
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

MASTER IN COMPUTER SCIENCE

Cloud migration of legacy applications

Kalisa, Flora

Award date:
2015

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/cloud-migration-of-legacy-applications(caaf92ef-f0a1-43e6-8d49-1ffbad642c20).html

Université de Namur

Faculty of Computer Science

Academic Year 2014-2015

Cloud migration of legacy applications

Flora KALISA

Supervisor: PhD Philippe THIRAN (Signed for Release Approval - Study Rules art. 40)

A thesis submitted in the partial fulfillment of the requirements

for the degree of Master of Computer Science at the Université of Namur

Abstract

Cloud computing has opened up a new way of doing business by hosting and delivering

services over the Internet. This business model has allowed many organizations to save money

and time and more importantly to focus on their core business. Today, organizations which have

adopted the new paradigm are not looking back (e.g. NASA cloud migration success story).

However, despite all those benefits, there are still organizations which are unwilling to migrate

their legacy applications in the the cloud due to the lack of proper migration methodology and

risks and benefits involved. In this paper, we present the key concepts of cloud computing and

legacy code and then, we present the state-of-the-art of migrating a legacy application in the

cloud by focusing on five frameworks : ARTIST, Cloud-RMM, REMICS, CloudMIG and Legacy-

to-Cloud Migration Horseshoe framework. This will allow to suggest some recommendations

with the goal of convincing more organizations to adopt this paradigm.

Keywords : cloud computing, legacy application, legacy-to-cloud, cloud migration, application

modernization, recommendations

2

Acknowledgements

Foremost, I would like to express my gratitude to my supervisor PhD Philippe THIRAN for the

support of my thesis. His guidance helped me in my research and writing of this thesis.

Besides my supervisor, I would like to thank the Université of Namur for giving me such

opportunity to broaden my knowledge and to further my career. My sincere thanks also goes to

the Vice Dean Laurent SCHUMACHER, the secretary Benjamine LURQUIN, the teachers and

the assistants.

Last but not the least, I would like to dedicate this thesis to my late father.

3

Table of Contents

List of figures...6

List of tables...7

Acronyms...8

1. Introduction..10

2. Cloud Computing...12

2.1. Definition..12

2.2. Cloud actors ..13

2.3. Cloud computing essential characteristics..14

2.4. Cloud deployment models..15

2.5. Cloud service models...16

2.6. Differences between cloud and traditional environments..18

2.7. Synthesis..23

3. Legacy applications ..25

3.1. Definition..25

3.2. Legacy applications concerns with regards to scalability..25

3.3. System evolutions..26

3.4. Migration strategies..27

3.5. Synthesis..28

4. Cloud migration of legacy applications...30

4.1. Prerequisites ..30

4.2. Definition..31

4.2.1. Modeling languages..31

4.2.2. Transformation languages..31

4.3. State-of-the-Research of different frameworks ..32

4.3.1. Pre-migration..33

4.3.2. Migration ..35

4.3.2.1. Before modernization..35

4.3.2.2. Modernization..36

4.3.2.3. After modernization...37

4.3.3. Post-migration...38

4.3.4. Cross-cutting concerns...38

4.4. Cloud migration challenges ...39

4.5. Project management..41

4.6. Synthesis..41

5. Discussion...43

5.1. Cloud concerns..43

5.2. Recommendations...44

5.3. Synthesis..46

4

6. Conclusion...48

7. References ...50

5

List of figures

- Figure 1: Cloud actors [35]

- Figure 2: The essential characteristics of cloud computing [9]

- Figure 3: Automated Elasticity [10]

- Figure 4: Cloud service models [19]

- Figure 5: Responsibilities with regards to service models

- Figure 6: System evolutions [23]

- Figure 7: Reverse Engineering in modernization process

- Figure 8: Forward Engineering in modernization process

- Figure 9: Appropriate cloud solutions

- Figure 10: Migration tools assessment

6

List of tables

- Table 1: Multi-tenancy with service models

- Table 2: Example of auto-scaling activation

- Table 3: NoSQL database types

- Table 4: Cloud computing synthesis

- Table 5: Legacy application concerns with regards to scalability

- Table 6: Synthesis of legacy applications

- Table 7: Migration elements per service models

- Table 8: Cloud migration frameworks

- Table 9: Frameworks added values

- Table 10: Migration plan

- Table 11: Post-migration

- Table 12: Cross-cutting concerns in different frameworks

- Table 13: Migration synthesis

- Table 14: IaaS Redundancy[42]

- Table 15: Different types of tools

- Table 16: Cloud concerns and recommendations

7

Acronyms

ACID: Atomicity, Consistency, Isolation, Durability

ADM: Architecture-Driven Modernization

API: Application Programming Interface

ARTIST: Advanced software-based seRvice provisioning and migraTIon of legacy

AWS: Amazon Web Services

BASE: Basically Available, Soft state, Eventually consistent

BFT: Business Feasibility Analysis Tool

CAPEX: Capital expenditure

Cloud-RMM: Cloud Reference Migration Mode

CPU: Central Processing Unit

DB: Database

DBMS: Database Management System

DBFE: Database Forward Engineering

DBRE: Database Reverse Engineering

DDL: Data Description Language

FE: Forward Engineering

FE MT: Forward Engineering Model Transformation

HA: High Availability

IaaS: Infrastructure as a Service

ILS: Information Legacy System

IT: Information Technology

ITIL: Information Technology Infrastructure Library

I/O: Input-Output

MDA: Model-Driven Architecture

MAT: Maturity Assessment Tool

NA: Not Applicable

NASA: National Aeronautics and Space Administration

NIST: National Institute of Standards and Technology

OMG: Object Management Group

OS: Operating system

P2P: Peer-to-peer

PaaS: Platform as a Service

PDM: Platform Description Model

PIM: Platform Independent Model

PSM: Platform Specific Model

QoS: Quality of Service

RE: Reverse Engineering

RE MT: Reverse Engineering Model Transformation

REMICS: Reuse and Migration of legacy applications to interoperable Cloud Services

8

ROI: Return on investment

SDLC: Software Development Life Cycle

SaaS: Software as a Service

SOA: Service-Oriented Architecture

SQL: Structured Query Language

TCO: Total Cost of Ownership

UML: Unified Modeling Language

VM: Virtual Machine

9

Chapter 1

1. Introduction

Cloud computing, often referred to as simply "the cloud", is a delivery model of on-demand

computing resources (e.g. software, hardware, service, etc.) located in datacenters and

available over internet. This models has been adopted at an astonishing pace in the

marketplace. However, legacy applications are still lagging behind because of their complexity

or the use of "old" technologies, thus they are not ready to be moved to the cloud: they are not

cloud-enabled.

Legacy applications play an important role in many organizations, because these organizations

are still relying on them as they support their core businesses and most importantly, they are

often the ones that generate revenues. Today, cloud is happening and legacy applications

should take advantages of those benefits such as almost zero upfront infrastructure investment,

infinite just-in-time infrastructure, effective resource utilization, reduced time to market and

usage-based costing [10].

Organizations concerned by cloud migration, must develop a vision for the future and they must

transform themselves to realize that vision. That same vision should be then translated in

motivation. The main reasons that motivate organizations in adopting cloud computing are:

- Cost saving [25]: organizations are wasting money and time that can be invested in something

else.

- Cost flexibility [9]: Traditional environments do cost a fixed price more often, they are designed

to support the worst scenario which is costly.

- Business agility [9]: In traditional environments, IT resources are not acquired and deployed

quickly. This means that organizations cannot innovate, introduce new products and services,

enter new markets, and adapt to changing circumstances as quickly as they wish. Organizations

would like to reduce time to market.

- Business continuity [9]: Organizations want to address the growing demand of traffic and they

do not want to get disrupted by unexpected events such as cloud provider bankrupt, fires,

floods, and hurricanes that could harm the organization.

- Opportunistic business strategy [12]: Organizations want to remain competitive and meet

business objectives. They want to create future value through.

10

The decision of migrating an application to cloud is complex because due to possibly conflicting

factors, such as governance, cost, skills, performance, security and legal obligations [5].

Besides that, there is always confusion for the organization over which cloud to adopt. In

addition, legacy applications are often tight coupled to the environments on which they are

running and makes the migration process to the cloud even harder.

Migration can be defined as a process of moving to new hardware, new software or both [14]

and in particular case of cloud computing, the environment within which the system operates is

in cloud. Furthermore, cloud migration of legacy applications requires to transform legacy

applications into cloud-enabled application so that those applications can take full advantage of

their new environment.

The process of migrating into cloud has to be carefully implemented since IT plays nowadays an

important role in business and a failed migration can undermine the reputation and business of

the concerned organization. The way that organizations are currently moving to the cloud as

once said Jason Bloomberg is by taking the plate of spaghetti and physically putting it in the

cloud [32] which is not appropriate because legacy applications that is not engineered to

operate in the cloud , will not yield the hyped benefits of the cloud.

In order to migrate legacy applications to cloud, we must first understand the concept of cloud

computing and legacy applications. From those two preconditions, we can analyze

methodologies that would allow to transform legacy applications into cloud-enabled applications

also known as modern applications.

The rest of this chapter will be organized as follows: chapter 2, presents the cloud overview

details, chapter 3 gives a broader definition of legacy application, chapter 4 will illustrate the

State-of-the-Research of migrating legacy applications in the cloud with a focus on five

frameworks: ARTIST, Cloud-RMM, REMICS, CloudMIG and Legacy-to-Cloud Migration

Horseshoe framework, chapter 5 shows the main challenges and draws some

recommendations. Finally, section 6 offers some conclusions and outlines the future work.

11

Chapter 2

2. Cloud Computing

2.1. Definition

There has been confusions over the term cloud computing because it has been overused

especially in marketing, this has led to some doubts about the true meaning of this business

model and more importantly, cloud computing, unlike other technical terms, is not a new

technology, but rather a new business model that puts together a set of existing technology

concepts. Besides, cloud ecosystem is still evolving[45] which adds even more confusion.

