5,236 research outputs found

    De novo sequencing of MS/MS spectra

    Get PDF
    Proteomics is the study of proteins, their time- and location-dependent expression profiles, as well as their modifications and interactions. Mass spectrometry is useful to investigate many of the questions asked in proteomics. Database search methods are typically employed to identify proteins from complex mixtures. However, databases are not often available or, despite their availability, some sequences are not readily found therein. To overcome this problem, de novo sequencing can be used to directly assign a peptide sequence to a tandem mass spectrometry spectrum. Many algorithms have been proposed for de novo sequencing and a selection of them are detailed in this article. Although a standard accuracy measure has not been agreed upon in the field, relative algorithm performance is discussed. The current state of the de novo sequencing is assessed thereafter and, finally, examples are used to construct possible future perspectives of the field. Ā© 2011 Expert Reviews Ltd.The Turkish Academy of Science (TƜBA

    De novo sequencing of proteins by mass spectrometry

    Get PDF
    Introduction Proteins are crucial for every cellular activity and unraveling their sequence and structure is a crucial step to fully understand their biology. Early methods of protein sequencing were mainly based on the use of enzymatic or chemical degradation of peptide chains. With the completion of the human genome project and with the expansion of the information available for each protein, various databases containing this sequence information were formed. Areas covered De novo protein sequencing, shotgun proteomics and other mass-spectrometric techniques, along with the various software are currently available for proteogenomic analysis. Emphasis is placed on the methods for de novo sequencing, together with potential and shortcomings using databases for interpretation of protein sequence data. Expert opinion As mass-spectrometry sequencing performance is improving with better software and hardware optimizations, combined with user-friendly interfaces, de-novo protein sequencing becomes imperative in shotgun proteomic studies. Issues regarding unknown or mutated peptide sequences, as well as, unexpected post-translational modifications (PTMs) and their identification through false discovery rate searches using the target/decoy strategy need to be addressed. Ideally, it should become integrated in standard proteomic workflows as an add-on to conventional database search engines, which then would be able to provide improved identification.publishe

    De Novo Sequencing of Peptides from High-Resolution Bottom-Up Tandem Mass Spectra using Top-Down Intended Methods

    Get PDF
    Despite high-resolution mass spectrometers are becoming accessible for more and more laboratories, tandem (MS/MS) mass spectra are still often collected at a low resolution. And even if acquired at a high resolution, software tools used for their processing do not tend to benefit from that in full, and an ability to specify a relative mass tolerance in this case often remains the only feature the respective algorithms take advantage of. We argue that a more efficient way to analyze high-resolution MS/MS spectra should be with methods more explicitly accounting for the precision level, and sustain this claim through demonstrating that a de novo sequencing framework originally developed for (high-resolution) top-down MS/MS data is perfectly suitable for processing high-resolution bottom-up datasets, even though a top-down like deconvolution performed as the first step will leave in many spectra at most a few peaks

    QuasiNovo: Algorithms for De Novo Peptide Sequencing

    Get PDF
    High-throughput proteomics analysis involves the rapid identification and characterization of large sets of proteins in complex biological samples. Tandem mass spectrometry (MS/MS) has become the leading approach for the experimental identification of proteins. Accurate analysis of the data produced is a computationally challenging process that relies on a complex understanding of molecular dynamics, signal processing, and pattern classification. In this work we address these modeling and classification problems, and introduce an additional data-driven evolutionary information source into the analysis pipeline. The particular problem being solved is peptide sequencing via MS/MS. The objective in solving this problem is to decipher the amino acid sequence of digested proteins (peptides) from the MS/MS spectra produced in a typical experimental protocol. Our approach sequences peptides using only the information contained in the experimental spectrum (de novo) and distributions of amino acid usage learned from large sets of protein sequence data. In this dissertation we pursue three main objectives: an ion classifier based on a neural network which selects informative ions from the spectrum, a peptide sequencer which uses dynamic programming and a scoring function to generate candidate peptide sequences, and a candidate peptide scoring function. Candidate peptide sequences are generated via a dynamic programming graph algorithm, and then scored using a combination of the neural network score, the amino acid usage score, and an edge frequency score. In addition to a complete de novo peptide sequencer, we also examine the use of amino acid usage models independently for reranking candidate peptides

