7 research outputs found

    Extended Pseudo Invariant Calibration Site-Based Trend-To-Trend Cross-Calibration of Optical Satellite Sensors

    Get PDF
    Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common radiometric scale for consistent measurement. One of the traditional methods of cross-calibration is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate cloud-free acquisitions for cross-calibration which would require a longer time to study the differences in sensor measurements. To address the limitation of traditional PICS-based approaches and to increase the cross-calibration opportunity for quickly achieving highquality results, the approach is based on using extended pseudo invariant calibration sites (EPICS) over North Africa. With the EPICS-based approach, the area of extent of the cross-calibration site covers a large portion of the North African continent. With targets this large, any sensor should overpass some portion of PICS near-daily, allowing for evaluation of sensor-to-sensor performance with much greater frequency. By using these near-daily measurements, trends of the sensor’s performance are then used to evaluate sensor-to-sensor daily cross-calibration. With the use of the proposed methodology, the dataset for cross-calibration is increased by an order of magnitude compared to traditional approaches, resulting in the differences between any two sensors being detected within a much shorter time. Using this new trend in trend cross-calibration approaches, gains were evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors are calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which is consistent with what the traditional PICS-based approach detects. The proposed crosscalibration technique is useful to cross-calibrate any two sensors without the requirement of any coincident or near-coincident scene pairs, while still achieving results similar to traditional approaches in a short time

    Analysis of spatial and temporal variability in Libya-4 with Landsat 8 and Sentinel-2 data for optimized ground target location

    Get PDF
    Producción CientíficaPseudo-Invariant Calibration Sites (PICS) have been widely used by the remote sensing community in recent decades for post-launch absolute calibration, cross-calibration, and the monitoring of radiometric stability. The Committee on Earth Observation Satellites (CEOS) has established several official PICS for these purposes. Of these, Libya-4 is the most commonly used, due to its high uniformity and stability. The site was chosen as a large-area site for medium resolution sensors, and with high-resolution sensors now common, smaller sites are being identified. This work has identified an improved area of interest (AOI) within Libya-4 by using combined Landsat 8 and Sentinel 2 data. The Optimized Ground Target (OGT) was determined by calculating the coefficient of variation along with the use of a quasi-Newton optimization algorithm combined with the Basin–Hopping global optimization technique to constrain a search area small enough to perform a final brute-force refinement. The Coefficient of Variation CV of the proposed OGT is significantly lower than that in the original CEOS area, with differences between the CV of both zones in the order of 1% in the visible near-infrared (VNIR) bands. This new AOI has the potential to improve the cross-calibration between high-resolution sensors using the PICS methodology through an OGT with more homogeneous and stable characteristics

    Copernicus Cal/Val Solution - D3.2 - Recommendations for R&D on Cal/Val Methods

    Get PDF
    This document presents a gap analysis of the methods used in the calibration and validation of Earth Observation satellites relevant to the Copernicus programme and suggests recommendations for the research and developments required to fulfil this gap when/where possible. The document identifies the gaps and limitations of the CalVal methods, used for calibration and validation (CalVal) activities for the current Copernicus missions. It will also address the development needs for future Copernicus missions. Four types of missions are covered based on the division used in the rest of the CCVS project: optical, altimetry, radar and microwave and atmospheric composition. Finally, it will give a prioritized list of recommendations for R&D activities on the CalVal methods. The information included is mainly collected from the deliverables of work packages 1 and 2 in the CCVS project and from the consortium experts in CalVal activities

    The Development of Dark Hyperspectral Absolute Calibration Model Using Extended Pseudo Invariant Calibration Sites at a Global Scale: Dark EPICS-Global

    Get PDF
    This research aimed to develop a novel dark hyperspectral absolute calibration (DAHAC) model using stable dark targets of Global Cluster - 36 (GC-36), one of the clusters from 300 Class Global Classification. The stable dark sites were identified from GC-36 called Dark EPICS-Global covering the surface types viz; dark rock, volcanic area, and dark sand. The Dark EPICS-Global shows a temporal variation of 0.02 unit reflectance. This work uses the Landsat-8 (L8) Operational Land Imager (OLI) , Sentinel-2A (S2A) Multispectral Instrument (MSI) , and Earth Observing One (EO-1) Hyperion data for the DAHAC model development, where well-calibrated L8 and S2A are used as the reference sensors while EO-1 Hyperion with 10 nm spectral resolution is used as a hyperspectral library. The dark hyperspectral dataset (DaHD) is generated by combining the normalized hyperspectral profile of L8 and S2A for the DAHAC model development. The DAHAC model developed in this study takes into account the solar zenith and azimuth angles as well as the view zenith and azimuth angles in Cartesian coordinates form. This model is capable of predicting TOA reflectance in all existing spectral bands of any sensor. The DAHAC model was then validated with Landsat-7 (L7) , Landsat-9 (L9) , and Sentinel-2B (S2B) satellites from their launch dates to March 2022. These satellite sensors vary in terms of their spectral resolution, equatorial crossing time, spatial resolution, etc. The comparison between the DAHAC model and satellite measurements shows accuracy within 0.01 unit reflectance across overall spectral bands. The proposed DAHAC model uncertainty level is determined using Monte Carlo Simulation and found to be 0.04 and 0.05 unit reflectance for VNIR and SWIR channels, respectively. The DAHAC model double ratio is used as a tool to perform the inter-comparison between two satellites. The sensor inter-comparison results for L8 and L9 shows a 2% difference and 1% for S2A and S2B across all spectral bands

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Armonización de datos de satélite mediante zonas homogéneas

    Get PDF
    La calibración radiométrica de los sensores es un factor clave en la interoperabilidad de los datos, permitiendo asegurar su calidad científica y la comparación de los mismos entre sensores. Actualmente, la gran mayoría de satélites no poseen la instrumentación necesaria para realizar calibración on board por su elevado coste económico y por la simplicidad en el diseño del satélite lo que se une a la problemática de realizar medidas In-Situ en determinadas localizaciones de la Tierra. Por ello, la utilización de técnicas de calibración de manera indirecta tomando como referencia otros sensores permite una calibración radiométrica absoluta, de forma rápida, precisa y con un coste económico bajo. En esta tesis doctoral, se presenta una metodología de armonización de datos de satélite a partir de zonas homogéneas, aplicable a las dos metodologías fundamentales para la calibración radiométrica de manera indirecta, como son Simultaneous Nadir Overpass (SNOs) y Pseudo-Invariant Calibration Sites (PICS).Departamento de Física AplicadaDoctorado en Físic

    Concepts and Approaches for Mars Exploration

    Get PDF
    Abstracts describe missions, mission elements or experiments for consideration in the 2005-2020 time frame. Also the technologies and the support necessary to achieve the results are discussed.NASA Headquarters; Lunar and Planetary Institutehosted by Lunar and Planetary Institute ; sponsored by NASA Headquarters, Lunar and Planetary Institute ; convener Scott Hubbard
    corecore