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Chapter 1: 

Migrating from Monoliths to Cloud-Based 

Microservices: A Banking Industry Example  
 

Alan Megargel, Venky Shankararaman and David K. Walker 

 

School of Information Systems, Singapore Management University 

 

Abstract: As more organizations are placing cloud computing at the heart of their 

digital transformation strategy, it is important that they adopt appropriate 

architectures and development methodologies to leverage the full benefits of the 

cloud. A mere “lift and move” approach, where traditional monolith applications 

are moved to the cloud will not support the demands of digital services. While, 

monolithic applications may be easier to develop and control, they are inflexible to 

change and lack the scalability needed for cloud environments. Microservices 

architecture, which adopts some of the concepts and principles from service-

oriented architecture, provides a number of benefits when developing an enterprise 

application as compared to a monolithic architecture. Microservices architecture 

offers agility and faster development and deployment cycles, scalability of selected 

functionality, and the ability to develop solutions using a mixture of technologies. 

Microservices architecture aims to decompose a monolithic application into a set of 

independent services which communicate with each other through open APIs or 

highly scalable messaging. In short, microservices architecture is more suited for 

building agile and scalable cloud-based solutions. This chapter provides a practice-

based view and comparison between the monolithic and microservices styles of 

application architecture in the context of cloud computing, and proposes a 

methodology for transitioning from monoliths to cloud-based microservices.  

 

Keywords: Microservces Architecture, Monolithic Architecture, Cloud-Based, 

Microservice Identification, Migration from Monolith to Microservices 

 

1.1 Introduction 

Digital transformation requires organizations to be nimble and adopt accelerated 

innovation methods which enable the delivery of new digital services to customers, 

partners and employees. To achieve this, organizations are looking towards building 

flexible cloud-based applications, whereby it is easier to add and update digital 

services as requirements and technologies change. Legacy monolithic applications 

might be operationally acceptable on a day-to-day basis but these applications are 

not well suited for building digital services. Traditional monolithic architecture and 

software development methods remain a stumbling block for driving digital 

transformation. In order to efficiently drive digital transformation, organizations are 
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exploring a new software development methodology and architecture, “cloud-based 

microservices architecture”, whereby IT solutions can be organized around granular 

business capabilities which can be rapidly assembled to create new cloud-based 

digital experience applications. The “microservices” architecture is a style and 

method of developing software applications more quickly by building them as 

collections of independent, small, modular services. Organizations are currently 

faced with two challenges, namely; how to build new applications using a 

microservices architecture, and how to migrate from a monolith to a cloud-based 

microservices architecture. This chapter provides practical guidance and a 

methodical approach to address these two challenges.  

A single monolith is typically composed of tens or hundreds of business 

functions, which are deployed together in one software release. Microservices on 

the other hand typically encapsulate a single business function which can be scaled 

separately and deployed separately. It is possible to develop a large enterprise 

application for cloud deployment by assembling and orchestrating a set of 

microservices, as an alternative to developing a monolith.   

In this chapter, we first discuss the challenges of monolithic applications in terms 

of technology stack, scalability, change management, and deployment. We then 

propose a microservices architecture, as an alternative, and provide a comparison 

with the monolith. We then propose a methodical approach to transitioning from a 

monolith application to a cloud-based microservices application, both from the 

perspective of building new solutions from scratch and migrating existing solutions 

built as monoliths. Finally, we conclude with a summary and ideas for future work.  

 

1.2 Monolithic Applications: Background and Challenges 

A monolithic application, or “Monolith”, describes a legacy style of application 

architecture which does not consider modularity as a design principle.  Originally, 

the term “monolithic” was used to describe large mainframe applications [23], 

which are self-contained and become increasingly complex to maintain as the 

number of functions they support increases over many years of version updates.  

Following the mainframe era, incarnations of the monolithic architecture style 

emerged, namely; client-server architecture, and three-tier web application 

architecture [22].  A common characteristic of all forms of monolithic application 

is the presence of three distinct architecture layers; the user interface layer, the 

business logic layer, and the database layer.  A simplified illustration of these three 

layers, or tiers, is provided in Figure 1 below. 
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Figure 1 Monolithic Application (or “Monolith”) 

 

The defining characteristic of a monolith is that all of the business logic is 

developed and deployed together onto the middle tier, typically hosted on an 

application server.  More broadly, beyond mainframes, a monolith can be described 

as any block of code that includes multiple functions.  Business logic is coded into 

functions, each fulfilling a specific business capability, e.g.; order management, or 

account maintenance.  The first release of an application might include several tens 

of functions, and with subsequent releases, the application might grow to include 

several hundreds of functions [20].  Before discussing their issues it is only fair to 

state that monoliths, especially mainframe systems, are highly performing in terms 

of response time and throughput, and are highly resilient and reliable [15].  Many 

established banks are still relying on 1970’s mainframe technology for their core 

banking systems [15].  However, monoliths are not suitable for cloud deployment 

due to several reasons which are explained as follows: 