Similar concepts related to cloud computing are:

1- Grid Computing. A distributed system that puts together networked resources to reach a

common goal (e.g. computation). Cloud computing is similar to computing paradigm because it

employs distributed resources to achieve application-level objectives [3].

2- Mainframe computer. A powerful computers used for large-scale computing purposes that

require greater availability and security [18]. Cloud computing is similar to mainframe computers

thanks to time-sharing concept, where resources are shared among many users.

3- Utility Computing. Utility computing is business model where consumers pay cloud

providers based on usage [3]. Cloud computing is similar to utility computing in sense that

consumers are charged based on resources usage. This characteristic is known in cloud

ecosystem as pay-as-you-go, pay-per-use or pay-as-you-grow.

4- Peer-to-peer. A distributed architecture with equivalent peers (participants) and connectors

among them. Peers are both suppliers and consumers of resources [18]. Cloud computing is

similar to peer-to-peer since it shares many of the characteristic of other P2P systems

developed for file sharing and content distribution.

5- Virtualization. Virtualization allows to have multiple operating systems on a single physical

machine, so they can share underlying hardware resources. Virtualization abstracts physical

hardware from virtualized resources [3]. Cloud computing is similar to virtualization because

virtualization is the main enabling technology for cloud computing.

Cloud computing benefits from the concepts without having an expertise with them and allows

to reduce costs by helping clients to focus more on their core business.

12

In this paper we will adopt the definition of the United States National Institute of Standards and

Technology (NIST) [20] which provides a more complete definition of cloud computing. The

NIST defines cloud computing as model for enabling service users to have ubiquitous,

convenient and on demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services), that can be rapidly

provisioned and released with minimal management effort or service-provider interaction.

2.2. Cloud actors

There are many actors in cloud computing world but this paper will focus in roles which can be

encountered while migrating applications in the cloud:

Figure 1: Cloud actors [35]

1- SaaS User. Also known as SaaS consumer is the end user of the application which is hosted

in the cloud. This end user can be either a company or a person. The service can be free of

charge or monthly or annual subscription. SaaS applications are made accessible via a network.

2- SaaS Provider. He is a supplier to SaaS user to whom he provides an application and he is

client to cloud provider to whom he is renting cloud resources. The SaaS provider uses the tools

and resources provided by cloud provider to develop, test, deploy, and manage the operation of

the application hosted in a cloud.

3- Cloud Provider. Known as infrastructure provider, he is a person or an organization or an

entity responsible for making a service available to cloud consumer. The cloud provider has its

own datacenters and provides cloud resources (network, storage, tools, etc.) to the SaaS

provider. Some big companies may play many roles; (e.g. Google). The relation between SaaS

provider and cloud provider is known as utility computing.

4- Cloud Consumer. Known as service owner. A cloud consumer is an organization or a

person that develops and manages the applications. Cloud consumer uses service from cloud

provider therefore he has a business relationship with him.

13

2.3. Cloud computing essential characteristics

Cloud computing has many characteristics, however the main characteristics defined by NIST

are [19]:

Figure 2: The essential characteristics of cloud computing [9]

1- On-demand self-service. Computing capabilities (e.g. server) available to cloud consumer

are provisioned without human intervention. The advantage of on-demand self-service is to

lower the operational cost because the human intervention is not needed as the allocation of the

resources is dynamic. However, the cloud consumer cannot increase his resources indefinitely.

Tools in form of API and applications are provided by the cloud provider to increase resources.

2- Broad network access. The SaaS user access the service through the network, generally

by Internet. The advantage of broad network access is that cloud services can be accessed by

anyone, anywhere on the globe, using internet and a variety of devices (e.g. smartphone).

3- Resource pooling. Resources are shared between multiple cloud consumers with dynamic

allocation. For cloud consumer, this means a high Quality of Service (QoS) at low cost because

the resources can be shared at any level: infrastructure, platform or software. Cloud consumers

may be able to specify location at their resources at higher level of abstraction (e.g. country,

state, or datacenter)

4- Rapid elasticity. The cloud consumer can provision and release its capabilities, in some

cases automatically in order to correspond to the real demand. In other words, rapid elasticity

means the ability to have a flexible computing service which can expand or contract in line with

business demand (See Figure 10).

14

The elasticity is an important characteristic in cloud in sense that clients do not have to bother

about how the application will behave depending on the workload (static, periodic, once-in-a-

lifetime, unpredictable, continuously changing workload [1]).This feature of elasticity is known as

linear scaling [9] where the performance experience for one of a thousand users is the same as

for a single user.

Figure 3: Automated Elasticity [10]

Another feature of elasticity is pay-as-you-go model, where the user pays for consumption of the

service on the basis of the resource units consumed [9] (see Figure 10). This also means that

the clients are not paying for unused resources therefore they can save money. However, if the

service has to be charged as you go, it is obvious that the service has to be measured. Elasticity

is the main enabler of pay-as-you-go model.

5- Measured service (Monitoring). Monitoring allows to control resources usage. This

characteristic is very important because the cloud services introduce an abstraction which limit

control for the cloud consumer. Therefore, the cloud consumer needs tools for resources

monitoring in order to know what is happening and check if he is really paying for what is being

used. Cloud offers monitoring tools at different levels (network, application, etc.)

2.4. Cloud deployment models

Cloud computing offers four different deployment models [19]:

1- Private cloud. Private cloud offers exclusive use to a single organization. This cloud

infrastructure may be owned, managed, and operated by the organization, a third party, or some

15

combination of them, and it may exist on or off premises [19]. The private cloud offers the

control over the infrastructure and data. However, an up-front investment is needed to setup the

environment. There is a misunderstanding that private clouds do offer security, this has to be

nuanced though. It offers more control but if the right security in not implemented, the private

cloud cannot help out.

Example: OpenShift Enterprise is an on-premises, private Platform as a Service (PaaS)

solution.

2- Public cloud. Cloud infrastructures are provisioned for open use by the general public. It

may be owned, managed, and operated by a business, academic, or government organization,

or some combination of them. It exists on the premises of the cloud provider [19]. The

advantage of public cloud is that the cloud consumer is paying for CPU (Central Processing

Unit) hour’s usage, gigabytes months stored but he is not paying for cooling or for management

and maintenance expenses even if we can say it is indirectly included in the pricing model.

Example: OpenShift Online is a public Platform as a Service solution

3- Hybrid cloud. Hybrid cloud is a composition of two or more clouds (private, community, or

public). Hybrid cloud is what clients often implement these days [5] and the most popular

combination is using private and public cloud. This allows cloud consumer to avoid some of the

main issues encountered while migrating to either public cloud (e.g. data security, data

sovereignty, trust) or private (e.g. up-front investment). However, hybrid cloud faces challenges

such as workload portability, network interoperability and secure interconnection between the

two clouds.

4- Community cloud. A community of consumers share cloud infrastructure and have shared

concerns [45] (e.g. mission, security requirements, policy, or compliance considerations). It may

be owned, managed, and operated by one or more organizations in the community, a third

party, or some combination of them, and it may exist on or off premises [19]. Community cloud

helps community members to share the expenses which can be more interesting than set up a

private cloud.

Example: salesforce community cloud

2.5. Cloud service models

Cloud computing offers four different service models:

16

Figure 4: Cloud service models [19]

1- Software as a Service (SaaS). A Consumer uses provider’s applications running on a cloud

infrastructure[19]. SaaS removes the need to manage both the application and the infrastructure

on which the application is deployed. A SaaS provider gives subscribers access to both

resources and applications. In SaaS agreement, the client has the least control over the cloud

compared to other service models. One way to achieve the implementation of SaaS is Service-

Oriented Architecture (SOA) which promotes services reusability, granularity, loose coupling,

interoperability and encapsulation and etc. As for roles, a SaaS consumer uses the application

and a SaaS provider installs, manages and maintains applications on cloud infrastructure (see

Figure 5).

Example: Google docs, MS Office on demand

2- Platform as a Service (PaaS). A platform is provided to the consumer, so that he can deploy

his application [19]. The drawback of this service is that organizations have to use tools

supported by the provider. The advantage of a PaaS is that a lot of the provisioning is done for

you compared to Infrastructure as a Service (IaaS), so it is easier, but it is less flexible than

IaaS. The cloud consumer gets to control the deployed applications and possibly configuration

settings for the application-hosting environment. As for roles, the PaaS consumer develops,

tests, deploys, and manages applications hosted in a cloud system and a PaaS provider

provisions and manages cloud infrastructure and middleware for the platform consumers;

provides development, deployment, and administration tools to platform consumers (see Figure

5).

Example: Google's AppEngine, Google Compute Engine

3- Infrastructure as a Service (IaaS). The cloud consumer gets access to flexible computing

storage infrastructure, operating systems, deployed applications and possibly limited control of

selected networking components. One way to achieve the implementation of IaaS is

visualization. As for roles, IaaS consumer creates, installs, manages, and monitors services for

IT infrastructure operations and a IaaS provider provisions and manages the physical

17

processing, storage, networking, and the hosting environment and cloud infrastructure for IaaS

consumers (see Figure 5).

Example: Amazon Web Services AWS (EC2, S3), Eucalyptus, Rightscale, Microsoft Azure.

Figure 5: Responsibilities with regards to service models

In the end, we can say that SaaS is software hosted for organizations thus organizations are

using the applications offered by others. Organizations could even be using the applications that

happen to be hosted using a PaaS or IaaS platform. Whereas, PaaS and IaaS mean

organizations run their business respectively in the cloud hosted platforms and cloud hosted

infrastructure.

2.6. Differences between cloud and traditional environments

Differences exist between cloud and traditional environments on economic and technical

perspectives.

