docs.microsoft.com/en-us/azure/app-service/app-service-hy-
brid-connections

[36] Microsoft, Azure App Service plan overview, [Online], Available (accessed
8.9.2019) https://docs.microsoft.com/en-us/azure/app-service/overview-hosting-
plans

[37] Microsoft, Azure Cosmos DB and multi-tenant systems, [Online], Available (ac-
cessed 20.10.2019): https://azure.microsoft.com/en-au/blog/azure-cosmos-db-
and-multi-tenant-systems/

[38] Microsoft, Azure Pipelines agent: Windows System Prerequisites, [Online],
Available (accessed 1.9.2019): https://github.com/microsoft/azure-pipelines-
agent/blob/master/docs/start/envwin.md

[39] Microsoft, Azure Pipelines agents, [Online], Available (accessed 1.9.2019):
https://docs.microsoft.com/en-us/azure/devops/pipe-
lines/agents/agents?view=azure-devops

63

[40] Microsoft, Best practices for securing PaaS web and mobile applications using
Azure App Service, [Online], Available (accessed 8.9.2019): https://docs.mi-
crosoft.com/en-us/azure/security/fundamentals/paas-applications-using-app-
services

[41] Microsoft, Dependency injection in ASP.NET Core, [Online], Available (ac-
cessed 1.9.2019): https://docs.microsoft.com/en-us/aspnet/core/fundamen-
tals/dependency-injection?view=aspnetcore-2.2

[42] Microsoft, Deployment groups, [Online], Available (accessed 8.9.2019):
https://docs.microsoft.com/en-us/azure/devops/pipelines/release/deployment-
groups/?view=azure-devops

[43] Microsoft, Global Query Filters, [Online], Available (accessed 22.9.2019):
https://docs.microsoft.com/en-us/ef/core/querying/filters

[44] Microsoft, Inbound and outbound IP addresses in Azure App Service, [Online],
Available (accessed 1.9.2019): https://docs.microsoft.com/en-us/azure/app-ser-
vice/overview-inbound-outbound-ips

[45] Microsoft, Introduction to Identity on ASP.NET Core, [Online], Available (ac-
cessed 8.9.2019): https://docs.microsoft.com/en-us/aspnet/core/security/authen-
tication/identity?view=aspnetcore-2.2

[46] Microsoft, .NET Core application deployment, [Online], Available (accessed
8.9.2019): https://docs.microsoft.com/en-us/dotnet/core/deploying/

[47] Microsoft, ODBC Overview, [Online], Available (accessed 22.9.2019):
https://docs.microsoft.com/en-us/sql/odbc/reference/odbc-overview

[48] Microsoft, What are public, private and hybrid clouds? [Online], Available (ac-
cessed 1.9.2019): https://azure.microsoft.com/en-gb/overview/what-are-private-
public-hybrid-clouds/

[49] Microsoft, What is ASP.NET Core? [Online], Available (accessed 1.9.2019):
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core

[50] Microsoft, What is Azure Pipelines? [Online], Available (accessed 8.9.2019):
https://docs.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-az-
ure-pipelines?view=azure-devops

[51] Microsoft, What is Azure Relay? [Online], Available (accessed on 1.9.2019):
https://docs.microsoft.com/fi-fi/azure/service-bus-relay/relay-what-is-it

[52] Microsoft, What is Azure Virtual Network? [Online], Available (accessed
1.9.2019): https://docs.microsoft.com/bs-latn-ba/azure/virtual-network/virtual-
networks-overview

[53] Microsoft, What is IaaS?: Infrastructure as a service, [Online], Available (ac-
cessed 8.9.2019): https://azure.microsoft.com/en-us/overview/what-is-iaas/

[54] Microsoft, What is PaaS?: Platform as a service, [Online], Available (accessed
8.9.2019): https://azure.microsoft.com/en-us/overview/what-is-paas/

[55] Microsoft, What is SaaS?: Software as a service, [Online], Available (accessed
8.9.2019): https://azure.microsoft.com/en-us/overview/what-is-saas/

64

[56] Microsoft, What is VPN Gateway? [Online], Available (accessed 1.9.2019):
https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpn-
gateways

[57] C. Miyachi, What is "Cloud"? It is time to update the NIST definition? IEEE
Cloud Computing, Vol. 5, Issue 3, June 2018, pp. 6-11.

[58] F. Mohamed, M. Abu-Matar, R. Mizouni, M. Al-Qutayri, Z.A. Mahmoud, SaaS
dynamic evolution based on model-driven software product lines, Proceedings
of the International Conference on Cloud Computing Technology and Science,
Singapore, Singapore, 2015, pp. 292-299.

