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ABSTRACT 

 Heparan sulfate (HS) is a class of linear, sulfated polysaccharides located on cell 

surface, secretory granules, and in extracellular matrices found in all animal organ 

systems.  It consists of alternately repeating disaccharide units, expressed in animal 

species ranging from hydra to higher vertebrates including humans.  HS binds and 

mediates the biological activities of over 300 proteins, including growth factors, 

enzymes, chemokines, cytokines, adhesion and structural proteins, lipoproteins and 

amyloid proteins.  The binding events largely depend on the fine structure – the 

arrangement of sulfate groups and other variations – on HS chains.   

With the activated electron dissociation (ExD) high-resolution tandem mass 

spectrometry technique, researchers acquire rich structural information about the HS 

molecule.  Using this technique, covalent bonds of the HS oligosaccharide ions are 

dissociated in the mass spectrometer.  However, this information is complex, owing to 

the large number of product ions, and contains a degree of ambiguity due to the 

overlapping of product ion masses and lability of sulfate groups; as a result, there is a 
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serious barrier to manual interpretation of the spectra.  The interpretation of such data 

creates a serious bottleneck to the understanding of the biological roles of HS.  In order to 

solve this problem, I designed HS-SEQ – the first HS sequencing algorithm using high-

resolution tandem mass spectrometry.  HS-SEQ allows rapid and confident sequencing of 

HS chains from millions of candidate structures and I validated its performance using 

multiple known pure standards.  In many cases, HS oligosaccharides exist as mixtures of 

sulfation positional isomers.  I therefore designed MULTI-HS-SEQ, an extended version 

of HS-SEQ targeting spectra coming from more than one HS sequence.  I also developed 

several pre-processing and post-processing modules to support the automatic 

identification of HS structure.  These methods and tools demonstrated the capacity for 

large-scale HS sequencing, which should contribute to clarifying the rich information 

encoded by HS chains as well as developing tailored HS drugs to target a wide spectrum 

of diseases. 
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Chapter 1 Introduction 

1.1 Overview of Dissertation 

 The dissertation is organized as follows: 

 Chapter 1 introduces the background of heparan sulfate: its physiological role, 

chemical structure, biosynthesis and its binding mechanism with proteins.   

 Chapter 2 reviews the state-of-the-art identification algorithms in proteomics and 

glycoproteomics, and discusses the possibility of migrating the algorithms into heparan 

sulfate identification. 

 Chapter 3 presents HS-SEQ, the first de novo sequencing algorithm for 

identifying the sulfation pattern on heparan sulfate sequence and compares the 

performance of HS-SEQ with two naïve methods. 

 Chapter 4 presents MULTI-HS-SEQ, an expanded version of HS-SEQ in 

identifying heparan sulfate sulfation pattern in the context of mixture. 

 Chapter 5 introduces several pre-processing and post-processing modules and 

algorithms assisting the working of HS-SEQ. 

 Chapter 6 summarizes the thesis, discusses the practical significance of HS-SEQ 

in promoting scientific study and drug design, and explores the possibility of generalizing 

the model of HS-SEQ to identification of peptides and glycopeptides. 

 Chapter 3 has been published in Molecular Cellular & Proteomics (2014).  

Chapter 2 is organized as a review and publishing is under planning.  Chapter 4 and 5 

will be combined as a pipeline paper, whereas 5.2.2 has been published in Analytical 

Chemistry (2013).  
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1.2 Physiological roles of Heparan Sulfate 

 Heparan sulfate (HS) is a type of linear polysaccharides consisting of alternative 

repeating disaccharides belonging to glucosaminoglycan (GAG) family.  HS is an ancient 

molecule with conserved basic structure over 500 million years of evolution.  From 

primitive species such as hydra to higher vertebrates including humans, HS was found in 

all animals examined (1), with the exception of Porifera (e.g. sponge) (2).  At the cellular 

level, it locates on cell surface, in extracellular matrix (ECM) as well as intracellular 

granules, and mediates cell-cell interaction, matrix remodeling and activation of multiple 

signaling pathways (Figure 1).  At the tissue level, it is involved in all animal organ 

systems (3), and responsible for tissue development, anticoagulation, angiogenesis, 

wound repair, pathogen recognition and many other biological functions (3).  The active 

roles of HS in inflammation (4) and cancer (5, 6) have also been intensively reported. 

 One of the most intensely studied examples of HS is its effect on anticoagulation.  

Heparin, the highly sulfated form of HS, binds to antithrombin (AT) III, which causes a 

conformational change of ATIII and eventually its activation.  The heparin/ATIII 

complex is able to inhibit the activity of proteases (e.g. thrombin, factor Xa) in fibrin clot 

formation, and therefore prevents blood coagulation.  Another well-known example is the 

binding between HS and fibroblast growth factors (FGFs), which forms morphogen 

gradients in the ECM and leads to branching morphogenesis (7).  Besides, HS competes 

with chondroitin sulfate (CS), another GAG member, to bind to receptor protein tyrosine 

phosphatase sigma (RPTPσ) (8), which regulates the development and repair of nervous 

system. 
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 All HS biological activities pivot on its structural specialties, which dictates the 

binding with diverse proteins.  In fact, HS is capable of binding to > 300 proteins 

(heparan sulfate-binding proteins, HSBPs) (9), including growth factors, chemokines, 

cytokines,  blood coagulation factors, structural proteins, lipoproteins and amyloid 

proteins, in a non-covalent manner.  Pathogens can recognize HS sequence for their 

invasion into the host.  On the other hand, HS is able to bind covalently to a relatively 

small set of core proteins (~17) either on cell surface (e.g. glypican) or in ECM (e.g. 

serglycin).  The HS-core protein complex, which is named as heparan sulfate 

proteoglycan (HSPG), restricts the spatial distribution of HS chains, and therefore 

provides a framework to regulate the binding between HS and HSBPs.  These facts 

implicate that HS either resembles the role of simple molecules like H2O, to assist the 

binding of molecules in a straightforward way, or follows the style of large molecules 

like RNA and protein, to involve in biological functions based on definitive sequences.  

Surprisingly, the debate on the binding mechanism between HS and HSBPs lasts for 

decades, regardless of the emerging new discoveries on HS-ligand interaction (10). 

    
 

 
Figure 1 Heparan sulfate plays an universal role in cell phisiology.  HS locates on (A) 

cell surface, in (B) ECM and (C) secreted granules, and interacts with multiple types of 

proteins. 

A B C Core protein 
HS 

Growth 
factor 
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1.3 Structure and Biological Synthesis of Heparan Sulfate Sequence 

HS molecule structure is highly expressive and organized.  HS chain consists of 

repeating disaccharide units [-4-(GlcA-β/IdoA-α)-1,4-GlcNAc(NS)-α-], where 

GlcA/IdoA may undergo 2-O-sulfation, and GlcNAc may undergo N-deacetylation (free -

NH2), N-sulfation, 6-O-sulfation, and in rare cases, 3-O-sulfation (Figure 2A).  

Theoretically there is 48 disaccharide variants covering different combinations of 

sulfation, acetylation and epimerization.  However, disaccharide analysis suggested that 

only ~20 variants are commonly present in animal tissues, which is comparable to the 20 

amino acid residues.  Therefore, a HS sequence with m disaccharide units is equivalent to 

a peptide with m amino acid residues in terms of the sequence variations.  This 

comparison may be unfair, since not all disaccharide units contribute to the binding 

activity.  Instead, the disaccharide units on HS chain constitute domains characteristic of 

distinct sulfation degrees.  A typical HS chain contains several highly sulfated domains 

(NS domains) interspersed with rarely sulfated domains (NA domains) and transient 

domains (NA/NS domains) (Figure 2B).  The layout of the domains are biologically 

meaningful, as HSBPs frequently bind to NS domains and a short NA domain may serve 

to the oligomerization of protein ligands (e.g. chemokine).  Variation also exists within 

NS domains.  The NS domain can vary from dp4 up to dp18, accommodating the 

assembly of different protein ligands.  Factors such as chain length, sulfation degree, 

sulfation/epimerization pattern and heterogeneity among sequences on the same core 

protein, contribute to the biological activity of HS and make HS molecule one of the most 

complicate biopolymer in nature. 
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Figure 2 Heparan sulfate structure. (A) The repeating disaccharide unit of HS.  (B) 

The domain structure of HS chain determined by sulfation degree. 

 

 The complicate structure of HS results from strictly controlled biosynthesis 

procedure in the Golgi apparatus and endoplasmic reticulum (ER) (11).  Different from 

DNA, RNA and protein sequence, whose synthesis relies on precise templates, all glycan 

synthesis is non-template driven. How multiple enzymes coordinate with each other in a 

temporal and spatial manner has not been fully illustrated.  A classical HS biosynthesis 

model consists of three steps, including chain initialization, polymerization and polymer 

modification.  In the initialization stage, the core protein is first xylosylated by 

xylotransferase 1 (XYLT1) and xylotransferase 2 (XYLT2) at selected serine residue.  

Two galactose (Gal) residues are then successively appended to the xylose (Xyl) residue, 

catalyzed by galactosyltransferase 1 (GalT1) and 2 (GalT2), respectively.  A glucuroinc 

acid (GlcA) residue is further added by glucuronosyltransferase 1 (GlcAT1) to complete 
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the tetrasaccharide linker.  Further modifications can occur on the linker region, such as 

phosphorylation on Xyl and sulfation on the two Gal residues.  These modifications can 

affect following polymerization direction, and possibly determine the bifurcation of HS 

and CS biosynthesis (12).  

In the polymerization stage, the first GlcNAc is added to the linker by exostose-

like protein 3 (EXTL3).  GlcA and GlcNAc are then alternately appended to the chain 

through EXT1/EXT2 copolymerase.  The synthesized polysaccharide further undergoes 

extensive modifications, including 2-N modification of GlcNAc (N-deacetylation/N-

sulfation) through N-deacetylase/N-sulfotransferase (NDST 1 and 2), C5 epimerization of 

GlcA to IdoA, 2-O sulfation of IdoA by a 2-O-sulfotransferase (2OST), 6-O sulfation by 

a 6-O-sulfotransferase (6OST) of the glucosamine residue and, in rare cases, additional 3-

O sulfation through 3-O-sulfotransferase (3OST).  Note that to date there’re only one 2-

O-sulfotransferase identified, but three 6-O-sulfotransferases (6OST1-3) and seven 3-O-

sulfotransferases (3OST1, 2, 3a, 3b, 4, 5, and 6) known to exist.  The increasing number 

of sulfotransferase isozymes reflects the growing complexity and substrate diversity 

along the HS biosynthesis path.  On the other hand, this may also implicate a large 

population of sulfation arrangements available on HS chain. 

Synthesized HS chains can undergo further modification when they arrive at the 

cell surface or in the ECM.  Endosulfatases SULF1 and SULF2 anchored to the cell 

surface can remove specific 6-O sulfate groups, and thus regulate the activity of HS 

binding with Wnt, BMP and FGF.  Besides, heparanase is able to truncate HS chain into 
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short, free forms of HS oligosaccharides, which play an important role in metastasis and 

angiogenesis. 

 
1.4 Heparan Sulfate and Protein Interaction 

 As mentioned above, HS chains connect to a specific serine residues on core 

protein (Figure 2B), and form a special glycoprotein complex – heparan sulfate 

proteoglycan (HSPG).  To date, there have been ~17 core proteins reported, which can be 

grouped according to their respective locations (13): 1) membrane HSPGs, which 

includes transmembrane HSPGs, such as syndecans, and glycosylphosphatidylinositol 

(GPI)-anchored HSPGs such as glypican; 2) secreted ECM HSPGs, such as agrin, 

perlecan, collagen XVIII; and 3) secretory vesicle HSPGs, such as serglycin.  Some types 

of proteoglycans contain only one HS chain (e.g. CD44v3 and betaglycan), while others 

may have more (e.g. serglycin).  Proteoglycans may also contain other glycans such as 

chondroitin sulfate (CS) or even mucin-type O-glycan, which significantly expands the 

flexibility of HSPGs in protein binding. 

In contrast with the relatively small number of core proteins, there have been over 

300 proteins (heparan sulfate-binding proteins, HSBPs) identified to bind with HS in 

non-covalent ways (Figure 3).  The HSBPs cover a wide spectrum of categories (9), 

including chemokines and cytokines, growth factors and morphogens, blood coagulation 

factors, support and structural proteins, signaling receptors, cell adhesion proteins, lipid-

binding proteins and amyloids.  Most HSBPs are evolutionarily unrelated to each other, 

yet form HS-binding sites consisting of different domain structures and bind HS with a 
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wide dynamic range of binding affinities (dissociation constant Kd ranges from 1 nM to 

10 µM) (9).  This suggests that the binding between HSBPs and HS follows convergent 

evolution. 

 

 

Figure 3 Heparan sulfate binds with core proteins and many other proteins.  The 

picture shows the triplex of HS-HSBP-HSPG.  HS is critical in facilitating the binding 

between growth factors and their receptors. 

The binding between HS and HSBPs follows several distinct patterns (14).  A 

single protein may bind to a single HS domain, such as the binding between HS and 

antithrombin; the binding of a protein to a single HS domain may promote the binding of 

its receptor to the same domain, and form a ternary complex, such as the binding between 

HS, FGF and FGF receptor (FGFR); two heterogeneous proteins may bind to two 

different HS domains and form a ternary complex, such as the binding between HS, 

antithrombin, and thrombin; homo-proteins such as chemokines, can bind to neighboring 

HS domains in cis or trans manner, and form oligomers. 

Receptor 

Heparan Sulfate Growth 
 Factor 

Core Protein 
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The predominant way for HS to interact with HSBP is through electrostatic 

interaction, where the negative charged groups from HS (sulfate groups and carboxyl 

groups) interact with positive charged lysine and arginine residues from the protein.  In 

this case, the density of sulfate groups dominates the binding affinity.  A typical example 

is the binding of HS to thrombin (15), where the involved amino acid residues are 

capable of binding with different sets of sulfate and carboxylate groups, according to the 

orientations of the heparin. However, the interaction can still be selective, as many 

HSBPs bind with HS only through a distinct subset of lysine and arginine residues, 

regardless of the rest positively charged groups on the surface.  Another important way of 

HS-HSBP binding is based on the formation of hydrogen bonds, where HS interacts with 

polar residues such as asparagine, glutamine and histidine.  In this way, the binding 

between HS and HSBPs requires highly specific HS structures (e.g. the binding between 

an optimal pentasaccharide from heparin and ATIII), and receives wide interests in 

looking for HS motifs that dictate the binding events and mediate downstream biological 

functions. 

 
1.5 Exploration of “Glycan Code” on Heparan Sulfate Chains 

The strictly controlled biosynthesis procedure, information-rich structure and 

intriguing protein binding mechanisms of HS motivated the search of “glycan code” (16) 

– specific arrangements of modifications (sulfation and epimerization) on HS that binds 

protein ligands with high specificity.  There have been years of debate regarding the 

existence of HS motifs which could uniquely bind proteins. 
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Recently, advances in other GAG family members ignited the enthusiasm for 

deterministic GAG sequences. Ly et al. (17) sequenced bikunin, the simplest 

preoteoglycan with a single CS chain attached, using top-down FTMS analysis, and 

showed that it possesses a single or small number of defined sequences regardless the 

overall chain length.  Zhao et al. (18) applied similar methods and drew the same 

conclusion for decorin, another proteoglycan with a more complicate DS/CS GAG chain 

attached.  Given the background that all GAG members share common biosynthetic 

pathway, these studies strongly suggest that HS, one of the most complicate and 

expressive biopolymers, may also contain deterministic motifs that bind with protein 

ligands and play special biological roles.  

Due to the paucity of available HS samples (milligrams), most HS studies relied 

on the derivation or degradation of heparin (kilograms) by assuming that the dense 

sulfation on heparin chain could effectively represent the true HS sequence that binds to 

target protein ligand, and surrounding sulfate groups from heparin products would not 

interfere the binding (9).  This assumption may not hold, given the capacity of diverse HS 

sequences as well as the observation that misplaced sulfate groups even reduced the 

binding affinity between heparin oligosaccharides and ligands. 

Studies of sulfation prevalence in natural heparan sulfate revealed that 3-O-

sulfation constitutes the smallest population.  As a comparison, hs3sts represent the 

largest gene family (7 members identified in vertebrates) in HS sulfotransferases and 

isozymes of hs3sts are differentially and widely spread in animal tissues (19).  3-O-

sulfation is known to boost the binding affinity between ATIII and heparin by ~ 105 
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orders of magnitude, and preside the recognition of glycoprotein gD of type I herpes 

simplex virus.  Heparin also contains 3-O-sulfate groups which don’t bind ATIII.  Their 

functions and binding proteins still remain unknown. Co-crystallization experiments 

suggested that different HS3ST isozymes may have distinct requirements of substrates, 

which are products undergoing tightly controlled sulfation (2-N, 6-O on glucosamine 

residue, and 2-O on hexuronic acid) and epimerization.  Studies on the expression of 

hs3st genes further showed that they are controlled in a spatial and temporal manner.  