On economic perspective, we differentiate three elements:

1- Time. While it can take days or weeks to setup the traditional environment due to installation

and configuration, it only takes minutes or hours to setup cloud environment [9]. However, this

also means the necessary tools that allow legacy application to be diagnosed properly exist.

Cloud computing introduces an abstraction layer which aim at providing the ability to easily

develop and deploy services into clouds but also it introduces a black box for the cloud

consumer since there are parts of the cloud architecture that are no longer directly accessible to

the cloud consumer specially in case of public cloud.

2- Capital Expenditure. Cloud computing can be described as converting capital expenses to

operating expenses[18] thanks to the use of pay-as-you-go model which eliminate upfront

investment. Furthermore, a good assessment will allow organizations to know if there is added

18

value to migrate in the cloud. For applications that need to run 24/7, it might be more expensive

to migrate them in the cloud than keeping them on premise because of high total cost of

ownership (TCO), mainly resulting from migration costs [5]. The migration cost should not be

ignored in capital expenditure calculation.

3- Economies of scale. Depending on the deployment models, organizations can save money

on hardware, software therefore taking advantage of improved productivity. Besides, with cloud

models, there is need to duplicate environments. However organization wanting to migrate their

legacy applications should first make the change necessary in order to fully take advantage of

the cloud environment. A spaghetti code cannot be moved into the cloud and expect from it

economies of scale.

On technical perspective, we also differentiate three elements:

1- Virtualized. Cloud computing environments are usually virtualized, whereas traditional

environments include a mix of physical and virtualized infrastructure [9]. Virtualization is about

resources sharing. Again performance, efficiency and robustness should be guaranteed for

each consumer. The advantages of virtualization are maintainability, cost effectiveness,

consolidation, energy and space gain. The ultimate goal of virtualization is the orchestration,

where business needs can be defined and executed without human intervention. Virtual

Machines (VM) can be scaled by replication, resizing or replacement.

2- Multi-tenancy. Multi-tenancy is a software pattern architecture that allows to effectively use

resources if properly applied. Multi-tenancy distinguishes two different consumer types: tenants

and users. A tenant is a group of users and tenants can separate cloud consumers too using

multi-tenant application [34]. The pattern allows to host multiple tenants across shared

resources and it can help in saving costs given that the tenants will share the same application

instance. Multi-tenancy implies a need for policy-driven enforcement, segmentation, isolation,

governance, service levels, and chargeback/billing models for different consumers[45]. The

opposite of multi-tenancy is known as single-tenancy, where each tenant has its own instance of

software.

IaaS PaaS SaaS

Readily enabled through

virtualization

Platforms re-architecting Applications re-architecting

Applications re-architecting

Table 1: Multi-tenancy with service models

19

Platforms re-architecting is composed of resources and infrastructure while applications re-

architecting is composed of storages and applications. Multi-tenant and single tenant are an

important notions because they are used in storage and application scalability.

3- Scalability. Scalability allows to dynamically scale up when there is a greater need for

additional resources and scaling down when the demand is low. Scalability is among the

elements that attract organizations in cloud migrating and it results in increased performance

proportionally to the resources added.

The scalability can be achieved through elements below:

(a) Resources scaling. Resources scaling can be done in two different ways:

+ Vertical scaling up. Also known as vertical scaling or scaling up. The main idea is to

increase the capacity of individual node through hardware improvements. Practically,

vertically scaling is done by adding or removing instance resources, hot or cold

swapping or doing multiple configuration.

+ Horizontal scaling out. Also known as horizontal scaling or scaling out, increases

overall application capacity by adding entire nodes. Practically, horizontal scaling is done

by adding or removing new instance.

Resources scaling is possible with cloud provider where it is necessary to access the hardware

to make the necessary changes.

(b) Software infrastructures. Infrastructures that can help in scaling cloud environment are:

+ Load-balancing. Load balancing allows to distribute the workload evenly across

multiple nodes [27]. The scalability depends on algorithm chosen for the application to

perform load-balancing within given resources. As it is said in [29], Load-balancing has

at least three major applications: server, firewall and cache. Load-balancing can be

implemented by the cloud provider (e.g. Elastic Amazon Load Balancing) or by the

SaaS provider (e.g. Resonate, Rainfinity, and Stonebeat).

+ Auto scaling. cloud providers offer mechanisms to automatically scale up and d o w n

virtual machine capacity based on user defined policy[24] (e.g. AWS auto-scaling). The

auto scaling is activated, thanks to the use of triggers, thresholds and performance

metrics and it is the property that allows to increase performance proportionally to the

resources added without human intervention.

20

Amazon EC2 Windows Azure Google App Engine

Based on scalability

parameters specified by

users

Based on application roles and a

configuration file specified by

users

Transparent to users

Table 2: Example of auto-scaling activation

+ Network. A scalable network is a network that can work well regardless the

amount of users, nodes and data.

+ Container replication. Components are replicated on different containers for better

scalability.

+ Snapshots. A snapshot is the state of a system at a particular point in time [60].

Snapshots encourage cloud computing conservationism [35] and allow to rapidly create

an instances without starting from scratch.

(c) Software. On software level, an application to be scaled with the following elements:

+ Loose coupling. Loose coupling allows to scale components independently of each

other. This approach is also known as Service Oriented Architecture (SOA) which allows

to define an architecture which focuses on reusability, granularity, loose c o u p l i n g ,

interoperability, encapsulation and etc. Low coupling goes with high cohesion and

thanks to those properties applications can easily be maintainable and evolvable. Loose

coupling is an important notion in migration process because it can allow to

migrate only a part of the application.

+ Software tuning. Software tuning can be defined as a software which runs in g o o d

performance under given condition [17] and it can be implemented by the SaaS

provider. If the application is not performing well, it is important to identify the bottleneck

and then modify the part of the application to remove the bottleneck. Afterwards,

measure and take the decision on keeping the changes or not.

+ Multi-tenancy. Multi-tenancy will allow multiple tenants to use the same software.

Changes are necessary on different levels. Firstly, the authentication needs to be

adapted accordingly and depending on multi-tenancy database approaches, the

authentication implementation will differ. Secondly, configuration will allow software

customization per tenant. Lastly, software implementation are necessary in term of

workflow, layout, configuration, files I/O.

21

(d) Storage. Storage are used to store data. Data scalability must be ensured through the

ability of the system to process increasing amounts of data without undermining overall

application availability, performance and throughput. Storage scalability can be achieved on

both cloud provider and SaaS provider with elements below:

+ Multi-tenancy. Three approaches exist in managing tenants. Firstly separated

databases may be an option if a strong data isolation is needed (e.g. banking and

medical applications). Secondly, separate schemas may be an alternative if a moderated

isolation is an option, however, the restore of single tenant is complicated. Lastly,

shared schema allows to differentiate tenants by giving them an identification in table,

however this requires to make changes to queries at application level.

+ Distributed caching. Distributed caching allows to increase scalable performance

of applications by first checking if the element exists in memory, if so, it is retrieved

from there, otherwise, it is retrieved from the database (e.g. AWS ElastiCache), and

many topologies exist with their advantages and disadvantages.

+ NoSQL databases. NoSQL stands for "Not Only SQL" or "Not Relational" and d a t a

are stored in a "schema-free" file or data block. NoSQL is DBMS without the "R" from

RDBMS and usual it lacks transactions and other sophisticated features. The database

implements BASE properties [46] (Basically Available, Soft state, Eventually consistent)

and has many advantages such as the ability to scale horizontally over many servers.

Different types of NoSQL databases exist as shown below:

NoSQL Database types Scalability

Key-Value Stores. Data is represented as a collection of key-value pairs

where the key is a unique identifier (e.g. Amazon DynamoDB, Oracle

NoSQL).

High

Column stores. Databases are designed for storing data tables as

sections of columns of data, rather than as rows of data (e.g. Google

BigTable).

High

Document stores. Support more complex data than key-value stores.

Document stores are designed for storing, retrieving, and managing

document-oriented information (e.g. MongoDB, CouchDB).

Variable

Graph databases. It uses a graph of nodes with references among them

(e.g. Neo4j, OrientDB).

Variable

Table 3: NoSQL database types

22

+ SQL databases. SQL databases implement ACID properties [46] (Atomicity,

Consistency, Isolation, and Durability). They are generally not adapted for cloud

scalability, however, they can scale with advanced functionalities such as, firstly,

clustering [47] which replicates data among different nodes for the purpose to increase

scalable performance. Secondly, partitioning [47] allows to divide large tables on

different nodes based on ranges of values known as partition key.

2.7. Synthesis

In this chapter, we have defined and presented cloud computing concepts, its actors, its

essential characteristics, deployment and service models. We have highlighted the difference

between cloud computing and traditional environment and the benefits offered by cloud

computing are undeniable in term of scalability, virtualization and multi-tenancy. Cloud

computing can help organizations reduce cost and focus on solving their domain problem. It can

be a good investment in migrating legacy applications in the cloud even though this implies a

change in roles and responsibilities for organizations.

Application

Scalability

Resources

Vertical

Horizontal

Infrastructure

Load-balancing

Auto scaling

Network

Container

Snapshots

Software

SOA

Multi-tenancy

Tuning

Storage

Caching

Multi-tenancy

NoSQL

RDBMS

At cloud

consumer's

disposal

IaaS PaaS SaaS

Virtual Machine Server

DB

Libraries

Application

Cloud

deployment

models

Private cloud Public cloud Hybrid cloud Community cloud

Cloud service

models

SaaS, PaaS, IaaS

Cloud essential

characteristics

Broad Network Access, Rapid Elasticity, Measured Service, On-Demand

Self-Service, Resource Pooling

Table 4: Cloud computing synthesis

23

Chapter 3

3. Legacy applications

3.1. Definition

Legacy applications can be defined as any information system that significantly resists

modification and evolution [23]. Usually, they have poor system design, software architecture or

software development. Consequently, they accumulate technical debt which come in the form of

the extra effort that has to be done in future development. Legacy applications are any existing

project that are difficult to maintain or extend.