[59] E. Moyle, Legacy application migration to the cloud and security, [Online], Avail-
able (accessed 25.8.2019): https://searchcloudsecurity.techtarget.com/tip/Lega-
cyapplication-migration-to-the-cloud-and-security

[60] OpenID, What is OpenID Connect? [Online], Available (accessed 1.9.2019):
https://openid.net/connect/

[61] C. Pahl, H. Xiong, R. Walshe, A comparison of on-premise to cloud migration
approaches, Proceedings of European Conference on Service-Oriented and
Cloud Computing ESOCC, 2013, pp. 212-216

[62] R.C. Pathak, P. Khandelwal, A model for hybrid cloud integration: With a case
study for IT service management (ITSM), Proceedings of the 6th IEEE Interna-
tional Conference on Cloud Computing in Emerging Markets, Bangalore, India,
November 1.-3., 2017, pp. 113-118.

[63] K. Petersen, R. Feldt, S. Mujtaba, M. Mattson, Systematic Mapping Studies in
Software Engineering, 12th International Conference on Evaluation and Asses-
ment in Software Engineering, Italy, 2008, 9 p.

[64] M. Rouse, Definition: IBM i, [Online], Available (accessed 25.8.2019):
https://whatis.techtarget.com/definition/IBM-i

[65] M.D. Samrajesh, N.P. Gopalan, Towards Multivariable Architecture for SaaS
Multi-tenant Applications, International Journal of Software Engineering and Its
Applications, Vol. 10, No. 4, 2016, pp. 13-26.

[66] R.K. Shyamasundar, N.V.N. Kumar, M. Rajarajan, Information-flow control for
building security and privacy preserving hybrid clouds, Proceedings of the 18 th
IEEE International Conference on High Performance Computing and Communi-
cations, 14th IEEE International Conference on Smart City and 2nd IEEE Confer-
ence on Data Science and Systems, Sydney, Australia, December 12.-14.,
2016, pp. 1410-1417.

[67] E. Sturrus, O. Kulikova, Orchestrating hybrid cloud deployment: An overview,
Vol. 47, Issue 6, June, 2014, pp. 85-87.

[68] W. Su, C. Lin, K. Meng, Q. Liu, Modeling and analysis of availability for SaaS
multi-tenant architecture, Proceesings of IEEE 8th International Symposium on
Service Oriented System Engineering, Oxford, United Kingdom, April 7.-11.,
2014, pp. 365-369.

[69] A.N. Toosi, R. Buyya, Research Advances in Cloud Computing, Springer, Mel-
bourne, Australia, 2017, pp. 93-114.

65

[70] E. Truyen, N. Cardozo, S. Walraven, J. Vallejos, E. Bainomugisha, S. Günther,
T. D’Hont, W. Joosen, Context-oriented programming for customizable SaaS
applications, 27th Annyal ACM Symposium on Applied Computing, March 26.-
30., 2012, pp. 418-425.

[71] D. Van Landuyt, G. Fatih, E. Truyen, W. Joosen, Middleware for Dynamic Up-
grade Activation and Compensations in Multi-tenant SaaS, Proceedings of the
15th International Conference on Service-Oriented Computing, Malaga, Spain,
November 13.-16., 2017, Springer, pp. 340-348.

[72] S. Walraven, E. Truyen, W. Joosen, A middleware layer for flexible and cost-ef-
ficient multi-tenant applications, 12th ACM/IFIP/USENIX International Middle-
ware Conference, Lisbon, Portugal, December 12.-16., 2012, pp. 370-389.

[73] S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, W. Joosen, Efficient
customization of multi-tenant Software-as-a-Service applications with service
lines, Vol. 91, Issue 1, May, 2014, pp. 48-62.

[74] H. Yaish, M. Goyal, A multi-tenant database architecture design for software ap-
plications, Proceedings of the 16th IEEE International Conference on Computa-
tional Science and Engineering, Sydney, Australia, December 3.-5., 2013, pp.
933-940.

[75] H. Yaish, M. Goyal, Multi-tenant database access control, Proceedings of the
16th IEEE International Conference on Computational Science and Engineering,
Sydney, Australia, December 3.-5., 2013, pp. 870-877.

[76] J. Zeng, B. Plale, Argus: A Multi-tenancy NoSQL store with workload-aware re-
source reservation, Parallel Computing: Systems & Applications, Vol. 58, Octo-
ber, 2016, pp. 76-89.

[77] C. Zou, H. Deng, Design and implementation of hybrid cloud computing archi-
tecture based on cloud bus, Proceedings of the 9th International Conference on
Mobile Ad-Hoc and Sensor Networks, Dailan, China, December 11.-13., 2013,
pp. 289-293.