Although a HS motif does not necessarily require 3-O-sulfation, it is likely that a special 

3-O-sulfation represents the control of a special biological function. It will be highly 

interesting to look for 3-O-sulfation containing HS oligosaccharides and identify HSBPs 

that bind specifically to them. 

As mentioned before, multiple factors contribute to the binding affinity between 

HS and HSBP.  As a result, the binding may depend on an individual sulfate group, a 

small subset of sulfation/epimerization arrangements, or simply the sulfation degree.  

Given the paradoxical information regarding the HS binding mechanisms, studies 

supporting any of the scenarios cannot be satisfactory without illustrating the exact 

binding sequences on HS chain.  On the other hand, since a HS sequence is capable of 

binding to multiple proteins (albeit with different affinities and specificities), study of HS 

fine structure will contribute to designing tailored HS oligosaccharides with high 

selectivity.  A successful example is that Fondaparinux (trade name Arixtra) significantly 

reduces the risk of heparin-induced thrombocytopenia, which is a severe side effect of 

unfractionated heparin. 
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 To date, multiple techniques have been used in determining the HS sequence and 

its binding with HSBPs, such as enzyme digestion followed by polyacrylamide gel 

electrophoresis (PAGE) or liquid chromatography (LC), mass spectrometry (MS), multi-

dimensional nuclear magnetic resonance (NMR) spectroscopy, and X-Ray 

crystallography (20).  Among these methods, mass spectrometry provides promising 

results in high-throughput omics study and rapidly becomes the most important tool in 

glycomics (including GAG) analysis (21).  By coupling with chromatography methods, 

MS is able to detect low abundant products from digestion mixtures.  With improved 

fragmentation methods on high resolution tandem mass spectrometry, researchers can 

acquire information about fragment compositions (including sulfur number), linkage 

types, and probably epimer (22). 
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Chapter 2 Review of Sequencing Methods in Proteomics and Glycomics Using 

Tandem Mass Spectrometry 

 HS identification has much in common with the identification of other 

biopolymers (peptides, glycans and glycopeptides): all these molecules are formed as 

sequences of defined residue units, and their fragments in the tandem mass spectra reflect 

subsets of the precursor ion compositions.  Therefore, identification algorithms for one 

type of molecules are in theory portable to other types.  Due to the paucity of HS 

sequencing algorithms (20), it is important to recognize the issues that have been 

addressed before in related fields so that the corresponding strategies can be migrated 

into HS identification.  Issues that are still open or peculiar to HS analysis should be 

discussed separately with caution. 

 

2.1 Definition of Sequencing Problem 

In a typical shotgun proteomics study, protein sequences are selectively digested 

into peptides during proteolysis.  Trypsin is the most commonly used enzyme to cleave 

the sequences at the carboxyl side of arginine and lysine, with the exception that either is 

followed by proline.  The peptide mixture undergoes separation through liquid 

chromatography (LC) and ionization in a mass spectrometer ion source.  Designated 

peptide ions (precursor ions) are further dissociated into fragments (product ions) through 

multiple fragmentation pathways, and the product ions’ m/z and intensity information is 

recorded in the tandem mass spectra. Peptide sequencing, in general, is about finding a 

definitive sequence that connects the product ions to the belonging precursor ion.  The 
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most common way is to formalize the procedure using prior knowledge of the sequences: 

selecting the optimal sequence(s) from a set of candidates within the error window so that 

the predicted fragments from the selection should match the actual spectra closely. 

Collision-based dissociation is widely used for biomolecules, including, collision-

induced dissociation (CID) (also known as collisionally activated dissociation (CAD)) 

and high energy collision dissociation (HCD). Activated electron dissociation (ExD) 

methods commonly used in proteomics and glycomics include electron-capture 

dissociation (ECD), electron-transfer dissociation (ETD), and electron detachment 

dissociation (EDD).  These methods provide distinct fragmentation patterns and preferred 

fragment types, which can be used to assist the identification.  For proteomics database 

search methods, the search space is limited to peptide sequences derived from protein 

databases, or genomic database after six-frame translation.  For de novo sequencing (23) 

where no prior sequence information is assumed, the search space expands to all possible 

peptide sequences.  In this context, de novo sequencing is viewed as the generalization of 

database search methods, and only considered when the species is unknown, the database 

is unavailable, or as an orthogonal method to database searching. 

Both database search and searching-based de novo sequencing methods make 

several assumptions implicitly. The first assumption requires that the actual sequences or 

at least the homologous sequences have to be available for searching.  This means the 

best candidate sequences are selected through comparison over sequence pool.  The 

second assumption states that the matched peaks should in general refer to preferred 

product ions based on instrument-specific fragmentation rule and chemical preference.  
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Therefore, if a peak matches to a B2 ion, then it is scored as a B2 ion.  Once a second 

product ion also matches to the peak, different algorithms may choose to ignore or 

overcount the second ion.  The first assumption may not hold if the sample comes from 

unknown species, or there is no available database.  Alternative splicing also causes 

trouble in identification.  The second assumption may fail if the product ion types are 

dubious.  This is frequently observed in the presence of internal fragments, or in 

phosphopeptide identification where the phosphate group is labile.  

Peptide identification can also be solved without exploring the sequence space.  

Peaks with informative mass differences in the tandem mass spectra can be assigned to 

residues.  Connected residues eventually form one or more paths that represent the 

candidate sequences.  This intuitive way of sequencing is widely used in manual 

interpretation of tandem mass spectra (24).  In cases where the full sequence is hard to 

acquire, subsequences with a small number of residues (sequence tags) are generated and 

coupled to database search methods for further identification (25).  For de novo 

sequencing, the identification problem is considered as finding the longest path in a 

spectrum graph (26). 

 The identification of the whole protein sequences requires the collection of 

identified peptide sequences, and mapping from peptides to proteins in the database.  

Different proteins may share identical peptides and some proteins may contain one-hit 

peptides.  Models have been proposed to infer the most likely set of proteins.  It is worth 

noting that the protein vs. peptide relationship is analogous to the fragment ion vs. ion 

mass relationship, both of which can be illustrated as a bipartite graph.  Protein inference 
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is a complicate problem involving uncertain peptide identification, degenerate peptides, 

peptide detectability and other issues (27), which is beyond the scope of the discussion in 

the thesis. 

 If the main goal is to study the modification (e.g. phosphorylation) localization 

along the sequence instead of the sequence itself, the sequence identification problem can 

be framed as distributing a set of pre-determined modifications to possible candidate 

residues, which is essentially a combinatorics problem.  Peptides with modification may 

compete with intact peptides for peptide-spectrum match (PSM) by generating a large 

number of dubious fragments. Modified peptides may also affect the specificity of 

enzyme cleavage (28).  Besides, the modification may be lost during fragmentation.  

These all adds extra difficulties in recovering the sequence structure. 

 Glycan sequencing entails building a glycan tree where each node represents a 

residue and the edge is the linkage between residues (29). The sequencing methods share 

basic procedures of peptide sequencing.  Candidate oligosaccharides can either be 

selected through database searching (30), or constructed in a de novo way (31).   

Glycopeptide sequencing is more than the combination of identifying peptide and 

oligosaccharide sequences.  The glycosylation site specificity is important for illustrating 

the biological functions of glycopeptide, and currently the focus of glycopeptide 

characterization.  Due to the lack of standards and coisolation of proteoforms, the 

sequencing problem may also be framed as sequencing from mixtures, which has been 

discussed before (32). 
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2.2 Review of Database Search Methods 

The earliest database search methods date back to 20 years ago.  In 1994, Mann 

and Wilm introduced PeptideSearch (25) to extract sequence tags from tandem mass 

spectra and search them against the sequence database.  In the same year, Eng et al. (33) 

implemented SEQUEST, an automated database search method based on cross-

correlation function.  Since then, several other database search methods have been 

developed, including Mascot (34), X!Tandem(35), OMSSA (36), MyriMatch (37), 

ProteinProspector (38, 39), Andromeda (40), Morpheus (41), Comet (42), and MS 

Amanda (43). Database search methods are widely used in peptide and protein 

identification (44, 45), and remain part of the standard procedure for modern proteomics 

analysis workflow (46, 47).  Despite distinct features provided by different search 

engines, most methods follow the general procedure of matching an experimental tandem 

mass spectrum against a genomic database.  During the matching procedure, the quality 

and organization forms of the database, the characteristics of the experimental spectra, as 

well as the scoring function measuring the fitness between the spectrum and entries in the 

database may all affect the final identification performance. 

 A spectrum is simply a series of m/z and intensity pairs, while a peptide sequence 

consists of ordered amino acid residues.  In order to bridge the gap between these two 

forms, format transformation is necessary.  Researchers can either choose to match the 

observed spectra against theoretical spectra, which are generated from the protein 

sequences in the database via in silico digestion and fragmentation, or against annotated 

spectra from previous experiments.  Alternatively, one can convert the target spectra into 
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sequence or sequence tags (de novo sequencing), and then searched the sequence or tags 

against the protein sequence database (48).  Most database search tools support sequence 

database in the format of FASTA (49).  The sequence files can be downloaded from 

databases targeting specific organisms, or comprehensive non-redundant databases 

containing many taxa, e.g. UniProt (50) and RefSeq (51), or large redundant database 

such as Entrez Protein.  When the protein sequences for the studied species are 

unavailable, it is also possible to search against nucleic acid databases, such as DNA, 

mRNA and expressed sequence tags (ESTs) after six-frame translation (52).  

 Trypsin is the most widely used protease in shotgun proteomics for protein 

digestion.  It typically cleaves protein sequences at the carboxyl side of lysine and 

arginine, unless the target residue is followed by a proline.  Alternative enzymes, such as 

Lys-C/Chymotrypsin, are also combined with trypsin in experiments in order to improve 

the coverage of whole protein sequencing.  Enzyme specificity (full, semi or non-

specific) and missing cleavages (0, 1, or 2) may are important factors determining the 

PSM, and researchers are responsible for configuring the parameters based on the goal of 

the experiments. 

 Pioneer database search methods originated with the availability of low 

resolution tandem mass spectrometer (e.g. linear ion trap).  The data produced contain a 

large amount of peaks with missing isotopic patterns.  As a result, charge state 

information for peaks may be lost and use of a probabilistic model is needed for 

estimating instrument-specific ion types, charge states, and likelihood of spurious peaks.  

As high accuracy and high resolution instruments such as QTOF, and FTMS (including 
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ion cyclotron resonance and Orbitrap) emerged, the isotopic clusters for fragment ions 

are more likely to be maintained.  Mass differences between isobaric ions due to isotope 

fine structure are also able to be detected for low masses.  With the widespread 

availability of such high quality data, algorithms including Morpheus (41) and MS 

Amanda (43), were developed to use non-probabilistic scoring functions to produce faster 

and better identification results relative to classical methods.  

Another factor that affects the identification of a sequence is the scoring function, 

which serves to differentiate the correct sequence from incorrect sequences.  Sadygov et 

al. (44) categorized the PSM scoring function into four types: descriptive, interpretative, 

stochastic and probability-based.  The scoring function can be based on different 

probability models, such as binomial distribution for Andromeda (40), or can be simple 

counting strategy, as implemented by Morpheus (41) .  

Post-translational modifications (PTMs) expand the functional diversity of linear 

protein sequences, and increase the number of structural variants exponentially.  For 

database search methods, the existence of PTMs poses dual effects on the actual 

identification.  On one hand, they serve to double check the identification of native 

sequences.  Some search tools require the native sequences to be identified in the first run 

and modified versions in future runs, which is a strategy adopted in multiple-pass 

searches.  On the other hand, PTMs on sequences may be misidentified as different native 

sequences, requiring researchers to manually check the data.  False positives are difficult 

to detect unless the modification type is explicitly specified, or an unrestricted PTM 
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identification method is adopted (53, 54).  Most database search tools allow users to 

specify fixed (static) and flexible modifications.   

A fixed modification, such as phosphorylation, has the same effect as updating the 

mass of the modified residue, which causes no extra burden in searching.  The presence 

of two types of modification at a given site doubles the search time for each candidate 

modification site, and the combination of multiple modification types exponentially 

increase the search time.  Therefore, strategies have to be made to control the complexity 

of searching conditions.  Andromeda (40), the search engine of the quantification 

software MaxQuant, exhaustively lists all the possible combinations of PTMs on the 

protein sequence to improve the identification rates.  It uses multiple levels of indexing to 

allow the program to run smoothly on a laptop.  If glycosylation is taken into account as a 

peptide PTM, the total searching space will further increase by orders of magnitude, 

making either the standard database search or manual specification of sequences 

unfavorable.  Nearly all mainstream database search tools consider only the number of 

modifications on the sequence during MS1 candidate filtering. Such tools do not perform 

well for locating the exact modification sites (modification localization).  Usually 

dedicated tools are needed if the goal of experiments is to identify modification 

localization. 

Due to the complexity of factors determining the match performance, it is usually 

difficult for novices to develop an appropriate analysis workflow; however, guidelines on 

analyzing the data and discussion of potential problems are available (55).  Nonetheless, 

it is often necessary for users to manually verify results.  This seems acceptable in a high-
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throughput study, since the parameters only need to be tuned once.  However, it raises the 

difficulty of combining datasets across multiple experiments, especially those from 

different labs.  Machine learning techniques were considered to assist the automatic 

optimization of parameters, but in most cases, despite steady progress in proteomics tool 

suites, proteomics data analysis remains to a large degree a time consuming effort. 

Few standard datasets are publicly available allowing developers and users to test 

their search methods (56).  In most cases, the target-decoy approach (TDA) (57) is used 

to measure the specificity by assuming that decoy sequences are randomly distributed 

among the search space, which provides a good measure of false discovery rate (FDR).  

The TDA method provides a neat and accurate way of validating proteomics results, and 

threshold of 1% or 5% are widely used by almost all database search tools.  However, 

cautions should be taken on the validation report when using a TDA method (58).  Use of 

too small a searching space, biased sequence distribution due to multi-pass search, errors 

in translation from nucleic acid database, and among other problems, may skew the 

background distribution and produce unexpected results on the normal FDR threshold 

using TDA approach. 

The TDA approach facilitates the peptide identification in that once the FDR 

threshold is well controlled, the more peptides a search tool identifies, the better 

performance it provides.  This allows the strategy of combining searching results from 

multiple engines to improve the overall identification rate.  The basic assumption of this 

strategy is that different tools may excel in identifying certain types of peptides for 

certain instruments, but deteriorates in other types of peptides.  A set of tools were 
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developed to support the combining method, such as MSBlender (59), PepArML(60), 

ConsensusID (61) module of OpenMS (62), iProphet (63), and PeptideShaker (64, 65).  

Shteynberg et al. (66) reviewed the identification results produced by different ways of 

combining search engines, and suggested to learn the complementarity and similarity 

between tools to avoid unnecessary time waste and bias towards certain groups of 

peptides.  More strategies have also been proposed to improve the identification rates or 

reducing false positives, which includes combination of multiple fragmentation modes 

(67) or other omics data, digestion with multiple enzymes, multi-pass search, 

improvement of validation approach, construction of customized database from genomic 

database or RNASeq data. 

As discussed above, informatics workflows for proteomics is still in immature 

stage. Considerable user experience and efforts are necessary to monitor the quality of the 

analysis.  The problem may root in the design of scoring functions, which favor a set of 

peaks while disregarding the rest.  There are chances that the favored peaks may have 

been mistakenly assigned or weighted due to unknown dissociation mechanisms, internal 

cleavage, or PTM.  TDA does not provide a safety net to prevent the search tools from 

making such mistakes.  Further, the uncertainty from peptide identification will amplify 

when used to infer protein structure, which makes the inferred results even less reliable. 

 

2.3 Review of De Novo Sequencing Methods 

Due to the rigorous assumption of sequence availability, de novo sequencing is 

considered as a complementary method to validate identification results from database 
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searches.  It is also extremely useful when the matching of a homologous sequence 

database is unavailable (e.g. snake venom antibodies), the organism in question mutates 

rapidly (e.g. some viral pathogens) or when species or organism is unknown.  Current de 

novo sequencing methods can be categorized into naïve approaches, spectrum graph 

models, probabilistic and combinatorics models (23) depending on their specific 

assumptions.  The definition of de novo sequencing is very rough, since the naïve 

approach, which enumerates all or set of the theoretical possible sequences and finds the 

optimal one, is similar to a database search method.  Therefore, many researchers simply 

view de novo sequencing as a general case of database search (23, 68).  As a result, the 

PSM scoring function, which typically requires assumption of the fragmentation patterns 

in the tandem mass spectra, can be migrated seamlessly from database search into de 

novo sequencing. 