Typical, they are large, old, inherited and poorly documented [7]. They are build using old

technologies and run on old hardware’s and they are difficult to replace because of their wide

use. According to [21], they lack tests and they suffer from code tangling (mixing concerns) and

code scattering (duplication) because they do not have a proper modularization in their

implementation. They are characterized by a tight coupling and a low cohesion.

According to [7], a legacy project is composed of code, data, database, configurations,

infrastructures, tools, documentation, and dependencies.

3.2. Legacy applications concerns with regards to scalability

Besides their characteristics, legacy applications have problems that can undermine cloud

migration process: Firstly, on resource level, applications lack optimization because they are

usually developed to run on their own environment on-premises without taking into

consideration resources sharing and optimization and most of the time, resources are added

manually with human intervention. Secondly, on infrastructure level, their environments are poor

and old therefore they are not optimal. Besides, the scaling is done manually. Thirdly, on

application level. They are designed to be single-tenant and they lack cohesion, reusability and

are tight coupled. They may be developed using old technologies. Lastly, on database level,

their databases are SQL based which are not adapted for scalability unless partitioning and

clustering are implemented. They may run on unsupported version of the database in the cloud.

Resources Infrastructures Application Database

Lack of optimization Old Old technologies Old

Manual setup Poor Lack of optimization Lack of optimization

Manual scaling Single-tenant Single-tenant

Mix of physical and

virtualized infrastructures

Tight coupling RDBMS

24

Low cohesion Lack of distributed

caching

Lack of reusability Lack of partitioning

Incompatibility

Table 5: Legacy application concerns with regards to scalability

In the end, legacy applications cannot be migrated as such, they need to go through the

necessary changes in order to make them cloud-enabled. The opposite of it will fail to expect

from them economies of scale.

3.3. System evolutions

Legacy applications go through four evolutions:

Figure 6: System evolutions [23]

1- Wrapping. This evolution allow to build a new interface on the top of legacy applications

therefore it focuses on inputs and outputs of the applications. It is also known as black-box

modernization technique. Wrapping may be an option if the legacy code is too expensive to

rewrite, is relatively small, can be reused, and a fast cost-effective solution is needed [2]. In

case wrapping is used in cloud migration, the wrapped application may not take fully advantage

of cloud computing. As shown on Figure 6, the wrapping has the least impact on the system

evolution.

2- Maintenance. Process in which small modifications are made to correct faults. According to

[26], the changes are often bug corrections or small functional enhancements. Maintenance can

be expensive, because of the lack of documentation and understanding and tracing faults can

be costly and time consuming. Besides, changes on the system are slow and they can have a

big impact on the business. Legacy applications are generally in this step. According to [23],

maintenance was added on Figure 6, only for completeness, in fact, maintenance is part of

25

every system’s life cycle and if software systems can be maintained within an acceptable

budget it is usually not considered as legacy information system evolution.

3- Migration. Process of moving to new hardware, new software or both [14]. Different

migration options exist (e.g. re-platform, modernization, etc.). In this study, we are going to

focus on modernization which is a technique to rebuild legacy application in a new technology or

platform, with same or enhanced functionalities [14], so that the new application is cloud-

enabled. Migration can be an alternative when redevelopment is unacceptably risky and

wrapping is unsuitable [23]. Modernization complexity comes from understanding legacy

application and transforming it in order to take fully advantage of the new environment.

4- Redevelopment. The application is developed from scratch during redevelopment process. It

is referred as Big Bang also known as Cold Turkey [23]. This evolution has substantial risk of

failure and it should only be considered if the cost of maintenance is higher than cost of

rewriting. Redevelopment refers to reengineering approaches even though reengineering is

often used as a synonym for migration. It is included in redevelopment category because it

requires a thorough understanding of the existing system and thus involves many reengineering

activities [23]. Redevelopment strategy is also known as a white-box modernization

technique. As shown on Figure 6, the impact on the system is much bigger compared to other

evolutions because of the risk involved in starting from scratch.

3.4. Migration strategies

The migration evolution can be applied using different strategies according to [13] and they can

be classified into two dimensions:

1- Database strategy dimension. It identifies two major components, namely the data and the

programs, it distinguishes two strategies based on which component is migrated first [11]:

+ Database first strategy. A new database completely replaces the legacy one, so that

their lifespan do not overlap. Two options are available for legacy application: either,

it communicates with the new database through wrappers, or it still uses the legacy

database, in this case then a synchronization must be established between the old and

the new database. [11]. There is cost of introducing synchronization or wrappers.

Besides, synchronization can introduce inconsistency between the new and old

database.

+ Database last strategy. Programs are migrated first to the new environment, thus

they are still using legacy database through wrappers. The new application is also using

the same wrappers. When all the applications have been converted, the database itself

is migrated [11]. Here also, there is a cost of implementing wrappers.

26

2- Replacement strategy dimension. It concerns the time frame within which the replacement

is carried out. It distinguishes two strategies [11]:

+ Big bang approach. A new system replaces the legacy system. According to [11],

the substitution is generally carried out in a very short time, typically a few days, so that

both systems run with no overlap [11]. The big bang approach is a costly and risky

process because if the migrations fails, it is the entire project that fails.

+ Chicken little approach. The database and the application are migrated piece by

piece [11]. Chicken little is a low risk, thanks to the allocation of small resource in short

time on a small part of the legacy application. However this approach introduces

overlapping functionalities between the new and old system.

A migration strategy should be based on cost-benefit analysis and it is important to know in the

first place because it can help organizations in estimating time and the risk involved during

cloud migration process as well as the capital needed. The most appealing choice for legacy

application migration is chicken little migration strategy because if the small step fails, it is not

the entire project that fails.

3.5. Synthesis

In this chapter, we have presented what is a legacy project and its characteristics. We have

presented concerns of legacy application with regards to scalability and the evolution of systems

after it has been built. We have noted that a migration strategy is necessary and the choice of it

will depend on applications as well as organizations constraints. The legacy applications face

many challenges when it comes to migrating them in the cloud but organizations should take the

bold move to migrate their applications in order to remain competitive but not necessary at any

cost.

Legacy applications running on traditional environment are not generally scalable therefore they

need to through the necessary changes to make them cloud-enabled before they are moved

into cloud environment. Legacy applications go through four evolutions: wrapping, maintenance,

migration and redevelopment. The maintenance is the actual evolution of legacy applications

and migration, is the next evolution that will allow legacy applications to be cloud-enabled.

Legacy Application

Legacy application

artifacts

Code, data, database, configurations, infrastructures, tools,

documentation, dependencies

Concerns No Technical aspects Technical aspects

27

Pool documentation

Inherited

Large

Old

Technical debt

Old

Inflexible code

Untested, untestable code

Difficult to extend and maintain

Single-tenant

Scalability

Resources optimization

Poor infrastructures

Evolutions Wrapping Maintenance Migration Redevelopment

Strategies Database strategies Replacement approach

strategies

Database first strategies Big bang approach

Database last strategies Chicken little approach

Table 6: Synthesis of legacy applications

28

Chapter 4

4. Cloud migration of legacy applications

4.1. Prerequisites

The focus of this chapter is about transforming legacy applications in order to make them cloud-

enabled so they can leverage cloud environments. It is also about having the same or enhanced

functionality between the legacy application and the new application. However, there are types

of applications which do not necessary need to be transformed : firstly, embedded applications

[12],[37] cannot benefit from the cloud environment therefore their migration into the cloud does

not make sense; secondly, cloud-native applications [12], [37] are softwares implemented to

work in the cloud therefore they do not need any transformation; lastly, software-intensive

applications [12], [37] cannot easily utilize cloud-based environments therefore they represent a

higher risk in migrating them.

Depending on service models, organizations should be aware of elements to migrate :

Migration

IaaS PaaS SaaS

Application Application NA

Data and data schema Data and data schema

Runtimes (e.g. libraries)

Middlewares (e.g. Servers, DB, SOA)

OS

Table 7: Migration elements per service models

1- On IaaS. Besides migrating applications, data and data schemas. Organizations need first to

install Operating System (OS), middlewares, and runtimes elements on the Virtual Machine

(VM) in the cloud.

2- On PaaS. Organizations need to deploy their applications, data, data schema on the new

platform in the cloud.

3- On SaaS. There is nothing to install because organizations are using applications offered by

others in the cloud.

29

As already mentioned in chapter 2, cloud enabled applications should be designed to be SOA

compliant. However, this is not enough to fully take advantage of cloud environments, they also

need to be scalable on different levels : resources, infrastructure, application and database.

4.2. Definition

Some terminologies need to be clarified before we go further :

4.2.1. Modeling languages

The Unified Modeling Language (UML) provides modeling concepts to represent software,

platform and infrastructure artifacts and also used to model elements below :

(a) Platform Independent Model (PIM). It is a conceptual model and describes the system

independently of the platform and technology used.

(b) Platform Specific Model (PSM). The model describes how the system uses the platform

and it is used to generate the code for a particular platform.

(c) Platform Dependent Model (PDM).The model contains information for model

transformation to a platform. Thus, It allows to transform PIM to PSM and it is specific to a

platform.

PIM, PSM and PDM are standard models defined by Object Management Group (OMG).

4.2.2. Transformation languages

1- The Architecture-Driven Modernization (ADM). It is a bottom-up approach that allows to

extract architectural models for the the purpose of migration, reusability, improvement,

interoperability, refactoring, etc. According to [16] modernization starts when existing practices

fail to deliver against business objectives. The ADM is based on Reverse Engineering

approach, which can be defined as a process to discover and understand the legacy code

without proper documentation by extracting system abstractions and design information from

the legacy code. As stated in [41] the process involves software artifacts identification,

interaction between artifacts and aggregation to form a more abstract system representations.