 

Technology Stack 

In a monolith, the functions which implement business logic are all typically 

written using the same programming language as was popular and relevant at the 

time the original application was developed. Mainframe applications, for example, 

are written using the COBOL language, and any extensions or subsequent version 

releases of the application must also be written in COBOL.  Developers are locked-

in to the original technology stack, and as such are not free to develop new functions 

using modern application frameworks or languages suitable for cloud deployment 

[22].  As the number of functions increases, a monolith becomes more complex, 

and requires a larger team of developers to support the application [20]. 

The functions implemented in a monolith, all developed using the same 

programming language, must interact with each other using native method calls, 

and are therefore tightly-coupled [20].  For cloud deployment, loosely-coupled 

functions are more suitable [8].  Loose-coupling of functions within a monolith is 

not possible, for example, it is not possible for function-A to interact with function-

B using native method calls if the two functions are deployed onto different servers. 
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Scalability 

Functions within a monolith collectively share the resources (CPU and memory) 

available on the host system.  The amount of system recourses consumed by each 

function varies depending on demand.  A high demand function, for example one 

that has a high number of requests via the user interface, or one that is 

computationally intensive, may at one point consume all of the available resources 

on the host machine.  Therefore, scalability within a single monolith is limited [20]. 

Vertically scaling the monolith by increasing the system memory would be an 

option, but a high demand function would eventually consume the additional 

memory as well.  Since functions within a monolith are tightly-coupled and cannot 

be individually deployed in separate systems, as mentioned in the previous section, 

the best and most widely used option would be to scale the monolith horizontally. 

Horizontal scaling of a monolith, as illustrated in Figure 2 below, involves 

adding whole new redundant servers [4], as many as necessary, in order to handle 

any number of incoming requests through the user interface.  A load balancer is 

needed in order to split the load of incoming requests evenly between the servers.  

Session replication between servers is needed so that a single user session can span 

across servers, or alternatively “sticky” session can be configured to ensure that all 

requests from the same user are routed consistently to the same server.  Either way, 

database replication is needed in order to ensure that all redundant instances of the 

database are kept current.  Horizontal scaling adds cost and complexity to a 

monolith, making it impractical for cloud deployment.  

 

 

Figure 2 Horizontal Scaling of a Monolith 
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Change Management 

As mentioned above, a monolith becomes more complex as the number of 

functions increases over time, requiring a larger support team.  Functions which 

interact using native method calls are tightly-coupled and interdependent, and 

therefore are susceptible to change.  A change to one function might impact any 

other function which interacts with that function.  Due to these interdependencies, 

testing only the function which has changed would be insufficient, rather the entire 

application should be retested to ensure there is no impact due to the change.  

Retesting an entire application implies that all test cases need to be regression tested, 

ensuring that tests which are expected to pass still pass, and tests which are expected 

to fail still fail. 

Because a change to any function requires the entire application to be retested, 

change management processes for monoliths are complex.  Test cases need to be 

maintained.  Regression tests need to be planned and scheduled.  Test results need 

to be reviewed.  Any test failures cause the entire application to revert back to the 

development team for bug fixing.  Monoliths are typically managed using a 

waterfall software development lifecycle (SDLC) methodology [17], which 

requires the entire application to be promoted through a sequence of states, namely; 

development, system integration testing (SIT), user acceptance testing (UAT), and 

production.  Typically large enterprises such as banks have specialized change 

management teams who plan, schedule and execute changes.  Incident management 

teams report that 80 to 90 percent of production problems occur due to improperly 

tested changes as the root cause [15], even with rigorous testing practices in place.  

Due to the risk of production problems, banks may schedule the re-deployment of 

monoliths to occur only once per month, even for routine enhancements.  The 

careful and rigorous testing practices implemented for monoliths can inhibit the 

time-to-market of new customer experience driven innovations. 

 

Deployment 

Individual functions within a monolith cannot be individually deployed, rather 

the entire application must be deployed.  The deployment package for a monolith is 

typically one large file.  For example, the deployment package for a java web 

application is a single web application resource (WAR) file.  Other types of single 

file deployment archives include; java archive (JAR), enterprise java bean (EJB), 

tape archive (TAR) for Linux/Unix, and dynamic link library (DLL) for Windows.  

