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Abstract

De novo peptide sequencing from MS/MS spectra has become of primary importance in proteomics. It

provides essential information for studies of protein structure and function. With the availability of various

MS/MS spectra, a lot of computational methods have been developed to infer peptide sequences from them.

However, current de novo peptide sequencing methods still have limitations. Some major ones include a

lack of suitable models reflecting MS/MS spectra, limited information extracted from MS/MS spectra, and

the inefficient use of multiple spectra. This thesis addresses some of the limitations with a series of novel

computational methods designed for various MS/MS spectra and their combinations.

The main content of the thesis starts with a comprehensive review of recent developments in de novo

peptide sequencing methods, followed by two novel methods for single spectrum sequencing problems, and

then presents two paired spectra sequencing methods. The first chapter introduces relevant background

information, objectives of the study, and the structure of the thesis. After that, a comprehensive review of

de novo peptide sequencing methods is given. It summarizes recent developments of computational methods

for various experimental spectra, compares and analyzes their advantages and disadvantages, and points

out some future research directions. Having these potential research directions, the thesis next presents

two novel methods designed for higher-energy collisional dissociation (HCD) spectra and electron capture

dissociation (ECD) (or electron transfer dissociation (ETD)) spectra, respectively. These methods apply new

spectrum graph models with multiple types of edges, integrate amino acid combination (AAC) information

and peptide tags, and consider spectrum-specific information to suit different spectra. After that, multiple

spectra sequencing problem is studied. A framework for de novo peptide sequencing of multiple spectra

is given with applications to two different spectra pairs. One pair is spectrally complementary to each

other, and the other is similar spectra with property differences. These methods include effective spectra

merging criteria and parent mass correction steps, and modify the previously proposed graph models to fit

the merged spectra. Experiments on several experimental MS/MS spectra datasets and datasets pairs show

the advantages of the proposed methods in terms of peptide sequencing accuracy. Finally, conclusions and

future work directions are given at the end of the thesis.

To summarize the work in the thesis, a series of novel computational methods for de novo peptide

sequencing are proposed. These methods target different types of MS/MS spectra and their combinations.

Experiential results show the proposed methods are either better than competing methods that already exist,

or fill gaps in the suite of currently available methods .
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Chapter 1

Introduction

1.1 Background

Proteins are crucial entities of biological organisms. One important step to understand proteins is to know

their sequences. The following are three main reasons of studying protein sequences. First, since a protein’s

sequence is unique, to at least some degree it helps distinguish proteins. Second, the sequence is the primary

structure of a protein, so it is the basis of understanding the higher level structure and function of the

protein. Finally, since most basic cellular processes are carried out by multiple proteins through molecular

interactions, it helps the study of protein-protein interactions and molecular biology of proteins [3].

In the study of protein sequences, a typical strategy is to break them into smaller parts, which are peptides,

and infer peptide sequences first instead. Therefore, peptide sequencing has become a prime concern in current

proteomics [4].

Peptides are organic compounds consisting of two or more amino acids. Amino acids are molecules

containing an amino group, a carboxyl group and a side chain that varies between different amino acids. The

side chain is represented by R in Figure 1.1. It is the residue that distinguishes one amino acid from another.

One nitrogen atom and two hydrogen atoms comprise the amino group (−NH2), and one carbon atom, one

oxygen atom and one hydroxyl (OH) constitute the carboxyl group (−COOH). The general structure of an

amino acid is shown in Figure 1.1.

Figure 1.1: The general structure of an amino acid.

Two amino acids connect to each other when one’s carboxyl group reacts with the other’s amino group,

creating a peptide bond (−C(= O)NH−) and losing a molecule of water (H2O ). The reaction of two amino

acids is illustrated in Figure 1.2, where R and R′ represent two side chains (residues). The elements in the
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blue circle represent the water (H2O) to be released, and the elements in the red circle represent the resulting

peptide bond (−C(= O)NH−).

There are twenty standard amino acids in nature composing peptides and proteins. Each of them has

been assigned an one-letter code for simplicity in use.

Figure 1.2: The reaction of two amino acids forming a peptide

Nowadays, tandem mass spectrometry (MS/MS) has emerged as a major technology for peptide sequenc-

ing because of the high throughput data it can generate in a short amount of time and its exceptional

sensitivity [5–7]. A typical procedure of the MS/MS can be summarized as follows. Protein mixtures are

first digested into suitably sized peptides for mass spectrometric analysis using site-specific proteases (usu-

ally trypsin). Then the peptides are ionized via an ionization process. After that, some selected ions are

further fragmented into fragment ions, and the output of MS/MS is a diagram called a tandem mass spec-

trum (MS/MS spectrum) [8–11]. An MS/MS spectrum usually contains two kinds of information organized

together as ordered pairs, the mass-to-charge ratio (m/z) values of fragment ions and the corresponding

intensities. Therefore, MS/MS works like a charged sieve; we can only get a series of charged fragments from

it [12]. Large molecules are broken into small pieces, and the problem of peptide sequencing is to find out

the whole sequence of the peptide from these fragments [13].

Different kinds of fragment ions occur during MS/MS depending on the cleavage positions on peptide

backbones, and the most frequently observed six kinds of them are named a-ions, b-ions, c-ions, x-ions, y-

ions, and z-ions. With various fragmentation techniques used in MS/MS, different kinds of output spectra

have differing dominant fragment ions and other unique properties. The commonly used ones include collision-

induced dissociation (CID), higher-energy collisional dissociation (HCD), electron capture dissociation (ECD)
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and electron transfer dissociation (ETD). CID was the most commonly used technique when people started to

use MS/MS for peptide sequencing, while the other three are newly developed techniques that are presently

widely used. In this thesis, different kinds of MS/MS spectra are investigated and a series of computational

peptide sequencing methods for various MS/MS spectra are developed.

1.2 Motivation and Objectives

When solving mass spectrometry-based peptide sequencing problems, database searching, peptide tagging and

de novo sequencing are the most popular methods [14–18]. In database searching, theoretical spectra [19]

are computed from an existing protein database and peptides are identified by matching the theoretical

spectra to experimental spectra [20]. Peptide tagging [21, 22] produces partial sequences, often called tags,

from an MS/MS spectrum, and then this information is usually combined with database searching or de

novo sequencing to reduce the scale of computation. When combined with database searching, tags can be

used as a filter to select candidate peptides that contain those partial sequences; when combined with de

novo sequencing, a tag can be used as a starting point that is extended to get full candidate sequences.

The last method, de novo sequencing, usually automatically interprets spectra using the masses of amino

acids [1,23–26]. Because of its independence of databases, it can identify new proteins, proteins resulting from

mutations, proteins with unexpected modifications and so on. Therefore, it is worth studying and developing

the de novo sequencing methods.

Current de novo sequencing methods mainly have three limitations. First, the models constructed usually

do not perfectly reflect MS/MS spectra. The second limitation is that less information is extracted than could

be from an MS/MS spectrum. Lastly, early developed peptide identification methods only use one MS/MS

spectrum, usually the CID spectrum, to infer the peptide sequence. The use of alternative MS/MS spectra and

multiple spectra of the same peptide have the potential to significantly increase the accuracy and practicality

of de novo sequencing. Facing these challenges and potentials, this study has the following objectives.

Objective 1: Review literature of currently developed de novo peptide sequencing methods and analyze

their advantages and disadvantages.

Objective 2: Design a new model containing more useful information from MS/MS spectra for de novo

peptide sequencing.

Objective 3: Design effective algorithms for de novo peptide sequencing using alternative spectra other

than the traditional CID spectra.

Objective 4: Develop a framework of de novo peptide sequencing using multiple spectra based on

graph-theoretic models.
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1.3 Organization of the Thesis

This is a manuscript-style thesis. It is presented as a series of manuscripts for which I am the first author

and primary investigator. These manuscripts were either published or submitted to specific journals during

my Ph.D. study. The order of the manuscripts is accordant with the objectives. At the beginning of each

chapter, detailed publication or submission information is given, followed by a brief introduction describing

the connection of the manuscript to the context of the thesis. The format of all manuscripts has been adjusted

to achieve consistency of format and style. All references of the publications have been unified and there is

only one bibliography at the end of all chapters for the entire thesis.

The remainder of the thesis is organized as follows: Chapter 2 presents a comprehensive review of de

novo peptide sequencing methods. It summarizes recent developments of computational methods for various

types of typical experimental data, compares and analyzes their advantages and disadvantages, and points

out some future research directions. Chapter 3 presents a new method named NovoHCD for de novo peptide

sequencing. It applies a spectrum graph model with multiple types of edges, and integrates amino acid

combination (AAC) information and peptide tags. This method has been applied to higher-energy collisional

dissociation (HCD) spectra. It is compared to other similar methods on several experimental datasets to

show its sequencing performance. Chapter 4 presents a de novo sequencing method for electron capture

dissociation (ECD) and electron transfer dissociation (ETD) spectra named NovoExD. NovoExD modifies

the model in NovoHCD to fit ECD/ETD spectra, and considers multiple peptide tags and fragment ion

charge information. Its performance is then compared to another similar method. Chapter 5 presents a

framework for multiple spectra sequencing and applies it to paired CID (or HCD) and ECD (or ETD)

spectra. These spectra pairs have different dominant fragment ions and are complementary to each other.

The performance of the framework is compared to another similar method named pNovo+. The results show

that the proposed framework outperforms pNovo+ on several experimental datasets. Chapter 6 presents a de

novo peptide sequencing method for CID and HCD spectra pairs. These spectra pairs have similar dominant

ions but are accompanied by other ion types with different properties. Less attention has been paid in

the literature to these spectra pairs. The proposed method includes a merging criteria of CID and HCD

spectra and a parent mass correction step, and modifies a previously proposed algorithm for sequencing the

merged spectra. The proposed method and other two methods designed for single spectrum (HCD and CID)

sequencing are evaluated for performance. Finally, Chapter 7 concludes the thesis and gives possible future

directions for this study. A full list of the publications produced during my Ph.D. studies is in Appendix A,

and the copyright permissions of the published manuscripts included in this thesis are in Appendix B.
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Chapter 2

Recent developments in computational methods for

de novo peptide sequencing via tandem mass spectrom-

etry (MS/MS)

Prepared as: Yan Yan, Anthony J. Kusalik and Fang-Xiang Wu. “Recent developments in computational

methods for de novo peptide sequencing via tandem mass spectrometry (MS/MS),” Protein & Peptide

Letters, accepted, August 2015.

The focus of the study in this thesis is MS/MS based de novo peptide sequencing methods. Before devel-

oping new computational methods for different kinds of MS/MS spectra, a comprehensive review of current

de novo peptide sequencing methods is needed. CID was the most commonly used fragmentation technique

when researchers started to apply de novo peptide sequencing methods to MS/MS spectra. Recently, with

developments of fragmentation techniques, alternative MS/MS spectra are available. Among them, the most

widely used ones are HCD, ECD, and ETD spectra. New de novo sequencing methods designed for these

spectra have become available in recent years.

This chapter gives a review of recent developments of computational methods designed for various MS/MS

spectra, especially methods for new, alternative spectra. With the availability of multiple types of spectra,

methods designed for the use of spectra combinations have been developed, and they are reviewed in this

chapter as well. This chapter summarizes different peptide sequencing methods available currently, compares

and analyzes advantages and disadvantages of these methods, and points out potential future research direc-

tions. The review in this chapter provides a foundation for the study conducted in this thesis on development

of new computational methods for de novo peptide sequencing.
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Abstract

Tandem mass spectrometry (MS/MS) has emerged as a major technology for peptide sequencing. Typically,

there are three kinds of methods for the peptide sequencing: database searching, peptide tagging, and de novo

sequencing. De novo sequencing has drawn increasing attention because of its independence from existing

protein databases and potential for identifying new proteins, proteins resulting from mutations, proteins

with unexpected modifications and so on. Recently, with the improvements in the accuracy of MS/MS

and development of alternative fragmentation modes of MS/MS, many new de novo sequencing methods

have been formulated. This paper reviews these recently developed sequencing methods including those for

alternative MS/MS spectra. The paper first introduces background knowledge on peptide sequencing and

mass spectrometry, and then reviews de novo peptide sequencing methods for traditional CID spectra. After

that, it focuses on the recent development of de novo peptide sequencing methods for alternative MS/MS

spectra. In addition, methods using multiple spectra from the same peptide are surveyed. Finally, conclusions

and some directions of future work are discussed.

2.1 Introduction

Peptide identification has become an important topic in current proteomics studies [27, 28]. Tandem mass

spectrometry (MS/MS) has emerged as a major technology for peptide identification [3, 5, 6, 12]. Figure 2.1

shows a typical MS/MS experiment flowchart. In a typical MS/MS experiment, protein mixtures are first

digested into suitably-sized peptides for analysis using site-specific proteases (usually trypsin). Then the

peptides are ionized via an ionization process. The two most commonly used ionization sources are Matrix-

Assisted Laser Desorption Ionization (MALDI) and Electrospray Ionization (ESI). More information about

different ionization sources can be found in [2]. Peptide ions are then go through a mass analyzer and their

mass-to-charge ratio (m/z) values and the corresponding intensities are measured. The generated data are

called MS spectra. After that, some selected peptides (also called precursor ions) are further fragmented into

fragment ions, and their tandem mass spectra (MS/MS spectra) are collected [8–11]. In this fragmentation

process, different techniques may be applied and result in various kinds of MS/MS spectra. MS/MS spectra

usually consist of two kinds of information, the mass-to-charge ratio (m/z) values of fragment ions and the

corresponding intensities.

In MS/MS, parent peptide ions are fragmented into various kinds of fragment ions, mainly along the

peptide backbone. The spine of a peptide contains three types of bonds (C−C, C−N , and N −C), and any

of which may be broken in MS/MS. There are 6 types of ions that commonly occur, named a-ions, b-ions,

c-ions, x-ions, y-ions, and z-ions according to their cleavage positions [29]. These ions can be in single or

multiple charge states. Notations further indicate the positions at which the fragmentation of the peptide

occurs. Figure 2.2 shows different cleavage sites and resultant ion types in detail. For example, in the cleavage
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Figure 2.1: Flowchart of a typical MS/MS experiment

sites between residues R1 and R2, breaking the C−C bond results in two complementary ions, an a1-ion and

an x3-ion; breakage of the C−N bond results in two complementary ions, a b1-ion and a y3-ion; and breaking

the N − C bond results in two complementary ions, a c1-ion and a z3-ion. In addition, the complementary

ion relationships in Equations (1)-(3) hold for the six types of ions introduced above.

ai + xN−i = mp + 2mH , (2.1)

bi + yN−i = mp + 2mH , (2.2)

ci + zN−i = mp + 2mH , (2.3)

where mp is the mass of parent peptide P , N is peptide length, and i ∈ {1, 2, . . . , N}.

Different fragmentation techniques in MS/MS yield differing dominant types of fragment ions. Collision-

induced dissociation (CID) and higher-energy collisional dissociation (HCD) yield b-ions and y-ions as domi-

nating ions [30]. Electron capture dissociation (ECD) and electron transfer dissociation (ETD) preferentially

produce variants of c-ions and z-ions, and occasionally a-ions [31–33]. In addition, all the fragment ions

usually lose some small molecules such as H2O and NH3 during fragmentation [26,34].

CID was the most commonly used fragmentation technique during the early development of peptide

sequencing methods [14]. The principle of CID is shown in Figure 2.4. Selected precursor ions with positive

charge values go into the collision cell that contains an inert collision gas, and fragment into product ions
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Figure 2.2: Different types of ions resulting from tandem mass spectrometry [1]

Figure 2.3: Structure of an immonium ion with residue R

and/or neutral losses. More information about the principles of different fragmentation techniques can be

found in [2]. With the development of new techniques and instruments in recent years, alternative MS/MS

spectra with new features have appeared [35]. HCD has similar dominating ions to CID but with more

abundant ions in the low mass region (typically ≤ 200Da). Specifically, there are special types of ions shown

on HCD spectra, the most informative ones being immonium ions (IMs) [36]. Figure 2.3 shows the structure

of the IM. Other useful ions include b1-ions, y1-ions, and a2/b2-ion pairs.

ECD and ETD both produce variants of c-ions and z-ions, and the fragmentation process of these ions

is shown in Figure 2.5. An ion with a dot “· means a radical fragment ion, which is a free radical species

carrying a charge. ETD [37] is a modification of the ECD technique [38] which was designed for dissociation

of multiply protonated peptide ions in MS/MS. In this study, we use ExD to represent ECD and ETD spectra

as a whole. ExD produces high quality MS/MS spectra for multi-charged peptides and has no strong cleavage

preferences. It utilizes a lower energy pathway than CID and HCD, thus preserving labile post-translational

modifications (PTMs) [39–41]. All these features yield spectra containing useful information, and thus they

have the potential to give satisfying peptide sequencing performance.

The goal of peptide identification is to infer the peptide sequence from an experimental spectrum. There

are three main kinds of methods currently used for peptide sequencing: database searching, peptide tagging

and de novo sequencing [42–45].