2- The Model-Driven Architecture (MDA). It is a top-down approach that allows to develop

new systems. The MDA is based on forward engineering approach which can be defined as a

process to implement a new system from high-level and Platform Independent Models.

According to [6], MDA allows to separate business and application logic from the underlying

technology, thanks to the use of PIMs and PSMs. The MDA will automate the transition from

PIMs to PSMs, thereafter PSMs and PDMs will be used to generate the new code.

30

ADM [16] and MDA [6] are transformation models defined by Object Management Group

(OMG).

The next section will help to understand, how to transform legacy applications into cloud-

enabled applications with the help of different frameworks.

4.3. State-of-the-Research of different frameworks

Regarding cloud migration of legacy applications, there are a number of ongoing projects and

process models such as :

ARTIST[40] Project Advanced software-based seRvice provisioning and

migraTIon of legacy

[P1]

Cloud-RMM[12] Process

model

Cloud Reference Migration Mode [P2]

REMICS[39] Project Reuse and Migration of legacy applications to

interoperable Cloud Services

[P3]

CloudMIG[38] Project Model-Based Migration of Legacy Software Systems

into the Cloud

[P4]

Legacy-to-Cloud

Migration Horseshoe

framework[36]

Process

model

A Framework for Architecture-driven Migration of Legacy

Systems to Cloud-enabled Software

[P5]

Table 8: Cloud migration frameworks

These approaches aim at developing a systematic, disciplined and quantifiable process thanks

to the use of frameworks, patterns and processes. Systematic means all the processes follow a

certain methodology even though tasks can be different from one project to another. Disciplined

means there is a plan driven-method aiming at producing quality work with the use of model-

driven application engineering. Whereas quantifiable allows to base the decisions on concrete

facts.

[P1], [P3], [P4], [P5] are semi-automated which means some tasks are carried out manually

and others are being done using suitable tools. [P2] is conceptual model that classifies

researches in terms of distinct processes and concerns that cannot be cleanly decomposed

from the rest of the system (cross-cutting concerns) [12]. It is a consolidation of around twenty

research.

31

The frameworks are adapted to IaaS and PaaS service models even if software can be served

as SaaS to the end user. All the frameworks aim to bring added values in cloud migration

process of applications.

Added values

[P1] - Business feasibility offers means to estimate costs, benefits and operational risks [28].

- Tool-supported framework with many open-source tools to ease the process [15].

- The legacy application transformation is platform-independent [22].

- Certification process guarantees the compliance of migrated application [4].

[P2] - The framework is very detailed, it is a characterization framework [12].

- The framework insists on concerns that cannot be cleanly decomposed from the rest of

the system : cross-cutting concerns [12].

- The framework is a comparison of systematically selected studies to point out existing
research gaps [12].

[P3] - Agile practice (Scrum) are used for adaptive, incremental and iterative process [39].

- Interoperability is promoted during the migration life-cycle [39].

- Tool-supported framework with many custom tools to ease the process [39].

[P4] - The process is applicable to object-oriented systems [38].

- Tool-supported framework with only one tool to ease the process [38].

- The tool allows to get metric reporting extracted from models [38].

[P5] - Incremental migration of architectures [36].

- Extends the classical reengineering horseshoe model where transformation evolves

around source code layer, pattern and style layer and architecture layer [36].

- The framework aims to discover, document and apply the migration process patterns
that enhance the reusability of migration processes [36].

Table 9: Frameworks added values

Cloud migration of legacy applications go through the same processes as traditional migration.

By that, we mean that we have Pre-Migration, Migration and Post-Migration processes.

However tasks performed are totally different because of legacy applications' characteristics.

4.3.1. Pre-migration

The first process is the pre-migration phase. Instead of gathering business requirements, the

information regarding technical feasibility study [P1], [P2], [P3], [P5]; business feasibility

study[P1]; decision on cloud provider [P2], [P5]; decision on cloud services[P2]; maturity

assessment[P1]; migration requirements [P2], [P3], [P5]; migration strategy [P2], [P5], sub-

system to be migrated[P2] are carried out. Some of the frameworks[P4] tend to ignore this

phase and they would rather start with the precondition that this phase is favorable to cloud

32

migration or it was done separately. Not all organizations take all decision in the pre-migration,

they can still decide during the next phase (e.g. cloud provider for [P4]).

The pre-migration is important in cloud migration because it allows to know if organizations are

ready for the change, if they have the capabilities in terms of compliance, money, resources,

knowledge, skills, etc. to undertake such process and if they understand the risk involved .

It is not enough to limit the study to technical aspects as some frameworks already do because

the risk can be on on high level such as business or even higher. Because cloud migration

process cost money and time, it needs approval from the top level management.

The outcome of the pre-migration phase is a migration plan with decisions on :

Contents Explications

Go or No-Go Based on technical and business feasibility studies. If it is No-Go, no

need to go further

Cloud migration

motivation

Decision based on the organization's vision

Migration analysis High level architecture analysis from technical feasibility

Security and compliance Knowing the constraints can help in implementing the right decisions

(e.g. narrowing the choices of service and deployment models

upfront)

Cloud provider Decision on deployment model

Decision on service model

Multi-tenancy supported

Migration strategy Choice between :

Database first strategies

Database last strategies

Big bang approach

Chicken little approach

Component to migrate Dependencies to the component are isolated and strategies worked

out to handle these dependencies.

Technology choice Choice has to be made (e.g. Java EE, .NET, etc.)

Tools Which tools can be used in the cloud and which one needs to be

built

Create a plan and

measure

In order to measure the success of the migration and learn from the

experience

33

Table 10: Migration plan

The Migration plan is a high-level plan and does not exclude to plan on lower levels (e.g.

Activity, tasks). The Pre-migration is an important step in cloud migration and organizations

should not be underestimate as the success of the whole migration process will depend on it.

4.3.2. Migration

The second process is the migration phase whose input is the migration plan from the previous

phase. All the frameworks[P1], [P2], [P3], [P4], [P5] use cloudification as migration type.

Cloudification is a complete migration of the application where application functionalities are

implemented as a composition of services running on the Cloud[37]. As stated in [37], in

addition to any adaptive actions to address possible incompatibilities, it requires data and

business logic migration to the cloud. If correctly done with the implementation of scalability, this

migration type allows to fully take advantage of cloud environment. At this level, the migration

strategy should have been adopted, therefore the migration phase will focus on chicken little

migration strategy which is suitable for migrating legacy applications within which data are

moved first and then programs.

During the migration, all the frameworks focus in recovering knowledge from the legacy

applications and then they implement the system from knowledge gathered. The transformation

is based on modeling and transformation languages already defined in section 4.2.

4.3.2.1. Before modernization

Before modernization process starts, organizations should be aware of concerns that will have

an impact on the modernization process, even if those concerns vary depending on use case,

we will detail concerns that are more likely to be encountered :

1- Multi-tenancy. Multi-tenancy will depend on cloud service model chosen as well as on how

the cloud provider has implemented multi-tenancy in the database. [P1], [P3] offer some tools to

modernize legacy applications and apply multi-tenancy options desired.

2- Security. Security patterns in legacy application should be identified and checked in the new

application to ensure that they are not broken [31]. It is also about taking services offered by the

cloud provider in term of security. Security concerns will certainly have an impact on the

framework chosen for authentication, authorization, etc.

3- Performance. The new application should have performance at least equal to the legacy

application or even better. Therefore it is important to know which artifacts to measure and how

to carry out measures.

34

4- Database. When a database modernization is involved, the release cycles will be longer and

more complex and it may involve implementing wrappers or synchronization mechanisms in

order to avoid functionalities overlapping.

4.3.2.2. Modernization

The transformation process of modernizing legacy applications goes in two phases :

Architecture-Driven Modernization and Model-Driven Architecture.

1- Architecture-Driven Modernization (ADM). ADM is concerned about transforming the code,

data and data schema into high-level Platform-Independent Models (PIM). For that the process

goes through different phases where legacy application artifacts are transformed into PSM,

thereafter the PSM is transformed into PIM, thanks to Reverse Engineering.

Figure 7: Reverse Engineering in modernization process

Per use case, database and softwares are transformed into conceptual models piece by piece

during Reverse Engineering :

(a) Database Reverse Engineering (DBRE) [11]. Database Reverse engineering is

about taking the legacy scripts, (DDL, physical schema, data), programs and

transforming them into conceptual schema. According to [11], [8], transformation

process has to go through DDL, script analysis, schema refinement, legacy logical

schema extraction and conceptualization.

(b) Software Reverse Engineering. Software Reverse engineering is about extracting

design information from the code source. For that the process has to go through static

and dynamic analysis. The result of this process is conceptual models (e.g. UML).

35

2- Model-Driven Architecture (MDA). MDA is concerned about taking PIMs and PDMs and

transforming them first into PSM with the use of Forward Engineering. Thereafter, PSMs are

transformed in new application called modernized application that can leverage the new

technologies and the cloud environment.

Figure 8: Forward Engineering in modernization process

Per use case, database and the software models are transformed into modernized application

piece by piece during Forward Engineering :

(a) Database Forward Engineering (DBFE) [11]. Database Forward engineering takes

conceptual schemas and transform them into new DDL and scripts. For that the process

has to go through DB design, new logical schema extraction and the

implementation[11].

(b) Software Forward Engineering. Application Forward engineering takes the

conceptual models (e.g. UML) and transforms them into code source.

4.3.2.3. After modernization

Once the application has been modernized, it should be maintainable and testable. For that we

should ensure to take care of these elements : firstly, the modernized and the legacy application

should be functionally equivalent therefore there should be automated tests to prove that;

secondly, the maintainability of the generated code should be evaluated by using suitable tools;

Thirdly, the modernized code should also take into account non-functional requirements other

than security, multi-tenancy and performance; Lastly, the modernized code should also follow

organization standard and code quality.