The deployment archive for a monolith increases in size as the number of functions 

within the monolith increases. 

Individual functions within a monolith cannot be individually restarted after 

deployment, rather the entire application must be restarted.  The implication of this 

is that the entire application would be unavailable to users while it is being restarted, 

unless the application is deployed in a high availability (HA) configuration of 

servers, in which case the application could be deployed and restarted on one HA 
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server at a time.  Large monoliths, with hundreds of functions, can take 20 to 40 

minutes to restart [20].   

The size of the deployment archive, together with long restart times, plus the fact 

that the entire application must be re-deployed each time there is a change, makes 

the use of modern DevOps methods and tools challenging if not impractical for 

large monoliths.  This would be the case for cloud deployments as well as for on-

premises deployments of monoliths. 

 

1.3 Microservices: A Cloud-based Alternative 

Microservices are “a variant of the service-oriented architecture (SOA) 

architectural style that structures an application as a collection of loosely coupled 

services” [24].  A microservice encapsulates a function, or a business capability [5], 

which owns its own data [16], and can be independently deployed and 

independently scaled [20].  Microservices can encapsulate business entities (e.g.; 

Product, Customer, Account) or can encapsulate business activities which 

orchestrate multiple business entities (e.g.;  Credit Evaluation, Trade Settlement) 

[1, 8].   

An atomic microservice [8] is a fine-grained service which encapsulates the 

functionality and data of a single business entity such as Product.  In this example, 

the Product service owns product data, i.e.; if any other service requires product 

data it must access it via the Product service interface.  The Product service exposes 

functions or operations via its interface such as; GET product data, POST (create) 

new product data, PUT (update) existing product data, and DELETE product data.  

Atomic microservices represent the smallest reusable software modules which 

cannot usefully be further sub-divided or decomposed [8]. 

A composite microservice [8] is a course-grained service which encapsulates the 

functionality of a single business activity, such as Fund Transfer.  In this example, 

the Fund Transfer service orchestrates an end-to-end process by invoking the 

operations of several atomic microservices in a sequence which fulfils the business 

activity, as illustrated in Figure 3 below.  Composite microservices can also perform 

transaction management (e.g. commit or rollback) across the orchestration. 
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Figure 3 Microservice Layers (with Fund Transfer example) 

 

In a microservices layered architecture, the service integration and orchestration 

responsibilities previously handled by an enterprise service bus (ESB) are now 

transferred to and dispersed among composite microservices [8].  Alternatively, the 

communication between microservices can be event-based [2], in which case the 

end-to-end process logic is distributed among the microservices.  With this latter 

event-based approach, the end-to-end process logic can be reconstructed using 

service discovery and architecture recovery tools [3].  

Microservices architecture (MSA) principles are similar to those established for 

SOA, with some additions.  With regards to legacy issues associated with monoliths, 

the objectives of SOA and MSA are similar [2].  Both SOA and MSA aim to 

transform inflexible legacy architectures into services-based architectures which are 

more flexible and agile for developing new innovative digital solutions [8].  In 

complex organizations like traditional banks, SOA maturity is key to overcoming 

legacy systems as an inhibiter for digital banking transformation [15].  While SOA 

is a key enabler for the agility of on-premises solutions in the presence of monolithic 

legacy systems, this architecture does not translate well onto the cloud where 

monolith implementations are impractical.  As such, MSA is now a key enabler for 

the agility of cloud-based solutions, provided that microservices are designed at the 

right level of encapsulation, or boundary context [5].  A set of MSA boundary-

setting design principles are provided as follows: 

 

MSA Boundary-Setting Design Principles 

P1. Do one thing well – Microservices should be highly cohesive [5, 7] in that they 

encapsulate elements (methods and data) that belong together.  A microservice has 

a specific responsibility enforced by explicit boundaries.  It is the only source of a 

function or truth; i.e. the microservice is designed to be the single place to get, add, 

or change a “thing”.  A microservice should “do one thing well”. 

 



8 

 

P2. No bigger than a squad - Each microservice is small enough that it can be built 

and maintained by a squad (small team) working independently [20].  A single quad 

/ team should comfortably own a microservice, whereby the full context of the 

microservice is able to be understood by a single person.  The microservice should 

ideally be less than a few hundred lines of code, or zero code using a GUI-driven 

designer studio.  Smaller microservices are optimised to be rewritten / refactored. 

