5,289 research outputs found

    Combined effect of neolamarckia cadamba leaves and electroporation method on hela cell anti- proliferation process

    Get PDF
    This study suggests that natural sources may become an important tool in treating cancer. Neolamarckia cadamba (NC) leaves also well-known as “Anthocephalus Cadamba”, is a precious plant in Ayurvedic medicine. HeLa cells are one of the examples of eukaryotic cells type. It is derived from human cervical cancer cells. This experiment is conducted in different concentrations of NC Leaves (1ÎŒg/ml, 5ÎŒg/ml, 10ÎŒg/ml, 20ÎŒg/ml, 30ÎŒg/ml, 40ÎŒg/ml, 50ÎŒg/ml, 60ÎŒg/ml, 70ÎŒg/ml, 80ÎŒg/ml, 90ÎŒg/ml and 100ÎŒg/ml) for 48 hours. This experiment’s result proves that the anti-cancer properties of the extract of NC leaves are by increasing the concentration of extract, the numbers of cell viability will decrease. For contribution, the process of NC leaves extract will be combined with the electroporation process to investigate the effect on HeLa cell. Electroporation parameters used for this study were (voltage 600v/cm, pulse duration 5ms, single pulse)

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    Efficient reconfigurable architectures for 3D medical image compression

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Recently, the more widespread use of three-dimensional (3-D) imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), and ultrasound (US) have generated a massive amount of volumetric data. These have provided an impetus to the development of other applications, in particular telemedicine and teleradiology. In these fields, medical image compression is important since both efficient storage and transmission of data through high-bandwidth digital communication lines are of crucial importance. Despite their advantages, most 3-D medical imaging algorithms are computationally intensive with matrix transformation as the most fundamental operation involved in the transform-based methods. Therefore, there is a real need for high-performance systems, whilst keeping architectures exible to allow for quick upgradeability with real-time applications. Moreover, in order to obtain efficient solutions for large medical volumes data, an efficient implementation of these operations is of significant importance. Reconfigurable hardware, in the form of field programmable gate arrays (FPGAs) has been proposed as viable system building block in the construction of high-performance systems at an economical price. Consequently, FPGAs seem an ideal candidate to harness and exploit their inherent advantages such as massive parallelism capabilities, multimillion gate counts, and special low-power packages. The key achievements of the work presented in this thesis are summarised as follows. Two architectures for 3-D Haar wavelet transform (HWT) have been proposed based on transpose-based computation and partial reconfiguration suitable for 3-D medical imaging applications. These applications require continuous hardware servicing, and as a result dynamic partial reconfiguration (DPR) has been introduced. Comparative study for both non-partial and partial reconfiguration implementation has shown that DPR offers many advantages and leads to a compelling solution for implementing computationally intensive applications such as 3-D medical image compression. Using DPR, several large systems are mapped to small hardware resources, and the area, power consumption as well as maximum frequency are optimised and improved. Moreover, an FPGA-based architecture of the finite Radon transform (FRAT)with three design strategies has been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)- based method. An analysis with various medical imaging modalities has been carried out. Results obtained for image de-noising implementation using FRAT exhibits promising results in reducing Gaussian white noise in medical images. In terms of hardware implementation, promising trade-offs on maximum frequency, throughput and area are also achieved. Furthermore, a novel hardware implementation of 3-D medical image compression system with context-based adaptive variable length coding (CAVLC) has been proposed. An evaluation of the 3-D integer transform (IT) and the discrete wavelet transform (DWT) with lifting scheme (LS) for transform blocks reveal that 3-D IT demonstrates better computational complexity than the 3-D DWT, whilst the 3-D DWT with LS exhibits a lossless compression that is significantly useful for medical image compression. Additionally, an architecture of CAVLC that is capable of compressing high-definition (HD) images in real-time without any buffer between the quantiser and the entropy coder is proposed. Through a judicious parallelisation, promising results have been obtained with limited resources. In summary, this research is tackling the issues of massive 3-D medical volumes data that requires compression as well as hardware implementation to accelerate the slowest operations in the system. Results obtained also reveal a significant achievement in terms of the architecture efficiency and applications performance.Ministry of Higher Education Malaysia (MOHE), Universiti Tun Hussein Onn Malaysia (UTHM) and the British Counci

    Time frequency analysis in terahertz pulsed imaging

    Get PDF
    Recent advances in laser and electro-optical technologies have made the previously under-utilized terahertz frequency band of the electromagnetic spectrum accessible for practical imaging. Applications are emerging, notably in the biomedical domain. In this chapter the technique of terahertz pulsed imaging is introduced in some detail. The need for special computer vision methods, which arises from the use of pulses of radiation and the acquisition of a time series at each pixel, is described. The nature of the data is a challenge since we are interested not only in the frequency composition of the pulses, but also how these differ for different parts of the pulse. Conventional and short-time Fourier transforms and wavelets were used in preliminary experiments on the analysis of terahertz pulsed imaging data. Measurements of refractive index and absorption coefficient were compared, wavelet compression assessed and image classification by multidimensional clustering techniques demonstrated. It is shown that the timefrequency methods perform as well as conventional analysis for determining material properties. Wavelet compression gave results that were robust through compressions that used only 20% of the wavelet coefficients. It is concluded that the time-frequency methods hold great promise for optimizing the extraction of the spectroscopic information contained in each terahertz pulse, for the analysis of more complex signals comprising multiple pulses or from recently introduced acquisition techniques