Modernization process offers many benefits : Firstly, modernization allows to have the same

business functionality on the legacy application and the newly created application. According to

[6], modernization extends the useful life of an existing applications. Secondly, modernization

promotes flexibility with the ability to derive from models, code that can be deployed on different

36

platforms including J2EE, .NET, etc. therefore resolving the interoperability problem and

promotes the reuse of the domain models over time. Thirdly, modernization can automate the

code generation therefore reducing migration and development cost. Besides the maintenance

cost are likely to drop as organizations are maintaining models instead of the source code.

Fourth, modernization allows the automation of the generated code allowing to have

consistency and high quality code which is not prone to human error. Lastly, software

development becomes again agile where organizations can adapt to changing circumstances as

quickly as they wish.

4.3.3. Post-migration

Post-Migration phase is about deployment[P1][P2][P3][P4], validation[P1][P2][P3], testing[P1]

[P2][P3], verification[P1][P2][P3], optimization[P1][P2][P3], maintenance[P1], withdraw[P3].

As we can see, [P5] and [P4] do not tackle the post-migration issues which is a disadvantage

from their frameworks. Nevertheless, [P1], [P2] and [P3] seems to be the most complete study

because they address the problems of optimization and leveraging the cloud environment after

deployment.

Artifacts Tools

Deployment Application, Data, Data schema [P1], SaaS and Cloud provider

tools

Leveraging the cloud Security, Auto-scaling, Services,

Dashboard, Multiple availability zones

SaaS and Cloud provider

tools

Optimization Database, Application, Tools,

Monitoring, Usage

[P1], [P3], SaaS and Cloud

provider tools

Table 11: Post-migration

Optimization is about about scalability of resources, infrastructures, software (distributed

caching, etc.) and database (partition, clustering etc.). It is up to organizations to monitor and

figure out which optimization is needed.

Post-migration phase is an important phase because it allows organizations to fully take

advantage of the cloud environment and may save money according to the service or

deployment models used.

4.3.4. Cross-cutting concerns

37

The cross-cutting concerns are concerns that cannot be cleanly decomposed from the rest of

the system. They deal with all kinds of aspects : technical and general. They are important and

the success of cloud migration will depend on taking them into account.

Activities

[p1] Business and organization aspects, migration Artifacts Reuse and evolution, target

environment specification[40].

[p2] Governance, Security analysis, Training, Effort estimation, organization change,

distribution, multi-tenancy, elasticity analysis[12].

[p3] Tools and new components to solve interoperability problems[39].

Table 12: Cross-cutting concerns in different frameworks

Even if some frameworks [P4], [P5] do not deal with cross-cutting concerns, organizations

should be aware of activities that can be seen as cross-cutting concerns in order to deal with

them accordingly. Of course, depending on the nature of the legacy applications some concerns

may be important than others.

4.4. Cloud migration challenges

Legacy applications migration is a complex endeavor requiring re-analysis, source code

reengineering, modernization, architectural changes, new strategies, cost and etc. However,

the biggest challenge of cloud migration is how migration risk can be effectively identified and

mitigated.

Migration is costly and time consuming. Even if this process is cheaper than rewriting, it still

requires to mobilize resources. Large projects may require substantial investment which

organizations should be aware. Nevertheless, as far as we are concerned, we believe in short

term, the cloud migration process is costly but on the long term it can be beneficiary to the cloud

consumer.

Skills and organization changes are inevitably in this case. Some roles may disappear, other

may transition into other responsibilities therefore a change management support is necessary

during the whole process. Besides, modernization introduces new technologies, new concepts

and new tools therefore developers should be trained to use and understand the new

application or the new environment effectively.

Business team believe that organization should put money and effort in things directly benefit

the customer therefore their commitment in such endeavor may not be easy. The problem is

38

that the benefit and immediate ROI may not be visible as compared to the modernization costs

being invested which may lead to them not getting the motivation in first place.

Coexistence of legacy and new application. The migration take time and sometimes the legacy

application cannot be migrated at once. We may then see overlapping functionalities, data

duplication, data synchronization mechanisms, temporary wrapper components during the

interim phases with their own challenges as well.

Organizations should make sure to ensure business continuity. Business activity should not

suffer from the migration process. New business requirement may still come on the legacy

application and releases may still be planned. In the end not all the focus should be on cloud

migration process.

Portability and interoperability risks are a real problem that can can lead to vendor lock-ins

therefore undermine the cloud migration [45]. This risk can not only discourage organizations

willing to adopt cloud environment but also it can prevent cloud consumer moving from one

cloud provider to another one easily.

Service integration is another challenge. Even though, a successful migration is step forward,

there is still another step to integrate the modernized application in the cloud with other

applications on premises. During the migration process, some of the decencies were isolated

but once the modernized application has been deployed, those dependencies need to be

established one step at time.

Loss of control, organizations need to rely on third party and his tool in order to get more

information on the migrated application. This implies a level of trust; the necessary tools are

availability and they are providing pertinent information. This paradigm shift can be baffling in

first place and organizations may not get them same satisfaction as when they had the whole

control over their infrastructure.

Organizations should also understand how testing will be completed prior to and after migration.

Therefore they should gather test data, testing environments should be available and tests

should be automated. The challenges here is to prepare test cases prior to the migration and

have test data that covers all the scenarios.

Organizations should be aware on how to ensure reliability through redundancy and failover.

When migrating to the cloud, organizations should also understand the impacts on application

performance and availability, and how these impacts will be measured. According to [45],

organizations should be aware that metrics and standards for measuring should be established

prior to moving in the cloud because the cloud provider may user different metrics.

39

Cloud consumers should also be aware of areas of critical focus for the security of the

application running in the cloud and they should know how to resist, detect and recover from the

threats or attacks. The challenge here is to be aware of those vulnerabilities.

Compliance with standards and governance can be challenging. Organizations should assess it

correctly when the cloud provider is being chosen. They should be aware of legal risk created

by the distributed nature of the cloud. They should be aware of which regulatory they are facing

and the consequence of it.

4.5. Project management

The cloud migration of legacy applications is a project management process where a group of

people work efficiently towards successful completion of a software project. Each member has

to be aware of his responsibilities in order to achieve the group goal.

During the migration process, the elements below should be considered:

1- Use an iterative and incremental approach. The approach allows to get ROI; reduce risk

and shorten time to market. Frequent planning allows also to reduce unpredictability. Moreover,

customers are more involved and developers learn best practices from previous iterations and

apply them in the next iterations.

2- Follow Software Development Life Cycle (SDLC). Even though the modernization effort

follows an MDA approach, the project should follow the full SDLC of project planning,

architecture, design, development, testing and production launch.

3- Prioritization and risk handling. Identify, analyze and create abatement procedure to

mitigate the risk. Risky elements should be on high priority than other elements.

4- Estimate. Estimate is not enough, it should be a good estimate which can provide a clear

view of tasks being carried out and lead to achieve the project objective. According to [43]

underestimation creates numerous problems while overestimate allows Parkinson's Law to kick

in. The estimate can also help in mitigating cost risk in case a task is taking more time than

expected.

5- Measure. The progress should be measured, therefore key progress indicators (e.g. lines of

code, artifacts, etc.) should be defined in earlier stage, so that they can be tracked. Tools (e.g.

integration continue tools, etc.) can help in having a more clear view on measures.

4.6. Synthesis

40

In this chapter, we have analyzed five frameworks. This has highlighted that the pre-migration

phase is important in order to make cloud migration a success. Although, there are differences

in frameworks, they all agree in modernizing legacy applications in order to fully take advantage

of the cloud environment. The modernization is an important phase that allows the new

application to be transformed into cloud-enabled application. The post-migration is about

deployment, leveraging cloud environment and optimization. The cross-cutting concerns should

also not be neglected because they are concerns that affect the smooth running of the project.

On one hand, we should also not loose focus that cloud migration process is also about project

management. Therefore we should know that incremental planing, prioritization, estimation and

measurements are key to project success. On other hand, a good strategy is necessary in order

to make a good planning that can lead to a successful migration.

Cloud migration challenges exist and knowing them can help organizations avoid optimistic

assumptions. Challenges can help grasp the complexity of cloud migration process and help the

team to have a good understanding of challenges ahead. Knowing the challenges will certainly

have an impact on the planning as well.

However in order to mature the field further, we agree with [12] that cloud computing and

software engineering researchers need to propose a common research agenda because there

are similarities in their frameworks. Many researches have also emphasized the the lack of

exhaustivity[12] when it comes to tools during the cloud migration process and afterwards, those

tools face the same challenges as any open source tool which are lack of vendor support and

unfamiliarity.

Steps Output

Pre-migration Feasibility and assessment studies (Business and

Technical)

Migration plan

Migration Steps Output

Reverse engineering Models/reusable elements

Forward engineer Loose coupling

Application/DB

Modernized

Application/Database

Post-migration Steps Output

Deployment Testable Application/DB

Leveraging cloud Economies of scale

Optimization Scalable Application/DB

Cloud-enabled

Application/Database

Table 13: Migration synthesis

41

Chapter 5

5. Discussion

5.1. Cloud concerns

Many organizations have celebrated migrating their legacy applications to cloud but they are

mainly moving simple applications leaving aside others. Organizations face many constraints

whether they are economic, legal, technical, political, historical, governance, etc. Some may be

easy to overcome but others may be more difficult. In any case, they have to be assessed and

in order to have a good understanding of them and maybe find a solution. Organizations should

know which cloud migration constraints they are facing and what it takes to resolve them and

the risk involved.

Organizations concerns in adopting cloud are mainly :

Organizations would like to have security and privacy for their own data. Indeed, it is the most

important asset they have and they would like to protect it. The challenges organization faced, is

about sharing data with legitimate users while protecting personal information from unauthorized

access. Another concern is whether a third party can have access to the data and can read

them without user consent. This challenge is not easy to solve though because the problem

exist in all service and deployment models even if the levels are different.