 

P3. Grouping like data - Data and its operations set boundaries.  The functional 

boundary of a microservice is based on the data that it owns, the operations it 

performs (e.g. REST resources), and the views it provides on that data [5, 7].  Data 

that is closely related belongs under the same microservice; e.g. data needed for a 

single API call often (but not always) belongs to a single microservice.  If putting 

data together simplifies the microservice APIs, and interactions, then that is a good 

thing.  Conversely, if separating data does not adversely impact APIs or code 

complexity, and does not result in a trivially small microservice, then that data might 

make sense to separate into two microservices. 

 

P4. Don’t share data stores – Only one microservice is to own its underlying data 

[5].  This implies moving away from normalized and centralised shared data stores.  

Microservices that need to share data, can do so via API interaction or event-based 

interaction. 

 

P5. A few tables only - Typically there should only be a small number of data stores 

(e.g. tables) underlying a microservice; i.e. 1 to 3 tables is often the range.  Data 

store selection for a microservice should be optimised using fit for purpose styles; 

e.g. in-memory data grid, relational database (SQL), or key-value pair (No-SQL). 

 

P6. Independent technology selection – Unlike monoliths, the small size of 

services allows for flexibility in technology selection.  Often a business requirement 

or constraint may dictate a specific technology choice. In other cases, technology 

choice may be driven by engineering skills, preference and familiarity. 

 

P7. Independent release cadence – Microservices should be loosely coupled [7] 

and therefore should have their own release cadence and evolve independently.  It 

should always be possible to deploy a microservice without redeploying any other 

microservices.  Microservices that must always be released together could be 

redesigned and merged into one microservice. 

 

P8. Limit chatty microservices – Any interdependence between atomic 

microservices should be removed.  If two or more microservices are constantly 

chatty (interacting), then that’s a strong indication of tight coupling [5, 7], and these 

microservices should be merged into one.  Note: If principle P1 is followed (“do 

one thing well”), then there should be no chatty interdependent microservices. 
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Cloud Deployment of Microservices 

Following the above MSA boundary-setting design principles, highly cohesive 

and loosely coupled microservices are more practical for cloud deployment as 

compared to monoliths.  Microservices can be deployed independently and can be 

scaled independently, and are small enough in size that automated build, test, and 

deploy scripts can be implemented using agile DevOps methods and tools [17].   

The small size of the deployment objects also makes containerization practical, 

using Docker or similar technology [19], whereby each microservice is deployed 

inside a separate virtual machine image which then can be run (instantiated) any 

number of times on any number of different host systems as self-contained 

lightweight containers which can be scaled out elastically.  For example, a high 

demand Product microservice can be instantiated into another active-active load-

balanced container during the peak load period, and then the redundant container 

can be later removed as the load subsides. 

Cloud-based microservices are exposed to internal user interfaces and external 

third party applications via an API Gateway [20].  An API gateway provides a single 

point of entry into the microservices, as well as a single point of control.  Features 

of an API Gateway include; a) user authentication, b) user authorization to access 

specific microservices, c) transformation between various data formats (e.g. JSON, 

XML), translation between various transport protocols (e.g. HTTP, AMQP), d) 

scripting for aggregating or orchestrating multiple microservices in order to reduce 

network traffic.  Figure 4 below illustrates a microservices-based architecture. 

 

 

Figure 4 Microservices-based Architecture 

 

Challenges with Microservices Deployment 

The complexity of a microservices-based architecture increases over time as the 

number of deployed microservices increases [19, 20].  Monitoring and management 

tools are needed in order to; a) monitor the runtime status of microservices and 



10 

 

restart any which have stopped, b) monitor the loading on microservices and 

manage the elastic scaling of active-active load-balanced containers (instances) 

accordingly, and c) provide a framework for microservice discovery so that, for 

example, a composite microservice can locate a newly redeployed atomic 

microservice which gets assigned a new IP address. 

Another complexity arises when interdependent microservices are located on 

different host systems across a wide area network (WAN); e.g. microservice ‘A’ 

requests data from microservice ‘B’.  In such cases, synchronous request-reply 

interactions would cause high network traffic across the WAN.  A better approach 

would be to use an asynchronous event-based interaction [2] across the WAN, 

whereby microservice ‘B’ publishes data, whenever it becomes available (i.e. the 

event), to all microservices which have subscribed to that data.  Similarly, if the 

same service ‘A’ was instantiated on multiple host systems across the WAN, there 

arises complexity and design challenges around how to ensure availability and/or 

eventual consistency [18] of data across the WAN. 

 

Monolith vs Microserves Feature Comparison 

Based on what has been discussed so far in this chapter, a features comparison 

between monoliths and microservices is summarized in Table 1 below. 

 

Feature Monolith Microservices 
Technology 

Stack 
• Locked-in to original technology 

stack and framework. 