    Soft skills among hearing impaired graduates for sustainability and well-being in workplace

    Get PDF
    Technical skill is not the only skill needed to secure an employment in the 21st century. Soft skills have become one of the basic needs nowadays and the most essential skill in industry for both common worker and hearing impaired worker. Graduates’ unemployment issue showed a gap exists between academic excellent and equipped soft skills. Therefore, this article was written to determine the elements needed to sustain soft skills among hearing impaired graduates in order to ensure sustainability and well-being in workplace. The research uses meta-analysis, interview and fuzzy Delphi method to get consensus from 11 experts consisting of four specialist educators, four employers and three graduates in relation to hearing impaired community. The findings show that, the expert consensus agreement exceeds 75% with threshold (d) value 0.2 and α-cut 0.5. The elements of the soft skills for hearing impaired graduates were sorted and ranked as personal qualities, basic skills, resource and information skills, interpersonal skills, thinking skills, entrepreneurship skills and system and technology skills. For future studies, it is recommended to develop an instrument based on the elements of this study to measure soft skills of hearing impaired graduates. Meanwhile, educational institutions must work hand in hand with industry to strengthen the soft skills among future hearing impaired worker through industry training programme to produce more competitive workforce, sustainability and well-being in the workplace

    Rapid Prototyping of Three-dimensional (3-D) Daubechies with Transpose-based Method for Medical Image Compression

    Get PDF
    This paper presents an efficient architecture for three-dimensional (3-D) Daubechies with transpose-based method for medical image compression. Daubechies 4-tap (Daub4) and Daubechies 6-tap (Daub6) are selected with pipelined direct mapping design technique. Due to the separability property of the multi-dimensional Daubechies, the proposed architectures have been implemented using a cascade of three N-point one-dimensional (1-D) Daub4/Daub6 and two transpose memories for a 3-D volume of N*N*N suitable for real-time 3-D medical imaging applications. The architectures were synthesised using VHDL and implemented on Altera®Cyclone II (EP2C35F672C6) field programmable gate array (FPGA). An in depth evaluation in terms of area, power consumption, maximum frequency and latency are discussed in this paper

    Infusing Communication Skills into Financial Accounting Curriculum: A perspective from the Digital Era

    Get PDF
    This study investigates financial accounting students’ attitudes about several aspects related to modern pedagogies focusing on communication skills development. The paper focuses on areas of students’ need to develop communication skills irrespective of cultural diversity and gender inequality, quiz-based learning, requirements, and assessment. The study employed an online survey of students at one of the largest business colleges in the Sultanate of Oman. The study surveyed 96 currently registered students to cover the research objectives and questions. The findings showed that the students enjoyed a high level of awareness of the importance and relevance of communication skills in relation to future employability. Students believed developing communication importance was not limited to careers in financial accounting as it was also extended to other careers requiring a post-secondary degree. Quiz-based learning strategies were found to be relevant in improving communication skills. The results also highlighted adaptability as a main assessment criterion of communication skills. The study provided bases for higher education institutions in the Sultanate of Oman or other countries to empower the generalizability of the findings. Another possible research could replicate the investigation in other fields of study. This paper brings several implications for instructional practice and pedagogies, as well as for policies of instructional training and development. The study is original in its particular context and specific time during the COVID-19 pandemic as attitudes toward online technologies have been shifting paradigms

    A general framework for efficient FPGA implementation of matrix product

    Get PDF
    Original article can be found at: http://www.medjcn.com/ Copyright Softmotor LimitedHigh performance systems are required by the developers for fast processing of computationally intensive applications. Reconfigurable hardware devices in the form of Filed-Programmable Gate Arrays (FPGAs) have been proposed as viable system building blocks in the construction of high performance systems at an economical price. Given the importance and the use of matrix algorithms in scientific computing applications, they seem ideal candidates to harness and exploit the advantages offered by FPGAs. In this paper, a system for matrix algorithm cores generation is described. The system provides a catalog of efficient user-customizable cores, designed for FPGA implementation, ranging in three different matrix algorithm categories: (i) matrix operations, (ii) matrix transforms and (iii) matrix decomposition. The generated core can be either a general purpose or a specific application core. The methodology used in the design and implementation of two specific image processing application cores is presented. The first core is a fully pipelined matrix multiplier for colour space conversion based on distributed arithmetic principles while the second one is a parallel floating-point matrix multiplier designed for 3D affine transformations.Peer reviewe

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing
    • 

    corecore