Naïve approaches simulate the method of database searching, while adopting 

different strategies to reduce the searching space.  PEAKS (69), which is the most 

popular commercial software for de novo sequencing, generates 105 sequences and 

merges the sequences into a consensus sequence with local confidence on residues.  

Heredia-Langner et al. (70) implemented a genetic algorithm (GA) to optimize the 

candidate sequence efficiently from a very large search space.  An advantage of naïve 

approaches is that they tolerate the missing fragments and internal fragments that are 

often difficult to address by other de novo sequencing algorithm, but they may be less 

attractive when the protein sequence database is accessible. 
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Another major branch of de novo sequencing consists of graph-based models.  

These approaches attempt to represent the tandem mass spectrum as a graph with the 

vertex representing observed peak and the edge representing amino acid residue mapped 

from the mass difference between vertexes.  The optimal sequence corresponds to the 

longest path in the graph, and different methods were proposed to solve the problem 

based on dynamic programming techniques (26, 71, 69, 72).  Due to the ambiguity and 

unknown fragmentation mechanism, even the optimal sequence may not be correct.  

Therefore, algorithms looking for suboptimal solutions were also developed (73).  The 

computation time usually is a function of the number of nodes multiplied by the number 

of edges, which might be huge if all the peaks are considered.  As with database search 

methods, emergence of high-resolution tandem MS data also contributes to the 

identification quality and proteomics-grade sequencing results (74). 

There are a few algorithms that utilize the features of tandem mass spectra and 

peptides.  Zhang et al. (75) designed a divide-and-conquer method to separate the whole 

spectrum into subspectra, upon which the sequencing task is running.  Spengler (76) 

proposed a composition-based sequencing strategy to sequence peptides based on peptide 

composition and high accuracy mass spectrometer.  Olson et al. (77) provided an 

improved composition-based sequencing algorithm working for MALDI TOF/TOF.  It 

contains an amino acid composition look-up table, and retrieves the amino acid 

compositions from the b- and y-ions.  By expanding the compositions of the ions, from 

single amino acid till the full peptide composition, the actual sequence can be decided.  
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Common complaints regarding de novo sequencing methods include time-

consuming performance, poor identification rate and coverage, and lack of validation 

methods.  For spectrum graph methods, the missing fragments and ambiguous paths may 

prevent an algorithm from finding the optimal sequence.  For naïve methods, the 

enumeration of search space undergoes combinatorial explosion, which maybe intractable 

as the sequence length grows.  Significant efforts have been made to improve the covered 

sequence length and accuracy, which include: combination of spectra pairs from multiple 

fragmentation mode, e.g. collision-induced dissociation (CID), electron-transfer 

dissociation (ETD), and high-energy collision dissociation (HCD), and multiple enzymes 

(78); combination of spectra from top-down and bottom-up proteomics experiments (79); 

and appending de novo sequencing with homologous database search (48).  The 

emergence of high-resolution MS/MS data also contributes to the identification quality 

and proteomics-grade sequencing results (74). 

 

2.4 Identification Methods in Post-translational Modification Study 

 Post-translational modifications modify protein sequences, adhesive properties 

and are required for all aspects of physiology.  There have been hundreds of modification 

types reported, and stored in databases, including Unimod (80) and RESID (81).  The 

identification of PTMs on peptide sequences is a non-trivial computational problem.  The 

complexity of PTM analysis lies in the fact that PTM triggers new varieties on the 

sequences as well as the spectra, where traditional identification methods were not 

designed for addressing those issues. Na and Paek (68) summarized the issues into 
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several categories.  One of the problems is that the dynamic range across modified and 

unmodified peptides is terrifically large for complex samples, e.g. from 1 to 1011 for 

human plasma proteome (82). Modified peptides with low abundances may not be 

identified.  The second problem is that some types of modification are labile and 

significant peaks with neutral losses are observed, for example phosphorylation using 

CID.  The third problem is that peptides with different site-specific modifications may 

co-elute and co-fragment, a problem that is very common for histone proteins (83).  The 

modification can also exist in multiple forms, e.g. glycosylation, which may dissociate 

during fragmentation procedure.  Finally, the existence of a modification may 

significantly change the fragmentation pattern of the peptide, while produce specific 

diagnostic ions, such as immonium ions (28).  In early days, most PTM identification 

studies were performed through database search methods by configuring static and 

flexible modification types upon the restricted amino acid residues.  This quickly 

becomes computationally intractable when a large number of modification types are 

taken into account. 

 Compared with an unmodified one, a modified peptide shifts part of the generated 

product ions towards increasing m/z.  In the case of only one modification on the peptide, 

the starting position of the shifts usually indicates the modification site and the shifted 

distance represents the modified chemical group. In other words, the modification 

contributes to dividing the spectrum into two separate sub-spectra, for each of which the 

relative m/z positions of the peaks are well maintained.  
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 In order to reduce the computational cost during exhaustive modification type 

searching, most modern PTM algorithms adopt multi-pass strategies to remove unrelated 

candidate peptides.  In the first pass, peptides with the minimum number of modifications 

(usually due to sample preparation) are searched and identified.  In the second pass, 

peptides identified from last round are combined with a comprehensive list of known 

modifications and re-searched to explore possible types of modifications.  The second 

step is usually called blind search, or unrestrictive search, comparing to “restrictive” 

search in classical database search methods that target for peptides with minimum 

modifications.  Blind searches compare the tandem mass spectra against candidate 

peptides for all known or even novel types of PTMs.  As more types of PTM are 

considered, the search space expands exponentially.  However, the size of the search 

space remains acceptable if the total number of candidate peptides is well controlled.   

Different methods have been proposed to improve the matching performance 

between the tandem mass spectra and modified peptides. MS-Alignment (84, 85), the 

first blind search algorithm, finds optimal alignment between spectrum and peptide using 

dynamic programming method.  OpenSea (86) and SPIDER (87) look for the difference 

between de novo sequencing and unmodified peptide candidates.  MODa (88) provides a 

fast solution to identify peptides with multiple unknown modifications based on spectral 

alignment (85) and sequence tag.  As discussed above, the sub-spectra separated by the 

modification maintain the relative m/z positions of the bounded peaks.  The relationship 

between spectra from unmodified and modified peptides has also been studied.  The 

notion “spectral pair” notion is used to represent the closely related spectra.  ModifiComb 
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(89) and DeltAMT (90) groups spectral pair with difference precursor mass values but 

similar retention time and predict putative modifications.  Spectral network (91, 92) 

organizes the spectra from the network perspective, where each node represents a 

spectrum and each edge represents the similarity relationship between nodes.  As a result, 

spectra similar to each other (even partially) are clustered together and the knowledge of 

unknown spectra can be inferred from spectra with annotations. 

 As more types of modifications are taken into account, the trade-off between 

sensitivity and specificity should also be given attention.  By adding an additional 

modification mass, the spectrum can be better explained.   However, effect might just be 

caused by spurious peak annotations instead of a novel modification.  As a result, a much 

higher scoring threshold is needed to distinguish the identified modified peptide 

sequences from the background.  Another issue is the “skewed” distribution of the scores 

from decoy sequences due to the small set of candidate peptides.   Efforts have also been 

made on designing robust scoring function and reconstructing decoy database. 

 Most PTM tools focus on the identification of types of modifications, while 

ignoring the modification localization issue posed by PTM.  Different from the 

identification of modification types, where the mass values of the product ions and 

precursor ions all contribute to the identification, only a few peaks (one b-ion and y-ion 

in the case of one modification) are able to suggest the actual modification site.  Missing 

fragmentation, low-abundance peaks, and spurious peak interpretation may mislead the 

identification of modification localization.  AScore (93) evaluates the confidence of 

phosphorylation sites based on site-determining ions, by considering the phosphorylation  
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on each candidate site.  SLoMo (94) extends the AScore algorithm to cases with multiple 

instruments, multiple search engine and different modification types in Unimod (80).  

The presence of isomers may make the problem more challenging.  A few methods have 

been proposed to address the issue (83, 95). 

 

2.5 Identification methods in Glycoproteomics 

 Glycans, or carbohydrates, are critical in regulating cell signaling, cell-cell 

adhesion, and pathogen recognition.  It has been estimated that at least half of proteins in 

eukaryotes are glycosylated (96), although the latest study suggested the number be one 

fifth (97).  In addition to the peptide sequence, a typical glycoproteomics study also 

covers the identification of compositions of carbohydrate moieties and site-specific 

connections between the carbohydrate and peptide sequence. 

 The identification method for glycoproteomics is still in its infancy stage.  Efforts 

have been focused on the development of software suite or home-made scripts to 

accommodate specific experimental design, but little generality has been achieved to 

facilitate the community (98–100).  One of the possible reasons is that new sample 

preparation methods are emerging to achieve better sensitivity and higher throughput, 

which complicates the data processing and require dedicated tool.  Another cause may be 

the lack of consensus in defining milestones in glycoproteomics pipeline so that software 

project from one group cannot be easily followed and improved by another group.  

Besides, PTM identification problem in proteomics is still open and the addition of 

 



 30 

microheterogeneity and macroheterogeneity from carbohydrate moieties complicates the 

task. 

 
2.6 Challenges in Heparan Sulfate Sequencing 

Identification of HS molecules shares some similarities with peptide 

identification.  All glycan structures have clearly defined set of residues and fragment 

types, which was first proposed by Domon and Costello (101).  Therefore, routine 

strategies in proteomics can be considered for HS sequencing.  From the perspective of 

database searching, one can simply construct a HS sequence database based on known 

biosynthetic rules (102), or enumerate all theoretically possible sequences.  The scoring 

function and FDR calculation in proteomics may assist the algorithm development for HS 

sequencing.  Potential problems may arise for a database version of HS sequencing, 

which include: the sequence space undergoes combinatorial growth as the chain length 

increases; top-ranking sequences may not differentiate with each other, even for pure 

standards; biosynthetic rules summarized from previous studies are not comprehensive 

and rare sulfation pattern may associate with special biological function.  A traditional 

bottom-up de novo sequencing strategy is still problematic, as the mass difference 

between two assigned peaks is very likely to match to residues with sulfate loss, or more 

than one possible answer.  Besides, sulfate groups on the HS sequence is comparable to 

PTM on peptide sequence, where both have preferred candidate modification sites and 

modification events will shift the related peaks by a fixed mass value.  Methods for 

modification localization are potentially valuable for identifying the sulfation localization 

on HS chain.  There were several pioneer studies on automated HS sequencing, as 
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discussed below.  However, compared with the fast evolvement of instrument, the 

development of computational methods still lags behind. 

In 2005, Saad et. al. developed HOST, a spreadsheet-based heparin sequencing 

tool using enzymatic digestion and a CID ESI-MSn approach (103).  HOST built 

oligosaccharide sequences based on similarity analysis that compares tandem mass 

spectra of disaccharide units produced from the saccharide in question against those 

acquired from the intact saccharide.  Methods have advanced since that time and now 

allow determination of sulfation and acetylation directly from tandem mass spectra 

without separate enzymatic digestion.  Simulation model (102) was also explored to 

predict the fine structure and domain organization of HS sequence using information 

from enzymatic digestion and Golgi-based biosynthetic rules.  This method produced an 

“average” HS chain statistically and is valuable for guiding the selection of candidate 

sequences, yet it failed to pinpoint the positions of sulfate groups for a specific chain.  

The public tool Glycoworkbench (104, 105) was also developed to facilitate the 

assignment of monoisotopic peaks in tandem mass spectra of glycans (including GAG), 

but it aided little in the identification of sulfated sites on the sequence scale. 
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Chapter 3 De Novo Sequencing of Heparan Sulfate Using Synthetic Pure Standards 

3.1 Introduction 

 The identification of HS fine structure has long been a labor-intensive and error-

prone process, which could be attributed to the lability of sulfate groups during 

fragmentation as well as ambiguous structural interpretations associated with each 

identified monoisotopic peak. As discussed in Chapter 2, the traditional sequence 

identification methods are not applicable to HS sequencing: there is no available public 

database for HS sequence, and the total number of candidate isomers increase 

combinatorially, depending on the candidate sulfation (and acetylation) sites as well as 

the number of sulfate groups; one candidate isomer might be very similar to another in 

terms of their theoretical spectra.  On the other hand, the mass difference of two peaks 

can easily match to monosaccharide residues plus certain number of sulfate groups, 

which may simply result from random match. 

 A method for automatic HS sequencing will not succeed without considering the 

fragmentation pattern. However, the pattern summarized based on human expertise may 

easily be distorted by alternative explanations, especially for structure consisting of 

identical components.  In order to solve the problem, I designed HS-SEQ (106), the first 

HS sequencing algorithm using high resolution tandem mass spectrometry.  It focuses on 

high-confidence peak interpretations instead of global sequence-spectrum match.  This 

chapter will introduce the principle and framework of HS-SEQ in solving the HS 

sequencing problem. 
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3.2 Summary of Technique Advance for Heparan Sulfate Fragmentation 

The development of experimental methods over the past few years has turned the 

prospect of HS sequencing into reality (107–109).  Recent breakthroughs in 

chemoenzymatic synthesis of HS with specified sulfation positions have removed 

roadblocks in designing substrates with desired properties (110).  Meanwhile, new 

tandem mass spectrometric dissociation techniques are now capable of identifying 

sulfation patterns of some GAG oligosaccharides directly (17, 18).  In particular, electron 

detachment dissociation (EDD) (22)and negative electron transfer dissociation 

(NETD)(111, 112) techniques generate informative spectra that include rich glycosidic-

bond and cross-ring cleavages while maintaining the intact sulfation information.  It is 

also possible to suppress losses of sulfate groups in collision-induced dissociation (CID) 

tandem mass spectra by derivatizing HS saccharides (113) or by replacing acidic protons 

with metal cations (114, 115).  However, all tandem mass spectra of highly sulfated HS 

saccharides display useful backbone dissociation combined with some degree of sulfate 

losses.  This gives rise to a multiplicity of product ions with either intact or reduced 

sulfate numbers, the interpretation of which limits the dissemination of these techniques.  

It is thus necessary to develop commensurate computational methods to meet the 

challenges of these new techniques, which will promote the systematic study of the in 

vitro and in vivo effects of HS fine structure on physiological activities. 

 
3.3 Definition of Heparan Sulfate Sequencing Problem 

 For HS, the size of the sequence space is a combinatorial function that depends on 

the oligosaccharide backbone and numbers of acetate/sulfate groups.  For example, a 
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hexasaccharide with composition [1, 2, 3, 1, 6] ([ΔHexA, HexA, GlcN, Ac, SO3]) gives 

rise to 1,386 isomers, while a 14-mer oligosaccharide with composition [0, 7, 7, 2, 5] 

produces 1,381,380 theoretical sequences.  Sampling methods may speed up the 

searching process, but the resulting local maximum and convergence problems pose 

additional burdens on configuring reasonable searching/scoring schemes.  Even with 

efficient limitation of the search space, it may still be difficult to distinguish the true 

sequence from candidate sequences via sequence scores, since the regions with incorrect 

sulfate/acetate numbers may be supported by falsely assigned product ions due to product 

ion assignment ambiguity. 

The HS sequencing problem can be considered as finding the best way to 

distribute fixed numbers of acetate/sulfate groups along the precursor sequence.  The 

precursor mass usually uniquely determines the HS composition, i.e. the counts of 

monosaccharide residues, sulfate and acetate groups, whereas the counts of 

monosaccharide residues implicitly determines the sequence of monosaccharide residues 

and therefore the sequence of candidate acetylation/sulfation sites along the precursor 

sequence.  In this sense, we can rephrase the HS sequence problem as finding the best 

way to distribute a fixed number of acetate/sulfate groups among a fixed set of candidate 

acetylation/sulfation sites. 

We clarify several terms (Figure 4B) here in order to facilitate the discussion.  We 

use modification to represent acetylation/sulfation, the locations of which are uncertain 

on the precursor sequence before prediction.  In contrast, we consider derivatization at 

the reducing-end as an integrated part of the precursor backbone since there is no 
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uncertainty of its location.  Accordingly, a candidate modification site represents a 

particular position on a particular monosaccharide residue where the modification may 

occur, and modification number stands for the count of the modification occurrence.  The 

solution is a list of modification distributions that specify how the given numbers of 

modifications are distributed among all the candidate modification sites.  Each 

modification type corresponds to a modification distribution, and the sum of the 

distribution equals the modification number defined in the precursor composition. 