• All functions developed with 

one programming language. 

• Each microservice can be 

developed using a different 

technology, fit for purpose, or 

based on developer preference. 

Scalability • Functions within a monolith 

cannot be scaled independently. 

• Horizontal scaling of the entire 

monolith is necessary. 

• Each microservice can be scaled 

independently via containers. 

• Tools are needed for monitoring 

and managing containers. 

Change 

Management 
• For any small change, the entire 

monolith needs to be retested. 

• Change/testing processes are 

complex and time consuming. 

• Microservices are small and can 

be tested quickly. 

• Microservices have independent 

release cadences. 

Deployment • Deployment file is large, slow to 

startup, may incur downtime. 

• Use of agile DevOps methods 

and tools is not practical. 

• Microservices can be deployed 

independently. 

• Use of agile DevOps methods 

and tools is appropriate. 

Table 1 Monolith vs Microservices Feature Comparison 

 

1.4 Building Cloud-based Applications from Day One 

Many established enterprises which are encumbered with inflexible monolithic 

systems are beginning to transition to a microservices architecture.  Newly created 

enterprises have an option to build a cloud-based microservices architecture from 

day one, rather than to buy or build monolithic systems.  In such green-field 
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scenarios, one of the main challenges faced by architects is the identification of 

candidate microservices which are highly cohesive and loosely coupled [5, 7]. 

Without reference to any existing monolith which can be used as a starting point 

for microservices decomposition, architects can take a top down approach starting 

with a set of business requirements, then deriving a set of business process models 

and/or business capability models [5], and finally decomposing those models into a 

set of microservice candidates.  Capability-based services can be distinguished in 

layers as shown in Table 2 below [5]: 

 

Service Type Description 

Business Process Service Stateful services which orchestrate automated composite 

business and data services, including human interaction. 

Composite Business Service Automated services which provide business logic, by 

orchestrating atomic business and data services. 

Composite Data Service Automated services which provide data, by 

orchestrating atomic business and data services. 

Atomic Business Service Automated services which provide atomic business 

logic functionality; e.g. a pricing calculator. 

Atomic Data Service Automated services with provide atomic data 

manipulation functionality; e.g. CRUD (create, read, 

update, delete) product information. 

Table 2 Capability-Based Service Types 

 

Even without an existing monolith as a reference, a bottom up approach for 

microservices identification can be used, provided there exists a data model of the 

target application in the form of a unified modeling language (UML) compliant 

entity relationship diagram (ERD) and use cases.  Service Cutter [7] is a tool which 

can assist architects in identifying microservice candidates which are highly 

cohesive and loosely coupled.  Using the ERD and use cases as inputs, the Service 

Cutter tool extracts the “building blocks” of an application, referred to as 

“nanoentities”, which are to be encapsulated and owned by microservices.  These 

nanoentities are; a) Data which is exclusively owned and maintained/manipulated 

by a microservice, b) Operations which are the business rules/logic exclusively 

provided by a microservice, and c) Artifacts which are a “collection of data and 

operations results transformed into a specific format” e.g. a business report which 

is exclusively provided by a service [7].  Using a predefined “coupling criteria”, the 

relationship between each pair of nanoentities in the model is scored, and finally a 

clustering algorithm is used to identify the candidate microservices [7]. 

Another source of information which can support bottom up microservices 

identification, in the absence of a monolith as a reference, are industry specific 

models.  The banking industry, for example, has produced a number of widely used 

information models.  The Banking Industry Architecture Network (BIAN) is a 

consortium of over 30 banks, technology vendors, and universities, which have 

collaborated on a service decomposition framework for banks [11, 26].  The BIAN 
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Service Landscape, as it is called, is a decomposition of a generic universal bank 

(retail, corporate, and investment banking) into a finite set of service domains which 

cannot be useably further decomposed.  As shown in Figure 5 below, the framework 

is organized into three levels; a) business area, b) business domain, and c) service 

domain.  The “Loan” service domain, for example, can encapsulate all of the 

business logic and data for loans.  Even in the absence of a data model, this 

framework can be a good starting point for architects to identify candidate 

microservices. 