In database searching, theoretical spectra are computed from an existing protein database and peptides are

identified by matching the theoretical spectra to experimental spectra. Different scoring schemes are employed

to evaluate the matches [46]. The success of database searching thus relies on proper scoring functions [47] and

the quality and extent of the existing databases. A major disadvantage of database searching is that it cannot
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Figure 2.4: The principle of CID [2]

identify new or unknown peptides that are not included in the reference database. Peptide tagging [21, 22]

usually produces partial sequences, often called tags, from an MS/MS spectrum, and then uses these tags

to search against a protein database or to help with de novo sequencing. Since the method still searches in

a known database, it cannot identify new or unknown peptides. The advantage of using tags is that it can

dramatically reduce the search space and time needed in de novo peptide sequencing. De novo sequencing

automatically interprets spectra using the masses of amino acids. It can identify new proteins, proteins

resulting from mutations, proteins with unexpected modifications and so on. With the recent development

of high mass-accuracy MS/MS and alternative fragmentation techniques, de novo sequencing has shown

promising developments [48].

In this paper, we review recent developments in de novo peptide sequencing methods including some

new methods using various types of spectra. The remainder of this review is organized as follows. Section

2 focuses on the peptide sequencing methods using the traditional CID spectra. Sections 3 summarizes

some successful de novo peptide sequencing methods using alternative data such as HCD and ExD spectra.

Section 4 introduces the multiple spectra sequencing problem and some recent solutions to it. Finally section

5 concludes the review and gives possible directions of future work.

2.2 Development of de novo peptide sequencing with the use of

CID spectra

When researchers first started to apply de novo peptide sequencing methods to MS/MS data, CID spectra

were commonly used. De novo sequencing started with straightforward methods like exhaustive listing and

manual interpretation using unique features from CID spectra, and moved to refined and comprehensive

methods like those using graph-theoretic models [49].
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Figure 2.5: Fragmentation process leading to c- and z- type of ions in ExD

2.2.1 Early developments

Exhaustive methods involve listing all possible candidate peptide sequences that can result from a parent

peptide mass in an MS/MS spectrum [50], and comparing them with an experimental spectrum to find the best

match that has the highest possibility to generate such experimental spectrum. Typically, a suitably designed

scoring scheme is involved to measure the similarity between the experimental spectrum and the theoretical

spectrum of a candidate peptide. One computational difficulty with this approach is the exponential growth in

the number of candidate sequences with increasing parent mass. Another challenge is the effect of inaccurate

parent mass determination by the first stage of MS/MS, which leads to incorrect candidate sequences. Using

these candidate sequences, results are poor even if the scoring scheme is fine. Manual interpretation usually

employs graphical display of the MS/MS spectra, and relies on a human expert’s visual skill to generate

reliable results [51]. In this method, fragment ions that differ by the mass of one amino acid residue are

highlighted by connected lines, thus allowing the visualization of ion series of the same type. This method

may work well on simple spectra or spectra generated by short peptides. However, it requires a lot of human

expertise and time.

The manual interpretation approach may seem quite simple and straightforward. Fortunately, there are

ideas that can be used to enhance this approach to de novo peptide sequencing. For example, exponential

growth in the number of candidate sequences limits the exhaustive listing for large peptides. For a peptide
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with large mass value, it is quite time-consuming to get the comparison results for every possible candidate

sequence with the experimental spectrum. But careful choice when listing partial peptide sequences can help

with the sequencing of specific regions of a peptide. With the increased performance of computer hardware,

this composition-based strategy has been applied in several recently proposed methods [52]. In addition,

manual interpretation helps with finding new features in the experimental spectra, and provides ideas and

prototypes for many methods based on the more recently developed graph-theoretic models. Fortunately, it is

still quite worthwhile looking back and finding new ideas inspired by these initial approaches when designing

new de novo sequencing methods.

2.2.2 Graph-theoretic methods

In de novo sequencing, graph-theoretic methods have proven to be quite successful and hence such algorithms

have been widely used. In these methods, a tandem mass spectrum is typically represented as a graph called

a spectrum graph. Each fragment ion is represented as a vertex and two vertices having the mass difference

equal to one amino acid mass are connected by an edge [26,49,52].

The graph theoretical approach to de novo peptide sequencing was first proposed in the 1990’s [53–55].

The main idea is to use a graph to represent different partial peptide masses and their relationships as

interpreted from an MS/MS spectrum, and then to find suitable paths in the graph which indicate the likely

peptide sequences that gave rise to the spectrum.

The Sherenga algorithm was proposed in 1999 [56] based on such a graph model. This method first

identifies ion types in MS/MS data and then constructs the graph. This step helps with limiting the size of

the graph. A merging approach is then applied using a greedy algorithm that determines which of the vertices

in the spectrum graph can be merged into one vertex. The peptide sequencing problem is then transformed

into a longest path-finding problem in a directed acyclic graph (DAG). Another useful strategy applied in the

algorithm is a parent mass correction scheme since the accuracy of the parent mass is extremely important in

de novo sequencing. A problem with this algorithm is that the best path might not correspond to a realistic

solution because it may use multiple vertices associated with the same experimental spectral peak, which

may be due to incorrect merging.

In order to solve some of the problems in the Sherenga algorithm, Chen et al. [57] proposed a dynamic

programming approach to find the longest antisymmetric path in a spectrum graph. They introduced an NC-

spectrum graph (NC denotes N -terminal and C-terminal, respectively) for a given tandem mass spectrum,

which is constructed by assuming each peak in the spectrum is either a b-ion and a y-ion. Since each peak

generates two vertices in the spectrum graph, the total number of vertices 2k + 2, where k is the number of

peaks in the spectrum. A dynamic programming algorithm is then applied to find longest paths from the

graph. This idea was later developed into the de novo sequencing software named MSNovo [58].

In addition, some researchers applied other mathematical matrices to extract useful information from

MS/MS spectra. One successful algorithm named PepNovo [59] uses a probabilistic network reflecting the
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chemical and physical rules of the peptide fragmentation, and builds a spectrum graph to estimate the

peptide sequence. This method performed well in de novo peptide sequencing, but is highly dependent on

the training data used to generate the major parameters in the model, such as the fragmentation types and

their probabilities. Thus, the accuracy of results varied with different MS/MS data [60].

2.2.3 Other methods

When solving the de novo peptide sequencing problem, some researchers develop their methods based on

graph theoretical models, while others solve the problem in wholly different ways. One successful approach

in the latter category uses a hidden Markov model (HMM), which is a statistical model describing sequential

data with hidden information. The model ranks the likelihood between observed spectra and a given peptide

sequence. The resultant software, NovoHMM [61], is based on this model. PEAKS [62], which is also not

based on a spectrum graph model, uses dynamic programming to compute the best possible sequence among

all possible amino acid combinations. It first applies a sophisticated dynamic programming algorithm [63] to

output the 10,000 best candidate sequences, and then uses a carefully designed scoring scheme to rank them.

Finally, it computes a confidence score for each sequence output. According to recent literature, PEAKS

shows high sensitivity and good performance in peptide identification from MS/MS spectra [60]. In addition,

there are many derivatives of the original PEAKS software described [31,64] that involve other new methods

and techniques, thus making the integrated PEAKS package one of the most widely used software tools for

de novo peptide sequencing.

2.2.4 Discussion

For de novo peptide sequencing using CID spectra, different algorithms and software have their comparative

advantages and disadvantages, but in general, the trend is toward more effective peptide sequencing over

time. However, one needs to keep in mind that the performance of each software package may vary among

different spectra, instruments, techniques and experiment samples. Therefore, it is impossible to say which

one is best for peptide sequencing or which surpasses all others. Instead, researchers should carefully choose

software to fit the specific peptide sequencing problem they are facing.

There are still some limitations and problems in the above methods. The first one is that the spectrum is

typically noisy. To solve this problem, preprocessing and denoising approaches are needed [65], such as the

preprocessing in PEAKS and the work done by Sridhara et al. [66]. In addition, because the ions used to

find paths should be of the same ion type with de novo sequencing, ion type separations are helpful in the

subsequent peptide sequencing results. Some researchers have used a graph-theoretic approach to separate

b- and y- ions in an MS/MS spectrum [67], but little further work has been done in this vein.

The second problem is missing data from MS/MS spectra. Researchers have tried to extrapolate as much

useful information as possible from the models constructed, but they are typically not able to satisfactorily

reflect the actual MS/MS spectrum, and there is still a need to generate more accurate information from the
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outset [68].

There is still the potential to develop better strategies and newer models to improve sequencing perfor-

mance. For example, MSNovo [58] has integrated a new probabilistic scoring function with a mass array-based

dynamic programming algorithm to predict peptide sequences. In addition, researchers can change the def-

initions of vertices and edges in current spectrum graph models and investigates more relationships among

ions (not just the mass difference of amino acids [69]). Since the spectrum itself contains limited information,

another possible way is to combine other approaches — for example, database searching — to estimate the

best peptide sequence from the experimental spectrum. Tag-based approaches following this strategy, such

as PARPST [70] and Vonode [69], are widely used. Instead of inferring the whole sequence, these algorithms

first output the best peptide tag with a strict error tolerance and then use the tag to search potential peptides

in a previously specified database. These algorithms usually have advantages of shorter computation time

compared to traditional database searching methods and more accurate peptide sequencing results compared

to the traditional de novo peptide sequencing. Therefore, tag-based methods are worth studying deeper in a

deeper fashion in the future.

2.3 De novo peptide sequencing with alternative MS/MS spectra

CID was the most commonly used fragmentation technique when researchers started to use tandem mass

spectrometry for peptide sequencing. In recent years, alternative MS/MS spectra such as HCD and ExD have

appeared with the development of new techniques and instruments. Our study of these new spectra starts

with the investigation of their properties and unique features that could be used for peptide sequencing, and

then moves to the development of computational methods. In particular, we review the development of de

novo peptide sequencing using HCD and ExD spectra.

2.3.1 Methods using HCD spectra

HCD produces similar dominant ions to the traditional CID technique, but generates more ions in the low

mass region (typically ≤ 200Da). This includes ions specific to HCD spectra such as IMs (immonium ions),

which are introduced and studied in [71]. Another systematic study of the properties of HCD spectra can

be seen in [36]. From these studies, researchers have learned how to use this kind of spectra to infer peptide

sequences using de novo methods.

One successful method specifically developed for HCD spectra is pNovo [72]. It applies a spectrum

graph model and combines IMs and internal fragment ion information from HCD spectra, and has achieved

superior peptide sequencing results. Since there are few algorithms available designed specifically for HCD

spectra and CID spectra have similar dominant ions, the authors compared the performance of pNovo with

other algorithms designed for CID spectra. The results on various test data showed that pNovo has higher

sequencing accuracy than two previous algorithms, PEAKS [62] and PepNovo [59].
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Although de novo peptide sequencing for HCD spectra takes advantage of advanced instruments and

specifically designed methods, there are still limitations to these methods, especially the insufficient informa-

tion extracted from the spectrum graph model. For example, in a traditional spectrum graph like the one

used in pNovo [72], an edge is drawn between two vertices only when the mass difference between the two

vertices is equal (or close) to one of the 20 amino acid masses. Thus if there are peaks missing in the spectrum

or the m/z values are inaccurate, it could be very difficult to find a path through the graph representing the

correct peptide sequence. Therefore, a more suitable model with more information included is very appealing.

Since the traditional model only considers amino acid mass difference, a graph model from MS/MS spectra

that includes multiple relationships is expected to have better performance [21].

NovoHCD [73] is such a method that uses a modified spectrum graph model with multiple types of edges

(called a multi-edge graph) for peptide sequencing. It also combines amino acid combinations (AACs) and

peptide tags to make the problem easier to solve. This method first uses peptide tags to separate a whole

peptide sequence into three parts: prefix, tag, and suffix. It then builds multi-edge graph models on the prefix

and suffix separately for sequence interpretation, and uses AAC information to limit the number of edges

in the graph. It finally combines these three parts to generate complete sequences of candidate peptides.

Immonium ions observed particularly in HCD spectra are used in the candidate peptide ranking of NovoHCD.

From experiments on five HCD spectra datasets, NovoHCD outperforms pNovo in terms of the accuracy [73].

2.3.2 Methods using ExD spectra

When it comes to the other new types of spectra, ExD is a popular one because of its unique properties.

ExD is a new technology that has properties different from CID and HCD. Recent studies of MS/MS spectra

produced by ExD have focused on the characteristics of the spectra [32, 33, 39], how various PTMs can be

identified from the spectra [40], and performance of peptide sequencing methods using such spectra [17,74].

Some of the methods that use multiple spectra for sequencing include an option to use ExD spectra alone;

for example, the one introduced in [75]. These methods typically consider only a subset of the features in ExD

spectra because their focus is not ExD spectra exclusively. Up to now, little attention has been paid to de

novo sequencing methods using solely ExD spectra. However, one recently developed method, NovoExD [17],

takes advantages of the unique features of ExD spectra to infer peptide sequences from them alone. NovoExD

uses a novel spectrum graph model, considers multiple peptide tags to separate a peptide into small mass

regions, and integrates fragment ion charge and amino acid composition (AAC) information. It combines

small regions to output complete sequences of candidate peptides. In addition, a charge determination step is

used to extract more information from highly charged ExD spectra. Experiments on three ExD datasets show

an improvement of over 20% in average full length peptide sequencing accuracy for NovoExD as compared

to a multiple spectra method with an option for ExD spectra. Given the limited number of methods for

ExD alone and the unique features of such spectra, improved methods for them would be useful and worth

studying.
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2.3.3 Discussion

The two methods NovoHCD and NovoExD achieved superior experimental results compared to other similar

approaches. They have a similar framework but with modifications suitable for the new types of spectra

they utilize (HCD and ExD, respectively). The reasons for their success can be summarized as the following.

First, the framework replaces the traditional spectrum graph with a multi-edge graph, thus including more

relationships between pairs of peaks in a spectrum. Secondly, it separates whole peptide sequences into smaller

parts, and solves each sequencing subproblem separately. Lastly, AAC information is effectively incorporated

into the peptide sequencing process to limit the number of edges in the generated graph models, which also

reduces the computational cost for these methods.

In the future, exploring the unique properties of these new types of spectra, and designing innovative tech-

niques and models that utilize the novel types of information they contain, are potential research directions

that could further enhance de novo sequencing performance.

2.4 Multiple spectra de novo peptide problem and its develop-

ment

De novo peptide sequencing methods have existed for several decades, but there are still challenges in cor-

rectly identifying peptide sequences. Traditional de novo peptide sequencing methods use only one MS/MS

spectrum to conduct peptide sequencing. The main shortcoming of these approaches is the limited frag-

mentation information extracted from only one experimental spectrum. Therefore, identification accuracy

is limited. Apart from using new and high quality spectra for sequencing, there is another way to improve

performance, which is to combine multiple spectra from the same peptide but from different technologies to

conduct de novo sequencing [74]. For instance, CID (and/or HCD) and ExD spectra belonging to the same

precursor can be paired to obtain more fragmentation information for peptide sequencing [75, 76]. The use

of a pair of spectra is the major focus of multiple spectra peptide sequencing.

In CID fragmentation, b-ions and y-ions are the primary results from cleavage of the peptide bond, while

ExD fragmentation has no preferred cleavage sites except proline, which leads to a more uniform distribution

of the fragment ions, mainly consisting of c-ions and z-ions. In addition, CID fragmentation tends to produce

more fragment ions from cleavages in the middle of the sequence while ExD fragmentation prefers cleavages

at the end of the sequence [77]. This makes CID and ETD perfectly complementary techniques and leads to

a more comprehensive coverage of a peptide sequence with fragment ions [78].

In the following, some major developments of utilizing multiple spectra for de novo peptide sequencing

are discussed and compared. Although the current trend is to use a pair of spectra, some of the methods

introduced below have the potential or are already able to utilize three or more spectra.

To our knowledge, the earliest method designed for multiple spectra sequencing was the one developed
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by Savitski et al. [79]. This method utilizes spectra of the same peptide from collision activated dissociation

(CAD) and electron-capture dissociation (ECD) together. Their algorithm first uses ions that have supporting

ions in the other spectrum to create a backbone of the sequence, then uses complementary ion pairs and

other ions from the two spectra to extend the sequence until a full sequence is obtained. This is a linear

greedy algorithm that can be readily computed.

Other methods that fall into this category include CompNovo [77], Spectrum Fusion [80], pNovo+ [75], and

NovoPair [81]. CompNovo [77] employs a divide-and-conquer approach combined with a mass decomposition

algorithm. It uses informative ions from CID spectra to separate the whole spectra into suitably-sized

segments controlled by the divide-and-conquer criteria. It lists all possible amino acid compositions (AACs)

and compares them with the two experimental spectra to infer the peptide sequence that generated the

spectra. Spectrum Fusion [80] is proposed as a generic algorithm for multiple spectra sequencing. It combines

multiple spectra into a synthetic spectrum, and conducts de novo sequencing using the synthetic spectrum.

The method was evaluated on CID and ETD spectra pairs [80], but the method framework is applicable

for more and other types of spectra. In addition, this method includes a parent peptide correction strategy,

which is essential in solving multiple spectra sequencing problem.