The concepts of candidate modification sites and modification number serve as 

the building blocks for the whole framework of HS-SEQ.  For a given peak, we denote 

each structural interpretation of a peak (the ion type, cleavage position, neutral loss and 

modification numbers, e.g. Y3 – H2O + 1Ac + 3SO3) as an assignment.  Each assignment 

in essence contributes structural information regarding the covered candidate 

modification sites and modification numbers (Figure 4C).  In this sense, each assignment 

defines a subproblem of the original HS sequencing problem, which serves to update the 

global modification distributions to finer resolution (Figure 4D).  Moreover, a terminal 

assignment describes an assignment containing an intact monosaccharide residue of 

either the reducing end (RE) or non-reducing end (NRE), and an internal assignment 

describes an assignment containing no intact RE or NRE residue.  For each modification 

type, we use assignment graph to describe the relationship between assignments.  In the 

graph, the node represents an assignment and the edge represents the inclusion 

relationship of candidate modification sites of two assignments. 
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Figure 4 Summary of basic concepts in HS-SEQ.  (A) The hexasaccharide sequence [1, 

2, 3, 1, 6] ([ΔHexA, HexA, GlcN, Ac, SO3]) illustrated by cartoon symbols.  (B) Visual 

representation of the hexasaccharide sequence in HS-SEQ.  (C) Visual representation of 

assignment in HS-SEQ.  (D) Assignment updates the modification distribution.  The 

original modification numbers are denoted by red text and the new numbers deduced 

from the assignment are denoted by blue text.  The updated regions are marked by dashed 

squares. 
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In order to identify the HS sequence, the intuitive way is to map the mass values 

of peaks to assignments (spectra interpretation), and collect the structural information of 

assignments to deduce the modification distributions of the precursor sequence (sequence 

assembly).  Ambiguity occurs when a single mass value corresponds to multiple 

assignments, and different assignments produce inconsistent structural information 

regarding the precursor sequence (Figure 5A).  In essence, the data ambiguity problem is 

all about confusing information of the candidate modification sites and/or modification 

numbers (Figure 5B).  As we have seen, nearly all the concepts and difficulties in HS 

sequencing can be rephrased in terms of candidate modification sites and modification 

number.  HS-SEQ relies on the rephrased concepts and framework built upon to address 

the HS sequencing problem. 

 

Figure 5 Data ambiguity in HS sequencing.  (A) Assignments of B4 and Y2 on a 

hexsaccharide with composition [1, 2, 3, 1, 6].  Some Y2 assignments have incompatible 
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modification numbers with the B4 assignments. For example, B4 (1Ac+4SO3) and Y2 

(1Ac+3SO3) cannot co-exist since the total number of Ac on the sequence is only 1.  

Alternative assignments are suggested after the arrows.  For example, Y2 (0Ac+2SO3) 

can be considered as Y2 (0Ac+3SO3) with sulfate loss, or C2(0Ac+3SO3) with sulfate 

loss.  (B) Classes of data ambiguity.  Assignments with either the same mass values 

(isomeric or isobaric) or different mass values can cause ambiguity, and the ambiguity in 

essence is the ambiguity of the candidate modification sites and/or associated 

modification number.  “S” denotes “same” and “D” means “different”. 

 

As shown in Figure 6A, the sequencing task in HS-SEQ consisted of two steps: 1) 

the prediction of the distribution of acetate groups, taking into account the data 

ambiguity; and 2) the prediction of the distributions of sulfate groups, a step divided into 

sulfate numbers on each monosaccharide residue and exact sulfation positions within 

residues.  Sulfate loss was considered during this step.  Figure 6B illustrates how an 

assignment connected to others and contributed to updating the modification distribution.  

HS-SEQ organized assignments by their respective confidence values and sequentially 

inserted the assignments into the assignment graph.  The insertion of each assignment 

further updated the modification distribution.  The final modification distribution can be 

read manually, or converted to a list of top candidate sequences (see discussion below). 
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Figure 6 Schema of HS sequencing in HS-SEQ.  (A) Subtasks in HS sequencing.  In 

HS-SEQ, HS sequencing consists of two basic steps: identification of Ac positions and 

identification of sulfate positions.  Data ambiguity is considered for each step, and sulfate 

loss is considered when identifying sulfate positions.  (B) Assignment graph connects 

assignments and generates the modification distribution.   

 



 40 

We tested HS-SEQ using 9 synthetic HS saccharide standards representing a 

range of chain lengths, modification positions, sulfation degrees, reducing-end 

derivatization groups, and ion charge states.  The results showed that HS-SEQ accurately 

recovered the correct HS sequences for 76% (19 out of 25) of the tested tandem mass 

spectra, and approached the correct sequences for the remainder.  For each 

oligosaccharide sequence, at least 50% of the tandem spectra (each with a different 

charge state) reported the true sequence as rank 1.  Moreover, the scores for the correct 

HS structures were distinct from their isomeric candidates, and the computation time 

required for sequencing was usually a few seconds, demonstrating the feasibility of a HS 

high-throughput sequencing pipeline.  The program was developed using the C++ 

language and is available for download through http://code.google.com/p/glycan-

pipeline/.  The program currently runs under command line and requires only a few basic 

arguments (precursor ion m/z, charge state and input/output file).  It also includes XML 

configuration files that specify the rest of parameters and their default values.  A 

graphical-user-interface (GUI) version of the program is under development and will be 

available in future version. 

HS-SEQ is the first tool to systematically study the problem of automatic HS 

sequencing.  It is based on a unique sequencing strategy to takes advantage of the latest 

high-accuracy and high-resolution instrument.  We showed HS-SEQ’s capability in 

addressing the challenges of data redundancy, data ambiguity and sulfate loss inherent in 

tandem mass spectra of HS compound class, and providing production-grade distinctive 

results. 

 

http://code.google.com/p/glycan-pipeline/
http://code.google.com/p/glycan-pipeline/
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3.4 Method Description 

3.4.1 Data acquisition and preprocessing 

Tandem mass spectra of the 9 synthetic HS saccharides (Figure 7) were acquired 

on a 12-T solariXTM hybrid Qh-Fourier transform ion cyclotron resonance (FTICR) mass 

spectrometer (Bruker Daltonics, Bremen, Germany) in NETD (Figure 7).  All HS 

standards were dissolved in 5% isopropanol, 0.2% ammonia solution to a final 

concentration of 5 pmol/μL, and infused directly into the mass spectrometer using an 

Apollo II nanoESI source.  The spectra were acquired in the negative ion mode and the 

instrument parameters were optimized to minimize SO3 losses.  Precursor ions were 

isolated using a mass-filtering quadrupole and externally accumulated in a hexapole 

collision cell before tandem MS analysis.  For NETD experiments, fluoranthene cation 

radicals were generated in a chemical ionization source in the presence of argon. Efficient 

dissociation was ensured by using a reagent accumulation time of up to 500 ms and a 

reaction time of up to 500 ms.  Each transient was acquired with 1 M data points, each  

tandem mass spectrum was acquired by signal averaging up to 100 transients for 

improved S/N ratio.  The instrument was externally calibrated using sodium-TFA clusters 

before tandem MS experiments. 
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Figure 7 Structures of 9 synthetic pure standards for algorithm validation.  #1 

Arixtra [0, 2, 3, 0, 8] (charge state 4-, 5- and 6-) was purchased from Organon Sanofi-

Synthelabo LLC (West Orange, NJ).  #2 Hex6 [1, 2, 3, 1, 6] (charge state 3-, 4-, 5- and 6-

) and #3 Hex7 [1, 2, 3, 1, 7] (charge state 3-, 4-, 5- and 6-) were purchased from New 

England BioLabs (Ipswich, MA).  #4 dp15 [0, 7, 7, 2, 5] (charge state 5-, 6-, 7- and 8-), 

#5 P71 [0, 4, 3, 0, 3] (charge state 3- and 4-) and #6 P82 [0, 4, 4, 0, 11] (charge state 6-) 

were bio-enzymatically synthesized and were generously provided by Prof. Jian Liu from 

University of North Carolina, Chapel Hill.  Synthetic HS tetrasaccharides #7 Boons03 [0, 

2, 2, 0, 4] (charge state 3- and 4-), #8 Boons23[0, 2, 2, 0, 4] (charge state 2-, 3- and 4-) 

and #9 Boons38[0, 2, 2, 0, 5] (charge state 3- and 4-) were generously provided by 

Professor Geert-Jan Boons from the Complex Carbohydrate Research Center at the 
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University of Georgia.  Me: methyl, AnMan: 2,5-anhydro-D-mannose, PNP: 4-

Nitrophenol. 

Peak lists were exported from the spectra using Bruker DataAnalysis 4.2 with the 

“FTMS” option selected and the signal-to-noise ratio (S/N) threshold set to 0.  Each row 

of the peak lists contained the m/z value, intensity, resolving power and S/N for a given 

peak.  An in-house deconvolution/deisotoping program (discussed in Chapter 5) was 

developed to convert the peak lists into lists of monoisotopic neutral masses. 

3.4.2 Peak assignment 

 The monoisotopic peak list was converted into neutral mass values, and was 

matched to theoretical fragment mass with a 2 ppm mass error.  The theoretical library 

was constructed from the composition of precursor ion [ΔHexA, HexA, GlcN, Ac, SO3].  

All possible product ions. were considered, including types of A, B, C, X, Y, Z, and 

internal ions generated from multiple cleavages of the HS backbone structure.  Neutral 

mass loss (-H2O), hydrogen transfer (-H) and all possible numbers of sulfate/acetate 

groups allowed on the product ions were taken into account.  We assumed that for GlcN 

residues, sulfation may only occur at 2-N, 3-O and 6-O positions and acetylation at 2-N 

position, while for HexA (GlcA or IdoA) residues, sulfation may occur at the 2-O 

position.   Although it has been suggested that the isomeric uronic acid residues resulted 

in different fragmentation patterns using EDD (22), the difference has not yet been 

established as an explicit pattern for automatic recognition from the spectra.  Therefore, 

HS-SEQ did not attempt to distinguish GlcA from IdoA. 
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3.4.3 Sequence construction 

1. Filtering redundant data.  A typical assignment of a peak consisted of three 

parts: product ion type (e.g. B2, C3, and 1,5A2), composition shift (e.g. -H2O, -H) and 

modification numbers for acetate and sulfate groups.  Assignments with the same product 

ion type and the same number of acetate groups were clustered.  In other words, each 

cluster contained assignments with mass values differing only in the equivalent of a 

combination of neutral mass loss (–H2O), hydrogen transfer (–H), and sulfate groups.  

Note that assignments of B- and C-type ions were not differentiated.  Similarly, Y- and 

Z-type ions were clustered together.  For example, assignment B2 (–H2O, 1Ac + 3SO3) 

was clustered with assignment C2 (–H, 1Ac + 2SO3), but not with assignment C2 (0Ac + 

1SO3) due to the different acetate numbers they hold.  For each cluster, the assignments 

with the highest number of sulfate groups were selected to represent the cluster.  If more 

than one assignment had the highest sulfate number in one cluster, HS-SEQ chose the 

one by the neutral mass shift in order of priority: no shift > – H2O > +H/–H > – H2O 

+H/–H.  The number of +H/–H was set to be from 0 to 2 by default. 

The clustering procedure removed redundant and/or irrelevant structural 

information (e.g. composition shift, sulfate losses) of the assignments.  As a result, each 

selected assignment represented an independent observation of a sub-structure of the 

precursor.  Note that the number of acetate groups, instead of sulfate groups, was 

included for clustering assignments.  This was due to the ambiguity of modification 

number caused by acetate group.  For example, in sequence #2 [1, 2, 3, 1, 6] (Figure 7), a 

peak assigned to 0,2A5 (1Ac + nSO3) can be equivalently assigned to B5 (0Ac + nSO3), 
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while a peak assigned to C5 (1Ac + nSO3) can be assigned to 2,4A6 (0Ac + nSO3).  These 

ambiguous assignments had the same candidate Ac sites but different Ac numbers, and 

could not be differentiated from the mass value.  In contrast, assignment ambiguity rarely 

involved the number of sulfate groups, but loss of sulfate group during dissociation may 

lead to misunderstanding of the sequence.  By selecting the assignment with the highest 

number of sulfate groups within a cluster, the risk of misinterpretation caused by sulfate 

loss was reduced. 

Another clustering procedure in HS-SEQ to reduce the risk of sulfate-loss will be 

described in step 4. 

For each modification type, the algorithm went over step 2 – step 4 to construct 

the corresponding modification distribution. 

2. Estimating data ambiguity.  Only terminal assignments were considered for 

building the sequence, but internal assignments were used for estimating the risk of mis-

assignment.  For each modification type, the likelihood of correctly assigning a peak as 

an terminal assignment is assessed via uniqueness value (A)p , defined as 
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  (Eq. 1) 

whereas S is the indices of isomeric assignments (assignments that correspond to the 

same mass value, k is the index of a terminal assignment in S, kt is the weight associated 

with the cleavage type (e.g. glycosidic-bond cleavage, cross-ring cleavage, and the 

combinations thereof) of assignment k.  For assignments of either glycosidic-bond 
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cleavage or cross-ring cleavage, it was set to 1.0; for assignments of internal cleavage 

type (except double cross-ring cleavage, e.g. AX ion), it was set to 0.2; for double cross-

ring cleavage, it was set to 0 by default, which means assignments of double cross-ring 

cleavage were ignored.  Note that the denominator of the uniqueness value (Eq. 1) was 

calculated based on assignments with non-redundant information of modification sites 

and modification number.  If assignments of a mass value caused no additional ambiguity 

(Figure 5B) regarding the modification sites and modification numbers, they would not 

be counted into the denominator of the uniqueness value (Eq. 1). 

 
3. Constructing the assignment graph.  Terminal assignments were organized via 

an assignment graph model for each modification type (Figure 6B).  Let X denote the set 

of candidate modification sites of an assignment and S denote the number of 

sulfate/acetate groups of the same assignment.  Node i is a parent of node k, if i kX X⊃  

and there is no such node m that i m kX X X⊃ ⊃ .  Conversely, node k is a child of node i.  

Note that it is possible for a node to have more than one parent/child.  For example, 

nodes representing 2,4A3 and 3,5A3 are both parents of the node representing B2 with 

respect to the sulfation sites.  Node i is defined as the complement node of node k if 

X Xk i∪ = Ω , X Xk i∩ =∅ and precursork iS S S+ = , whereas Ω  denotes the modification 

sites of the precursor sequence, ∅  denotes the empty set and precursorS  is the total 

modification number of the precursor sequence.  Conversely, node k is also a 

complement node of node i, and the two nodes are complementary to each other. 
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As shown in Figure 6B, the computation began with two connected dummy nodes, 

one representing the candidate modification sites and modification number of the 

precursor ion, and the other representing a virtual node with null modification sites and 

modification number of 0.  For any new assignment, there was always at least one parent 

and one child in the graph.  The terminal assignments were sequentially inserted into the 

graph by looking for their respective parent and child in the graph, and the insertion order 

depended on their respective confidence values.  The confidence of an assignment relied 

on several factors: the assignment ambiguity, represented by the uniqueness value (A)p

(Eq. 1), and the assignment compatibility with the parent, child and complement node (if 

applicable). 

The compatibility of assignment k was given by:  
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  (Eq.2) 

where k is the index of a terminal assignment, and C is a constant within [0,1] (0.8 by 

default).  The boundary of the number of sulfate/acetate groups an assignment can carry 

is mathematically constrained by its parent, child as well as the complement assignment.  

GD , LD , and UD represent the distances of the modification number of an assignment 

to the maximal status from different aspects.  Constant C regulates the impact of the 

distance on the assignment compatibility.  The rationale behind this formula is that the 

closer the modification number of an assignment is to the maximum, the more likely the 

node is to retain the original modification number information.  This is especially useful 

for determining the sulfate distribution since we hope to select assignments that are most 
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likely to retain the intact sulfation information.  GD , LD , and UD in (Eq.2)  are given 

by 

 total '( )G
k k kD S S S= − +   (Eq.3)  
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where k is the index of the to-be-inserted node, ck  is the index of the child of node k, pk  

is the index of the parent of node k, k’ is the index of the complement node of node k, S is 

the modification number, and N is the number of candidate modification sites.  If no 

complement node of node k has been recorded in the graph, let ' 0kS = .  GD is the 

distance inferred from a pair of complementary nodes (i.e. distance for golden pair), LD

represents the distance inferred from the child node (i.e. distance for the lower bound), 

and UD is the distance inferred from the parent node (i.e. distance for the upper bound).   

In the event that more than one candidate parent / child node was present, the 

most confident one was selected, and its distance values were calculated accordingly. 