    Top-down analysis of protein samples by de novo sequencing techniques

    Get PDF
    Motivation: Recent technological advances have made high-resolution mass spectrometers affordable to many laboratories, thus boosting rapid development of top-down mass spectrometry, and implying a need in efficient methods for analyzing this kind of data. Results: We describe a method for analysis of protein samples from top-down tandem mass spectrometry data, which capitalizes on de novo sequencing of fragments of the proteins present in the sample. Our algorithm takes as input a set of de novo amino acid strings derived from the given mass spectra using the recently proposed Twister approach, and combines them into aggregated strings endowed with offsets. The former typically constitute accurate sequence fragments of sufficiently well-represented proteins from the sample being analyzed, while the latter indicate their location in the protein sequence, and also bear information on post-translational modifications and fragmentation patterns. Availability and Implementation: Freely available on the web at http://bioinf.spbau.ru/en/twister

    De novo sequencing of heparan sulfate saccharides using high-resolution tandem mass spectrometry

    Get PDF
    Heparan sulfate (HS) is a class of linear, sulfated polysaccharides located on cell surface, secretory granules, and in extracellular matrices found in all animal organ systems. It consists of alternately repeating disaccharide units, expressed in animal species ranging from hydra to higher vertebrates including humans. HS binds and mediates the biological activities of over 300 proteins, including growth factors, enzymes, chemokines, cytokines, adhesion and structural proteins, lipoproteins and amyloid proteins. The binding events largely depend on the fine structure - the arrangement of sulfate groups and other variations - on HS chains. With the activated electron dissociation (ExD) high-resolution tandem mass spectrometry technique, researchers acquire rich structural information about the HS molecule. Using this technique, covalent bonds of the HS oligosaccharide ions are dissociated in the mass spectrometer. However, this information is complex, owing to the large number of product ions, and contains a degree of ambiguity due to the overlapping of product ion masses and lability of sulfate groups; as a result, there is a serious barrier to manual interpretation of the spectra. The interpretation of such data creates a serious bottleneck to the understanding of the biological roles of HS. In order to solve this problem, I designed HS-SEQ - the first HS sequencing algorithm using high-resolution tandem mass spectrometry. HS-SEQ allows rapid and confident sequencing of HS chains from millions of candidate structures and I validated its performance using multiple known pure standards. In many cases, HS oligosaccharides exist as mixtures of sulfation positional isomers. I therefore designed MULTI-HS-SEQ, an extended version of HS-SEQ targeting spectra coming from more than one HS sequence. I also developed several pre-processing and post-processing modules to support the automatic identification of HS structure. These methods and tools demonstrated the capacity for large-scale HS sequencing, which should contribute to clarifying the rich information encoded by HS chains as well as developing tailored HS drugs to target a wide spectrum of diseases

    De novo peptide sequencing methods for tandem mass spectra

    Get PDF
    De novo peptide sequencing from MS/MS spectra has become of primary importance in proteomics. It provides essential information for studies of protein structure and function. With the availability of various MS/MS spectra, a lot of computational methods have been developed to infer peptide sequences from them. However, current de novo peptide sequencing methods still have limitations. Some major ones include a lack of suitable models reflecting MS/MS spectra, limited information extracted from MS/MS spectra, and the inefficient use of multiple spectra. This thesis addresses some of the limitations with a series of novel computational methods designed for various MS/MS spectra and their combinations. The main content of the thesis starts with a comprehensive review of recent developments in de novo peptide sequencing methods, followed by two novel methods for single spectrum sequencing problems, and then presents two paired spectra sequencing methods. The first chapter introduces relevant background information, objectives of the study, and the structure of the thesis. After that, a comprehensive review of de novo peptide sequencing methods is given. It summarizes recent developments of computational methods for various experimental spectra, compares and analyzes their advantages and disadvantages, and points out some future research directions. Having these potential research directions, the thesis next presents two novel methods designed for higher-energy collisional dissociation (HCD) spectra and electron capture dissociation (ECD) (or electron transfer dissociation (ETD)) spectra, respectively. These methods apply new spectrum graph models with multiple types of edges, integrate amino acid combination (AAC) information and peptide tags, and consider spectrum-specific information to suit different spectra. After that, multiple spectra sequencing problem is studied. A framework for de novo peptide sequencing of multiple spectra is given with applications to two different spectra pairs. One pair is spectrally complementary to each other, and the other is similar spectra with property differences. These methods include effective spectra merging criteria and parent mass correction steps, and modify the previously proposed graph models to fit the merged spectra. Experiments on several experimental MS/MS spectra datasets and datasets pairs show the advantages of the proposed methods in terms of peptide sequencing accuracy. Finally, conclusions and future work directions are given at the end of the thesis. To summarize the work in the thesis, a series of novel computational methods for de novo peptide sequencing are proposed. These methods target different types of MS/MS spectra and their combinations. Experiential results show the proposed methods are either better than competing methods that already exist, or fill gaps in the suite of currently available methods

    Computational Methods for Protein Identification from Mass Spectrometry Data

    Get PDF
    Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology
    • ā€¦
    corecore