CompNovo and Spectrum Fusion are more suitable for CID and ExD spectra because of the features they

consider, while the latter two, pNovo+ and NovoPair, are designed for HCD and ExD spectra. pNovo+ first

uses an offset frequency function (OFF) from Sherenga [56] to learn all ion types considered in the algorithm,

and then uses isotopic clusters to determine ion charge and convert all ions to +1 form to simplify subsequent

calculations. After this, the algorithm builds a spectrum graph and finds k longest paths (keeping just the k

longest paths from 0 to the current vertex every time), inferring the peptide sequences from them. NovoPair

uses a new spectrum graph model (GMET) developed from [73] and considers different fragment ion types

occurring in both spectra. It uses length-three peptide tags to separate a peptide into small regions, and

integrates amino acid composition (AAC) information into the graph model.

Apart from combining information from multiple spectra from the same subsequent peptide for pep-

tide sequencing, there are other ways of utilizing the information. He and Ma [31] presented the algorithm

ADEPTS that includes a new scoring function to select the best peptide candidates from the sequencing

results output by traditional methods; for example, candidates produced by the PEAKS [62] software for

each of two spectra. This method does not try to combine information from multiple spectra to design

a new sequencing method, but rather focuses on a new scoring function designed to select the correct se-

quences from all candidates. The hypothesis of ADEPTS is that the correct sequence is already generated

by single-spectrum sequencing methods, and the only need is a good selection scheme to find that correct

one. Therefore, ADEPTS is expected to have good performance for the case that at least one of the multiple

spectra is of good quality. ADEPTS has implemented a new way of using multiple spectra for de novo peptide

sequencing that integrates conveniently with current peptide sequencing algorithms. It also has the potential

to be extended to the case of more than two spectra.
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There are other studies that use multiple spectra, and we just give a brief introduction here. Altelaar

et al. [82] utilized a special enzyme to break the peptide backbone at the N-terminal side of lysine residues,

and combined CID and ETD spectra to conduct peptide sequencing. Guthals et al. [83] used MS/MS

triplets (CID/HCD/ETD) from overlapping peptides produced by different enzymes to infer peptide or even

protein sequences. The longest sequence from their experiments is up to 200 amino acids. Shen et al. [74]

compared the peptide sequencing performance of different methods when using various types of spectra solely

or together. Recently, Jeong et al. [84] proposed a universal de novo sequencing tool based on spectrum graph

model and claim it can be used for various types of spectra.

2.4.1 Discussion

The use of multiple spectra has become popular in the past decade and major attention has been paid to

the use of a pair of spectra from the same peptide. There are still a limited number of methods available

for this problem, and often it is hard to determine the superiority among them. Both CompNovo [77] and

Spectrum Fusion [80] have been shown to achieve better peptide sequencing results on various experimental

datasets compared to those methods that only use a single spectrum such as PEAKS [62] and PepNovo [59].

ADEPTS has shown better performance compared to both PEAKS and CompNovo [31]. NovoPair claims

to outperform pNovo+ in terms of full length peptide sequencing accuracy on three different experimental

dataset pairs [81]. It is important to notice that the above conclusions are based on different experimental

data used in each study, and due to differences in properties of the data, these comparisons are not necessarily

comprehensive and conclusive.

Despite the limitations, all the introduced multiple spectra sequencing methods have opened a new door

for de novo peptide sequencing and provide a promising way to solve some of the current challenges facing

traditional de novo peptide sequencing methods. Since most of the recent methods are mainly focused on

a pair of spectra, the extension of these algorithms to more spectra can be a major focus for future study.

When more types of data are available with improvements in fragmentation technique, we should be able to

apply the current algorithms to them with proper modifications. For example, the algorithm developed by

He and Ma [31] can be easily applied to more spectra with a small change of scoring function. In addition,

more spectrum-specific features should be investigated and applied in the methods using multiple spectra.

Currently, some methods mainly use mass-based features [77,79] and some use intensity-based features [31].

These features are usually used to extract information from all spectrum types. They are general features

common to all spectra and not spectrum-specific features. By leveraging spectrum-specific features, such as

IMs and internal fragments in HCD spectra, we may be able to extract more information from a spectrum

and achieve better sequencing results. Finally, since the use of pairs of MS/MS spectra have been applied to

database search [85,86], combination approaches of de novo sequencing and database searching using multiple

spectra are promising as a future study direction.
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2.5 Conclusions and outlook

De novo peptide sequencing has evolved over several decades and numerous methods have been published.

This paper reviewed recent developments in the area, especially methods developed for new types of MS/MS

spectra. The paper first introduced background knowledge on peptide sequencing and principles of the

experimental instrument, and then reviewed de novo peptide sequencing methods for traditional CID spectra.

After that, it summarized recent developments in de novo sequencing using alternative spectra, with the focus

on the methods using a single spectrum and multiple spectra from the same peptide.

Different algorithms and software have their respective advantages and disadvantages, and it is unfair to

say that one categorically surpasses all others. At the same time, there are still problems and limitations

in current methods [87]. In light of the problems, the following are some future work directions that we

believe would be worth considering. Firstly, since an MS/MS spectrum is noisy and with missing data,

improved preprocessing methods applied before peptide sequencing would be quite useful [88–90]; for example,

preprocessing methods for alternative MS/MS spectra. Secondly, since some algorithms are highly dependent

on an accurate parent peptide mass, more strategies can be used to improve that mass accuracy. Thirdly, in

the use of m/z ratios, many current algorithms have not considered various charge states (differing values

of z). Since multiple charges occur often in MS/MS, especially in ExD spectra [17], charge determination

methods would be quite useful to assist with de novo peptide sequencing [91–93]. Fourthly, for the multiple

spectra case, more efforts can be put toward new method development and performance comparisons among

different methods. Finally, for the combination of different methods, more effective ways can be devised to

combine de novo peptide sequencing with database searching; for example, Zhang et al. [64] give a new way to

combine the two kinds of methods. Also, some tag-based methods have been applied in the combination of de

novo peptide sequencing and database searching [69,70,73]. Researchers can work on multiple tag generation

in these methods and cleavage determination of those tags, both of which could improve the performance of

this combination of methods.
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Chapter 3

NovoHCD: De novo peptide sequencing from HCD spec-

tra

Published as: Yan Yan, Anthony J. Kusalik and Fang-Xiang Wu. “NovoHCD: De novo peptide sequencing

from HCD spectra,” IEEE Transactions on NanoBioscience, vol.13, no.2, pp.65-72, June 2014.

In the previous chapter, a comprehensive review of de novo peptide sequencing methods for MS/MS

spectra is given. Findings and analysis in it point out limitations and gaps in current methods available and

suggest potential directions for improvements and new method developments. Therefore, in this chapter, a

study of a new de novo peptide sequencing method for HCD spectra is presented.

It is mentioned in the previous chapter that with the development of MS/MS fragmentation techniques,

new types of MS/MS spectra are available and computational methods designed for them have been developed.

However, current methods often fail to build satisfying models that efficiently extract information from HCD

spectra. New models that are suitable for HCD spectra better are needed.

In this chapter, a de novo sequencing method including a new type of spectrum graph model is presented.

This graph includes multiple types of edges representing different kinds relationships between two ions in a

spectrum. Amino acid composition information and peptide tags are used in this method to limit the size

of the graph and simplify the calculation in the peptide sequencing. Experimental results on several HCD

spectral datasets show that the proposed method, NovoHCD, outperforms other competing methods in terms

of full length sequencing accuracy.
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Abstract

In recent years, de novo peptide sequencing from mass spectrometry data has developed as one of the major

peptide identification methods with the emergence of new instruments and advanced computational methods.

However, there are still limitations to this method; for example, the typically used spectrum graph model

cannot represent all the information and relationships inherent in tandem mass spectra (MS/MS spectra).

Here, we present a new method named NovoHCD which applies a spectrum graph model with multiple types

of edges (called a multi-edge graph), and integrates into it amino acid combination (AAC) information and

peptide tags. In addition, information on immonium ions observed particularly in higher-energy collisional

dissociation (HCD) spectra is incorporated. Comparisons between NovoHCD and another successful de novo

peptide sequencing method for HCD spectra, pNovo, were performed. Experiments were conducted on five

HCD spectral datasets. Results show that NovoHCD outperforms pNovo in terms of full length peptide

identification accuracy; specifically, the accuracy increases 13%–21% over the five datasets.

3.1 Introduction

There is growing interest in the identification of peptide sequences on the proteome-wide scale. Tandem

mass spectrometry (MS/MS) has emerged as a major technology for peptide identification [5,6]. In a typical

MS/MS experiment, protein mixtures are first digested into suitably sized peptides for mass spectrometric

analysis using site-specific proteases (usually trypsin). Then the peptides are ionized via an ionization

process. After that, selected peptides are further broken into fragment ions, and their tandem mass spectra

are collected [8–11].

In MS/MS, peptide ions are fragmented into various kinds of fragment ions, named a-, b-, c-, x-, y-, and

z-ions. Different fragmentation techniques used in MS/MS yield differing dominating types of fragment ions.

Collision-induced dissociation (CID) is one of the most commonly used fragmentation techniques, and it yields

b-ions and y-ions as dominating ions. Higher-energy collisional dissociation (HCD) has similar dominating

ions to CID but with more abundant ions in the low mass region (typically ≤ 200Da). Specifically, there are

special types of ions shown on HCD spectra, and the most informative ones are immonium ions (IMs) [36].

Other useful ions include b1-ions, y1-ions, and a2/b2-ion pairs. There are also other types of fragmentation

techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD). These

preferentially produce variants of c-ions and z-ions, and occasionally a-ions, and thus can be viewed as the

complement of CID or HCD [31].

There are two kinds of methods widely used for peptide sequence identification from MS/MS data:

database searching and de novo sequencing. In database searching, theoretical spectra are computed from

an existing protein database and peptides are identified by matching the theoretical spectra to experimental

spectra. The major disadvantage of database searching is that it cannot identify new, currently unknown
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peptides since a prior database is always needed. De novo sequencing, on the other hand, estimates peptide

sequences without the help of a database; it automatically interprets spectra using the masses of amino

acids. Therefore, this method can identify new proteins, proteins resulting from mutations, proteins with

unexpected modifications and so on. During recent years, especially with the development of high mass

accuracy MS/MS, de novo sequencing has drawn increasing attention [48]. Therefore, this study focuses on

the improvement of de novo peptide sequencing.

In de novo peptide sequencing, spectrum graph modeling has proven to be quite successful and hence

has been widely used [21, 52, 59, 62, 72]. In this approach, a tandem mass spectrum is typically represented

as a graph. Each fragment ion, corresponding to a peak in a spectrum, is represented as a vertex and two

vertices having a mass difference equal to one amino acid mass are connected by an edge. The main idea

of this method is to find paths in the graph that represent peptide sequences potentially giving rise to the

spectrum.

There is another method used in the peptide sequencing called sequence tagging that comprises a middle

path between database searching and de novo sequencing [21, 22]. Peptide tagging first outputs partial

sequences, usually called tags, from a MS/MS spectrum, and then uses these tags to search against a protein

database to interpret the spectrum. The use of tags can dramatically reduce the search space and time

needed, which makes it popular for some peptide identification problems. In addition, peptide tags also

have the potential to help de novo peptide sequencing since it provides useful information of partial peptide

sequences.

With the appearance of alternative MS/MS data resulting from different fragmentation techniques, novel

computational methods have emerged to enhance de novo peptide sequencing performance [94]. pNovo [72],

which applies a spectrum graph model and combines IM and internal fragment ion information from HCD

spectra, has achieved superior peptide sequencing results. Its performance on various testing data has been

shown to be better than that of two previous algorithms, PEAKS [62] and PepNovo [59]. Other research

has focused on the ability of pre-processing and charge determination in ETD spectra to improve sequencing

results [66]. Another popular approach is combining different types of spectra from the same peptide to

achieve better results [74]. For instance, CID (and/or HCD) and ETD (or ECD) spectra belonging to the

same precursor can be paired to obtain more fragmentation information for peptide sequencing [75,76].

Although de novo peptide sequencing has improved with the advance of instruments and computation,

it still has shortcomings, especially the limited amount of information extracted from the spectrum graph

model. For example, in a traditional spectrum graph, an edge is drawn between two vertices only when the

mass difference between the two vertices is equal (or close) to one of the 20 amino acid masses. Then if

there are peaks missing in the spectrum or the m/z values are inaccurate, it could be very difficult to find

a path from the graph representing the correct peptide sequence. Therefore, a more suitable model with

more information included is very appealing. Since the traditional model only considers amino acid mass

difference, a multi-edge graph that includes multiple relationships from MS/MS spectra is expected to have
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better performance [21].

Natural choices for extracting more information from a spectrum are peptide tags and amino acid combi-

nations (AACs). Peptide tags provide information about partial peptide sequences, information that would

definitely be useful to de novo peptide sequencing. AAC, which consists of order-independent amino acid

composition for a peptide, is also quite helpful [95, 96], especially in limiting the edges of a spectrum graph.

In general, graph-based algorithms compute the mass difference between the two vertices and compare it with

the theoretical residue mass of the 20 amino acids. However, in practice, a peptide usually does not contain

all 20 amino acids. In addition, due to the high noise level of the MS/MS spectra, wrong matches of amino

acids can easily happen if we compare with all 20 possible masses. When the correct AAC is known, instead

of considering all 20 amino acids, only those in the AAC set are considered when determining whether there is

an edge between two vertices. Therefore, identifying the proper AACs can ultimately reduce computational

time and eliminate false positive edges in a spectrum graph.

In this paper, we present a new method, NovoHCD, which uses a modified spectrum graph model with

multiple types of edges (called a multi-edge graph) for peptide sequencing. It is developed from [21, 94] and

combines amino acid combinations (AACs) and peptide tags to infer peptide sequences. The remainder of

this paper is organized as follows. Section 2 presents the proposed de novo sequencing method. Section 3

describes performance experiments and results. Finally Section 4 concludes the paper and gives future work.

3.2 Methods

The proposed method, NovoHCD, first uses peptide tags to break the whole peptide sequencing problem into

three parts: sequencing of tags, prefixes, and suffixes of the peptide. That is, the peptide sequence being

inferred is separated into three parts (prefix, tag, and suffix). The method builds separate multi-edge graph

models for each prefix and suffix, and AAC information is used to limit edges of each graph. This method

then combines these three parts to output complete sequences of candidate peptides. In addition, immonium

ions observed particularly in HCD spectra are used in the candidate peptide ranking step. The method flow

chart is shown in Figure 3.1.

3.2.1 Multi-edge graph model

In the new multi-edge graph G = (V,E), each peak (corresponding to a fragment ion) in the experimental

spectrum is represented as a vertex v and its mass to charge (m/z) value is denoted as mv. In the following,

unless otherwise specified, we assume that the fragment ions have z = 1. A is taken to be the set of 20 amino

acids, and ai ∈ A is a certain amino acid. ai is also used to represent its residue mass. mloss is defined to

be the mass of some small molecules lost from fragment ions, which typically include H2O, NH3, CO- and

NH- groups. For a string of amino acids P = a1a2 . . . an, define |P | to be the mass sum of all amino acids in

P . Thus |P | =
∑n

i=1 ai. Then the mass of parent peptide P (denoted as mP ) becomes mP = |P | +mH2O,
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Find qualified peptide tags 

Put in set T in order  

Select first t, delete it from T; 
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Figure 3.1: Method flow chart. All peptide tags are stored in set T , and t represents a tag in T ;
∆mpre and ∆msuf represent the mass values of the prefix and suffix separated by t, respectively.
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and the mass sum of a pair of complementary ions (charge +1) derived from P , denoted as M , becomes

M = mP + 2. The above notions are similar to those used in [63]. ∀u, v ∈ V , the following types of edges

are considered in G.

1. Type 1 edge, e1uv: A directed edge e1uv is drawn from u to v when | (mv −mu)− ai |≤ θ1, where θ1 is

a given threshold. We label e1uv with ai. Here, vertex u and v are expected to have a mass difference

of a single amino acid, ai. This is the type of edge defined in a traditional spectrum graph.

2. Type 2 edge, e2uv: An undirected edge e2uv is drawn between u and v when | M − (mv + mu) |≤ θ2,

where θ2 is a given threshold. Here u and v are viewed as complementary ions.

3. Type 3 edge, e3uv: An undirected edge e3uv is drawn between u and v when | (mv +mu)−M − ai |≤ θ3,

where θ3 is a given threshold. We label e3uv with ai.

4. Type 4 edge, e4uv: An undirected edge e4uv is drawn between u and v when | M − (mv +mu)− ai |≤ θ4,

where θ4 is a given threshold. We label e4uv with ai.

5. Type 5 edge, e5uv: A directed edge e5uv is drawn from u to v when | (mv −mu)−mloss |≤ θ5, where θ5

is a given threshold. Here u and v are different ions from the same cleavage site of the peptide.

All θ values mentioned above are specified by the user. For the HCD spectra used in the experiments

of this paper, all θ values were set to be 0.01Da. Figure 3.2 shows (part of) a multi-edge graph. In this

graph, vertices u and v have a mass difference of ai, and v and t have a mass difference of aj . uc, vc and tc

are complementary ions of u, v and t, respectively. uloss, vloss, tloss, uc−loss, vc−loss and tc−loss represent

any loss of small molecules from u, v, t, uc, vc and tc, respectively. In this graph, Type 1 edges are black

with arrows, Type 2 edges are blue, Type 3 edges and Type 4 edges are purple and green, respectively, with

arrows and Type 5 edges are red with arrows. One can see that, except for Type 2 and Type 5 edges, all

other edges have amino acids labeling them, and one amino acid can be inferred through all vertices from

the same cleavage site of the peptide. For example, in Figure 3.2, amino acid ai can be inferred from the

vertex set V Suv = {u, v, uc, vc, uloss, vloss, uc−loss, vc−loss}. The vertices uloss, vloss, uc−loss, vc−loss represent

just one kind of small neutral loss, and in real experiments, different kinds of losses may occur and there

would be more vertices representing small neutral losses in the multi-edge graph.