In order to expand the assignment graph, terminal assignments were sorted in a 

descending order by their uniqueness values (A)p (Eq. 1).  In each cycle, assignments 

with the highest uniqueness values were retrieved.  Note that for sulfation distribution, 

assignments with the same uniqueness value and same modification sites underwent an 

additional clustering procedure (as described in step 1) so that only the assignment with 
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the highest number of sulfate groups in each cluster was selected.  This clustering 

procedure is useful for grouping nearby assignments covering the same candidate 

sulfation sites, e.g. B3 and 1,5A3 (see Figure 5B). 

The compatibility (Eq.2) of assignment k involved two cases: 1) the compatibility 

with assignments in the current assignment graph (background assignments), denoted as

bg(I )kp , and 2) the compatibility with assignments of the same uniqueness values (peer 

assignments), denoted as peer(I )kp .  A virtual complement node k’ of node k was forged (if 

not available), and the confidence valueλ of node k was then calculated by: 

 
bg peer peer

'(A ) (I ) max( (I ), (I ))k k k k kp p p pλ = × ×   (Eq.6) 

whereas k is the index of the current node, k’ is the index of the complement node of 

node k, and peer(I )kp , peer
'(I )kp  represents the compatibility value of node k, node k’ in the 

context of peer assignments (Eq.2), respectively.  Assignments with confidence value of 

0 were ignored.  The remaining peer assignments were sorted by their confidence values 

λ  (Eq.6) in a descending order, and sequentially inserted into the assignment graph.  

Each insertion of a node was accompanied with the insertion of its complement node 

(either virtual or not). 

4. Updating modification distribution.  With only two dummy nodes in the graph, 

the modification was equally likely to occur on all possible modification sites along the 

precursor sequence.  The insertion of a node into the assignment graph led to an update of 

a local region of the modification distribution (Figure 6B).  From the perspective of the 

assignment graph, the confidence value λ (Eq.6) was responsible for arranging the order 
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of nodes for insertion into the graph; from the perspective of modification distribution,λ

directed the way of updating the distribution.  Intuitively, if the confidence value was 

close to 0, the inserted node had almost no impact on the current modification 

distribution; if it was close to 1, the modification distribution was updated based on the 

exact modification number of the assignment (Figure 4D).  Therefore, λ controlled the 

effect of modification number of an assignment on updating the modification distribution 

(Figure 6B).  The adjusted or “effective” modification number S ′ for assignment k was 

given by: 

 
bg(1 )k k k k kS S Sλ λ′ = + −   (Eq.7) 

whereas k is the index of the inserted node, S denotes the modification number, λ is the 

confidence value (Eq.6), and bg
kS is the background modification number for node k, 

given by: 

 
bg ori ( )

c p c ck k k k k kS S L N N−′= + × −   (Eq.8)       

where k is the index of the inserted node, ck is the index of the child of node k, S ′  is the 

effective modification number, N is the number of candidate modification sites and ori
p ck kL −

is the average modification number over the candidate modification sites sandwiched by 

the parent and child of node k.  If the child node or parent node is the dummy node, let

S S′ = . 

ori
p ck kL − was given by:   
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whereas S ′ denotes the effective modification number, N is the number of modification 

sites, pk is the index of the parent of node k, ck is the index of the child of node k. 

After the insertion, the original modification distribution was updated in the 

following way: for the subregion demarcated by the node k and its child kc, the updated 

average modification number on each candidate modification site, or local modification 

likelihood, was given by: 
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Similarly, for subregion demarcated by node k and its parent node kp, the updated local 

modification likelihood on each candidate site was also given by:     
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As more assignments were inserted into the assignment graph, the modification 

distribution was sliced into smaller pieces of subregions with the candidate modification 

sites and adjusted modification numbers specified. 

5. Organizing sequencing tasks.  The acetylation positions were identified first by 

selecting the most likely candidate acetylation sites based on predicted acetylation 

distribution.  All assignments that reported inconsistent acetate numbers were removed in 

order to improve the accuracy of predicting sulfation distribution.  

Ideally, the presence of cross-ring cleavage product ions facilitates locating the 

sulfate groups within each residue.  In practice, however, cross-ring cleavage product 

ions were more likely to be associated with sulfate loss.  As a result, HS-SEQ might 
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incorrectly distribute the sulfate group(s) within the residue.  Fortunately, once the 

number of sulfate groups on each residue was determined, it was usually possible to 

deduce the priority of sulfation positions within residues based on the biosynthetic rules 

of HS. 

 

3.5 Evaluation with Pure Standards 

 We tested HS-SEQ with 25 tandem mass spectra (Table I) from 9 synthetic HS 

sequences (Figure 7) on a desktop PC Intel i5 CPU (3.20GHz) and 16 GB memory.  

Those sequences are all known standards and widely used by multiple labs for HS study.   

Sequence 
(charge) m/z # monoisotopic  

peaks 
# assigned  

masses Time(s) 

#1 (4-) 375.72961 238 127 2.042 
#1 (5-) 300.3823 238 98 1.951 
#1 (6-) 250.15072 171 99 1.938 
#2 (3-) 510.01074 175 93 6.905 
#2 (4-) 382.2564 164 92 6.898 
#2 (5-) 305.60354 284 186 6.994 
#2 (6-) 254.50175 155 110 6.943 
#3 (3-) 536.66297 97 62 7.224 
#3 (4-) 402.24564 98 60 7.221 
#3 (5-) 321.59491 194 129 7.547 
#3 (6-) 267.8279 80 54 7.263 
#4 (5-) 600.50781 277 108 73.111 
#4 (6-) 500.4231 402 193 73.473 
#4 (7-) 428.79002 407 194 74.576 
#4 (8-) 375.06593 398 205 73.729 
#5 (3-) 521.06975 129 59 3.105 
#5 (4-) 390.55076 102 50 3.166 
#6 (6-) 393.48524 156 74 8.362 
#7 (3-) 391.3546 196 80 0.936 
#7 (4-) 293.26412 190 107 0.951 
#8 (2-) 547.5571 54 11 0.826 
#8 (3-) 364.7023 81 36 0.826 
#8 (4-) 273.27492 97 50 0.843 
#9 (3-) 391.35453 140 67 0.921 
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#9 (4-) 293.26412 187 93 0.936 
 
Table I Spectra information of the 25 spectra.  Note that the calculation time includes 

only the time of generating theoretical fragments and modification distributions. 

3.6 Comparison with Naïve Methods 

 We further compared the average ranks of the true sequences using all three 

methods (Table II), and the plotted the results in Figure 8A.  A low rank value indicated 

high rank performance.  The results suggested that the coverage method was the most 

stable among the three, and performed best for sequence #2 (charge 3-, 4-, 5- and 6-), #6 

(charge 6-) and #7 (charge 3-).  The performance of HS-SEQ (Cost) was close to the 

coverage method in general, with the exception that it lagged behind for sequence #1 

(charge 4-, 5- and 6-), #2 (charge 5- and 6-) and #6 (charge 6-), while it targeted sequence 

#4 (charge 6-) accurately.  The GP method performed poorly for #8 (charge 2- and 3-), #2 

(charge 3-, 4-, 5- and 6-), #6 (charge 6-) and #4 (5-, 6-, 7- and 8-). 

Sequence Coverage GP 
HS-SEQ 
(Cost) 

M_Coverage M_GP 
HS-SEQ 
(M_Cost) 

#1 (4-) 3.5 2 12 1 1 1 
#1 (5-) 3.5 2 75 1 1 4 
#1 (6-) 3.5 3.5 16 1 1.5 1 
#2 (3-) 18.5 130.5 26.5 2.5 14.5 2 
#2 (4-) 9.5 45.5 13.5 1.5 8.5 1 
#2 (5-) 9.5 36.5 29.5 1.5 6.5 1 
#2 (6-) 9.5 45.5 114.5 1.5 4.5 1 
#3 (3-) 3.5 10.5 17.5 1.5 2.5 2 
#3 (4-) 9.5 12.5 3.5 2.5 3.5 1 
#3 (5-) 3.5 6.5 7.5 1 2.5 1 
#3 (6-) 12.5 22.5 12.5 2.5 3.5 1 
#4 (5-) 18.5 32.5 15.5 1.5 4.5 1 
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#4 (6-) 6.5 42.5 1 2 5.5 1 
#4 (7-) 86 288.5 70.5 3 15.5 2 
#4 (8-) 602 8299.5 1630.5 15.5 727.5 3 
#5 (3-) 5 17 8 1 5 1 
#5 (4-) 2.5 2.5 2 1.5 1.5 1 
#6 (6-) 9.5 60.5 30.5 1 4.5 1 
#7 (3-) 8 12.5 15.5 2 2.5 1 
#7 (4-) 1.5 6.5 1.5 1 2.5 1 
#8 (2-) 5 35.5 6 1 7.5 1 
#8 (3-) 2 8.5 2.5 1 2.5 1 
#8 (4-) 1.5 2 1.5 1 1 1 
#9 (3-) 6.5 11 13.5 2 4.5 3 
#9 (4-) 1.5 5 2 1 1.5 1 

 

Table II The average ranks of the true HS sequences using all methods.  If two 

sequences have equal scores, fractional ranks – the mean values of their ordinal ranks 

(“1234” ranking) are used (“1 2.5 2.5 4” ranking). 

The Z-score test (Figure 8B) provided a measure of the distinction of a true 

sequence from the background candidates.  HS-SEQ (Cost) performed best for sequence 

#5 (charge 4-) and #4 (5-, 6-, 7- and 8-).  The GP method performed best for #1 (4-, 5- 

and 6-), but produced no results for #8 (charge 2-) due to missing observations of golden 

pairs.  The coverage method, the best performer in the average rank test, gave a mediocre 

performance in the Z-score test.  This was not surprising, since ambiguous assignments in 

HS tandem MS spectra were expected to boost the scores of some candidate sequences.  

The results showed that HS-SEQ (Cost) gave good Z-scores consistently, especially for 

sequence #7 (4-, 56 candidates), sequence #9 (4-, 56 candidates), sequence #8 (3-, 70 

candidates), sequence #5 (3- ~ 4-, 286 candidates), #3 (4-, 990 candidates), #6 (6-, 4,368 

candidates) and #4 (5- ~ 8-, 1,381,380 candidates). 
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Figure 8 Comparison of HS sequencing methods.  The performance for coverage 

method (denoted in black), GP method (denote in blue), HS-SEQ (Cost) (denoted in red) 

were compared using the 25 NETD spectra.  (A) Comparison of the average ranks.  (B) 

Comparison of the absolute values of Z-scores. (C) Comparison of correlations between 

average rank and background size.  (D) Comparison of correlations between |Z-score| and 

background size.  Note that in (A) and (B), the sequences were sorted in an ascending 

order by their background size. 

We also examined the linear correlation between average rank and background 

size (Figure 8C).  The results showed that the linear correlation was weak for HS-SEQ 

(Cost) (R2 = 0.171), compared to strong correlation for the coverage (R2 = 0.563) and GP 

(R2 = 0.505) methods.  It was interesting for HS-SEQ (Cost) to have significantly smaller 
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R2 value, since a larger background size typically indicates a higher chance for a 

sequencing algorithm to make mistakes.  For sequences of the same background size, 

HS-SEQ (Cost) tended to generate average ranks with higher variance compared to the 

naïve methods.  This suggests that factors other than the background size may strongly 

affect the average rank performance of HS-SEQ (Cost).  The regression line for HS-SEQ 

(Cost) (Figure 8C) had a smaller slope compared to other methods, which also suggests 

that the average rank from HS-SEQ (Cost) was less affected by the background size.  In 

contrast, all three methods showed strong linear correlations on the relationship between 

the Z-score and the background size (R2 = 0.726 for the coverage method, R2 = 0.641 for 

the GP method and R2 = 0.601 for HS-SEQ (Cost)), but the regression line for HS-SEQ 

(Cost) again was steeper than the lines for the naïve methods.  This indicates that HS-

SEQ (Cost) had special advantage in identifying the true sequence from the background, 

especially in the case of large background size.  The characteristic distinctiveness of HS-

SEQ was highly favorable for automatic HS sequencing. 

Close examination of the modification distributions from HS-SEQ (Cost) 

provided an explanation.  Some degrees of sulfate losses were observed with all 

dissociation methods, including NETD (116).  This was more likely to happen for cross-

ring cleavages.  While the coverage method considered product ions with sulfate loss, the 

GP and HS-SEQ (Cost) methods required the presence of product ions with no sulfate 

loss.  Fortunately, the total number of sulfate groups on each residue was usually well 

maintained in the sulfation distribution generated by HS-SEQ, because glycosidic-bond 

cleavages surrounding each residue were more likely to retain all sulfate groups.  In this 
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sense, by ignoring the relative sulfation positions within GlcN residues, we expected HS-

SEQ to perform well even in the average rank test. 

 

Figure 9 Comparison of updated version of HS sequencing methods.  The 

performance for updated version of the coverage method (M_Coverage, denoted in 

black), GP method (M_GP, denoted in blue) and HS-SEQ (M_Cost, denoted in red) were 

compared using the 25 NETD spectra.  (A) Comparison of the average ranks.  (B) 

Comparison of the absolute values of Z-scores. (C) Comparison of correlations between 

average rank and background size.  (D) Comparison of correlations between |Z-score| and 

background size.  Note that in (A) and (B), the sequences were sorted in an ascending 

order by their background size. 

We compared the updated version of all three methods (Figure 9).  As expected, 

the HS-SEQ (M_Cost) method showed great improvement in the average rank test 
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(Figure 9A) and maintained its excellent Z-score performance (Figure 9B).  Although the 

M_Coverage method provided comparable performance in the average rank test for most 

sequences, its suboptimal performance in the Z-score test made it less practical.  As 

shown in Table II, HS-SEQ (M_Cost) successfully identified the correct structure as rank 

1 for 19 out of 25 (76%) spectra, while M_Coverage identified 11 (44%) and M_GP 

identified 3 (12%).  Since nearly all precursor sequences were present in multiple charge 

states, the supports of each precursor sequence from multiple spectra (each spectrum 

corresponds to a charge state) were also examined.  We defined that if at least 50% of the 

spectra of the same sequence supported the true sequence as rank 1, then the sequence 

was correctly identified.  The results (Table II) showed that HS-SEQ (M_Cost) correctly 

identified all sequences (100%).  In contrast, M_Coverage deduced the correct structure 

for 66.7% of the sequences (sequence #1, #5, #6, #7, #8 and #9), and M_GP only worked 

for sequence #1 (representing 11% of the sequences).   

The updated methods showed similar results in the correlation study (Figure 9C) 

and (Figure 9D) as the original methods (Figure 8C and Figure 8D).  In the average rank 

vs. background size test, the linear correlation dropped for all three methods (for HS-

SEQ, R2 changes from 0.171 to 0.033; for the coverage method, R2 from 0.563 to 0.345; 

for the GP method, R2 from 0.505 to 0.400), but the distinction of R2 between HS-SEQ 

(M_Cost) and the other two remained. The linear correlations between the Z-score and 

the background size were similar for all three methods (R2 = 0.697 for HS-SEQ 

(M_Cost), R2 = 0.754 for M_Coverage and R2 = 0.751 for M_GP), albeit the regression 
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line for HS-SEQ (M_Cost) had the steepest slope.  This suggests that as the background 

size grew, HS-SEQ (M_Cost) tended to provide the most distinctive results.  

 

Figure 10 Example demonstrating the performance of HS-SEQ.  (A) Comparison of 

histograms of candidate sequence scores using different methods.  The calculation was 

based on tandem mass spectrum from sequence #2 (charge 5-).  Red arrow flags the score 

of the true sequence structure.  (B) Integration of results from multiple charge states.  The 

modification distributions (bottom left) were calculated using data from sequence #2 

(charge 3- ~ 6-).  The modification number on each residue was then mapped to the 

original oligosaccharide sequence (bottom right).  White bar denotes acetylation 

distribution, grey bar denotes sulfation distribution, and the error bar indicates standard 
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error.  Digits beside the vertical solid lines represent the estimated modification number 

on each residue.  Red asterisk indicates the positions where modifications actually occur. 

When tied scores were assigned the minimum rank values, the original versions of 

the coverage and GP methods assigned the true sequences as rank 1 for most of the tested 

spectra.  However, when tied scores were assigned the maximum rank values (data not 

shown here), all three methods performed poorly in identifying the true sequences.  

Histograms demonstrating the distinctiveness of three methods are given in Figure 10A. 

To summarize, HS-SEQ (M_Cost) consistently provided the best performance 

regarding the average rank and distinctiveness, which enabled confident and high-

throughput HS sequencing using NETD tandem mass spectrometry techniques. 