 

 

Figure 5 BIAN Service Landscape (Sample) 

 

Technology vendor supplied data warehouse models are another source of 

information which can support bottom up microservices identification.  The two 

most widely used data warehouse models in the banking industry are; Teradata 

Financial Services Logical Data Model (FSLDM), and IBM Information 

Framework (IFW) Banking Data Model.  Each of these vendor supplied information 

models comes out-of-the-box with a set of core banking entities, also referred to as 

“subject areas” as illustrated in Figure 6 below.  Data warehouses are organized into 

subject areas in order to support “subject area experts” i.e. data scientists / analysts 

whom are tasked to help bank management make decisions around; product, party 

(customer), channel, campaign, and others.  The FSLDM and IFW banking industry 

models are improved overtime as requirements from many banks are incorporated, 

and therefore have become industry standards [26].  While these standard subject 
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areas are course-grained at a high level of abstraction, they suggest a good baseline 

for further decomposition into more fine-grained microservices. 

 

 

Figure 6 Teradata FSLDM Subject Areas 

 

Each subject area has a default set of attributes which are extensible.  Figure 7 

below shows a worked example for the Account/Agreement subject area.    

 

 

Figure 7 Attributes of FSLDM Account/Agreement Subject Area 

 

Each subject area has an extensible set of relationships with other subject areas.  

Figure 8 below illustrates a worked example for the Campaign subject area.  These 

relationship maps are useful for identifying composite services [5], as well as inter-

process communications [20]. 
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Figure 8 Relationships around FSLDM Campaign Subject Area 

 

Each vendor supplied information model comes with a baseline ERD as shown 

in Figure 9 below.  Data warehouse ERDs are typically implemented using a “star 

schema”, whereby a normalized “fact” table is related to multiple de-normalized 

“dimension” tables.  Dimension tables are useful for identifying atomic data 

services [5], or data nanoentities [7].  Fact tables are useful for identifying artifact 

nanoentities [7].  The “Customer” dimension table, for example, can encapsulate all 

of the business logic and data for customers. 

 

 

Figure 9 IBM IFW Banking Data Model (Sample) 

 

Data warehouse models exist for other industries as well, for example healthcare; 

e.g. HealthCatalyst Enterprise Data Model, Oracle Healthcare Data Model.  In the 

absence of an existing monolith to reference, it is a challenge for architects to 

decompose the functional boundaries of an enterprise into microservices at an 

optimum level of cohesiveness, and loose coupling [2].  Industry specific models 

offer a good starting point. 

The development cycle for a cloud-based application starts with a microservice 

identification phase.  At the end of this phase, the architect will have produced a 
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library of microservice interface definitions, typically in the form of a Swagger 

Definition File for REST-based microservices, or a Web Service Description 

Language (WSDL) for SOAP-based microservices [13].  Interface definitions serve 

as a software specification, enabling concurrent development by the backend 

microservice development team and the frontend user interface development team. 

In a microservices-based application, each individual microservice; can be 

developed using a different programming language, can be developed and 

maintained by a small team, and can be deployed and scaled separately.  A GUI-

driven development tool such as TIBCO BusinessWorks Container Edition 

(BWCE) enables rapid development of container-ready microservices, involving 

very little or zero coding.  REST-based microservices can be tested using Swagger 

or Postman.  SOAP-based microservices can be tested using SOAPUI.  Container-

ready microservices can be built into a Docker image [12], together with the 

required lightweight operating system, runtime libraries and database drivers.  

Docker images are deployed and run as lightweight virtual machine (VM) 

containers within the target cloud environment [12].  Microservices are small 

enough that DevOps tools such as Jenkins can be used to automate the build, test, 

and deploy steps [17].  Kubernetes is a popular Docker cluster management suite 

which covers; service discovery, monitoring, orchestration, load balancing, and 

cluster scheduling [19].  The microservice development lifecycle, annotated with 

some popular tools, is shown in Figure 10 below. 

 

 

Figure 10 Microservice Development Lifecycle 

 

1.5 Transitioning from Monoliths to Cloud-based Microserves 

Migrating from legacy monoliths to a services-oriented architecture has been a 

long standing challenge [6], up to and including the recent microservices era [3].    

In the pre-microservices era, the best outcome of an SOA migration was to provide 

a layer of abstraction (i.e. a services layer) in front of the legacy monolith, in order 
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to provide a more flexible architecture while extending the lifespan of the legacy 

system [21].  There are several case studies of SOA migrations in banking [6, 9].   

In the microservices era, the ultimate goal for established enterprises is to replace 

their on-premises legacy monoliths with a functionally equivalent collection of 

cloud-based microservices which can be independently developed, deployed, and 

scaled.  Only one case study could be found of monolith to microservices migration 

in banking [4], and in this case the bank did not de-commission its legacy monolith. 

One of the main migration challenges involves reverse engineering of the legacy 

monolith in order to identify service candidates [25].  If the source code and/or 

database schema are not available for analysis, capturing and analysing the runtime 

interaction at the monolith interface (API) can help to identify service candidates, 

as illustrated in Figure 11 below.  Service identification can also be aided by 

referring to industry models as discussed in the previous section. 