Here, we define the graph induced by all vertices from the same cleavage site of the peptide as a basic

structure of the multi-edge graph G, denoted G[V S]. From each G[V S], an amino acid ag is expected to be

inferred. Therefore, we add this amino acid into the notion of the basic structure, and denote the result as

G[V S−ag]. From connected basic structures in G, consecutive amino acids can be inferred. Here, “connected

basic structures” means that for any basic structure G[V S − ag] belonging to the whole structure, there is

at least one other basic structure G[V S − ah] having vertices overlapping with G[V S − ag]. For example, in

Figure 3.2, G[V S − ai] and G[V S − aj ] are connected basic structures that have v, vc, vloss and vc−loss as

overlapping vertices.

24



Figure 3.2: An example of a multi-edge graph.

Another graph GAA can be used to represent the relationship of amino acid strings inferred from basic

structures, in which the vertices VAA and edges EAA are defined as below.

VAA: Each vertex represents an amino acid acquired from a basic structure of a multi-edge graph.

EAA: Two amino acids are connected by an undirect edge if they are inferred from two connecting basic

structures.

With the multi-edge graph G and the basic structures G[V S], the peptide sequencing problem is then

transformed into a path-finding problem in a simple graph GAA.

During a MS/MS experiment, spectra representing different kinds of ions, along with their loss of small

molecules, are created. Assuming that there are τ types of ions present, the set of these ions is defined as

∆ = {δ1, δ2, . . . , δτ}. (3.1)

For a peptide P = a1a2 . . . an, in order to find its full length sequence using a spectrum graph model, at

least one δ ion should be observed at each cleavage site between amino acid ai and ai+1, ∀i ∈ 1, 2, . . . , n− 1.

In the traditional spectrum model, only two kinds of ions, b-ions and y-ions, are considered when finding

the longest paths. Here, 8 more types of ions are considered in the multi-edge graph model including loss of

H2O, NH3, CO- and NH- groups of both b-ions and y-ions. Therefore, the multi-edge graph model has a

higher chance of interpreting the full length peptide sequences than the traditional model.

3.2.2 Integration of peptide tags and AAC information

With more types of ions considered, the computational time and the possibility of false positives could be

increased. As a solution to this problem, more information from MS/MS spectra can be integrated into the
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model. Here, peptide tags and AAC information are incorporated into the proposed model.

Since peptides are long strings of amino acids, a straight-forward idea to make the sequencing problem

easier would be cutting the long strings into shorter, more easily interpreted substrings, and then solving

the sequencing problem on these shorter strings. Here, NovoHCD uses peptide tags to separate the whole

peptide sequences into three parts, namely prefix, tag, and suffix, and then uses the multi-edge graph model

on both prefix and suffix with AAC information to limit the number of edges considered in the multi-edge

graph model.

Currently, the most widely used peptide tags are 3-tags (tags consisting of three amino acid residues) [22].

Since the major focus of this paper is multi-edge graph based peptide sequencing and not tag finding, and

there are already many tag-finding algorithms available, a suitable 3-tag generating algorithm is chosen to

output all tags needed in the proposed method. An effective method named DirecTag [22] is used. For the

AAC information, an in-house database was built containing all theoretically possible AACs for any given

mass of no more than 3000Da, which should be able to output the AACs for almost all peptides encountered

in a peptide sequencing problem.

The detailed procedure of inferring peptide sequences from the multi-edge graph model with AAC infor-

mation and a given peptide tag t is summarized in Algorithms 1 and 2. The following notions are used in

the algorithms. T is the set of all tags, S = {(mi, inti) | i = 1, 2, . . . , n} is the peak list of an experimental

spectrum. PreSeq and SufSeq are the sequence sets of the possible prefix and suffix sequences of the original

peptide separated by tag t, respectively. ∆mpre and ∆msuf represent the mass values of the prefix and suffix

separated by t, respectively. G([V,E]) is a multi-edge graph representing the various relationships between

ions, where each vertex in V is a peak in S. G[V S] is a basic structure of G([V,E]). Anow is the AAC used

in the path finding in the current multi-edge graph G([V,E]).

Algorithm 1 Peptide sequencing using multi-edge graph model with integration of AACs and known peptide
tags

Input: A tag t ∈ T , experimental spectrum S = {(mi, inti) | i = 1, 2, . . . , n}, ∆mpre and ∆msuf .

Initialize: G([V,E])0 ⇐ [Ion, ∅], Candidate ⇐ ∅.

Calculate AACs of ∆mpre and ∆msuf , and put into sets AACpre and AACsuf

Calculate the m/z values of first and last ions of t, denoted as m(it)s and m(it)e

Invoke Algorithm 2 with input AACpre and m(it)s, yielding PreSeq

Invoke Algorithm 2 with input AACsuf and m(it)e, yielding SufSeq

for all seqp ∈ PreSeq do

for all seqs ∈ SufSeq do

Combine seqp and t and seqs, and put it into Candidate

end for

end for

Output: Candidate.
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Algorithm 2 Partial peptide sequence generation based on multi-edge graph model and given AACs

Input: Set of AACs A, m/z values of ion m(it).

Initialize: Set of paths Seq ⇐ ∅.

while A ̸= ∅ do

Put first AAC in A into Anow

G([V,E]) ⇐ G([V,E])0, V next ⇐ m(it)

while V next ̸= ∅ do

Put first vertex in V next into u

for all mi ∈ V do

Check if any edges of types e1uv to e6uv can be drawn when using Anow between u and mi, and let e

be the number of such edges

Add the e edges to E

Add the vertices connected with u into V next

end for

end while

Find basic structures G[V S] in G([V,E]) and build induced graph GAA

Infer paths from GAA qualified by Anow

Add qualified paths into Seq

Delete Anow from A

end while

Output: Set of paths Seq.
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Table 3.1: Description of mass-based features used in tag ranking

Feature of v number of ions u in a spectrum where

f1 u is the complementary ion of v.

f2 u and v are the +1 and +2 charges of the same partial peptide.

f3 u has a mass difference of a single amino acid to v.

f4 u has a mass difference of a loss of a small molecule from v.

f5 u and v are isotopic pairs.

f6 mass sum of u and v is close to parent mass with one amino acid loss or overlap.

3.2.3 Ranking of peptide tags

The peptide tag finding algorithm employed by DirecTag contains a criterion for ranking the output tags.

However, under scrutiny this ranking criterion was determined to be not very effective, thus limiting the

performance of NovoHCD. Therefore, a new peptide tag ranking method is developed here in order to pick

the best tags more effectively.

The proposed ranking method borrows ideas from the multi-edge graph model when choosing mass-based

features, and also the idea of “local maximum” from other research conducted by our group [88] when

applying intensity information to feature calculation. This method first calculates the rank of each peak in

a spectrum, and then combines ranks of all four peaks forming a tag to be the rank of the tag. This ranking

method utilizes information not considered by DirecTag, and thus is expected to achieve better results. In

this method, six mass-based features, denoted as F = [f1, . . . , f6], are first generated. These features are all

numbers of ions satisfying the criteria listed in Table 3.1. Calculation of a final score for each ion v, denoted

as F (v), is defined as the linear combination of all features,

F (v) =
6∑

s=1

∑
u∈E\v

fs(u, v) · ws, (3.2)

where ws is the weight of fs, and E is the edge set of the graph G. The weight vector W = [w1, . . . , w6] =

[1, 0.5, 1, 0.2, 0.5, 1] is defined similarly to the weight assignment method used in [88].

It has been shown that a simple threshold is not effective in differentiating signal ions from noisy ions

because the ions’ intensities in a spectrum tend to be larger in the middle of a m/z range than at the two

ends [88]. Rather, it is more reasonable to assume that the noises in a narrow m/z range are described by a

single simple distribution (for example, a normal distribution) and that the signal ions tend to be the local

maxima [88]. In this circumstance, we define local maximum and order in the use the intensity of each ion v

as follows.
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Local maximum: Vertex v is called a “local maximum” if its intensity is larger than the two peaks beside

it.

Order : The order of vertex v, denoted as o, is the iteration on which it is picked as a local maximum in

the following procedure. o = 1 means the peak is a local maximum of the original spectrum. After deleting

these o = 1 peaks, the local maximum peaks from the remainder of the spectrum will be assigned orders

o = 2. This process repeats iteratively until all peaks have been assigned with an order.

Finally, in the ranking process, an ion v with order o can be represented as a vector R(o, F (v)). We order

R first according to its initial element o in an increasing order, and then F in a decreasing order if two o

values are the same. After this ranking process, each v has its rank, denoted as rv. If a tag T consists of four

ions vi, vj , vk, and vt from the original experimental spectrum, the rank of T , denoted as rT , is calculated as

rT = rvi + rvj + rvk
+ rvt . (3.3)

The smaller the value of rT , the greater the chance that tag T is selected in the proposed method.

3.2.4 Candidate peptides scoring scheme

When all candidate peptides have been generated, the last step of NovoHCD is to rank these candidates

and determine the most likely correct candidates. Parent peptide mass mP is a widely-used feature to filter

out incorrect candidates or bound the search space. Therefore, the mass difference between candidates and

precursor ions (given in the spectrum), denoted as ∆mP , is used as a key feature in the ranking. In addition,

IMs can be observed in HCD spectra, and possible amino acids can be inferred from these ions. Each IM

corresponds to a single amino acid. All amino acids inferred from IMs observed in a spectrum are defined as

AAIM , and the number of amino acids in AAIM that are included in the candidate sequence is defined as

NIM . Therefore, for a given spectrum, each candidate peptide generated by NovoHCD can be represented

as a vector CP (NIM ,∆mP ). An approach similar to the one in the proposed tag ranking method is then

used. It first sorts CP according to its initial element NIM in a decreasing order, and then arranges ∆mP

in an increasing order. After this process, each candidate and its final ranking is output.

3.3 Experiments and Results

Five MS/MS datasets were used to test the performance of the proposed method. The performance was then

compared with that of another de novo peptide sequencing algorithm for HCD spectra named pNovo [72].

The detailed experimental process and comparison results are presented below.

3.3.1 Datasets

Five datasets were used to investigate the performance of our new method and pNovo. The first dataset,

SwedHCD contains +2 charged high-energy (HCD) MS/MS spectra of unique peptides [97]. The other
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four datasets – SCX decon, SCX nodecon, 60min analyses, 300min analyses – are from the same research

paper [98]. The original datasets contain various fragmentation MS/MS spectra including CID, HCD, and

ETD spectra. The HCD spectra were selected from them for the experiments here. The number of spectra

from the above five datasets used in the analysis were 10878, 1952, 2557, 123 and 154, respectively. Spectra

from the latter four datasets have charges of +2, +3, and +4.

To determine correctness of the peptides produced by the two programs for each input spectrum, a “gold

standard” was necessary. Every spectrum in the five datasets came with a correct spectrum. To give a more

comprehensive comparison, sequences from Mascot were also used as correct peptide sequences. Mascot [99]

is a widely-used program for protein identification based on database search. All results produced by Mascot

were trimmed to a < 5% false discovery rate.

3.3.2 Peptide tags ranking performance

The performance of the peptide tag ranking methods was first investigated: our proposed method versus

DirecTag. The SwedHCD dataset was used for this. For each spectrum, DirecTag produced 50 tags with

their rankings. To evaluate the two methods, we compared the number of spectra having at least one correct

tag under the condition of the same number of tags selected. The comparison when selecting at most 30 tags

per spectrum is shown in Figure 3.3. The y-axis in Figure 3.3 is the number of spectra having at least one

correct tag.

Sequences from Mascot were used as the correct sequences when generating the results in Figure 3.3.

Using the correct sequences as supplied by the databases gave similar results (data not show). Figure 3.3

shows that given the same number of (top-ranked) tags selected, more spectra contain at least one correct

peptide tag using NovoHCD. For example, when selecting 30 tags for both methods, there were 9,384 spectra

having at least one correct tag by using NovoHCD, while the number was 9,176 by using DirecTag’s ranking

criterion. Similarly, if we set the number of peptides having at least one correct tag to be the same, NovoHCD

needed fewer tags output. For example, when setting the peptide number to be 9,176, NovoHCD needed no

more than 21 tags per spectrum, while the DirecTag needed 30 tags per spectrum.

The proposed ranking method makes a significant contribution to the whole proposed multi-edge graph

based method. Using this ranking method, higher peptide sequencing accuracy can be achieved with fewer

tags, which corresponds to fewer multi-edge graphs calculated and fewer candidate peptides generated. Thus,

the computational costs and number of false positive candidate peptides can be reduced by using the proposed

ranking method.

3.3.3 De novo peptide sequencing performance

All five datasets were used to investigate the performance of the proposed method and pNovo. For each

spectrum, the top three candidates output by NovoHCD and pNovo were selected for evaluation. If any one

of the three candidates was correct, we said that this spectrum achieved a full length accuracy for the given
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Figure 3.3: Performance comparison of NovoHCD’s ranking method (solid green curve) and DirecTag
ranking (dashed blue curve).

method. The results for the full length peptide sequencing accuracy comparison are presented in Tables 3.2

and 3.3 with the use of Mascot and datasets providing correct sequences, respectively.

From Tables 3.2 and 3.3 one can see that for all five datasets, NovoHCD achieves higher full length

accuracy than pNovo, and the improvement ranges from 13% to 21% on different datasets. On SwedHCD

dataset, both methods achieved highest full length accuracy. This could be because this dataset only contains

+2 charged peptides, which makes the spectra less complex and easier to process. In addition, both methods

achieve lowest accuracy on the 300min analyses dataset. This might be due to the low quality of the spectra,

but further investigation is needed to get a reliable explanation. On the 60min analyses dataset, the two

methods have the largest accuracy difference, which might be because that +3 and +4 charged spectra make

the sequencing problem more complicated. In this case, NovoHCD considers the +2 charged ions, which

occur more commonly in +3 and +4 spectra, thus making its sequencing result better than pNovo’s. Other

features from +3 and +4-charged peptides will be further studied to improve our method in future study.

Furthermore, we considered the relationship between the number of correctly identified peptides and

peptide length. Figures 3.4 and 3.5 summarize the results from comparing the outputs of NovoHCD and

pNovo on the two largest datasets of the experiments, SwedHCD and SCX nodecon, respectively.
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Table 3.2: Full length peptide sequencing accuracy comparison among different datasets with Mascot
results as correct sequences

Dataset pNovo NovoHCD

SwedHCD 80.93% 94.50%

SCX decon 65.89% 81.46%

SCX nodecon 77.90% 88.46%

60min analyses 60.87% 81.52%

300min analyses 53.44% 67.17%

Table 3.3: Full length peptide sequencing accuracy comparison among different datasets with se-
quences from datasets as correct sequences

Dataset pNovo NovoHCD

SwedHCD 80.95% 94.54%

SCX decon 63.11% 80.58%

SCX nodecon 73.99% 85.14%

60min analyses 61.79% 81.30%

300min analyses 50.65% 67.53%

Figures 3.4 and 3.5 show that NovoHCD identified more peptides at every peptide length, as compared

to pNovo. The most peptides identified have lengths 8 to 10 with the SwedHCD dataset, and 13 to 16 with

the SCX nodecon dataset. In addition, the SCX nodecon dataset has longer peptides than the SwedHCD

dataset, and an increase of peptide length corresponds to fewer correct peptides inferred by both methods.

One can see that for length larger than 25 in the SCX nodecon dataset, almost no peptides were correctly

identified by either method. Therefore, long peptide sequencing is still a challenging problem in de novo

peptide sequencing. NovoHCD, which breaks whole peptides into three shorter parts and then infers their

sequences, partly solves this problem, thus achieving better full length sequencing results when compared to

pNovo.

Finally, we examine the computational time of NovoHCD. The algorithm was written using Matlab

(2010b) and the program was run on a PC with a 3.07 GHz quad-core CPU (Windows 7 operating system).

The results for different datasets are shown in Table 4.8. All run times (CPU times) are given in seconds.

From Table 4.8 one can see that the computational time varies from dataset to dataset, but all in an

acceptable time range. The time difference may be due to varied properties of the datasets, such as the

number of peaks per spectrum and the quality of the spectra. Reducing computational time will require
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Figure 3.4: Relationship between the number of correctly identified peptides and peptide length for
NovoHCD and pNovo using the SwedHCD dataset.

investigation to find the most time-consuming spectra or algorithm steps. Such investigation will be part of

our future study of this de novo peptide sequencing approach.

3.4 Conclusions and future work

In this paper, a new solution to the de novo peptide sequencing problem for HCD spectra, NovoHCD, has

been proposed. It is based on multi-edge graphs with integration of AAC and peptide tags. NovoHCD first

uses peptide tags to separate a whole peptide sequence into three parts: prefix, tag, and suffix. It then

builds multi-edge graph models on prefix and suffix information separately for sequence interpretation, and

AAC information is used in limiting edges of the graph. It finally combines these three parts to generate

complete sequences of candidate peptides. Immonium ions observed particularly in HCD spectra are used

in the candidate peptide ranking of NovoHCD. Five HCD spectra datasets were used to investigate the

performance of NovoHCD and compare it with another successful de novo peptide sequencing method, pNovo.