 

3.7 Generation of Top Candidates 

The generated modification distribution can be easily converted to a list of top 

candidate sequences.  The underlying idea of the implementation is that for any candidate 

HS sequence l (except for the worst one), the best suboptimal sequences with respect to 

sequence l can be generated directly with no enumeration of all candidate sequences.  

Take sulfation distribution for example.  The distribution in HS-SEQ is expressed 

as an ordered list of digits showing the likelihood of sulfation across all potential 

sulfation sites.  For precursor sequence with n sulfate groups, the top m candidate 

sequences can be generated in the following steps (Figure 11). 
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Figure 11 Generating top candidate sequences from modification distribution.  (A) 

Generating the optimal candidate sequence from the modification distribution.  For an HS 

sequence with n SO3 groups, the optimal candidate #1 is selected by setting the top n 

candidate sites which are closest to 1 as “occupied” sites, while setting the rest as 

“unoccupied” sites.  (B) Deducing the suboptimal candidate sequences.  All the candidate 

sites in the optimal sequence #1 are sorted descendingly by their likelihood values.  The 

nth occupied site is flagged as “frontier”.  The suboptimal sequence #2 is obtained by 

swapping the occupation status between the frontier site (site 3) and its unoccupied 

neighbor (site 5).  The occupied sites which sit next to unoccupied sites are set as frontier 
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sites for sequence #2 (site 7 and 5).  The next suboptimal sequence is obtained by 

choosing the frontier site which incurs the lowest likelihood decrease once swapping 

(0.049 for swapping the status of site 7 and 3, 0.046 for swapping the status of site 5 and 

4) and taking the corresponding swapping action (swapping site 5 and 4).  The black 

circle stands for the occupied site, and the white circle for the unoccupied site.  The red 

triangle represents the frontier site.  The red digit represents the likelihood values of the 

sites set as occupied for the optimal sequence #1, and the black bold digit represents the 

likelihood values of the sites involving in candidate swapping steps.  The double ended 

arrow represents the potential swapping actions, and the digit above the arrow indicates 

the consequent likelihood decrease. 

1. All sites are sorted by their sulfation likelihood values in a descending order.  

The statuses of the top n candidate sites are set as occupied, and the rest as unoccupied 

(Figure 11A).  Since the number n is pre-defined in the precursor composition, this 

configuration (occupied/unoccupied) guarantees that the sum of the likelihood of all 

occupied sites (referred to as likelihood sum) is the largest among all choices.  Note that 

the configuration of the complete candidate sulfation sites in fact represents the whole HS 

sequence.  The configuration that produces the largest likelihood sum corresponds to the 

optimal sequence, which was denoted as l. 

2. In sequence l, if an occupied site stays left to an unoccupied one, the former 

site is flagged as a frontier.  Swapping the status between an occupied site and an 

unoccupied site maintains the balance of site numbers between occupied and unoccupied 

sites, and thereby generates an alternative sequence.  Swapping the status between a 
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frontier and any unoccupied sites on its right decreases the likelihood sum, and the 

decreased value for this frontier is minimized when the swap occurred between the 

frontier and its right neighbor.  There might be more than one frontier on sequence l, and 

each frontier is associated with a minimized decreases value through swapping with its 

right neighbor.  Therefore, the status list for the best suboptimal sequence l’ can be 

obtained by traversing all the swapping options between frontiers and their respective 

right neighbors, and selecting the option which causes the minimum decrease of the 

likelihood sum.  Note that it is possible for sequence l to have more than one suboptimal 

sequence.  The swapping process is illustrated in Figure 11B. 

3. Take sequence l’ as the new optimal sequence, and go to step 2 to find the next 

suboptimal sequence.  Repeat the process until all m candidate sequences are generated. 

Based on the NETD tandem spectra we tested, cross-ring cleavages had a large 

chance of losing sulfate groups.  As a result, HS-SEQ might incorrectly identify the 

sulfation positions within GlcN residues but predict correctly for the total number of 

sulfate groups for the same residues.  The selection of best swapping option discussed in 

step 2 might be adjusted according to the actual sulfate loss situation.  For the NETD data 

that we worked on, swapping status between sites within the same residues may be 

preferred to swapping between sites that causes the minimum decrease of the likelihood 

sum but came from different residues. 

 
3.8 Discussion 

 The framework of HS-SEQ can be envisioned as the model-view-controller 

(MVC) pattern in software design.  In this sense, the modification distributions (view) 
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provided an intuitive representation of the results, the assignment graph (model) defined 

the relationship between peak assignments and mapped the relationship to modification 

distributions, and the confidence (controller) specified the priority of the peak 

assignments. 

 The HS-SEQ algorithm used a divide-and-conquer strategy to partition the 

sequence into smaller regions.  No enumeration of candidate sequences was required in 

the process.  The method was very efficient and required only a few seconds to generate 

the modification distributions from monoisotopic peak list, where the top candidate 

sequence list can be immediately deduced.  Besides, tandem mass spectra from the same 

oligosaccharide sequence will generate modification distributions upon the same list of 

modification sites (for each modification type).  This means it is very straightforward to 

integrate results from different charge states and dissociation methods (e.g. EDD and 

NETD) of the same precursor sequence. 

 Several assumptions were required for HS-SEQ to function well.  The first was 

the acquisition of high-quality tandem mass spectra where most glycosidic-bond 

cleavages were present.  Although ions with sulfate loss were usually present and 

tolerated by HS-SEQ, observation of product ions with no sulfate loss was necessary for 

successful structure identification.  The second assumption required that a significant 

number of terminal containing product ions be unambiguously assigned.  The best results 

were achieved for HS saccharides derivatized at the reducing end to break the structural 

symmetry.  Data with low resolution may probably break the second assumption and lead 

to poor sequencing performance, in which case database searching can be a remedy. 
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 Even with high-quality and low-ambiguity data, some problems remain under the 

current framework of HS-SEQ.  One is that it did not contain a mechanism to resolve the 

conflicts of sulfation information from two assignments.  For example, the sum of sulfate 

numbers from two complementary assignments may exceed the total number specified by 

the precursor, or a child assignment may contain more sulfate groups than its parent.  The 

conflicts may arise from multiple events, such as sulfate loss, internal fragment 

disruption, random ion match, and co-existence of mixture.  HS-SEQ simply removed the 

assignment with lower confidence value in order to resolve the conflict.  This might not 

be proper for real samples.  The heterogeneity and low abundance (missing information) 

of the species in real samples may break the assumptions of HS-SEQ and lead to 

misidentification of the HS sequences.  Successful identification from real samples may 

require concurrent efforts from both the experimental part (extraction and separation) and 

the computational part (combination of de novo sequencing and database searching). 

 In conclusion, this chapter introduces HS-SEQ, a computational framework for 

high-throughput, accurate HS de novo sequencing.  We expect that the method will apply 

to other GAG classes (21) since they all share similar chemical and structural properties.  

The divide-and-conquer strategy used in our method may also be instructive to the design 

of new high-resolution tandem MS sequencing algorithms for other complex molecules, 

once the sequencing problem and sub-problem have been well framed. 
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Chapter 4 De Novo Sequencing of Heparan Sulfate Mixture 

4.1 Introduction 

One of the most challenging problems in glycan identification is the 

heterogeneous nature of glycan molecules.  This is especially the case for HS 

identification, due to the microheterogeneity of HS/heparin caused by nonrandom 

distribution of sulfate groups and IdoA residues.   

We have shown that HS-SEQ can effectively discriminate the correct HS 

structure from up to millions of candidates (Figure 10A).  Different from traditional 

tandem MS-based sequencing strategies, HS-SEQ shifts the focus from designing a 

powerful scoring function to reducing the ambiguity of individual peak assignments.  If 

every critical peak can be unequivocally identified and annotated, the correct sequence 

can be deduced directly with no trouble. 

In the context of noise interruption or even “chimeric spectra” (spectra from co-

fragmentation of isomeric/isobaric precursor ions), accurate assignment of individual 

peaks becomes tremendously difficult.  For pure standards, as discussed in Chapter 3, a 

single peak in the tandem mass spectra can be assigned to multiple assignments, and one 

assignment does not guarantee the rejection of alternative ones.  If the sample contains 

more than one sequence, a single peak may map to multiple candidate sequences, which 

further increases the level of ambiguity.  A database search-based solution is easy to 

implement, by looking for sequences with the highest matching scores.  The simplicity in 

implementation comes at a price in performance: the possibilities of isomer candidates 

increase combinatorially as the chains become longer and the sulfation degree reaches to 
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a moderate level.  In addition, as shown by the coverage method (Figure 10A) in 3.6 

Generation of Top Candidates, it is also likely that a database search method will end 

up with a large group of candidates in the top tier, which makes this type of methods less 

practical. 

HS-SEQ (106) provides several guidelines that may benefit high-throughput HS 

sequencing for complex samples: 1) no exhaustive enumeration of theoretical isomer 

sequences; 2) in simple situations (two isomers with long common subsequences), the 

true isomers should be distinct from the background; and 3) in complex situations 

(multiple isomers, or isomers with almost no common subsequences), better null results 

than wrong prediction.  Point 1 means rapid sequencing regardless of the length and 

complexity of the isomer sequences.  Point 2 implies that the true isomers should be 

picked accurately and automatically with few false positives.  Point 3 suggests that the 

results should also be indicative of data quality (quality control).  Even the complexity of 

spectra prohibits the program from generating discriminant predictions, the results should 

still flag the situation and recommend extra efforts in sample separation. 

Following the guidelines, we are working on the development of MULTI-HS-

SEQ, which aims to assist the automatic identification of HS isomers from mixture 

samples.  As mentioned before, each peak assignment specifies a set of candidate 

sulfation sites and the number of sulfate groups owned by these sites.  Taking the 

constraint of the precursor into account, one peak assignment automatically suggests an 

assignment on the complementary region of the sequence.  In this sense, we use the term 

cleavage to specify that each peak assignment corresponds to a complementary 
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assignment (it can be virtual).  A simplified example of three isomers is given in Figure 

12A assuming that one residue contains at most one sulfate group and no internal 

fragments.  Note that sulfate loss is taken into account, so the only way to detect the 

existence of isomers is through the sum of sulfur numbers with two complementary peak 

assignments (Figure 12B).  If their sum is beyond the constraint of the precursor 

composition, then it indicates that fragments from two isomers do not agree with each 

other.  The cleavages can be organized in a graphic model (Figure 12C) where each node 

represents a cleavage and the edge specifies the relative positions (from NRE terminal to 

RE terminal) of the connected cleavages.  An edge that uniquely points to or points from 

a cleavage is essential and has to be included in at least one path (Figure 12C).  In the 

simplified example, with the law of parsimony, only two paths (red arrows) and two 

candidate sequences are sufficient to explain all cleavages.  If the inferred cleavages are 

taken into account, at least three paths (consisting of red/blue arrows) are required and 

the candidate space can increase up to 6 sequences.  The true isomers are between the 

minimum two sequences and the maximum 6 sequences. 

However, when ambiguous assignments are taken into account, the graph 

corresponds to 16 different paths (isomers) although only two isomers are true (see 

Figure 13).  Besides, if fragment undergoes complete sulfate loss, or complementary peak 

assignments are missing, the true isomer may even be included in the candidate 

sequences. 
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Figure 12 Simple model showing the graphical representation of cleavages and 

sequences.  (A) Three isomers each with 3 sulfate groups.  Each cleavage (red or blue 

line) divides the sequence into two parts.  The numbers of occupied sites (sulfate groups) 

on each part is fixed.  Black digit represents the observed number of occupied sites, and 

red digit represents the inferred number considering about sulfate loss.  (B) Observation 

of sulfate groups indicated by each cleavage.  For each cleavage, only the variant with the 

highest number of sulfate groups is recorded.  (C) Sequence inference based on the 

graphical model.  Each node represents a cleavage where the numbers specify the 

A 

B 

C 
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numbers of sulfate groups on the non-reducing end and reducing end, respectively.  Red 

dash arrow means the edge is essential (unique path).  When inferred cleavage (dashed 

symbol) is considered, the corresponding essential edge is represented as blue dash 

arrow.  

 

Figure 13 Graphic representation of cleavages from HS isomers in complex 

situation.  When an internal fragment (solid square) carries more sulfate groups than its 

isomeric terminal fragment (dashed square), the sulfation information on this terminal 

fragment is overwritten, and the graph structure becomes complicated (16 possible paths 
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in the example).  Red cleavage specifies the place where the sulfate information is mis-

identified. 

Therefore, in order to improve the identification performance for mixture sample, 

it is important to include more confident evidences regarding the distribution of sulfate 

groups.  From the perspective of experimental design, chemical derivatization (117) 

converts the labile sulfate groups into stable acetate group (labeled) and removes the 

confidence issue caused by sulfate loss.  The price is that protons and sodiums both can 

serve as charge carriers, which may potentially increase the assignment ambiguity.  

Another way is to look for high-confidence internal fragments that maintain the intact 

sulfation information.   

 
 

4.2 Method Description 

4.2.1 Data Preprocessing 

Preprocessing of raw data and peak assignment followed the same procedure as 

described in Chapter 3.  All the identified monoisotopic peaks were converted to the 

format of combination of backbone cleavage and modifications (106), e.g.  B4 + 3SO3 + 

1Ac – 2H.  Future work will include a targeted method to iteratively (e.g. B4, B4 + 1SO3, 

B4 + 2SO3, …) identify peak clusters with low abundance. 

4.2.2 Sulfate Loss in Fragments 

Internal cleavages seem to undergo significant sulfate loss, and are therefore not 

included by HS-SEQ for determining the sulfate positions.  However, for HS 
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disaccharide analysis, internal cleavage of 0,2A2/Y1 type can be used for determining the 

occupation status of 2-N position on GlcN.  It may also be the case for HS 

oligosaccharides.  As shown in Figure 14, two different isotopic peaks (m/z 291.9812 z 3- 

and m/z 438.4755 z 2-) from Arixtra (6-) NETD tandem mass spectra suggest the 

existence of internal fragment C4/1,5X4 + 4 SO3.  HS-SEQ program showed that there was 

no alternative assignment for this fragment under current fragmentation settings.  There 

may be more intact internal fragments, but it is difficult to confirm their existence 

directly due to their low abundance and ambiguity in peak assignments.  A confident 

confirmation requires supporting information from confident terminal assignments, e.g., 

confining the unique highly sulfated local region so that all alternative assignments of the 

internal assignment are rejected.  This is the strategy HS-SEQ uses to improve the 

confidence of terminal assignments, and should also be applicable to internal 

assignments. 

 
 
Figure 14 Example from Arixtra (6-) tandem mass spectra showing internal 

fragment without sulfate loss.  The presence of the internal fragment was supported by 

two identified monoisotopic peak with different charge states. 
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 Based on the limited data we have, it seems that the intact internal fragments tend 

to combine a cross-ring cleavage and a glycosidic-bond cleavage.  One evidence is that in 

the NETD tandem mass spectra, peaks assigned to cross-ring cleavages are generally 

more abundant than glycosidic-bond cleavages and therefore are presumably easier to 

generate. Fragments from cross-ring cleavages may easily undergo further fragmentation 

to generate the internal fragments.  However, the test results from HS-SEQ suggest that 

cross-ring cleavages are more likely to lose sulfate groups.  In fact, that’s the reason that 

we focused on the sum of sulfate groups for each residue instead of specific position 

inside the residue.  On the other hand, internal fragments combining two glycosidic-bond 

cleavages (e.g. B/Y type and C/Z type) seems more likely to lose sulfate groups.  This is 

good news, as internal fragments will have fewer chances to overwrite the sulfation 

information of a NRE-terminal fragment.  Whenever we observe two complementary 

terminal assignments (not virtual) containing more sulfate groups than the constraint of 

the precursor, we tend to believe that it is a hint for isomer instead of internal 

fragmentation.  Understanding of the fragmentation patterns can contribute to removing 

data ambiguity in tandem mass spectra, and eventually improve the sequencing results.    

 

4.2.3 Principle of MULTI-HS-SEQ 

Based on the discussion above, I propose an algorithm, named MULTI-HS-SEQ, 

to extend the current HS-SEQ framework to support the co-fragmentation of isomers. 

The model of MULTI-HS-SEQ is demonstrated using two HS oligosaccharide isomers of 

composition [1, 4, 5, 1, 8] (Figure 15A).  Suppose both isomers produce an intact internal 
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fragment at the same cleavage sites.  MULTI-HS-SEQ builds a graphical model (Figure 

15B) based on filtered non-redundant peak assignments, as described in 3.4.3 Sequence 

Construction.  Note that each node in the graph represents a cleavage and a distinct way 

of distributing sulfate groups to the two cleaved ends, as indicated by the integers above 

the cartoon symbol.  Each edge connects two nodes from the NRE terminal to RE 

terminal.  One node can connect to multiple nodes if there are more than one way of 

distributing the sulfate groups. 