Loss of control may be also a challenge to overcome for organizations. The lack of visibility may

hinder the relationship between the cloud provider and the cloud consumer. In fact, some

service and deployment models, may introduce an abstraction layer that prevent the cloud

consumer to have a direct access to some parts of the cloud which may leads to no clear

definition of responsibility between both actors.

Another concern is the contract definition. The contract should protect the cloud consumer, in

case of conflict (e.g. the cloud provider cannot commit to service agreed, he goes bankrupt,

etc.), the cloud consumer should be able to leave the cloud provider easily. The contract should

also contain measurements agreed upon (e.g. performance, availability, etc.)

Organizations do not know how to get started and they get lost in all those terminologies and

paradigms. With legacy applications, even a small changes can have big repercussions on the

business. So, coming and say that the legacy applications which is somehow a black box to the

developers, need get transformed, is quite challenging and not an easy process to accept.

However, organizations need to overcome that fear in order stay competitive on the market.

42

Organizations should welcome the migration to cloud so they can to be more agile and deliver

faster.

5.2. Recommendations

We suggest these recommendations in order to motivate organizations to migrate their legacy

applications, these recommendations should solve some of the problem raised in migration

challenges :

1- Understand Service Level Agreements (SLAs). SLAs can be defined as an agreement

between a IT Service Provider and a Consumer (ITIL v3). The SLAs should describe the

service, the scope, the service quality and the responsibilities[44]. SLAs should state who are

involved in agreement and should specify the responsibilities of both actors. It should describe

the service and deployment model contracted, metrics to respect, what to monitor and the

security capabilities of the cloud provider. SLAs should be realistic and should not only include

availability requirement but also performance aspects.

The SLA should be negotiated if it does not meet the organization needs. An exit clause should

also be part of the agreement in case either the consumer or provider wants to terminate the

contract which can allow the cloud consumer to subscribe to another service or to migrate to

another cloud provider or even more invest in its own private cloud. Cloud consumers should be

allowed to negotiate SLA violation as well as SLA detection because most of the time it is

implicitly their responsibility. The contract enforcement should include reward and penalty

clauses for either exceeding or failing to meet them. SLAs should explicitly stated what is

excluded[48] in the contract.

2- Understand cloud appropriate solutions. If the cloud consumer cannot fully trust a public

cloud provider with its own application, he should look into these appropriate cloud solutions :

Figure 9: Appropriate cloud solutions

- Redundant cloud. It will allow organizations to ensure business continuity in case one of the

cloud provider goes bankrupt or he cannot commit to his obligations. However, it may be

expensive to adopt. Redundancy is possible on all the level of service models : IaaS, PaaS and

SaaS.

43

+ IaaS. Redundancy is different whether it is a compute or storage service.

Compute Service Storage Service

Redundant deployment Fragmentation

Redundant computation Erasure coding

Parallel computation Replication

Table 14: IaaS Redundancy[42]

+ PaaS. Multiple PaaS but this can be problematic if the deployment is done on

different cloud providers because of portability, interoperability, heterogeneity and

geo-diversity issues.

+ SaaS. Multiple SaaS. According to [33], it may not be a good idea to use public SaaS

for critical and High Availability (HA) applications because of unavoidable round trip

delays of messages exchanged between SaaS consumers and cloud providers and

nothing guaranties that the network will continue to provide acceptable service.

- Hybrid cloud. Hybrid cloud allows to leverage the existing investment. It can be an alternative

solution by keeping sensitive elements on private cloud while other elements can be migrated in

public cloud. This can address the problem of compliance by keeping control on some parts of

the legacy application.

- Private cloud. Private cloud can be an option if organizations want to have the control of the

whole system but private clouds do not necessary guarantee security. In fact, it is not because

the application is running private cloud that it is secure.

3- Understand tools available. Tools allow to eliminate manual steps in migration process

which are prone to human errors. Besides, tools help in time saving by automating some parts

of the process. Tools assessment can be an important task during the pre-migration phase for

legacy applications because it can show if the necessary tools are available as well as their

compatibility in Pre-migration, Migration, Post-Migration and Maintenance.

44

Figure 10: Migration tools assessment

The figure above, shows some tools may come from a migration framework such ARTIST, other

may come from the cloud provider. Of course others may be out there as open source or

proprietary and not linked to any framework or a cloud provider.

Pre-migration Migration Post-migration Maintenance

Business assessment Reverse engineering Testing Monitoring

Technical assessment Forward engineering Deployment Reporting

Cloud provider

assessment

Migration verification

et validation

Maintenance

Optimization Diagnostics

Certification

Table 15: Different types of tools

4- Make an incremental project planning. The release cycle should be kept short in

production. If the cloud migration is well planned, it can improve both productivity and quality.

The advantage of doing so is that faulty elements of the software can be quickly identified

therefore it costs lower. It is also easier to implement and test an increment than the whole

project. Besides, it can allow the team to focus more and conduct rigorous testing of each

element. Customer are involved earlier and they can respond to features and review as needed.

5- Implement a Proof Of Concept (POC). The realization of a proof of concept can allow to

demonstrate the feasibility of an idea. Compared to a prototype, a proof concept is cheaper.

With a POC, developers can clearly see the tremendous potential of adopting cloud

consequently motivate for its adoption. It can also allow developers to get familiar with new

concepts, new technologies and new process. A proof of concept should stay small and may or

may not be complete. However, the positive welcome of a POC, does not guarantee a

successful migration.

5.3. Synthesis

In this chapter, we have presented cloud concerns. After that, we have drawn some

recommendations in order to encourage organizations to migrate their applications into the

cloud. These recommendations are important and constitute the first elements to be

investigated. However the list is not exhaustive and organizations should keep updating it

according to their specific requirements.

45

Cloud concerns - Security and privacy protection

- Loss of control

- Contract

- Get started

Recommendations - Understand Service Level Agreements (SLAs)

- Understand cloud appropriate solutions

- Understand available tools

- Make an incremental project planning

- Implement a Proof Of Concept (POC)

Table 16: Cloud concerns and recommendations

46

Chapter 6

6. Conclusion

In this study of cloud migration of legacy applications, we started by defining the cloud

computing, its actors, its essential characteristics, its deployment and service models, the

differences between cloud and traditional environmental. Afterwards, we defined legacy system

and we highlighted legacy system concerns with regards to scalability, system evolutions and

migration strategies.

From those two preconditions, we analyzed five cloud migration frameworks : ARTIST, Cloud-

RMM, REMICS, CloudMIG and Legacy-to-Cloud Migration Horseshoe framework. From that

analysis, we found out that organizations are migrating simple applications (e.g. email) leaving

aside legacy applications.

In the end, we decided to highlight cloud challenges and draw some recommendations that will

encourage more organizations to move their legacy applications in the cloud. In the

recommendations, we emphasized that organizations should firstly understand their agreement

contract and more importantly it should contain an executable exit strategy in case one of the

actors would like to cancel the agreement; secondly, organization should understand there are

appropriate deployment models depending on use case, thirdly, they should assess tools that

can help them during the cloud migration process. Fourth, organization should make an

incremental project planning so that they can stay focused, lastly, to get started, organizations

should implement a proof of concept.

Eventually, cloud experiences and adoptions is different from one organization to another. It is

up to the organizations to figure out what their needs and aspirations are. Cloud migration of

legacy applications can be a challenge but where there are challenges, there are also

opportunities to do things better. As for cloud migration, it is an opportunity to archive,

consolidate, or to decommission some parts of legacy applications allowing to focus more on

domain problems. As for organizations, it is an opportunity to learn from the experience by

applying incremental approach because the migration experience is never the same from one

project to another.

On cloud providers’ side, they need to instill confidence by publishing their internal processes,

governances and compliance mechanisms. They should address the problem of interoperability

and portability of their cloud services openly to avoid cloud vendor lock-in. And addressing

those challenges will help more organizations move their legacy applications without many

apprehensions.

47

On organizations side, they need to embrace changes which need to be carefully planned

because it can bring employees resistance thereby undermining the whole process. Certainly

following processes (e.g. ARTIST) is an important asset, but as it was shown in chapter 5, we

need to highlight some important points depending on requirements of legacy applications. In

fact, legacy applications need more focus on certain areas, those points should be assessed

accordingly and deeper.

Cloud migration involves spending time and money therefore it should be motivated and it

should involve all the stakeholders. It is a whole set of different ways of thinking with its own

challenges and opportunities. After migrating a legacy application into the cloud organizations

have to monitor and optimize their processes, they have to take ownership of their new

environments or interfaces and use them wisely. Ultimately, cloud migration of legacy

applications is not just about moving into cloud, it is also about transforming legacy applications,

implementing the right strategy, planning, project management, communications, etc.

Future work can take this analysis a little deeper and draw recommendations based on different

criticality of legacy applications. The objective being to help more organizations have confidence

in themselves.