Experimental results showed that the overall accuracy increases from 13% to 21% compared to pNovo. In

addition, NovoHCD also includes a better peptide tag ranking algorithm as compared to another software
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Figure 3.5: Relationship between the number of correctly identified peptides and peptide length for
NovoHCD and pNovo using the SCX nodecon dataset.

called DirecTag, which makes the computation faster and more accurate.

We summarize the major contributions of NovoHCD in the following. First, it replaces the traditional

spectrum graph with a multi-edge graph, thus including more relationships between two peaks in a spectrum.

Secondly, it separates the whole peptide sequences into three parts, and solves each sequencing subproblem

separately. It is straightforward to think of solving a complex problem by cutting it into smaller and simpler

subproblems, but an MS/MS spectrum itself cannot be cut into pieces and interpreted since the ion signals

are intermixed. Separating a peptide sequence (used in NovoHCD) instead of its spectrum is a more suitable

approach. Thirdly, AAC information is effectively incorporated into the peptide sequencing process. AACs

have been used before in peptide sequencing, but the AACs derived from the parent peptide mass may result

in too many combinations to calculate. However, with the separation strategy above, the number of AACs

can be limited to an acceptable number. Therefore, AACs can be used in peptide sequencing with acceptable

calculation cost in NovoHCD. Last but not least, NovoHCD has been applied on a new kind of spectra (HCD),

and incorporates unique features of this kind of spectrum (immonium ions) into the sequencing method.

In future, we will focus on improving the accuracy of the proposed method by further analyzing the

wrongly identified spectra, expanding the evaluation of the new method to more MS/MS datasets, and

extending the method to other types of MS/MS spectra, e.g. ETD spectra. In addition, since a popular
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Table 3.4: Running time comparison on different datasets using NovoHCD

Dataset Number of spectra Total time (in seconds) Time per spectrum (in seconds)

SwedHCD 10878 3378.32 0.31

SCX decon 1952 3857.83 1.97

SCX nodecon 2557 13238.77 5.17

60min analyses 123 204.87 1.66

300min analyses 154 313.40 2.03

approach in peptide sequencing is pairing up different types of spectra from the same peptide to obtain more

information, we are planning to modify the model and apply it to the multiple spectra sequencing problem.
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Addendum

Amino acid combinations (AACs) are introduced and used in the proposed method NovoHCD. In order to

get all possible AACs of a certain mass value, we used computer software to generate all theoretically possible

AACs up to length k (the value of k is explained in the following content) and calculate the mass value of

each AAC. The maximum value of the AACs used is 3000Da. Since the minimum mass of the 20 standard

amino acid is around 57.05Da (glycine), the maximum length k = 53. The masses of the AACs having the

same integer part are stored into the same folded labelled with that integer number. After this process, when

all the AACs of a certain mass value are needed, we can first check and find the correct folder, and then

search for all needed AACs.

Biological meanings of of 5 types of edges defined in the proposed NovoHCD are listed below.

Edge Type Meaning

Type 1 u and v have a mass difference of some amino acid.

Type 2 u and v represent a complementary ion pair.

Type 3 u and v represent a complementary ion pair with one amino acid overlap.

Type 4 u and v represent a complementary ion pair with one amino acid gap.

Type 5 u and v are the same fragment ions but with loss of a small molecule.

35



Erratum

In the second paragraph of Subsection 3.2.2, “data not show” should be changed to “data not shown”.
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Chapter 4

NovoExD: De novo peptide sequencing for ETD/ECD

spectra

Published as: Yan Yan, Anthony J. Kusalik and Fang-Xiang Wu. “NovoExD: De novo peptide sequencing

for ETD/ECD spectra,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, in press,

online available at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7005483.

In the previous chapter, a new de novo peptide sequencing method for HCD spectra, NovoHCD, is

presented. NovoHCD applies a new spectrum graph model with multiple types of edges, and integrates

other information like AACs and peptide tags to help with the sequencing. Apart from HCD spectra, there

are other types of newly available spectra that have different properties than HCD spectra. Among them,

ECD/ETD are widely used. ECD/ETD spectra have variants of c-ions and z-ions as dominant fragment

ions, and usually produce high quality MS/MS spectra for multiple charged (≥+3) peptides. These features

make ECD/ETD spectra popular for MS/MS based peptide sequencing since they are quite different from

the traditional CID spectra and the previously studied HCD spectra.

Based on the review in Chapter 2, current studies in ECD/ETD spectra focus on property analysis of

these spectra and sequencing using them and CID spectra together. Typically, the methods designed for the

use of CID with ECD/ETD fail to fully consider the features of ECD/ETD spectra. These methods treat

ECD/ETD spectra as supplementary to CID spectra and focus on getting the information that CID spectra

are missing from the accompanying ECD/ETD spectra. At this time, less attention has been paid to de novo

sequencing methods for ECD/ETD spectra solely. Facing this situation, a suitable method using ECD/ETD

spectra alone is noteworthy.

This chapter presents a new de novo peptide sequencing for ETD/ECD spectra named NovoExD. The

success of NovoHCD presented in the previous chapter shows the effectiveness of the new designed graph

model. It is shown that with suitable improvement and modification of the model and specific feature

consideration for ECD/ETD spectra, the new method for ECD/ETD spectra achieves better performance

than other existing methods.

The proposed NovoExD in this chapter modifies the graph model in the use of peptide tags and adds

corresponding preprocessing steps. To be specific about tag usage, NovoExD changes the single tag usage in

NovoHCD to multiple peptide tags. These tags work together to separate a whole peptide sequence that needs
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to be identified into smaller pieces. The method infers partial sequences separately and assemble them back

together. Computation complexity of NovoExD and the number of possible AACs can be reduced with the

use of multiple tags. When considering unique features in ECD/ETD spectra, a charge determination step

for fragment ions is designed since a lot of ions in ECD/ETD spectra have multiple charges. Experimental

results on three MS/MS spectral datasets show that NovoExD outperforms another competing method in

terms of average full length peptide sequencing accuracy.
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Abstract

De novo peptide sequencing using tandem mass spectrometry (MS/MS) data has become a major compu-

tational method for sequence identification in recent years. With the development of new instruments and

technology, novel computational methods have emerged with enhanced performance. However, there are only

a few methods focusing on ECD/ETD spectra, which mainly contain variants of c-ions and z-ions. Here, a

de novo sequencing method for ECD/ETD spectra, NovoExD, is presented. NovoExD applies a new form

of spectrum graph with multiple edge types (called a GMET), considers multiple peptide tags, and inte-

grates amino acid combination (AAC) and fragment ion charge information. Its performance is compared

with another successful de novo sequencing method, pNovo+, which has an option for ECD/ETD spectra.

Experiments conducted on three different datasets show that the average full length peptide identification

accuracy of NovoExD is as high as 88.70%, and that NovoExD’s average accuracy is more than 20% greater

on all datasets than that of pNovo+.

4.1 Introduction

Tandem mass spectrometry (MS/MS) is used as a major tool for peptide identification in current proteomics

studies. In a typical MS/MS experiment, protein mixtures are first digested into suitably sized peptides, and

then the peptides are ionized via an ionization process. After that, selected peptides are further broken into

fragment ions, and their tandem mass spectra (MS/MS spectra) are collected [8]. MS/MS spectra usually

contain two kinds of information for each ion detected, its mass-to-charge (m/z) value and intensity.

In a typical MS/MS experiment, peptide ions are broken into various kinds of fragment ions. There

are six kinds of commonly observed ions, namely a-, b-, c-, x-, y-, and z-ions. Different fragmentation

techniques in MS/MS yield different dominant types of fragment ions. Collision-induced dissociation (CID)

and higher-energy collisional dissociation (HCD) yield b-ions and y-ions as dominating ions. Electron capture

dissociation (ECD) and electron transfer dissociation (ETD) preferentially produce variants of c-ions and z-

ions, and occasionally a-ions [31–33]. ETD [37] is a modification of the ECD technique [38] that was designed

for dissociation of multiply protonated peptide ions in MS/MS. In this paper, we use ExD to represent ECD

and ETD spectra as a whole.

CID was the most commonly used fragmentation technique when researchers started using mass spec-

trometry for peptide sequencing. With the development of new techniques and instruments in recent years,

alternative MS/MS spectra with new features have appeared. Among these, ExD spectra have drawn increas-

ing attention because of their unique features. Specifically, ExD produces high quality MS/MS spectra for

multi-charged peptides and has no strong cleavage preferences. It utilizes a lower energy pathway than CID

and HCD, thus preserving labile post-translational modifications (PTMs) [39–41]. All these features yield

spectra containing useful information, and hence they have the potential to give satisfying peptide sequencing
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performance.

Currently, there are three main kinds of methods used for peptide sequencing from MS/MS data: database

searching, peptide tagging and de novo sequencing. In database searching, theoretical spectra are computed

from an existing protein database and peptides are identified by matching the theoretical spectra to experi-

mental spectra [46]. The major disadvantage of database searching is that it cannot identify new or unknown

peptides. Peptide tagging [21, 22] usually produces partial sequences, often called tags, from an MS/MS

spectrum, and then uses these tags to search against a protein database or to help with de novo sequencing.

The use of tags can dramatically reduce the search space and time needed, and has the potential to improve

de novo peptide sequencing. De novo sequencing automatically interprets spectra using the masses of amino

acids. It can identify new proteins, proteins resulting from mutations, proteins with unexpected modifica-

tions and so on. With the recent development of high mass-accuracy MS/MS and alternative fragmentation

techniques, de novo sequencing has shown promising developments [48]. Therefore, this study focuses on de

novo peptide sequencing.

ExD is a new technology that has properties different from CID and HCD. The recent studies of MS/MS

spectra produced by ExD have focused on the characteristics of the spectra [32, 33, 39], how various PTMs

can be identified from the spectra [40], and the performance of such spectra [17,74]. When used for peptide

sequencing, ExD spectra are often paired with CID (or HCD) spectra because of the availability of the

complementary information from these spectra [31, 75, 77, 79]. Some of the methods that use paired spectra

for sequencing also come with an option to use ExD spectra alone; for example, the one introduced in [75].

These methods typically consider only a subset of the features in ExD spectra because their focus is paired

spectra sequencing. At this time, less attention has been paid to de novo sequencing methods using ExD

spectra alone, especially when compared to the ones developed for CID or HCD spectra alone. Considering

the unique features of ExD spectra and the shortage of corresponding algorithms, a suitable method designed

for ExD spectra is useful and noteworthy.

In this paper, we present a modified spectrum graph with multiple edge types, denoted as GMET,

derived from [100] to model ExD spectra. Amino acid combinations (AACs), the order-independent amino

acid composition information of a peptide, and peptide tags have already been integrated in our previous

model [73]. This new model utilizes all previously considered features as well as unique features in ExD

spectra. Since it is quite common to acquire ExD spectra from multi-charged peptide samples, multi-charged

fragment ions are frequently observed. Wisely considering and utilizing these ions can be a great help in

peptide sequencing.

The remainder of the paper is organized as follows: Section 2 presents the overall design, the GMET

model, and schemes for charge determination of fragment ions, peptide tags and amino acid usage, and

the candidate peptide ranking. Section 3 presents an evaluation of the method. Shown are the evaluation

methodology, the experimental results and performance analysis. Finally Section 4 concludes this study and

gives some directions for future work.
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4.2 Methods

In this section, a new de novo peptide sequencing algorithm for ExD spectra is proposed. The algorithm

considers unique features of ExD spectra including alternate dominant ions and multi-charged fragment ions,

and uses a recently presented type of graph, a graph with multiple edge types (GMET) [73]. The graph is

constructed by considering multiple peptide tags and fragment ion charge information.

The whole method is summarized in Figure 4.1. To start, the algorithm first searches the low mass region

of a spectrum, typically less than 200Da (Dalton, the unified atomic mass unit), to find any consecutive,

same-type ions from the first two cleavage points; to be specific, ion pairs {c1, c2}, {z.1, z.2}, {c− 1.1, c− 1.2},

and {(z + 1)1, (z + 1)2}. In this notion for ions, “+1” and “-1” represent addition or loss of 1Da in mass,

respectively; subscript numbers indicate the cleavage positions on a peptide backbone from either N -terminal

or C-terminal; and an ion with a dot “.” means a radical fragment ion, which is a free radical species carrying

a charge. If any pair exists, the two amino acids at the ends of a peptide sequence can be inferred and the

sequencing will be conducted on the rest of the peptide sequence. The motivation of this preprocessing step is

to reduce the potential sequencing length and make the problem easier to solve. This step is shown in Figure

4.1 in a dashed box indicating that one may not find any ion pairs for some spectra to limit the sequencing

length, especially for the spectra with poor fragmentation at the terminal amino acids.

After this preprocessing step, a tag finding and ranking algorithm is applied to find length-3 tags and

their associated scores. The tags are sorted in a decreasing order of the tag scores, and placed in a set T .

A large score corresponds to high confidence that a tag belongs to the peptide that generated the specific

spectrum.

The algorithm then uses the first peptide tag in T to separate prospective whole sequences into smaller

pieces. If there are no unused tags in T , the whole algorithm stops after a candidate peptide ranking step;

else, the first tag t in T is selected and deleted from T . Then the two mass regions separated by t are

calculated, stored in set Part, and compared to a predefined threshold Thres. If any of the mass regions is

over Thres, further separation of the region is needed using another suitable tag t
′
in T ; else, all amino acid

compositions of all regions in Part are calculated. Here, any length-3 tag consists of four consecutive ions.

The mass values of the two end ions of t
′
should be in the interval of the mass region (over Thres) in order

to separate it.

After that, the algorithm calculates amino acid compositions (AACs) of each region in Part and builds

GMETs on these regions to find partial peptide sequences. Finally, all suitable parts are assembled together

to form the final peptide candidates, and a ranking scheme is applied to select and output the best ones.

These steps in the algorithm and the various variables appearing in Figure 4.1 are explained in detail in the

following subsections.
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Table 4.1: Ion types considered in ExD spectra

Ion Type Mass calculation from residues Mass calculation from other ions

c
∑

(residue mass) + 18.0344 bm +mNH3

c− 1.
∑

(residue mass) + 17.0265 bm +mNH3 −mH

z.
∑

(residue mass) + 3.0156 ym −mNH3
+mH

z + 1
∑

(residue mass) + 4.0156 ym −mNH3 + 2mH

w
∑

(previous residue mass) + 73.0290 xprevious +mCO

b
∑

(residue mass) + 1.0078 bm

y
∑

(residue mass) + 19.0814 ym

4.2.1 Basic ion types considered in ExD spectra

Since ExD spectra have dominant ion types different from CID and HCD spectra, we first investigate the

ion types considered for the proposed method. After study of the literature about the frequency of different

fragment ions [32,33,37,39,41,87], the ions listed in Table 5.2 were selected based on their frequency observed

in MS/MS spectra. Here, mNH3 , mH , mCO denote the mass of NH3, H, and the CO-group, respectively.∑
(residue mass) is the mass sum of all amino acids from the end amino acid of a peptide sequence to the

amino acid at the current cleavage point. Similarly,
∑

(previous residue mass) is the mass sum of all amino

acids from the end amino acid of a peptide sequence to one amino acid previous to the current cleavage

point. bm and ym are the masses of the b-ion and y-ion, respectively, at the current cleavage point. xprevious

is the mass of the x-ion at the cleavage point one position previous to the current one. In addition, the

complementary ion relationships in Equations (1)-(3) hold for the ions in Table 5.2.

bi + yN−i = mp + 2mH , (4.1)

ci + z.N−i = mp + 3mH , (4.2)

c− 1.i + (z + 1)N−i = mp + 3mH , (4.3)

where mp is the mass of parent peptide P , N is peptide length, and i ∈ {1, 2, . . . , N}. ∆i is the ion mass of

the ith ∆-ion, where ∆ ∈ {c, c− 1., z., z + 1, b, y}.

4.2.2 Charge determination of multi-charged fragment ions

Since ExD spectra resulting from multi-charged peptides are quite common, fragment ions in spectra are

often in multiple charge states. Fragment ions having different charges mixed together in a spectrum may

cause interpretation problems since the mass difference calculation, a key measurement used in de novo
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peptide sequencing, is affected. Therefore, determination of fragment ion charges is quite useful in peptide

sequencing.

There are already a lot of methods developed for MS/MS spectrum charge deamination, and many

of them focus on the charge determination of precursor ions and utilize sophisticated machine learning

strategies [92, 93, 101, 102]. In this paper, we use a straightforward method to determine charges of all

fragment ions in a spectrum in order to reduce the complexity and reduce the computational time of the

proposed NovoExD.