If intact internal fragments are detected, they can contribute to minimizing the 

possible paths.  In Figure 15B, an internal assignment containing 7 sulfate groups 

connects two nodes in the graph (red dashed arrow), and suggests that the nodes should 

be grouped into the same sequence.  Based on the law of parsimony, another node pair 

(blue dashed arrow) should be grouped in a different sequence.  This restriction 

effectively drops down the candidate paths from 16 to 8 (divided by 2).  If more intact 

internal fragments can be detected and assigned to the right region, which may be hard, 

the final candidate paths can end up with a very small number. 
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Figure 15 Model of MULTI-HS-SEQ in HS mixture sequencing.  (A) Two HS 

isomers (virtual) with composition [1,4,5,1,8].  (B) Graphical model of MULTI-HS-SEQ.  

Note that internal fragment information (red and blue dashed arrow) can be used to 

reduce the candidate paths.  Red triangle represents the consistent cleavages of the two 

isomers. 

Each candidate path corresponds to a modification distribution, as discussed in 

Chapter 3.  The mapping from modification distribution to candidate sequences depends 

on the quality and density of the cleavages.  Missing cleavages (e.g. cross-ring cleavages) 

will lead to multiple candidate sequences on the top tier. 

The topology of the graph also provides a way to evaluate the heterogeneity of the 

sample.  If two isomers are aligned to each other, there will be several cleavage sites (red 

triangles in Figure 15B) where they share the same way of distributing sulfate groups.  

 



 76 

The number of such cleavage sites (≥ 2) can be used to measure the heterogeneity of the 

isomers in the sample.  If the number is just two (only NULL and FULL nodes), the 

isomers contain no common subsequences, which is the worst case for mixture 

sequencing.  Fortunately, such isomers are more likely to be separated in LC step and no 

issue will be caused.  

The MULTI-HS-SEQ program is currently under active development. The latest 

C++ source code can be downloaded from https://github.com/hh1985/multi_hs_seq.  

 

4.3 Discussion 

 The inference of HS candidate sequences shares similarity with the protein 

inference problem in proteomics study.  Specifically, a single peptide (peak assignment) 

can map to multiple proteins (HS isomers) while multiple peptides (peak assignments) 

may map to the same protein (HS isomer); observation of more peptides (peak 

assignments) adds confidence to the final identification.  However, MULTI-HS-SEQ 

builds the relationship between peak assignments, which limits the expansion of 

candidate space.  As a result, MULTI-HS-SEQ avoids the overhead on protein inference 

and makes no compromise between accuracy and speed. 

It is important to reiterate the role of confident peak assignments in HS-

SEQ/MULTI-HS-SEQ sequencing.  HS-SEQ provides strategies to improve assignment 

uniqueness and look for assignments with intact sulfate groups.  MULTI-HS-SEQ 

follows the basic idea.  Further work includes implementing a targeted deconvolution-

deisotoping algorithm to identify low-abundance monoisotopic peaks and collecting more 
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ions that have no sulfate loss.  It is also important to design a function to infer the intact 

internal fragments due to their effect in minimizing candidate paths. 

MULTI-HS-SEQ does not utilize the information of peak intensity.  This 

simplifies the model, while also prevents the differentiation of IdoA from GlcA.  Once 

the epimers undergo co-fragmentation, their fingerprints (distinct peak intensity pattern) 

are wiped out.  From the perspective of experimental design, we expect that high-quality 

HPLC and new techniques such as ion-mobility can contribute to the separation of HS 

epimers.  From the perspective of algorithm implementation, we hope the construction of 

HS library will serve to the exploration of fragmentation patterns for epimers. 

In order to sequence HS isomers from natural samples, significant efforts are still 

required for sample preparation and generation of high-quality tandem mass spectra.  In 

the near future, a typical workflow of exploring the structure-function relationship of HS 

could be: extracting and separating HS samples from interesting cells or tissues, 

generating NETD tandem mass spectra, predicting the candidate structures (using 

sequencing algorithm, e.g. MULTI-HS-SEQ),  identifying epimer positions by searching 

against HS library (using database searching strategy),  testing the response of specific 

HS sequence in in vitro experiments using chemoenzymatically synthesized HS 

oligosaccharides (110),  and finally, validating the structure-function relationship with in 

vivo experiments.  These endeavors, once achieved, will eventually contribute to 

deciphering the mysterious “glycan code” encoded in HS (16). 
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Chapter 5 Computational Pipeline for Heparan Sulfate Structure Identification  

5.1 Architecture of Pipeline for Heparan Sulfate Sequencing 

Interpretation of HS tandem mass spectra is a tedious and error-prone procedure, 

and largely requires user expertise and intensive manual inspection.  This is especially the 

case when dense, noisy and low-abundant peaks are present in the tandem mass spectra.  

Even with successful data reduction and sequence identification, reporting and 

visualizing the information-rich spectra manually is still time-consuming. 

Although data preprocessing such as noise reduction, peak picking, and 

deconvolution/deisotoping and results reporting seems like a routine task for any mass 

spectrometry-based pipeline, this is far from a solved problem for HS identification.  

Typically, fragments from HS precursors contain sulfate groups ranging from zero up to 

the maximum number of sulfate groups allowed on the fragments.  The uncertainty of 

sulfate groups in a product ion doesn’t only increase the difficulty in identifying the fine 

structure of HS, which has been handled by HS-SEQ, but also affects the quality of data 

preprocessing and post-processing.  Therefore, programs automatically handling these 

tasks are highly demanding.  In order to improve the productivity of HS sequencing, I 

designed several auxiliary modules with HS-SEQ as the core engine.  The architecture of 

the complete pipeline is shown in Figure 16. 
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Figure 16 Workflow for automatic HS sequencing.  Bruker software DataAnalysis is 

used to read the raw file and export peak list.  A home-made deconvolution/deisotoping 

module SimpleFinder is used to convert the peak list into monoisotopic peak list with 

charge states identified.  HS-SEQ finishes the peak interpretation and de novo 

sequencing, as described in Chapter 3.  The results are either reported in a text file or 

visualized through visualization tool SpectrumAnnotation. 

 

5.2 Deconvolution / Deisotoping 

In mass spectral data analysis, deconvolution/deisotoping is an important 

preprocessing step that reduces data redundancy and selects peaks illustrating structural 

information.  Deconvolution represents the procedure of separating overlapping isotopic 

clusters, while deisotoping is the process of removing redundant isotope peaks.  Charge 
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state has to be assigned in the procedure in order to include all isotope peaks belonging to 

the same isotopic cluster.  Low-abundance product ions may produce incomplete isotopic 

clusters.  As a result, a program may either fail to assign the charge state (e.g. isotope 

peaks with low S/N ratio), or assign a wrong charge state (e.g. charge state 4- can be 

misidentified as 2- when A+1 peak is missing).  Low accurate spectrum may cause the 

isotope peaks to be treated as monoisotopic peaks, which increases the chance of false-

positive peak assignments. 

In a sequencing procedure such as database search and naïve de novo sequencing, 

the spectrum interpretation is straightforward.  One can list all theoretical fragments from 

the candidate sequence based on known fragmentation rules (101), and convert the 

elemental composition of each fragment into a theoretical isotopic cluster.  A true 

isotopic cluster should match the theoretical one well given the error (m/z and intensity) 

range of the instrument and charge state inferred from the data.  Deisotoping in bottom-

up sequencing requires an approximated composition of the candidate isotopic cluster in 

order to generate theoretical isotopic distribution.  The bottom line of the approach is that 

the estimated composition should produce an isotopic cluster similar to the experimental 

one.  In proteomics, the most widely used approximation model is AVERAGINE (88), 

which uses an average amino acid with formula C4.9384H7.7583N1.3577O1.4773S0.0417 and 

molecular mass of 111.1254 Da.  For HS sequencing, this is not the case.  For two 

fragments with similar mass values, the isotopic cluster pattern of the high-sulfur 

fragment is dramatically different from the low-sulfur peer (Figure 17). 
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Figure 17 Comparison of isotopic clusters with close mass values but different sulfur 

contents.  (A) Non-sulfur fragment composition C37H54O28N3.  (B) High-sulfur fragment 

composition C20H30O32N2S6.  The relative abundance values of A+1 and A+2 peaks from 

the two compositions are distinct from each other. 

In order to provide accurate monoisotopic peak list, I extended current 

AVERAGINE model so that the algorithm is able to tolerate fragments or molecules with 

varying sulfur content.  I further implemented a C++ version of BRAIN (119), an 

algorithm that efficiently generates aggregated theoretical isotopic distribution from 

given elemental composition.  For an isolated isotopic cluster, the processing consists of 

two steps: 1) identifying the charge state and generating the neutral mass value for the 

monoisotopic peak and 2) generating an approximated composition with optimized sulfur 

number.  In cases there’re suspicious overlapping isotopic clusters, the module contains 
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an extra step to iteratively extract the currently most abundant isotopic clusters in a 

greedy way (120). 

 

5.2.1 Extended AVERAGINE Model for Generating Theoretical 

Composition for Heparan Sulfate Fragment 

Compared with peptide fragments, HS fragments introduce an extra variable – the 

number of sulfate groups that alters the shape of the isotopic distribution. Therefore, it is 

important to expand a single AVERAGINE formula (118) to composite formulas (103) in 

order to improve the identification rate of  isotopic distributions (121).  The composition 

of an HS fragment can be decomposed into two parts: the non-sulfated HS backbone 

(including acetate groups) and the sulfate groups.  The estimated composition is shown as 

follows:  

 3HS neutral mass/100 SOcompo x y z mC H O N κ= × +   (Eq.12) 

whereas xC =3.7238523, yH = 5.4425534, zO  = 2.8645018, and mN = 0.2864502, which 

represent the average atom numbers of carbon, hydrogen, oxygen (excluding oxygen 

atoms in sulfate groups) and nitrogen per 100 Da in a HS fragment. κ  represents the 

number of sulfate groups carried by the fragment, which controls the impact of sulfate 

groups on the isotopic distribution.  Note that in high resolution condition, the mass 

defect of sulfur element causes the splitting of A+n (n > 1) isotopic peaks and 

significantly affects the shape of isotopic distribution.  
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 In low-resolution condition, for a given candidate isotopic cluster, all possible κ

values are explored to find the optimal κ value, and the corresponding fragment 

composition is estimated by: 

 3 3HS (fragment mass ) /100compo SO x y z mM C H O N SOκ κ= − × × +   (Eq.13) 

whereas MSO3 represents the mass value of a sulfate group. 

In high resolution condition, the value of κ  can be derived by dividing the 

abundance of the monoisotopic peak by the abundance of the A+2 peak. 

 34 34S: 2 S
I / (I A )A A

κ
+

= ×   (Eq.14) 

whereas IA is the abundance of the monoisotopic peak (A peak),  34 S: 2
I

A+
is the abundance 

of the A+2 34S-containing peak, and 34 S
A is the natural relative abundance of 34S (~4%).  

The estimated fragment composition can then be given by (Eq.13) 

5.2.2 C++ Implementation of the BRAIN Algorithm for Generating 

Theoretical Isotopic Distribution 

 In order to correctly interpret fragment peaks, one of the most critical steps is to 

identify their isotopic distributions from the tandem mass spectra.  The shape of the 

isotopic distribution illustrates the position of the monoisotopic peak, which allows 

further structural identification.  Calculation of the complete theoretical isotopic 

distribution, especially aggregated peaks each consisting of multiple isotope peaks that 

contribute the same amount of neutrons, is a combinatorial problem (122).  Recently, 

Claesen et al. (121) proposed a generalized polynomial method to efficiently calculate 
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the exact center mass of aggregated peaks, which was included in the BRAIN (Baffling 

Recursive Algorithm for Isotopic distribution calculations) application (119) in R GNU. 

 The intensity distribution ( ; , , , , )Q I v w x y z  of a composition v w x y zC H N O S  can be 

expressed as a polynomial: 
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  (Eq.15) 

whereas I represents the additional neutron number relative to the monoisotopic variant, 

v , w , x , y , z  are the atom numbers of carbon (C), hydrogen (H), nitrogen (N), oxygen 

(O) and sulphur (S), 
12 13 36

, ,...,C C SP P P  correspond to the natural relative abundance of the 

isotopes.  (Eq.15) can be further converted into a polynomial function: 

 0
( ; , , , , )

n
j

j
j

Q I v w x y z q I
=

=∑   (Eq.16) 

whereas jq is the coefficient (relative abundance) of the A+j aggregated peak, and n is the 

sum of the atom numbers of all elements in the composition ( v w x y z+ + + +  in the 

example).  It turns out that the coefficient jq can be calculated iteratively by: 

 1

1 j

j j l l
l

q q
j

ψ−
=

= − ∑   (Eq.17) 

where parameter lψ can be calculated by: 
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∑
  (Eq.18) 

whereas , ,C H Nr r r is the unique roots of polynomial ( )CQ I , ( )HQ I , and ( )NQ I , while Or , 

Or  and ,1Sr , ,1Sr , ,2Sr , ,2Sr correspond to conjugate roots of polynomial ( )OQ I and ( )SQ I . 

Fernandez-de-Cossio Diaz and Fernandez-de-Cossio recently solved the 

polynomial specified by Claesen et al.(121) for the center mass using a fast Fourier 

Transform (FFT) approach (123), and implemented their new algorithm (referred as 

FTMC) in C#. They made a comparison between the BRAIN method and FTMC method 

in terms of their computational performance.  BRAIN was originally implemented in R, 

which is an interpreted language and known for its low efficiency in computationally 

intensive work. To facilitate a direct comparison, I collaborated with Dittwald and 

Valkenborg, and ported the BRAIN method to C++ (94), since the performance of C++ 

and C# for standard bioinformatics algorithms were shown to be close (125). 

We consider the following factors which may affect the numerical efficiency of 

the two programs: 1) algorithm complexity, 2) selection of heuristic methods, and 3) 

algorithm implementation & optimization. 

Fernandez-de-Cossio Diaz and Fernandez-de-Cossio proposed an FFT-based 

method to solve the polynomial generating function, and showed that the time complexity 

of FTMC is of O(NlogN) while the iterative formula in BRAIN has O(N2), where N is the 

number of computed peaks.  However, the actual performance of algorithms may also 

depend on factors other than time complexity and should be addressed carefully.  For 
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example, the authors of FTMC method relates the number of computed peaks N to the 

mass m of the tested molecule.  The heuristic suggested a close relationship between the 

performance of the algorithm and the molecular classes.  For this reason, we proposed 

some heuristics that relate to the molecular mass and evaluated their impact on the 

algorithms’ performance. 

The original heuristic implemented by the BRAIN (R) application is shown as 

follows: 

 max( 2 (mass mass ) ,5)average monoisotopicN  = × −    (Eq.19) 

As pointed out by Fernandez-de-Cossio Diaz and Fernandez-de-Cossio, this heuristic 

may not provide good coverage of the aggregated distribution for large molecules.  In 

order to achieve a reasonable coverage of the aggregated distribution for large molecules, 

we proposed a heuristic to calculate the number of peaks: 

 max( 2 (mass mass ) ,50)average monoisotopicN  = × −    (Eq.20) 

Note that this heuristic is chosen since it generates a reasonable number close to the 

average mass of a molecule. It was designed for comparison purpose and may have little 

value in practice. 

Figure 18 compares the performance of heuristics used by BRAIN and FTMC.  

The result shows that FTMC requires the calculation of fewer peaks to achieve a high 

coverage of the cumulative abundance.  It also suggests that both BRAIN and FTMC 

overestimates the number of required peaks for small molecules.  
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Figure 18 Number of peaks acquired for different heuristics. CM 99.9% (triangle), 

99.9% coverage of the relative abundance; BRAIN (plus sign), heuristic based on (Eq.20)

; FTMC (cross sign), heuristic used by FTMC.  Note that all heuristics yield at least 

99.9% coverage. 

The main limitation or feature of the BRAIN method is that it requires the 

calculation starting from the lightest isotope variant.  As a comparison, the FTMC 

method can choose which region in the isotopic distribution to be computed.  However, 

the feature (or limitation) of BRAIN allows flexible control of the stopping criteria, e.g. a 

99.9% cumulative abundance.  This is especially convenient for small molecules or 

fragments, where only a very small number of peaks (3 or 4) need to be calculated.   