 

 

Figure 11 Microservice Identification 

 

Migration Phases 

In this section, we offer a phased approach for migrating from a monolith to a 

cloud-based microservices architecture, as shown in Figure 12 below and detailed 

in the section which follows.  The migration phases presented here are based on an 

actual core banking system migration conducted in an academic setting under a 

project referred to as SMU tBank [14], whereby an Oracle Flexcube retail banking 

system was directly replaced by over 200 microservices.  

 



17 

 

 

Figure 12 Migration Phases 

 

Phase 1: Decouple Monolith 

A common approach for decoupling the frontend presentation layer from the 

bank-end business logic layer, is to introduce a façade layer [10, 20] between the 

user interface and the monolith, in order to prepare for the eventual transition away 

from the monolith.  Initially, each façade implements “pass-through” logic (i.e. no 

data transformation) which reflects the underlying monolith interface, such that any 

existing user interfaces do not require code changes, and are then physically 

decoupled from the monolith.  To cater for any new user interfaces (e.g. banking 

channels), each façade may then be refactored into a service which implements the 

target microservice interface definition, if already identified, such that the service 

“adapter” performs a data transformation back to the underlying monolith interface.  

The façade/services layer is illustrated in Figure 13 below. 

A service mediation layer [14] is then introduced above the façade/services layer, 

to provide runtime control over the channel-to-service mapping.  For example, if 

service X invokes the monolith interface for “getAccountBalance”, and service Y 

invokes the equivalent microservice for “getAccountBalance”, and both services 

use the same request/reply fields as specified in the service interface definition, then 

through runtime control, channel Z can be reassigned to consumer Service Y 

(microservice) instead of Service X (monolith).  With this capability, it is possible 

to reassign i.e. “swing” the entire set of channels to consume microservices, in one 

shot, without having to change a single line of code in any of the channels.  The 

service mediation layer is illustrated in Figure 13 below.  The services mediation 

layer also provides monitoring, logging, and security features. 
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Figure 13 Decoupling User Interface from Monolith 

 

Phase 2: Develop Local Microservices 

Decompose the monolith into separate microservices.  This may involve reverse 

engineering the monolith in order to identify candidate microservices [25], as 

illustrated in Figure 12 above.  Service identification is both the most tedious step 

as well as the most critical step in the entire migration process.  It is important to 

realize the optimum level of cohesion and loose coupling for each microservice. 

Develop a library of microservice interface definitions in the form of Swagger 

files (or WSDL files), which can then be imported into any number of standards 

compliant microservices development and testing tools.  Employ a design time 

governance tool to manage the microservices design lifecycle, and to make the 

interface definitions available to developers. 

Develop and unit test the microservices, as illustrated in Figure 12 above.  The 

microservice should implement the equivalent business logic and the equivalent 

data schema as the original function within the monolith.  While each microservice 

can be developed by a small team, a complex monolith such as a core banking 

system may be decomposed into several hundred microservices.  Therefore this is 

the most resource intensive step in the entire migration process.  GUI-driven 

development, standards-based testing tools, and DevOps continuous integration 

(build, test, deploy) tools enable rapid development of microservices as illustrated 

in Figure 10 above. 

 

Phase 3: Implement Local Microservices 

Once the microservices are developed, unit tested and deployed locally i.e. on-

premises, then the channel-to-service mapping can be changed independently or in 

batches.  For each microservice the following steps are repeated; 1) migrate the data 

from the monolith to the microservice, 2) conduct a parallel run, such that the 
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channel invokes both the monolith and microservice, and the resulting data is 

reconciled between the two, and 3) change the channel-to-service mapping to 

reassign i.e. “swing” the channel to invoke the microservice instead of the monolith.  

This process can be repeated systematically, until all of the channels are invoking 

only microservices.  At any point in time, any channel-to-service mapping can be 

temporarily reassigned back to the monolith, in case of a bug.  Service mediation 

capability enables channels to swing back and forth between the monolith and the 

microservice without changing any code or configurations on the channel.  This 

capability is illustrated in Figure 14 below (annotations 1 and 2). 

 

 

Figure 14 Migrating to Local (On-Premises) Microservices 

 

Phase 4: Deploy Microservices to Cloud 

Implement an API gateway in the target cloud environment, to provide a single 

point of entry and a simple point of control for microservices invocation.  Deploy 

the microservices from the on-premises environment to the cloud environment.  

Deploy any necessary microservices management and monitoring tools onto the 

cloud.  Conduct end-to-end testing to ensure each microservice can be invoked 

externally via the API gateway. 