Let the charge of a spectrum S from a peptide P be a non-negative integer n. The charge of a fragment

ion i, denoted ξi, in this spectrum is then a member of Ξ = {+1,+2, . . . , n − 1}. Ions having charge n are

not considered since the majority of ions in S do not have such a charge value. To determine ξi without

knowing the peptide sequence, ion relationships are needed. Here, two different possible relationships are

considered. One is that the two ions are the same fragment ion with different charges, e.g. +1 and +2 of

the same c-ion. The other is that the two ions are complementary but with different charges, e.g. a +1 c-ion

and the complementary +2 z.-ion. These relationships are used to determine (part of) the ion charges in a

spectrum.

In a spectrum S with charge n, suppose fragment ion i has charge ξi ∈ Ξ. Therefore, we have n − 1

possibilities for the charge of an ion i ∈ S. Then for S, we build n− 1 scenarios assuming all ions in S are in

charge state ξi ∈ Ξ, and calculate the associated n− 1 spectra having all ions with charge state +1, denoted

as Sξito1. The set of these n− 1 spectra is denoted SA = {Sξito1 | ξi ∈ Ξ}. Let j be an ion in Sξito1. Then

∀j ∈ Sξito1, we have ξj = 1, which means that all ions in Sξito1 have charge values +1. The ion charges can

be inferred by considering the two relationships described in the previous paragraph. If two ions p ∈ Sξpto1

and q ∈ Sξqto1 satisfy either of the relationships, where ξp, ξq ∈ Ξ, then the associated ions of p and q in the

original spectrum S, denoted as ip and iq, are in charge state ξp and ξq, respectively. The detailed steps of

charge determination of multi-charged fragment ions are shown in the following. Here, the m/z value of an

ion i ∈ S is denoted as (m/z)i.

1. For a spectrum S with charge n, calculate spectrum Sξito1 consisting of only charge +1 ions. ∀j ∈ Sξito1,

we have (m/z)j = ξi ∗ (m/z)i − (ξi − 1), ∀i ∈ S, and ∀ξi ∈ Ξ.

2. For ions p ∈ Sξpto1 and q ∈ Sξqto1, calculate Mdiff1 = |(m/z)p−(m/z)q|, where ξp ̸= ξq. If Mdiff1 < δ1,

then the associated ions of p and q in S, denoted as ip and iq, are in charge state ξp and ξq, respectively.

δ1 is a small valued threshold. This calculation is between two of the n − 1 spectra in SA indicating

the same ion with different charges.

3. For ions p ∈ Sξpto1 and q ∈ Sξqto1, calculate Mdiff2 = |(m/z)p+(m/z)q−mp−3mH |, where ξp+ξq = n.

If Mdiff2 < δ2, then the associated ions of p and q in S, denoted as ip and iq, are in charge state ξp

and ξq, respectively. δ2 is a small valued threshold. This calculation can be on the same spectrum in

SA or two spectra in SA forming a complementary ion pair.
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4. Assign all identified ξi to i, and set ξj = 1 for the rest of the ions j ∈ S; output results.

We give a simple example to show how the charges are determined. Assume all m/z values from an

experimental spectrum are stored in set S = {73, 109, 116, 130, 183, 217, 346, 365}. The parent mass is mp =

492, and the spectrum charge is +4. Here, we use integers to simplify the calculation and focus on the

principle of the algorithm.

Since the spectrum charge is +4, from the above algorithm three assumptions are made for the spectrum

that assume all ions are in charge states +1, +2, and +3, respectively. Then the three associated spectra

having all ions with charge state +1 are calculated as:

S1to1 = S = {73, 109, 116, 130, 183,217,346, 365},

S2to1 = {145,217, 231, 259, 365, 433, 691, 729},

S3to1 = {217, 325,346, 388, 547, 649, 1036, 1093}.

From the above sets, we first find identical elements which indicate the same fragment ion in different

charges. Number 217 (in boldface above) occurred 3 times and 346 occurred twice. From the name of the

set and the element positions, we infer that 73, 109 and 217 are the same ion in charge states +3, +2 and

+1, respectively; and 116 and 346 are the same ion in charge states +3 and +1, respectively. Subsequently,

we use complimentary ion relationships to infer ion charges of the ions in S. Since values 130 (underlined

above) in S1to1 and 365 in S2to1 satisfy such a relationship, we infer that 130 is in state +1 and 183 (the ion

at the same position of ion 365 in S) is in state +2. Finally, we label the only remaining ion 365 in S with

charge +1. After this process, every ion in S has a charge value.

4.2.3 GMET Model and de novo sequencing procedure

This GMET model used here is derived from [73]. The new graph type is of the form GMET=(V,E,Ξ),

where each peak (corresponding to a fragment ion) in an experimental spectrum is represented as a vertex

v ∈ V and its m/z value is denoted as (m/z)v; each v has a charge value ξ ∈ Ξ, which is determined by the

charge determination process described above.

Five different types of edges (see Table 4.2) in E are considered in the GMET, and the detailed calculations

are described in the following. Here, mp denotes the mass of the peptide producing such an experimental

spectrum. A denotes the set of 20 amino acids, and ai ∈ A is a certain amino acid. ai is also used to represent

its residue mass. mloss is defined to be the mass of some small molecules or groups lost from fragment ions,

which typically include H2O, NH3, CO- and NH- groups. ∀u, v ∈ V , if mu and mv denote their mass values,

then we have mu = ((m/z)v ∗ ξu)− (ξu − 1) and mv = ((m/z)v ∗ ξv)− (ξv − 1). θ is a given threshold. When

the edge calculation in the GMET involves an amino acid mass, the fitted amino acid labels the edge.

1. Type I edge, eIuv: A directed edge eIuv is drawn from u to v when | (mv −mu)− ai |≤ θ.

2. Type II edge, eIIuv: An undirected edge eIIuv is drawn between u and v when | mp+3mH−(mv+mu) |≤ θ.
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Table 4.2: Edge types in the GMET

Edge Relationship

Type I amino acid difference

Type II u and v represent a complementary ion pair

Type III u and v represent a complementary ion pair with one amino acid overlap

Type IV u and v represent a complementary ion pair with one amino acid gap

Type V loss of a small molecule

3. Type III edge, eIIIuv : An undirected edge eIIIuv is drawn between u and v when | (mv +mu) − (mp +

3mH)− ai |≤ θ.

4. Type IV edge, eIVuv : An undirected edge eIVuv is drawn between u and v when | mp + 3mH − (mv +

mu)− ai |≤ θ.

5. Type V edge, eVuv: A directed edge eVuv is drawn from u to v when | (mv −mu)−mloss |≤ θ.

In the experiments described in this study, θ = 0.01 Da. However, the threshold can also be set by users

according to their needs.

After the GMET is constructed, we denote G[V S] to be the graph induced by all vertices in the GMET

from a single cleavage site of the peptide whose sequence we are trying to infer (termed a basic structure).

From each G[V S] an amino acid can be inferred. From connected basic structures determined from the

GMET, continuous amino acids can be inferred. The detailed steps of inferring G[V S] (and amino acids)

from a GMET can be seen in [73]. Another graph, GMETAA, is then used to represent the relationship of

amino acid strings inferred from basic structures, in which the vertices VAA and edges EAA are defined as

below [73].

VAA: Each vertex represents an amino acid acquired from a basic structure of a GMET.

EAA: Two amino acids are connected by an undirect edge if they are inferred from two connecting basic

structures.

From a GMET, peptide sequences can be inferred by solving a path-finding problem in the simple graph

GMETAA. All paths are sorted in a decreasing order according to their length.

Since the GMET model considers multiple types of ions and different charges, the computational time and

the possibility of false positives are greater than those with less sophisticated methods. In order to address

this potential problem, more information from the spectra is integrated into the model. Peptide tags and

AAC information are incorporated in this method as they were in previous work [73], but with adjustment

for the ExD spectra. AAC, which consists of order-independent amino acid composition information of a

peptide, is helpful [95,96] in limiting the edges in a spectrum graph.
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In the previous method [73], a single tag with a length of three was used to separate the peptide sequence

into prefix, tag and suffix. Also an AAC in-house database was built containing all theoretically possible

AACs for any given mass of no more than 3000Da [73]. However, since there are many ExD spectra produced

from long peptides (typically ≥ 20), a single tag is not sufficient to simplify the sequencing problem, and

the number of possible AACs increases dramatically with the increase of peptide length. Therefore, multiple

length-3 peptide tags are considered here to separate the whole peptide into suitably sized parts for sequencing

based on the GMET. The approach also yields a solution to the problem of increased numbers of possible

AACs.

The results in [73] have shown that the single tag strategy is no longer effective when the peptide length

is over 15. Based on the frequency of each amino acid occurring in a peptide [103], the average mass of a

peptide of length 15 can be determined to be approximately 1600Da. Therefore, the threshold (as shown in

Figure 4.1) to determine whether more tags are needed to separate a peptide is set to be Thres = 1600. With

this value of Thres, the AAC database can be limited to masses of no more than 1600Da, which reduces the

number of possible AACs considered in the GMET case dramatically.

An effective method named DirecTag [22] and the ranking criterion proposed in [73] are used here to

generate and rank tags. In the following, detailed steps of integrating peptide tags and AACs are shown.

1. Generate length-3 tags using DirecTag [22] and put them into a set T according to their ranking scores

in a decreasing order.

2. Select the first tag t, and delete t from T .

3. Calculate the mass of its prefix and suffix separated by this tag, denoted as ∆mpre and ∆msuf . Store

the two mass intervals related to ∆mpre and ∆msuf into Part.

4. Go to Step 6 if ∆mpre and ∆msuf ≤ Thres. Otherwise, find the mass interval(s) larger than Thres,

denoted as [ms,me]; go to Step 5.

5. Search in T for the tag whose two end ions are in the interval of [ms,me]. If there is such a tag, denoted

as t
′
, go back to Step 3 using t

′
to separate [ms,me]; else, go to Step 6.

6. Find out all possible AACs of mass intervals in Part using the in-house AAC database.

7. Construct GMETs from both sides of the length-3 tag t. AAC information is applied to restrict the

choices of edges in such GMETs. Specifically, only amino acids included in the AAC are considered

when forming edges. With each possible AAC, one GMET is constructed.

8. Combine all partial sequences to be whole candidate peptides, and put them into set Candidate.

9. Go back to Step 2 if T ̸= ∅, and use other tags in T ; else, rank sequences in Candidate and output

results.
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4.2.4 Candidate peptide ranking scheme

After all candidate peptides are put in set Candidate in the proposed algorithm, peptide ranking is the

last step. Apart from the mass difference between parent peptide mass mp and the candidate peptide mass

(denoted as ∆mp), unique features in ExD spectra are considered. According to the literature [33, 87], x-

ions (y-ion+CO) and z-ions (y-ion−NH3, but not the z.-ion) are absent from ExD spectra. Therefore, if a

candidate peptide Pc is the correct peptide that produced a specific spectrum S, x-ions and z-ions calculated

from Pc should not be observed in S. That is to say, the fewer the number of x-ions and z-ions that are

calculated from a candidate peptide sequence based on S, the more likely it is the correct peptide.

Therefore, in the proposed ranking scheme each candidate peptide Pc can be represented as a vector

CP (∆mp, CZmatch), where CZmatch is the total number of x-ions and z-ions calculated from Pc observed in

S. The ranking scheme first orders CP according to ∆mp in a decreasing order, and then secondarily orders

CP according to CZmatch in a decreasing order. After this process, the candidate peptides are output with

their final ranking.

4.3 Experiments and Results

4.3.1 Datasets

Three ExD spectral datasets were used to investigate the performance of NovoExD. Another newly developed

de novo peptide sequencing algorithm, pNovo+ [75], was used for comparison. It has been shown that

pNovo+ achieves superior sequencing results on various testing data compared to another successful de novo

sequencing software, PEAKS [62]. pNovo+ [75] can be used for HCD and (or) ExD spectra either alone or

together. Here, the ExD option in pNovo+ is used.

The first dataset, SwedECD, contains ECD MS/MS spectra of doubly charged tryptic peptides [32]. The

average length of peptides in the database is 10.6 residues, and the average mass is 1196.6Da. The other two

datasets, SCX ETDFT no decon and SCX ETD decon, are from the same research paper [98]. The original

datasets contain various fragmentation MS/MS spectra including CID, HCD, and ETD spectra. The ETD

spectra were selected for the experiments here. The SCX ETD decon dataset contains ETD spectra with

deconvolution, and SCX ETDFT no decon dataset contains raw data without deconvolution of spectra. For

all spectra in these three datasets, a sequence is associated with each spectrum which is viewed as the correct

sequence of the peptide producing the spectrum. The number and charges of spectra in each dataset are

summarized in Table 6.2.

4.3.2 Parameters

There are several parameters needed for NovoExD, and the values applied in the experiments are listed

in Table 6.3. θ, δ1, δ2, and the number of output sequence are set according to our previous study and
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Table 4.3: Number of spectra and charges in each dataset used in the experiments

Dataset Number of spectra Charge of spectra

SwedECD 1414 +2

SCX ETDFT no decon 1298 +2, +3, +4, +5

SCX ETD decon 612 +2, +3, +4, +5, +6

Table 4.4: Parameters used in the experiments

Parameter Role in NovoExD Value

Threshold θ GMET edge building 0.01Da

δ1 Charge determination 0.01Da

δ2 Charge determination 0.01Da

Thres Tag integration into GMET 1600Da

Number of tags Tag integration into GMET 10 per spectrum

Number of output sequences Candidate output 3 per spectrum

experiments [73, 100], and they can be changed by users for their needs. The value of Thres has been

introduced previously in detail. The number of tags is chosen to be 10 because that the tags ranked lower

than the top 10 tags are most likely to be wrong tags according to our previous study [73].

4.3.3 De novo peptide sequencing performance

All three datasets were used to investigate the performance of NovoExD and pNovo+. For each spectrum

in a dataset, the top three candidates produced by the two methods were output. If any one of the three

candidates from a spectrum was correct (the same as the sequence associated with this spectrum), it was

deemed that full length accuracy was achieved for this spectrum and for the given method. In order to

analyze the contribution of multi-tags and ion charges in NovoExD, sequencing results of using the GMET

model without multi-tags and ion charge information are also shown. Detailed comparison is presented in

Table 4.5. Since the SwedECD dataset consists of +2 spectra with average peptide length of 10.2 [32], most

of the fragment ions have charge +1 and a single tag is sufficient for peptide sequencing. Therefore, we did

not use multi-tags and ion charges in the comparison and recorded “N/A” in the associated box in Table 4.5;

using these features is expected to yield results similar to those shown.

From Table 4.5 it is evident that the GMET model achieves better performance than pNovo+ on the

SwedECD dataset. Results for two datasets consisting of highly charged (≥ +3) spectra, SCX ETDFT no decon
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Table 4.5: Average full length peptide sequencing accuracy comparison

Dataset pNovo+
GMET without multi-tags Proposed

and ion charge information NovoExD

SwedECD 52.86% 72.25% N/A

SCX ETDFT no decon 63.02% 64.10% 85.83%

SCX ETD decon 64.62% 59.15% 88.70%

and SCX ETD decon, allow us to see the potential contribution of multi-tags and ion charges to peptide se-

quencing. The results in Table 4.5 illustrate that NovoExD obtains the highest full length accuracy among

all three methods, and the GMET without multi-tags and ion charges has performance similar to that of

pNovo+. Therefore, using these features dramatically improves the identification accuracy of highly charged

spectra (≥ +3). Specifically, accuracy is improved 22.81% and 24.08% compared to pNovo+, and 21.73%

and 32.55% compared to the GMET model without multi-tags and ion charges.

Furthermore, we considered the relationship between the number of correctly identified peptides and pep-

tide length. Figures 4.2 and 4.3 summarize the results from comparing the output of NovoExD and pNovo+ on

two datasets, SCX ETDFT no decon and SCX ETD decon, respectively. These figures show that NovoExD

outperforms pNovo+ on almost every peptide length except lengths 15 and 19 on SCX ETDFT no decon,

and lengths 12 and 14 on the SCX ETD decon dataset, respectively. For length greater than 16, NovoExD

achieves almost perfect identification on the SCX ETD decon dataset, while pNovo+ has lower identification

accuracy. The lower accuracy of NovoExD for some lengths may be due to the threshold controlling whether

multi-tags are used. Some peptides may require multi-tags for better performance but do not achieve the

pre-defined threshold. In future study, we will explore more suitable thresholds for the use of multi-tags.

In addition, the relationship between the number of correctly identified peptides and spectrum charge was

examined. Tables 4.6 and 4.7 summarize the results of the comparison between NovoExD and pNovo+ on

the SCX ETDFT no decon and SCX ETD decon datasets, respectively. These tables show that NovoExD

outperforms pNovo+ under every spectrum charge. Thus for the two datasets consisting primarily of +3

and +4 charged spectra, NovoExD identifies more peptides, which argues for the potential contribution of

using ion charge information for MS/MS peptide sequencing, especially with higher charged spectra. Since

the experiment here is limited, more investigation is needed to make a conclusive statement.

Finally, we examine the computational time of NovoExD. The algorithm was written using MATLAB

(2010b) and the program was run on a PC with a 3.07 GHz quad-core CPU and MS Windows 7 operating

system. The results for different datasets are shown in Table 4.8. Since a charge determination step is

part of NovoExD, in order to examine the effect of this step on the total running time, the time without

charge determination is also calculated for the SCX ETDFT no decon and SCX ETD decon datasets. The
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Figure 4.2: Comparison of the number of correctly identified peptides and peptide length between
NovoExD and pNovo+ using the SCX ETDFT no decon dataset.