48

7. References

[1] Cloud Computing Patterns, http://www.cloudcomputingpatterns.org/, [version from 7 February 2015]

[2] Almonaies, Asil A., James R. Cordy, and Thomas R. Dean. "Legacy system evolution towards service-oriented

architecture." International Workshop on SOA Migration and Evolution. 2010.

http://ftp.qucis.queensu.ca/home/cordy/Papers/ACD_MigToSOA_SOAME10.pdf

[3] Zhang, Qi, Lu Cheng, and Raouf Boutaba. "Cloud computing: state-of-the-art and research challenges."Journal of

internet services and applications 1.1 (2010): 7-18.

http://u.cs.biu.ac.il/~ariel/download/ds590/resources/cloud/cloud_sota.pdf

[4] ARTIST EU Project, "Challenge - result", http://www.artist-project.eu/results

[5] IEEE cloud computing. "The premiere issue"

http://www.computer.org/cms/Computer.org/ComputingNow/pdfs/CLC_20140501_May_2014.pdf, May 2014

[6] OMG. "Model-driven Architecture", http://www.omg.org/mda/

[7] Chris Birchall, Understanding the challenges of legacy projects, Re-Engineering Legacy Software,

http://www.manning.com/birchall/

[8] Hainaut, Jean-Luc, et al. "Database reverse engineering." Encyclopedia of Database Systems. Springer US, 2009. 723-

728.

https://www.researchgate.net/profile/Vincent_Englebert/publication/226590879_Database_Reverse_Engineering_From_Req

uirements_to_CARE_Tools/links/0c96053abe06c6cf2e000000.pdf

[9] The Open Group . "Cloud Computing for Business" http://www.opengroup.org/cloud/cloud/cloud_for_business/what.htm,

2011

[10] Varia, Jinesh. "Best practices in architecting cloud applications in the AWS cloud." Cloud Computing: Principles and

Paradigms (2011): 459-490. http://www.lifted-llc.com/docs/AWS_Cloud_Architecture_Best_Practices.pdf

[11] Henrard, Jean, Anthony Cleve, and Jean-Luc Hainaut. "Inverse wrappers for legacy information systems

migration." ISSN 0926-4515 All rights reserved editors: prof. dr. PME De Bra prof. dr. ir. JJ van Wijk (2004): 30.

https://pure.fundp.ac.be/portal/files/248204/200434.pdf#page=36

[12] Jamshidi, Pooyan, Ayaz Ahmad, and Claus Pahl. "Cloud migration research: a systematic review."Cloud Computing,

IEEE Transactions on 1.2 (2013): 142-157. http://ulir.ul.ie/bitstream/handle/10344/3656/Jamshid_cloud.pdf?sequence=2

[13] Brodie, Michael L., and Michael Stonebraker.Migrating legacy systems: gateways, interfaces & the incremental

approach. Morgan Kaufmann Publishers Inc., 1995. http://dl.acm.org/citation.cfm?id=SERIES9818.208444

[14] Wikipedia. "Software modernization", https://en.wikipedia.org/wiki/Software_modernization [version from 17 July 2015]

[15] ARTIST EU Project. "Open Source Package", http://www.artist-project.eu/open-source-package

[16] OMG. "Why do we need standards for the modernization of existing systems?",

http://adm.omg.org/legacy/ADM_whitepaper.pdf

49

[17] Naono, Ken, et al., eds. Software automatic tuning: from concepts to state-of-the-art results. Springer Science &

Business Media, 2010. https://books.google.be/books?hl=en&lr=&id=cmD5O83hS0QC&oi=fnd&pg=PR3&dq=

%22software+automatic+%22&ots=jIFaDPWlT-&sig=eTlu1LkHbT1nbOmiSShgrlnYDZg&redir_esc=y#v=onepage&q=

%22software%20automatic%20%22&f=false

[18] Wikipedia. "Cloud computing", http://en.wikipedia.org/wiki/Cloud_computing [version from 31 January 2015]

[19] Hogan, Michael, et al. "Nist cloud computing standards roadmap." NIST Special Publication 500-291 (2013).

http://www.nist.gov/itl/cloud/upload/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf

[20] Mell, Peter, and Tim Grance. "The NIST definition of cloud computing." (2011). Special Publication 800-145

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[21] Feathers, Michael. Working effectively with legacy code. Prentice Hall Professional, 2004.

[22] Bergmayr, Alexander, et al. "Migrating legacy software to the cloud with ARTIST." Software Maintenance and

Reengineering (CSMR), 2013 17th European Conference on. IEEE, 2013.

http://www.researchgate.net/publication/261355920_Migrating_Legacy_Software_to_the_Cloud_with_ARTIST

[23] Bisbal, Jesús, et al. "Legacy information systems: Issues and directions." IEEE software 5 (1999): 103-111.

http://csis.pace.edu/~marchese/CS775/Proj1/legacyinfosys_directions.pdf

[24] Mao, Ming, Jie Li, and Marty Humphrey. "Cloud auto-scaling with deadline and budget constraints." Grid Computing

(GRID), 2010 11th IEEE/ACM International Conference on. IEEE, 2010. http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.307.8477&rep=rep1&type=pdf

[25] Amazon. "Migrating Web Applications to the AWS Cloud." Migration Scenario (2010).

 http://media.amazonwebservices.com/CloudMigration-scenario-wep-app.pdf

[26] Comella-Dorda, Santiago, et al. A survey of legacy system modernization approaches. No. CMU/SEI-2000-TN-003. Carnegie-

Mellon univ pittsburgh pa Software engineering inst, 2000. http://www.sei.cmu.edu/reports/00tn003.pdf

[27] Kansal, Nidhi Jain, and Inderveer Chana. "Cloud load balancing techniques: a step towards green computing." IJCSI

International Journal of Computer Science Issues 9.1 (2012): 238-246. http://core.ac.uk/download/pdf/25900769.pdf

[28] Alonso, J. Marcos, et al. "Cloud modernization assessment framework: Analyzing the impact of a potential migration to

cloud." Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA), 2013 IEEE 7th International

Symposium on the. IEEE, 2013.

http://www.academia.edu/12375045/Cloud_modernization_assessment_framework_Analyzing_the_impact_of_a_potential_

migration_to_Cloud

[29] Kopparapu, Chandra. Load balancing servers, firewalls, and caches. John Wiley & Sons, 2002.

http://box.cs.istu.ru/public/docs/other/_New/Books/Administration/Load%20Balancing%20Servers,%20Firewalls%20and

%20Caches%20(2002,%20Wiley).pdf

[30] OMG. "Architecture-Driven Modernization" http://adm.omg.org/legacy/

[31] Advanced software-based seRvice provisioning and migraTIon of legacy Software http://www.artist-

project.eu/sites/default/files/MCF_Supporting%20document_0.pdf

[32] Open Group. "Setting Expectations and Working within Existing Structures the Dominate Themes for Day 3 of San

Francisco Conference", http://blog.opengroup.org/tag/scalability/, February 2, 2012

50

[33] Synopsis, Cloud Computing. "Recommendations."NIST Special Publication (2012): 800-146.

http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf

[34] Strauch, Steve, et al. "ESB MT: Enabling Multi-Tenancy in Enterprise Service Buses." Cloud Computing Technology

and Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE, 2012.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.4511&rep=rep1&type=pdf

[35] Armbrust, Michael, et al. "M.: Above the clouds: a Berkeley view of cloud computing." (2009).

http://www.moonther.com/cis492/abovetheclouds.pdf

[36] Ahmad, Aakash, and Muhammad Ali Babar. "A framework for architecture-driven migration of legacy systems to cloud-

enabled software." Proceedings of the WICSA 2014 Companion Volume. ACM, 2014.

https://www.researchgate.net/profile/Aakash_Ahmad/publication/262285532_A_framework_for_architecture-

driven_migration_of_legacy_systems_to_cloud-enabled_software/links/54e619890cf2cd2e028c4c81.pdf

[37] Andrikopoulos, Vasilios, et al. "How to adapt applications for the Cloud environment." Computing95.6 (2013): 493-535.

https://www.researchgate.net/profile/Vasilios_Andrikopoulos/publication/262889259_How_to_adapt_applications_for_the_Cl

oud_environment_Challenges_and_solutions_in_migrating_applications_to_the_Cloud/links/00b4953981929d1313000000.

pdf

[38] Frey, Sören, and Wilhelm Hasselbring. "Model-Based Migration of Legacy Software Systems into the Cloud: The

CloudMIG Approach." (2010). http://fg-sre.gi.de/fileadmin/gliederungen/fg-sre/wsr2010/28FreyHasselbing.pdf

[39] REMICS. "Introduction to the REMICS Methodology", http://methodology.remics.eu/

[40] ARTIST EU Project. "Vision", http://www.artist-project.eu/vision

[41] Müller, Hausi A., et al. "A reverse- engineering approach to subsystem structure identification."Journal of Software

Maintenance: Research and Practice 5.4 (1993): 181-204.

http://onlinelibrary.wiley.com/doi/10.1002/smr.4360050402/abstract

[42] Tobias Kurze, Markus Klems, David Bermbach, Alexander Lenk, Stefan Tai and Marcel Kunz. "Cloud Federation"

http://aifb.kit.edu/images/0/02/Cloud_Federation.pdf

[43] McConnell, Steve. Software estimation: demystifying the black art. Microsoft press, 2006.

https://books.google.com/books?hl=en&lr=&id=U5VCAwAAQBAJ&oi=fnd&pg=PT18&dq=Software+Estimation:

+Demystifying+the+Black+Art+&ots=rVw8QzzoZ4&sig=JFHZJNNVZHHTZfnCznSCOu7poiI#v=onepage&q=Software

%20Estimation%3A%20Demystifying%20the%20Black%20Art&f=false

[44] Wikipedia. "Service-level agreement", https://en.wikipedia.org/wiki/Service-level_agreement [version from 8 April 2015]

[45] Cloud Security Alliance (CSA). "Security Guidance for Critical Areas of Focus in Cloud Computing V2.1",

https://cloudsecurityalliance.org/csaguide.pdf

[46] Cattell, Rick. "Scalable SQL and NoSQL data stores." ACM SIGMOD Record 39.4 (2011): 12-27.

http://www.sigmod.org/publications/sigmod-record/1012/pdfs/04.surveys.cattell.pdf

[47] Wikipedia. "Scalability", https://en.wikipedia.org/wiki/Scalability [version from 10 July 2015]

[48] Baset, Salman A. "Cloud SLAs: present and future."ACM SIGOPS Operating Systems Review 46.2 (2012): 57-66.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.9965&rep=rep1&type=pdf

51