In order to evaluate the contribution of programming language, 57,930 proteins 

tested in the BRAIN application note (119) were processed using BRAIN in C++ (v0.9.6) 
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and in R (v1.6.4).  Both calculations were conducted on a Core i7 870 2.93GHz (4GB 

RAM) machine.  The required number of peaks were set corresponding to heuristic 

(Eq.20).  It took 80s for the C++ program to produce the output file, while the 

corresponding R script took 15.5 min. 

Furthermore, 10 AVERAGINE molecules described in the FTMC method (123) 

were used for comparing the performance of BRAIN in C++ and FTMC.  In order to 

remove the interruption of heuristics, we ran both programs for each molecule separately 

using the default heuristics described in (123), and repeated this procedure 100 times.  

We then took the minimum time from 100 runs in order to minimize inevitable side 

effects such as garbage collection and interrupts. It should be noted that the minimum 

time still includes the initialization operations for the program, such as reading the input 

file, writing the result file and loading user-defined parameters. These operations will not 

change the theoretical asymptotic complexity but can obscure the timing performance 

when not appropriately accounted for, as seen in Figure 19.  The result suggests that the 

performance of BRAIN in C++ is very stable, while there is tiny fluctuation of time for 

FTMC.  It also shows that BRAIN in C++ consumed less time than FTMC for the same 

molecule, which may be attributed to the slight performance boost of C++ language.  
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Figure 19 Average elapsed system time for FTMC and BRAIN on each 

AVERAGINE molecules.  For each molecule, the programs were called 100 times 

separately and the minimum time was recorded. 

For intensive batch processing, algorithm optimization is an important factor 

affecting the performance of an algorithm. Recurrent variables can be computed in 

advance and stored into the memory for reuse. For the C++ implementation of the 

BRAIN method, the roots and their exponents were pre-calculated.  To compare the 

efficiency of batch processing, we run both programs for each molecule in the 

AVERAGINE dataset separately using the default heuristics and specify the molecule 

100 times in the input file. For each molecule a result file is written as output. We argue 

that this comparison is more transparent than using the ‘–r100’ option in FTMC. The 

obtained elapsed system time was divided by 100 and presented in Figure 20.  Indeed, we 
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can see that the preloading operations have an impact on the timing procedure.  When the 

monoisotopic mass was below 200 kDa, the BRAIN method with heuristic (Eq.20) ran 

faster than the FTMC method, regardless of its inferiority in time complexity.  As 

expected, the BRAIN method with heuristic (Eq.20) displayed a quadratic trend in 

function of the molecular mass (red dots).  Note that the BRAIN heuristic (Eq.20) has a 

linear relation between the number of peaks and the mass of a molecule, as shown in 

Figure 18.  Figure 20 also displays a timing trend for FTMC that is proportional to the 

square root of the mass as presented in Figure 18 by Fernandez-de-Cossio Diaz and 

Fernandez-de-Cossio1. As we stated above, the time trend difference between the two 

algorithms is mainly caused by the difference of heuristics they use.  When the factor is 

eliminated, a linear trend shows up for both algorithms (Figure 19).  Once again, both 

BRAIN with the heuristic (Eq.20) and FTMC overestimate the number of required peaks 

in order to achieve a 99.9% coverage (green dot), which suggests the potential for 

improvement for both methods. 
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Figure 20 Average system time elapsed for FTMC and BRAIN with internal 

parameters preloaded.  The input file for each program contains the same molecules 

repeating 100 times. 

To sum, the C++ implementation of BRAIN (119) is particularly useful, not only 

because of the favorable speed but also because of the ease of integration into automatic 

pipeline analysis. The module works as an independent program, and was also integrated 

as part of our in-house deconvolution/deisotoping program SimpleFinder.  The source 

code and binaries of the C++ implementation of BRAIN are available at 

https://code.google.com/p/brain-isotopic-distribution/. 

5.2.3 Workflow for Identifying Monoisotopic Peaks 

An in-house deconvolution/deisotoping program SimpleFinder was designed to 

assist in the automatic HS sequencing using HS-SEQ (Figure 21).  The whole process 
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consists of envelop detection stage and envelop optimization stage, as discussed by Liu 

et. al. (120), with harmonics (artifact product ions) in FTMS treated. 
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Figure 21 Flowchart of deconvolution/deisotoping in the SimpleFinder program.  

The workflow consists of envelop (isotopic cluster) identification and envelop 

optimization step to identify potential isotopic clusters and therefore their corresponding 

monoisotopic peaks.   

 

In the envelop detection stage, the program iterated over the peak list; it treated 

each peak it met as a potential monoisotopic peak, enumerated all possible charge states 
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to find candidate envelops, and explored the sulfur numbers κ to optimize the fitting 

between the theoretical isotopic distribution (121) and the candidate envelops.  The S/N 

threshold was set to 10 for the most abundant peak (also the monoisotopic peak in HS 

tandem mass spectra) in a candidate envelope, and 5 for the rest of the isotope peaks. 

In the envelop optimization stage, the program detects abnormal isotopic peaks 

which has intensity either above or below given theoretical threshold, e.g. 30%, and 

makes hypothesis of the existence of an partial overlapping isotopic cluster.  The process 

is repeated until all abnormal peaks are resolved, or the hypothetic isotopic cluster is 

rejected once the inclusion of it fails to improve the overall fitting score. 

The output of SimpleFinder includes two files: one is a list of monoisotopic peaks 

with identified charge states, and the other contains a list of suspicious monoisotopic 

peaks with no charge information due to their low abundances and incomplete isotopic 

cluster patterns.  HS-SEQ currently only took the former file for consideration. 

 
5.3 Data Visualization 

Data visualization is an important step to demonstrate the internal structure of 

data sets, support decision-making as well as hypothesis validation. 

In the context of mass spectrometry data, one of the most demanding tasks in 

visualization is to demonstrate interesting features (e.g. peaks in the spectrum) and 

associate peaks with structural annotations (either composition or fragment information).  

Identification of molecule sequence may further require the connecting between peak 

annotations in tandem MS and candidate sequence.  Scores and meta data information 
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associated with MS and tandem MS may also be included to better support user decision.  

Almost all common software suites in mass spectrometry analysis provide visualization 

function.  MZmine 2 (126) supports visualization of chromatogram plot and spectrum 

plot.  Users are able to view the data in either 2D or 3D view, and manually check the 

peak-picking performance.  mMass (127) provides gel view (for comparing spectra from 

different samples),  normalized view (for comparing spectra from different machines), 

spectrum flipping (general comparison between two spectra), spectrum ruler and label 

tools.  Peptagram (128) uses HTML5 Canvas to visualize identified sequence of a single 

proteomics experiment, and provide graphical comparison of multiple experiments. 

Visualization of mass spectrometry data typically requires participation of users.  

Users’ expertise in instrument and spectrum interpretation is indispensable for guiding 

the data analysis.  A full-fledged visualization tool should be able to interact closely with 

user, on one hand, by providing users with supportive information for decision making, 

and on the other hand, by taking users’ input and update the inferred results. 

In order to support automatic annotation of tandem mass spectra, I designed a 

JavaScript tool, SpectrumAnnotation, which automatically labels interesting product ions 

and allows user’s operation on the spectrum.  The prototype algorithm was implemented 

in R (Figure 22) and the user interface was implemented by JavaScript D3 library (129) 

for data-driven visualization and HTML5 Canvas for fast image rendering.  The source 

code of SpectrumAnnotation is available from https://github.com/lamarck2008/Spectra 

Annotation.  

 

https://github.com/lamarck2008/Spectra
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Figure 22 SpectrumAnnotation for automatic peak labeling.  The relative positions of 

the labels in the spectra are inferred by the program based on neighboring label positions.  

The prototype was implemented in R and the image was modified in Illustrator. 

SpectrumAnnotation was implemented in a focus+context style (Figure 23), 

where the “context” region provides a profile of the data and the “focus” region provides 

a zoomed-in picture of the spectrum based on user’s selection on the “context” canvas.  

All the user-interactive features such as zoom-in, zoom out, drag and pan, were 

implemented by d3.js library and Scalable Vector Graphics (SVG) technique.  The 

rendering speed of SVG plot largely depends on the number of graphic objects (e.g. 

circles, lines), and plunges dramatically when the object number is at thousands.  This 

performance does not meet the requirement of whole-spectrum visualization, which 
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usually contains millions of data points.  In order to improve the rendering performance, I 

designed a hybrid visualization method that combines the flexibility of d3 in controlling 

graphic objects and rendering performance of HTML5 Canvas.  

 

Figure 23 SpectrumAnnotation in “focus + context” style.  A dataset with 203,967 

peaks is used to demonstrate the layout of SpectrumAnnotation. 

 

Since SpectrumAnnotation requires no background of the precursor sequence, it 

can be applied to general annotation of tandem mass spectra once the spectrum list and 

peak assignment list are given.  Further work will focus on the integration of 

SpectrumAnnotation with HS-SEQ to support automatic HS sequencing.  Users will be 

Focus 

Context 
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able to tweak the parameters or update the peak annotations directly from web interface, 

and the corresponding sequencing results will be generated simultaneously. 
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Chapter 6 Conclusion and Future Directions 

6.1 Summary  

This thesis is on the methodology of identifying heparan sulfate fine structure 

using high-resolution tandem mass spectrometry, and more generally, the methodology of 

interpreting tandem mass spectra containing spurious peaks.  Due to the paucity of 

comprehensive discussion on factors causing mis-interpretation and deficiency of current 

methods in differentiating HS isomers, this thesis focuses on formalizing the ambiguity 

problem in peak annotation, and designing strategies to integrate the ambiguous 

information for sequencing. 

 Chapter 2 reviews current identification algorithms in proteomics, and discusses 

progresses in glycomics and glycoproteomics.  One hallmark of tandem MS-based 

sequencing algorithms is that it is much easier to implement in from sequence to 

fragments rather than vice versa.  It’s no wonder that database search methods remain the 

standard identification procedure for the last two decades.  Algorithms in this category try 

to integrate knowledge of instrument, fragmentation methods and fragmentation patterns 

in order to effectively reduce the search space.  Since mass spectrometry technique is 

advancing so fast, researchers have to reinvent the wheel frequently in order to cater to 

the new rules (either chemical or instrumental).  In contrast, de novo sequencing 

algorithms try to build up the relationship between peaks, which allows rapid 

identification of sequence tags.  Game changes when the spectra are full of ambiguous 

peaks: database search methods may result in a high scoring threshold for confident 

identification, and de novo sequencing methods may detour to suboptimal sequences 
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when random matches of mass differences frequently occur.  Even the optimal path does 

not guarantee the correct identification (23).  Therefore, a working algorithm based on 

ambiguous peak annotations cannot simply follow precedent work in related fields and 

requires tailor-made design. 

 Chapter 3 overviews HS-SEQ, the first algorithm for identifying heparan sulfate 

fine structure using high resolution tandem mass spectrometry.  Compared with naive 

methods, HS-SEQ excels in both sensitivity and specificity, and usually takes seconds to 

generate sequencing results.  The results of HS-SEQ also reflects the spectrum quality, 

which suggests the potential to design a quality control (QC) method based on the reports 

from HS-SEQ.  The fundamental difference between HS-SEQ and other algorithms in 

related fields is that HS-SEQ focuses on inferring the most confident and informational 

peaks instead of global optimization of the sequence.  With a full set of advantages in 

sequencing, HS-SEQ is beneficial to confirming synthesized HS structures.  We also 

compared results from Bruker Solarix NETD with Thermo Orbitrap NETD (data not 

shown).  Although the two have different fragmentation preferences, their respective 

results agreed with each other.  This also suggests that HS-SEQ is in principle an 

instrument-independent approach for sequencing. 

 Chapter 4 discusses MULTI-HS-SEQ (or HS-SEQ+), an error-tolerant algorithm 

extended from HS-SEQ.  Different from HS-SEQ, which tries to pick out the currently 

most confident peaks for improving the sequencing results, MULTI-HS-SEQ works with 

complicated situations where there might be conflicting peak interpretations with equal 

confidence values.  Integrating conflicting peak interpretations will unavoidably 
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complicate the graph model and causes multiple sequences to be identified at the same 

time.  The main feature of MULTI-HS-SEQ is that it tries to minimize the number of top-

layer candidate sequences while maintain the advantages of HS-SEQ in specificity, 

sensitivity and running time.  It is still too hasty to conclude that MULTI-HS-SEQ can 

solve the mixture sequencing problem, but it does take the co-fragmentation of mixture 

into consideration.  This situation is not rare when the sample is from natural source and 

highly heterogeneous.  The feature of MULTI-HS-SEQ in tolerating conflicting sulfation 

information will make it suitable in exploring unknown sulfation patterns of HS.   

Chapter 5 introduces the architecture of HS sequencing pipeline, and focuses on 

developing modules assisting the pre-processing and post-processing of HS data:  a new 

deconvolution/deisotoping module SimpleFinder designed specifically for identifying the 

HS fragments ions with large variation of sulphur content, and a visualization tool 

SpectrumAnnotation for automatic interpretation of the spectrum.  These modules remove 

the need of tedious and error-prone human curation procedure and can effectively 

improve the sequencing throughput.  Further study will focus on optimizing the 

preprocessing algorithms, and user-interactive functionality in spectrum visualization. 

 

6.2 Generalization to Sequencing of Other Molecules Using Tandem Mass 

Spectrometry 

 
 As the development of instrument and fragmentation methods, the ambiguity of 

peak annotations and “chimeric spectra” (tandem MS with co-fragmentation) are 

becoming the remaining reasons causing an identification algorithm to fail.  Ideally, if we 
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can unequivocally assign all fragments (assuming only one sequence fragmented), we are 

able to recover the original sequence accurately and rapidly with linear time complexity.  

An optimized program should be able to finish this within a second.  In this thesis, HS-

SEQ serves to exemplify this basic idea. 

 Peptide identification is dominated by database search methods, which usually 

require high-confidence protein database, clear understanding of fragmentation 

preference, elaborately designed scoring function and solid FDR calculation.  Any 

deficiency in each of the process may significantly affect the final performance.  

Sequences with specific features (e.g. splicing variant, single amino acid mutation, 

symmetric structure, and rare PTMs) require tailored identification strategy.  

Assumptions or conditions may be implicitly nullified when one attempts to apply the 

classical strategies to new types of molecules (e.g. applying FDR in proteomics to 

glycoproteomics).  The sequencing of peptide is essentially arranging a set of residues 

given their total composition (although determining the correct composition sometimes 

can still be difficult).  Glycan sequencing takes linkage information into account, which 

can be addressed separately once the residue order is determined.  A robust, efficient and 

instrument-independent sequencing algorithm is possible if one can successfully improve 

the confidence of peak annotations (either through labeling or computational inference), 

and design a proper framework to integrate these annotations.  For sequence with large 

modification moiety (e.g. glycopeptide), it is essentially no different from a sequence 

with missing fragments.  Simple brute-force method such as bloom filter (130) may help 
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look up the composition of the missing part efficiently.  Fragmentation within the moiety 

can further clarify its internal organization. 

 

6.3 Application to Studying Heparan Sulfate Proteoglycan and Protein Interaction 

 Understanding the binding mechanism between HS and protein is important to 

guide the development of new drugs, as HS mediates many growth factor signaling 

pathways and tunes their activities.  The binding largely depends on the modification 

pattern (sulfation, epimerization) and domain organization of HS chains.  HS-SEQ and its 

successor MULTI-HS-SEQ (HS-SEQ+) provide practical solutions to identify the fine 

structures of HS and hopefully other GAG molecules.  Although HS-SEQ currently 

doesn’t assume the difference between IdoA and GlcA, this information may be inferred 

from biosynthetic rules as well as diagnostic ions.  Development of HS library may also 

contribute to understanding the distribution of epimerization and its biological 

significance. 

 To date, a few heparin-derived drugs have been developed.  In addition to the 

well-known roles of heparin in anticoagulation, HS mimetics such as PI-88 and PG 545 

can also mediate the inhibition of heparanase activities, and therefore interfere 

heparanase-induced HSPG degradation during metastasis.  Besides, these mimetics can 

bind to growth factor VEGF and FGF-2, and inhibiting the growth factors’ activities in 

stimulating tumor angiogenesis. 

 Compared with the wide involvement of HS in mediating biological functions in 

different animal organ systems, the development of HS-derived drugs is still in its 
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infancy (131).  This can be attributed to the complexity of binding mechanisms between 

HS chains and HSBPs, and further to the lack of clearly resolved HS sequences.  

Considering the advance of chemical and chemoenzymatic synthesis of HS 

oligosaccharides, new fragmentation methods to maintain the sulfate intactness of HS, 

and computational methods such as HS-SEQ (106) to accurately identify the sequence, 

the stale situation will be dramatically changed in the next few years.  We expect to see 

more HS-derived drugs into clinical trial in the near future. 
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