SwedECD dataset contains only +2 charged spectra and all ions are assumed to be in charge state +1.

Therefore, there is no charge determination step needed for SwedECD dataset, and “N/A” is recorded in the

associated table cell. All run times (CPU times) in this table are given in seconds per spectrum.

From Table 4.8 one can see that the computational time varies among different datasets, but are all in an

acceptable time range; specifically, the running time per spectrum is less than 2 seconds. Another interesting

result is that the running time without charge determination is far less than that with charge determination.

This step takes around two thirds of the total time. Therefore, in order to enhance the speed of NovoExD,

the focus should be on this most time-consuming step. If a faster and more efficient charge determination

method is developed, the whole running time can be reduced dramatically. Such investigation will be part

of our future study of this de novo peptide sequencing approach.
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Figure 4.3: Comparison of the number of correctly identified peptides and peptide length between
NovoExD and pNovo+ using the SCX ETD decon dataset.

Table 4.6: Comparison between the number of correctly identified peptides and spectrum charge
using the SCX ETDFT no decon dataset

Spectra charge pNovo+ identified NovoExD identified Total spectra

+3 488 583 682

+4 311 457 532

+5 1 9 9
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Table 4.7: Comparison between the number of correctly identified peptides and spectrum charge
using the SCX ETD decon dataset

Spectra charge pNovo+ identified NovoExD identified Total spectra

+3 181 204 247

+4 199 295 320

+5 5 28 28

+6 0 2 2

Table 4.8: Running time comparison on different datasets using NovoExD

Dataset SwedECD SCX ETDFT no decon SCX ETD decon

Number of Spectra 1414 1298 612

Time (sec.) per spectrum
0.41 2.09 0.53

for NovoExD

Time (sec.) per spectrum
N/A 0.45 0.18

without charge determination

4.4 Conclusions and future work

In this paper, a de novo peptide sequencing method for ExD spectra, NovoExD, has been proposed. It uses

a new spectrum graph model, considers multiple peptide tags to separate a peptide into small mass regions,

and integrates fragment ion charge and amino acid composition (AAC) information. Then, it combines small

regions to output complete sequences of candidate peptides. In addition, a charge determination step is used

to extract more information from highly charged ExD spectra.

Three datasets of ExD spectra were used to investigate the performance of NovoExD by comparing it

with another successful de novo peptide sequencing method, pNovo+, which has an option for ExD spectra.

Experimental results have shown that the improvements in terms of average full length peptide sequencing

accuracy are over 20% on all datasets when compared to pNovo+.

In future, we will improve NovoExD’s accuracy, reduce its computational time, expand the evaluation

of NovoExD to more ExD datasets, and optimize the parameters in NovoExD. In addition, since a popular

approach to peptide sequencing is pairing different types of spectra from the same peptide to obtain more

information, we are planning to modify the model and apply it to the multiple spectra sequencing problem.
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Addendum

In the Subsection 4.2.2, when determining the ion charges, the equation in step 3 is from the previously

introduced equations 4.2 and 4.3.

Errata

1. In the second paragraph of Section 4.2, “The motivation of ...” should be changed to “The motivation

for ...”

2. In the forth paragraph of Section 4.2, “else,” should be changed to“otherwise,”.

3. In the fifth paragraph of Section 4.2, “These steps in the algorithm and the various variables ...” should

be changed to“These steps in the algorithm and the different variables ...,”.

4. In the Subsection 4.2.2, when determining the ion charges, the requirement of “where ξp + ξq = n” in

step 3 should be removed.
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Chapter 5

A framework of de novo peptide sequencing for mul-

tiple tandem mass spectra

Published as: Yan Yan, Anthony J. Kusalik and Fang-Xiang Wu. “A framework of de novo peptide

sequencing for multiple tandem mass spectra,” IEEE Transactions on NanoBioscience, vol.14, no.4, pp.478-

484, June 2015.

In the previous chapter, a new de novo peptide sequencing method for ETD/ECD spectra, NovoExD,

is presented. NovoExD modifies the model in NovoHCD and adds a charge determination step for multiple

charged ECD/ETD spectra. With the availability of various MS/MS spectra, the use of multiple spectra

from the same peptide for sequencing has become a new, popular research topic.

Multiple spectra peptide sequencing has the potential to extract more information from spectra than

single-spectrum based sequencing since information missed from one spectrum may be found in others.

This advantage thus gives multiple spectra sequencing the potential to significantly increase the accuracy

and practicality of de novo sequencing. Currently, there are some methods designed for multiple spectra

sequencing, but the models may not be designed well enough to extract as much information as they could.

There is still room to develop advanced methods in this area. Therefore, the study presented in this chapter

focuses on multiple spectra sequencing.

This chapter presents a framework for multiple spectra sequencing and applies it to paired CID (or HCD)

and ECD (or ETD) spectra. The newly available MS/MS has two fragmentation modes installed, for example,

the CID and ETD modes. The two models are changed very quickly during the experiment so that the two

types of spectra output at the same time are viewed as the ones generated by the same peptide. These spectra

have different dominant fragment ions and are complementary to each other. They are the most widely used

pairs in MS/MS based peptide sequencing. The performance of the framework with application to this kind

of spectra pair is compared to another competing method named pNovo+. Experiential results on several

dataset pairs show that the proposed framework outperforms pNovo+ in terms of full length sequencing

accuracy on experimental datasets.
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Abstract

With tandem mass spectrometry (MS/MS), spectra can be generated by various fragmentation techniques

including collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), electron capture

dissociation (ECD), electron transfer dissociation (ETD) and so on. At the same time, de novo sequencing

using multiple spectra from the same peptide generated by different fragmentation techniques is becoming

popular in proteomics studies. The focus of this study is the use of paired spectra from CID (or HCD)

and ECD (or ETD) fragmentation because of the complementarity between them. We present a de novo

peptide sequencing framework for multiple tandem mass spectra, and apply it to paired spectra sequencing

problem. The performance of the framework on paired spectra is compared to another successful method

named pNovo+. The results show that our proposed method outperforms pNovo+ in terms of full length

peptide sequencing accuracy on three pairs of experimental datasets, with the accuracy increasing up to

13.6% compared to pNovo+.

5.1 Introduction

When dealing with mass spectrometry-based peptide sequencing problems, there are three main kinds of

methods used: database searching, peptide tagging and de novo sequencing [17]. In database searching,

theoretical spectra are computed from an existing protein database and peptides are identified by matching

the theoretical spectra to experimental spectra [46]. The major disadvantage of database searching is that it

cannot identify new or unknown peptides. Peptide tagging [21,22] is usually used to reduce the search space

and time, and has the potential to improve de novo peptide sequencing. De novo sequencing has the ability

to identify new proteins, proteins resulting from mutations, proteins with unexpected modifications and so

on. With the recent developments of high mass-accuracy MS/MS and alternative fragmentation techniques,

de novo sequencing has shown promising developments [48]. Therefore, this study focuses on MS/MS de

novo peptide sequencing.

Tandem mass spectrometry (MS/MS) is a commonly used technology for peptide sequencing. It measures

the mass-to-charge ratio (m/z) of the components in experimental compounds, and the data collected from

it is called a tandem mass spectrum (MS/MS spectrum) [48]. In MS/MS, peptide ions are fragmented into

different kinds of fragment ions, named a-, b-, c-, x-, y-, and z-ions. Different fragmentation techniques

used in MS/MS yield differing types of dominating fragment ions. Collision-induced dissociation (CID)

and higher-energy collisional dissociation (HCD) yield b-ions and y-ions as dominating ions [36]. Electron

capture dissociation (ECD) and electron transfer dissociation (ETD) preferentially produce variants of c-

ions and z-ions, and occasionally a-ions [31–33]. ETD [37] is a modification of the ECD technique [38]; it

produces high quality MS/MS spectra for multi-charged peptides, has no strong cleavage preferences, and

preserves labile post-translational modifications (PTMs) [41]. These features yield spectra containing more
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useful information, which has the potential to give better performance when used in peptide sequencing.

In addition, all the fragment ions usually lose some small molecules such as H2O and NH3 during the

fragmentation.

With the appearance of alternative MS/MS spectra resulting from different fragmentation techniques,

novel computational methods have emerged to enhance de novo peptide sequencing performance. For ex-

ample, pNovo [72], which applies a spectrum graph model and combines immonium ions (IMs) and internal

fragment ion information from HCD spectra, has achieved superior peptide sequencing results. Its perfor-

mance on various testing data has been shown to be better than that of two previous algorithms, PEAKS [62]

and PepNovo [59]. We have previously proposed a de novo sequencing method for ECD and ETD spectra [17]

based on a new type of graph model, and the experiments on several MS/MS datasets showed that this method

achieved better peptide sequencing results, compared to another similar method [17] .

Apart from the algorithms based on single spectrum peptide sequencing, some researchers have tried to

use multiple spectra from the same peptide to infer peptide sequences [31, 75, 77, 79, 81]. Multiple spectra

peptide sequencing is promising because it has the potential to extract more information from spectra,

and significantly increase the accuracy and practicality of de novo sequencing. The use of paired CID (or

HCD) and ECD (or ETD) spectra is the major focus of the current study because of the availability and

complementary properties of these spectra.

Savitski et al. [79] first proposed a computational method that used two spectra from the same peptide

to infer peptide sequences. In their method, peaks appearing in both spectra representing the same partial

peptides were considered to be much more reliable than the rest of the peaks; they were used to create a

backbone of the sequence. The less reliable peaks were then used to fill the gaps in the sequence backbone

or extend the sequence until a full sequence was obtained. Another algorithm, CompNovo [77], employed

a divide-and-conquer approach combined with a mass decomposition algorithm, and extracted information

from CID and ETD fragmentation for peptide sequencing. This algorithm showed better peptide sequencing

results compared to the ones that only used CID spectra. In 2010, He and Ma [31] presented a new algorithm,

ADEPTS, to utilize multiple spectra for de novo sequencing. It was mainly focused on a new scoring function.

A new way of using intensity information was also included in this algorithm, which achieved better results

than programs like CompNovo. Most recently, Chi et al. proposed a de novo sequencing method named

pNovo+ [75] for HCD and ETD spectra pairs. It applied a spectrum graph model and combined different

fragment ion information from the two spectra, and showed superior results on various testing data.

In this paper, we present a new framework to deal with the multiple spectra sequencing problem, and

test its performance using spectra pairs from the same peptides. The proposed framework builds a modified

spectrum graph with multiple edge types (GMET) [73] by considering frequently observed fragment ions from

all spectra, and utilizes unique features from these spectra. Amino acid compositions and peptide tags from

both spectra are incorporated into the proposed method with consideration of the multiple spectra situation.
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5.2 Methods

In this section, the framework is proposed. It first considers unique features from all experimental spectra

to generate a merged spectrum Sm, and then uses peptide tags to break a whole peptide sequence into

smaller regions. After that, the proposed method builds a GMET model for each region and uses amino acid

composition (AAC) information to limit the edge numbers in the GMET. It finally combines all smaller parts

to output complete sequences of candidate peptides. The whole framework is summarized in Figure 5.1.

5.2.1 Basic ion types considered in each spectrum

Previous study has determined the frequency of different fragment ions observed in different MS/MS spectra

[17, 32, 33, 41, 73]. The ions listed in Tables 6.1 and 5.2 are considered in the proposed method based on the

availability of spectra and observed frequency of different ions. At this time, CID, HCD, ECD, and ETD are

the most popular spectra used. If more kinds of spectra are available in future, new types of ions could be

incorporated into the framework.

In these tables, mH2O, mNH3 , mH , mCO denote the mass of H2O, NH3, H, and CO- groups, respectively.∑
(residue mass) is the mass sum of all amino acids from an end amino acid of a peptide sequence to the

amino acid at the current cleavage site. Then,
∑

(previous residue mass) equals
∑

(residue mass) taking

off the mass of the amino acid at the current cleavage site. bm and ym are the masses of the b-ion and y-ion

at the current cleavage site, respectively. xprevious is the mass of the x-ion previous to the current one. An

ion annotated with “.” is a radical fragment ion.

In Tables 6.1 and 5.2, the first column presents the types of ions considered, and the second and third

columns give two kinds of mass calculation. The second column is the calculation based on previous residues,

which gives the relationship among cleavage sites. The third column is the calculation based on other types

of ions (specifically, the b- and y- ions) at the same cleavage site.

Since ions lose small molecules and some fragmentation techniques yield special ions during MS/MS

experiments, the proposed method considers the following ions: basic types of ions in Tables 6.1 and 5.2,

small molecule loss (such as H2O and NH3) from all the basic types of ions, multi-charged (charges up to

n − 1 for charge n precursor ion) basic ion types, and immonium ions (IMs) occurring frequently in HCD

spectra.

5.2.2 Spectra merging

The basic idea of spectra merging is to select signal ions from each spectrum to form a new spectrum, denoted

as Sm, which contains more useful information. Here, two kinds of relationships between ions are considered:

amino acid mass difference and complementarity [90].

For amino acid difference, with consideration of regular amino acid masses and loss of H2O and NH3,

all 2-tags (two amino acids long) in each spectrum are first produced. Here, a length-2 tag consists of three
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Figure 5.1: A flow chart of the proposed framework.
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Table 5.1: Ion types considered in CID/HCD spectra

Ion Type Mass calculation from residues Mass calculation from other ions

a
∑

(residue mass)− 26.9871 bm −mCO

b
∑

(residue mass) + 1.0078 bm

x
∑

(residue mass) + 44.9977 ym +mCO

y
∑

(residue mass) + 19.0814 ym

Table 5.2: Ion types considered in ECD/ETD spectra

Ion Type Mass calculation from residues Mass calculation from other ions

c
∑

(residue mass) + 18.0344 bm +mNH3

c− 1.
∑

(residue mass) + 17.0265 bm +mNH3 −mH

z.
∑

(residue mass) + 3.0156 ym −mNH3 +mH

z + 1
∑

(residue mass) + 4.0156 ym −mNH3 + 2mH

w
∑

(previous residue mass) + 73.0290 xprevious +mCO

b
∑

(residue mass) + 1.0078 bm

y
∑

(residue mass) + 19.0814 ym

ions (any two consecutive ion pairs having mass difference close to an amino acid mass or an amino acid

mass plus/minues some small molecular) from an experimental spectrum. The three consecutive ions can be

denoted as u, v, t in spectrum S. Without loss of generality, we say the masses of u, v, t are in an increasing

order. Then, ion v is named as a “middle ion” and selected for the merged spectrum. The middle ion, which

has two other supporting ions from the spectrum, is more likely to be a signal ion rather than noise. For the

complementary relationship, all complementary ion pairs in each spectrum are selected.

For an experimental spectrum S and ions u, v, t ∈ S, the charges of the ions are denoted ξu, ξv, and

ξt, and the m/z values of these ions in charge state +1 are denoted as u+, v+, and t+. Since charges of

ions are unknown, in order to calculate all possible m/z values, we assume ξu, ξv, and ξt to be any positive

integers from +1 to (n− 1), and calculate the associated n− 1 spectra having all ions with charge state +1,

denoted as Sξito1. Here n is the charge value of a given spectrum. There are already many algorithms for

MS/MS spectrum charge determination [92,93], and here we use a straightforward one similar to that in [17]

to simplify the calculation.

Additionally, we denote A as the set of 20 amino acids, and ai ∈ A as a certain amino acid. ai is also

used to represent its residue mass. mloss is defined to be the mass of some small molecules or groups lost
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Table 5.3: Relationships and ions selected in spectra merging.

Relationship Ions selected

| (v+ − u+)− ai + σ |≤ θ v

and | (t+ − v+)− aj − σ |≤ θ (middle ion)

| mp + 2mH − (v+ + u+)± σ |≤ θ v and u if u, v ∈ Sc

| mp + 3mH − (v+ + u+)± σ |≤ θ v and u if u, v ∈ Se

from fragment ions, which includes H2O and NH3. Relationships and ions in Table 5.3 are then utilized.

In the table, ai, aj ∈ A; σ can be 0 or mloss (considering the loss of small molecules of fragment ions); θ is

a given threshold; and mp is the parent peptide mass. Finally, Sm consists of all middle ions in 2-tags and

complementary ion pairs for a given pair of MS/MS spectra. All ions in Sm come with charge values from

this step.

Here, we give a simple example to show how the merging step works. Assume the m/z values of two

experimental spectra are Sc = {130, 199, 277, 346} (represent a CID spectrum) and Se = {132, 182, 234}

(represent a ETD spectrum), respectively. The parent mass is mp = 492. Sc is in charge state +2 and Se is

in charge state +3. The lost small molecule is H2O, and then mloss = 18. Here, we use integers to simplify

the calculation and focus on the principles of the method.

Converting all ions to charge state +1, three associated spectra are generated:

Sc
1to1 = {130,199, 277, 346},

Se
1to1 = {132, 182, 234},

Se
2to1 = {263, 363, 467}.

