7,379 research outputs found

    Simple system for locating ground loops

    Get PDF
    A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Modeling and simulation enabled UAV electrical power system design

    Get PDF
    With the diversity of mission capability and the associated requirement for more advanced technologies, designing modern unmanned aerial vehicle (UAV) systems is an especially challenging task. In particular, the increasing reliance on the electrical power system for delivering key aircraft functions, both electrical and mechanical, requires that a systems-approach be employed in their development. A key factor in this process is the use of modeling and simulation to inform upon critical design choices made. However, effective systems-level simulation of complex UAV power systems presents many challenges, which must be addressed to maximize the value of such methods. This paper presents the initial stages of a power system design process for a medium altitude long endurance (MALE) UAV focusing particularly on the development of three full candidate architecture models and associated technologies. The unique challenges faced in developing such a suite of models and their ultimate role in the design process is explored, with case studies presented to reinforce key points. The role of the developed models in supporting the design process is then discussed

    Numerická analýza a simulace Rogowského cívky

    Get PDF
    This work illustrates an analysis of Rogowski coils for power applications, when operating under non ideal measurement conditions. The developed numerical model, validated by comparison with other methods and experiments, enables to investigate the effects of the geometrical and constructive parameters on the measurement behavior of the coil and we also study the behavior of Rogowski coils coupled with bar conductors under quasi-static conditions. Through a finite element (FEM) analysis, we estimate the current distribution across the bar and the flux linked by the transducer for various positions of the primary conductor and for various operating frequencies. Simulation and experimental results are reported in the text.Tato práce ilustruje analýzu rogowských cívek pro energetické aplikace při provozu v podmínkách bez ideálního měření. Vyvinutý numerický model, ověřený porovnáním s jinými metodami a experimenty, umožňuje zkoumat vliv geometrických a konstrukčních parametrů na chování měření cívky a také studujeme chování rogowských cívek spojených s tyčovými vodiči za kvazi-statických podmínek . Pomocí analýzy konečných prvků (FEM) odhadujeme rozložení proudu přes tyč a tok spojený snímačem pro různé polohy primárního vodiče a pro různé provozní frekvence. Simulační a experimentální výsledky jsou uvedeny v textu.410 - Katedra elektroenergetikydobř

    Single core configurations of saturated core fault current limiter performance of laboratory test models

    Get PDF
    Economic growth with industrialization and urbanization lead to an extensive increase in power demand. It forced the utilities to add power generating facilities to cause the necessary demand-generation balance. The bulk power generating stations, mostly interconnected, with the penetration of distributed generation result in an enormous rise in the fault level of power networks. It necessitates for electrical utilities to control the fault current so that the existing switchgear can continue its services without up-gradation or replacement for reliable supply. The deployment of fault current limiter (FCL) at the distribution and transmission networks has been under investigation as a potential solution to the problem. A saturated core fault current limiter (SCFCL) technology is a smart, scalable, efficient, reliable, and commercially viable option to manage fault levels in existing and future MV/HV supply systems. This paper presents the comparative performance analysis of two single-core SCFCL topologies impressed with different core saturations. It has demonstrated that the single AC winding configuration needs more bias power for affecting the same current limiting performance with an acceptable steady-state voltage drop contribution. The fault state impedance has a transient nature, and the optimum bias selection is a critical design parameter in realizing the SCFCL applications

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    DEVELOPMENT OF INSTRUMENTATION AND CONTROL SYSTEMS FOR AN INTEGRAL LARGE SCALE PRESSURIZED WATER REACTOR

    Get PDF
    Small and large scale integral light water reactors are being developed to supply electrical power and to meet the needs of process heat, primarily for water desalination. This dissertation research focuses on the instrumentation and control of a large integral inherently safe light water reactor (designated as I2S-LWR) which is being designed as part of a grant by the U.S. Department of Energy Integrated Research Project (IRP). This 969 MWe integral pressurized water reactor (PWR) incorporates as many passive safety features as possible while maintaining competitive costs with current light water reactors. In support of this work, the University of Tennessee has been engaged in research to solve the instrumentation and control challenges posed by such a reactor design. This dissertation is a contribution to this effort. The objectives of this dissertation are to establish the feasibility and conceptual development of instrumentation strategies and control approaches for the I2S-LWR, with consideration to the state of the art of the field. The objectives of this work are accomplished by the completion of the following tasks: Assessment of instrumentation needs and technology gaps associated with the instrumentation of the I2S-LWR for process monitoring and control purposes. Development of dynamic models of a large integral PWR core, micro-channel heat exchangers (MCHX) that are contained within the reactor pressure vessel, and steam flashing drums located external to the containment building. Development and demonstration of control strategies for reactor power regulation, steam flashing drum pressure regulation, and flashing drum water level regulation for steady state and load-following conditions. Simulation, detection, and diagnosis of process anomalies in the I2S-LWR model. This dissertation is innovative and significant in that it reports the first instrumentation and control study of nuclear steam supply by integral pressurized water reactor coupled to an isenthalpic expansion vessel for steam generation. Further, this dissertation addresses the instrumentation and control challenges associated with integral reactors, as well as improvements to inherent safety possible in the instrumentation and control design of integral reactors. The results of analysis and simulation demonstrate the successful development of dynamic modeling, control strategies, and instrumentation for a large integral PWR
    corecore