 

Phase 5: Implement Microservices on Cloud 

Once the microservices have been implemented locally i.e. on-premises, then the 

channel-to-service mapping can be changed independently or in batches.  For each 

microservice the following steps are repeated; 1) migrate the data from the on-

premises microservice to the cloud-based microservice, 2) conduct a parallel run, 

such that the channel invokes both the on-premises microservice and cloud-based 

microservice, and the resulting data is reconciled between the two, and 3) change 

the channel-to-service mapping to reassign i.e. “swing” the channel to invoke the 
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cloud-based microservice instead of the on-premises microservice.  This process 

can be repeated systematically, until all of the channels are invoking only cloud-

based microservices.  At any point in time, any channel-to-service mapping can be 

temporarily reassigned back to the on-premises microservice, in case of a bug.  

Service mediation capability enables channels to swing back and forth between the 

on-premises microservice and the cloud-based microservice without changing any 

code or configurations on the channel.  This capability is illustrated in Figure 15 

below (annotations 3 and 4). 

 

 

Figure 15 End-to-End Migration from Monolith to Cloud-based Microservices 

 

Phase 6: Decommission Monolith 

At this point, or even after Phase 3, the monolith is no longer used and can be 

decommissioned i.e. taken off line.  The on-premises environment then becomes a 

staging area for microservices development and testing.  Channel applications in a 

UAT environment can be mapped to invoke the on-premises microservices.  

Existing channels can be systematically refactored to invoke the API Gateway 

directly, instead of via the Service Mediation layer.  New channels and third party 

apps can invoke the API Gateway directly.  The Service Mediation layer would 

remain until all of the other remaining monoliths, and any future acquired 

monoliths, are eventually migrated to cloud-based microservices. Figure 16 below 

shows the final configuration. 
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Figure 16 Final Configuration of On-Premises and Cloud-Based Environments 

 

Post-Migration Benefits 

For the case of SMU tBank [14] for which the above migration phases are based 

upon, a number of benefits have been realized as follows: 

 

Performance – Average response time as measured at the service mediation 

logging point improved from 200ms (monolith) to 40ms (microservice), the 

difference being the database technology used.  With Oracle Flexcube core banking 

system, we were locked in to using the heavy footprint Oracle database.  And for 

our database intensive microservices, we selected MySQL ndbcluster replication 

engine which operates in-memory efficiently. 

 

Reuse/Agility – During one stage of the SMU tBank development, three student 

teams developed four banking channels (Teller, Internet Banking, Mobile Banking, 

and ATM-simulation) concurrently during one school semester, without creating 

any new business logic or database tables.  This was possible due to their reuse of 

existing microservices, which were developed during the previous semester. 

 

Collaboration – SMU tBank cloud-based microservices are available for use by 

other learning institutions.  One such institution has used the SMU tBank Open API 

as the basis for student projects, whereby student teams develop their own banking 

applications or FinTech alternatives.  The SMU tBank Open API has attracted 

attention from our industry partners.  Future work includes collaborating with a 

large Swiss investment bank to develop a library of BIAN/IFX compliant 

microservices for wealth management. 
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1.6 Conclusion 

When organizations continue their digital transformation efforts, they should 

consider an agile style of application architecture which enables the rapid delivery 

of new cloud-based digital services. Microservices architecture is seen as a key 

enabler towards this effort. The main tenet of this architecture is to develop software 

applications more quickly by building them as collections of independent, small, 

modular services. A primary benefit of this architecture is to empower decentralized 

governance that allows small, independent teams to innovate faster, thus improving 

time-to-market of new digital services.  

This chapter contributes to the software engineering community by filling a gap 

in the literature around best practices and methodologies for decomposing 

monoliths and transitioning to cloud-based microservices. This chapter presented 

two approaches; a) blank slate approach, whereby applications are developed 

completely from cloud-based microservices from day one, and b) migration 

approach, whereby existing monoliths are decomposed into cloud-based 

microservices, and transitioned function by function onto the cloud, until the 

original monolith can be literally unplugged. Though the context and examples 

presented in this chapter relate to the banking domain, the method is generic enough 

to be applied to other domains such as e-commerce, supply chain and logistics, 

health care, etc. The blank-slate approach is best suited for building new 

applications, and the migration approach is best suited for transitioning from 

existing monoliths to a microservices architecture. The migration methodology 

presented in this chapter is more detailed compared to the blank state approach. Our 

future work will focus on further identifying and refining the steps for developing 

microservices-based enterprise solutions from a blank slate. 

 

<<<          End [22] >>> 
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