We first deal with Sc
1to1. From the calculations in Table 5.3, we get that values 130, 199, and 346 satisfy

| (199− 130)− aS +18 |= 0 and | (346− 199)− aE − 18 |= 0, where aS = 87 and aE = 129 are the masses of

serine and glutamine, respectively. Then we infer that the ion having m/z value of 199 (in boldface above)

is a fragment ion having lost a molecular of water, and it is added to the merged spectrum Sm. In addition,

we get that values 199 and 277 (underlined above) satisfy | 492 + 2mH − (199 + 277) − 18 |= 0. Then we

infer that these two ions are complimentary ions, and the ion having m/z value of 277 is a regular ion. Both

ions are in charge state +1.

We now deal with Se
1to1 and Se

2to1. Values 132 and 363 (underlined above) satisfy | 492 + 3mH − (132 +

363) |= 0. Then we infer that these two ions are complimentary ions, and the ion having m/z value of

182 is in charge state +2 (the ion at the same position as ion 363 in Se
1to1). Therefore, the final Sm =

{132, 182, 199, 277}, and their charges are known from the above steps.

61



5.2.3 Parent mass correction

In this problem there are multiple MS/MS spectra and each comes with a parent peptide mass. These

masses are probably different, though they should be close. Therefore, before de novo sequencing, parent

mass correction is needed. Here, complementary ion pairs are used to find the optimal parent mass in a given

region. The model hypothesis is that the real parent mass has the minimal mass difference to complementary

ion pair masses.

Denote complementary ion pairs in Sm as CIP = {(Ij , Icj ) | j = 1, 2, · · · k}, where Ij , I
c
j ∈ Sm are

complementary ions, and k is the total number of complementary ion pairs. We find the optimal parent mass

Pmass by solving the following optimization problem

minΣk
j=1 | (Ij + Icj )− Pmass |2

s.t. Pinf ≤ Pmass ≤ P sup (5.1)

Here, Pinf and P sup are the infimum and supremum of Pmass, respectively. In practice, users could set the

two masses as the maximum and minimum masses of these spectra, or other suitable values as needed. Since

the above problem is a convex optimization problem with one unknown variable Pmass, the minimal value of

Pmass can be uniquely determined [104].

5.2.4 De novo sequencing model

The sequencing model proposed here is derived from [17] and [73] with modifications designed for the multiple

spectra sequencing problem. It uses a new type of spectrum graph with multiple edge types (GMET),

considers multiple peptide tags to separate a peptide into small mass regions, and integrates fragment ions in

the merged spectrum Sm and amino acid composition (AAC) information. For each mass region combination

(see Figure 5.1, set Part) separated by several tags, a GMET is built.

In graph GMET = (V,E,Ξ) each peak (corresponding to a fragment ion) in the experimental spectrum

is represented as a vertex v ∈ V and its m/z value is denoted as (m/z)v. Each v has a charge value ξ ∈ Ξ,

which is determined by the previous merging step. The default value of ξ is +1. ∀u, v ∈ V , let mu and mv

denote their mass values, then we have mu = ((m/z)u × ξu)− (ξu − 1) and mv = ((m/z)v × ξv)− (ξv − 1).

Five different types of edge in E are considered in the GMET, and the detailed calculations can be found

in [17].

A major difference in this GMET compared to the one in [17] is that it considers all ion types in Tables

6.1 and 5.2 when sequencing using Sm. Another difference in the sequencing model is the use of peptide tags.

Since there are multiple experimental spectra and one merged spectrum Sm, instead of generating tags from

Sm, the model uses experimental spectra separately to produce multiple peptide tag sets (by the DirecTag

algorithm [22]), and uses the ranking scheme in [73] to sort them. The reason for this is that DirecTag is
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designed for a single MS/MS spectrum, not a merged spectrum, and the mixed types of ions in Sm are a

source of difficulty for DirecTag.

With more types of ions considered, the computational time and the possibility of false positives may be

increased in the model. As a solution, AAC, which consists of order-independent amino acid composition

information of a peptide [95], is incorporated into the model to limit the edges in a GMET. For a given mass

region, possible AACs are generated for such specific mass; and only amino acids in an AAC will be used

as edge choices in a GMET. From the GMET model, the proposed method infers partial peptide sequences

on each segment, and assembles them into final candidate sequences. The steps of sequencing by the GMET

model with integrated peptide tags and AAC are shown in Figure 5.1.

5.2.5 Candidate peptide ranking

When all candidate peptides have been produced, the last step is to rank these candidates and determine the

most likely correct ones. A theoretical spectrum generated from the correct sequence is expected to have the

best match to the experimental spectrum. Therefore, we use this feature as well as ion intensity to design a

candidate ranking scheme. The detailed steps are shown below.

1. For a candidate peptide sequence Pcan ∈ Candidate, generate a theoretical spectrum for each ex-

perimental spectrum. Ion types considered are the ones in this specific spectrum that were used for

generating spectrum Sm. All ion intensities in the theoretical spectra are defined as a constant value.

2. Compare the theoretical spectra with experimental spectra, and select matching ions from each pair of

spectra with a mass difference less than the predefined threshold θr.

3. Sum the intensity values of matching ions in the experimental spectra to be the final ranking score of

Pcan.

After this process, each candidate peptide will be assigned a ranking score. The higher the score, the more

likely it is that this sequence is the correct one generating the input experimental spectra. In the proposed

method, for a set of input spectra, the top 3 highest scoring candidates along with their ranking scores are

output as results.

5.3 Experiments and Results

We applied the framework to MS/MS spectra pairs to evaluate its performance. Here, three pairs of datasets

were used. Another newly developed de novo peptide sequencing algorithm for paired spectra, pNovo+ [75],

was used for comparison. pNovo+ [75] can be used for HCD and (or) ETD/ECD spectra either alone or

together. It has been shown that pNovo+ achieves superior sequencing results for paired spectra sequencing

on various testing data compared to other methods [75]. In addition, our previously proposed methods for
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Table 5.4: Number of spectra and charges in each dataset used in the experiments

Dataset
Number of Charge of Number of

total spectra spectra selected spectra

SwedECD 11491
+2 3119

SwedHCD 10878

SCX HCD decon 1952
+2 to +6 402

SCX ETD decon 612

SCX HCD no decon 2557
+2 to +5 753

SCX ETD no decon 1298

HCD and ECD/ETD spectra [17,73] were included for further comparison. The detailed experimental process

and results comparison are presented below.

5.3.1 Datasets

There are three pairs of HCD and ECD/ETD spectral datasets used in the experiments. The first pair

of datasets are the SwedHCD and SwedECD datasets, which contain doubly-charged MS/MS spectra of

unique peptides [32, 97]. The other two pairs of datasets, SCX HCD decon and SCX ETD decon, plus

SCX HCD no decon and SCX ETD no decon, are from the same research paper [98]. The latter dataset pair

(labeled with “ no decon”) contains raw data without deconvolution of spectra while the other pair contains

spectra with deconvolution. The original datasets contain various fragmentation MS/MS spectra including

CID, HCD, and ETD spectra. The HCD and ETD spectra were selected for the experiments here. The

reason that HCD instead of CID spectra were selected is that, typically, HCD spectra are more informative

and contain special ions (immonium ions). Each spectrum in the above datasets has a correct sequence

associated with it. In order to conduct our experiments, we selected spectra pairs having the same peptide

sequence from the paired datasets. The number of spectra, the charges of spectra, and the number of selected

pairs of spectra in the datasets are summarized in Table 6.2.

5.3.2 De novo peptide sequencing performance

Before investigating the performance of the proposed method, we first conducted peptide sequencing based

on a single spectrum. There was no need to test the proposed method on the spectra pairs for which single

spectrum methods output identical and correct results. Such spectra are of sufficient quality that any one of

the two produced a satisfying result. The remaining paired spectra constitute a much more rigorous test and

those were used in testing the proposed method and comparing it against the other sequencing algorithms.
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Table 5.5: Full length peptide sequencing accuracy based on a single spectrum for different datasets.

Dataset Method Accuracy

Number of

correctly identified

spectra by

both methods

SwedHCD NovoHCD 95.80% (2988)
2516

SwedECD NovoGMET 86.47% (2697)

SCX HCD decon NovoHCD 80.59% (324)
241

SCX ETD decon NovoGMET 87.31% (351)

SCX HCD no decon NovoHCD 84.99% (640)
504

SCX ETD no decon NovoGMET 85.66% (645)

Since our previously proposed single spectrum sequencing methods NovoHCD [73] and NovoGMET [17]

both showed superior results on various datasets compared to pNovo and pNovo+, sequencing based on these

two methods was conducted. For each spectrum, the top three candidates output were considered. If any

one of the three candidates interpreted from a spectrum was correct, we say that the method achieved a

full length accuracy for the given spectrum. The results for full length accuracy based on a single spectrum

are presented in Table 5.5. In this table, the numbers in brackets are the counts of correctly identified

spectra. The last column of this table is the number of correctly identified spectra by both methods for a

given dataset pair. For instance, in datasets SwedHCD and SwedECD, single spectrum sequencing methods

NovoHCD and NovoGMET identified 2988 and 2697 spectra, respectively. Among those spectra, 2516 spectra

were correctly identified by both methods, which means that NovoHCD and NovoGMET output identical

and correct sequencing results for these spectra.

Then, we filtered out those spectra pairs that both NovoHCD and NovoGMET have correctly identified,

and used the remaining spectrum pairs to compare the performance of the proposed method and pNovo+. The

total number of spectrum pairs selected from the three dataset pairs were 3119, 402 and 753, respectively.

The numbers of spectrum pairs correctly identified by the two single spectrum sequencing methods were

2516, 241 and 504, respectively. Then the remaining spectrum pairs for the proposed method versus pNovo+

performance comparison were 603, 161 and 249, respectively. These numbers are shown in Table 5.6 together

with the full length peptide sequencing results for the proposed method and pNovo+.

From Table 5.6 one can see that for all datasets, the proposed method achieved higher full length accuracy

than pNovo+, and the improvement is up to 13.6%. The improvement varies indicating property differences

among these datasets. The first dataset pair produced the highest accuracy, and this may be partly because
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Table 5.6: Full length peptide sequencing accuracy comparison among different datasets.

Dataset
Number of accuracy accuracy of the

spectra pairs of pNovo+ proposed method

SwedHCD 603 81.76% 95.36%

and SwedECD (=3119-2516) (493) (575)

SCX HCD decon 161 77.02% 83.85%

and SCX ETD decon (=402-241) (124) (135)

SCX HCD no decon 249 84.74% 94.78%

and SCX ETD no decon (=753-504) (211) (236)

of the low spectrum charge (+2) in this pair. Low spectrum charge results in the fragment ions in such

spectra having lower charges and less complexity than the ions in higher charged spectra. This makes the

spectra simpler and easier for the methods to process and interpret correctly. Similarly, we see that the

second dataset pair contains the largest spectrum charge range (from +2 to +6), and both pNovo+ and the

proposed method achieved their lowest sequencing accuracy on it.

Furthermore, we considered the relationship between the number of correctly identified peptides and

peptide length. Comparison between the proposed method and pNovo+ on SwedHCD and SwedECD datasets

is shown in Figure 5.2. The reason for showing this pair is because it has the largest number of spectra among

all datasets, and is expected to provide the most comprehensive comparison.

Figure 5.2 shows that the proposed method outperforms pNovo+ on every peptide length in this pair of

datasets. The sequencing results of the two methods are similar when peptide length is small – for example,

less than 9 – and both methods achieve almost perfect results. However, with increased of peptide length,

the proposed method shows significantly better results than pNovo+. One can see that when the peptide

length is 21, pNovo+ identifies no correct results while the proposed method identified all spectra in this

pair of datasets. Another interesting result from the Figure 5.2 is that when the peptide length is 22, both

methods identify all spectra. The varied performance of pNovo+ may indicate the complexity of the spectra

generated by long peptides. However, since the number of such spectra in this pair of datasets is small,

further experiments and analysis of spectral properties are needed to get a firm conclusion.

The remaining two dataset pairs in the experiments contain multiple charged spectra. Therefore, they can

be used to examine the relationship between the number of correctly identified peptides and peptide charge.

Since dataset pair SCX HCD no decon and SCX ETD no decon contains more spectrum pairs, this dataset

pair is used. Figure 5.3 summarizes the comparison between the proposed method and pNovo+. Since two

spectra in a pair may have different charge values, the higher charge is used as the spectrum charge of this
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Figure 5.2: Comparison of the number of correctly identified peptides verses peptide length for the
proposed method and pNovo+ on the SwedHCD and SwedECD dataset pair.
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Figure 5.3: Comparison of the number of correctly identified peptides verses peptide charges for the
proposed method and pNovo+ on the SCX HCD no decon and SCX ETD no decon dataset pair.

pair in this figure.

Figure 5.3 shows that NovoGMET outperforms pNovo+ for almost all spectra. For the two datasets

consisting primarily of +3 and +4 charged spectra, the proposed method identifies more peptides than

pNovo+; but on charges +5, the proposed method shows a decrease. The reason for this might be that the

complexity of charge +5 spectra causes some problems for the proposed method. However, more experiments

are needed to come up with a firm conclusion about this issue.

5.4 Conclusions and future work

In this paper, a new solution to the de novo peptide sequencing problem for multiple spectra has been pro-

posed. The proposed framework defines a way to merge multiple experimental spectra, uses a new spectrum

graph model (GMET) and different fragment ion types occurring in them, considers length-three peptide tags
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to separate a peptide into small regions, and integrates amino acid composition (AAC) information into the

graph model. In addition, the proposed method includes a parent peptide correction step, which is essential

in solving the multiple spectra sequencing problem.

The proposed framework is applied to peptide sequencing using a pair of spectra from the same peptide.

Three pairs of spectral datasets were used to investigate and compare the performance of the proposed

method and another successful de novo peptide sequencing method, pNovo+. Experimental results have

showed that the proposed method outperforms pNovo+ in terms of full length peptide sequencing accuracy,

with the accuracy increasing by up to 13.6%. For long peptides (more than 20) and highly-charged (+5)

peptides, both methods show decreases to varying degrees, hence they are still challenging problems in de

novo peptide sequencing. The proposed method, which breaks peptides into smaller parts, and integrates

AACs information and GMET model, provides a promising solution to solve these problems.

In future, we will evaluate the proposed method on more MS/MS datasets and compare it to other

available paired spectra sequencing methods. In addition, we are also planning to apply the framework to

more spectra – for example, CID, HCD, and ETD triplets – for de novo peptide sequencing.
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Erratum

In Figure 5.1, the second step should be “Use Sall to generate merged spectrum Sm, and conduct mass

correction”.
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Chapter 6

De novo peptide sequencing using CID and HCD spec-

tra pairs

Prepared as: Yan Yan, Anthony J. Kusalik and Fang-Xiang Wu. “De novo peptide sequencing using CID

and HCD spectra pairs (unpublished)”. This is a manuscript resubmitted to Proteomics after a revision in

June, 2015.

In the previous chapter, a framework of de novo peptide sequencing for multiple tandem mass spectra is

presented. It is then applied to paired CID (or HCD) and ECD (or ETD) spectra. The reason for choosing

this kind of spectra pair is the complementary features of them. With the availability of various kinds of

spectra, other types of spectra combinations could be used for peptide sequencing as well. For example, CID

and HCD spectra.

CID and HCD spectra have similar dominant ions. Specifically, they both produce b-ions and y-ions

primarily. Additionally, HCD spectra usually have more abundant ions in the low mass region (typically

below 200 Da) than CID spectra; to be specific, they produce immonium ions (IMs) and internal ions. The

pairing of these spectra has the potential to identify dominant fragment ions with high confidence, and the

use of spectrum specific ions can help with the sequencing, too. However, less attention has been paid to

CID and HCD spectra pairs currently. Therefore, the study presented in this chapter is to develop a new

method specifically for this kind of spectra pair.

In this chapter, CID and HCD spectra are studied and a new sequencing method designed for them

is proposed. The proposed method includes a merging criteria for CID and HCD spectra and a parent

mass correction step. Experimental results on several MS/MS spectral datasets show that the proposed

method outperforms other single-spectrum-based methods and identifies some new peptides that other single-

spectrum-based methods cannot identify.
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Abstract

In tandem mass spectrometry (MS/MS) there are several different fragmentation techniques possible in-

cluding collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), electron capture

dissociation (ECD), and electron transfer dissociation (ETD). When using pairs of spectra for de novo peptide

sequencing, the most popular methods are designed for CID (or HCD) and ECD (or ETD) spectra because of

the complementarity between them. Less attention has been paid to the use of CID and HCD spectra pairs.

In this study, a new de novo peptide sequencing method is proposed for these spectra pairs. This method

includes a CID and HCD spectra merging criterion and a parent mass correction step, and modifies our

previously proposed algorithm for sequencing the merged spectra. Two pairs of spectral datasets were used

to investigate and compare the performance of the proposed method with two other methods designed for

single spectrum (HCD or CID) sequencing. Experimental results showed that full length peptide sequencing

accuracy increased dramatically by using spectra pairs in the proposed method, with the highest accuracy

reaching 81.31%.

6.1 Introduction

Tandem mass spectrometry (MS/MS) is a widely used technology for peptide sequencing. MS/MS measures

the mass-to-charge ratio (m/z) of the fragment ions of peptides in compounds, and outputs tandem mass

spectra (MS/MS spectra) [48] containing m/z values and intensities of ions. In MS/MS, the most common

fragment ions are named a-, b-, c-, x-, y-, and z-ions according to the cleavage sites on a peptide backbone

that gives rise to them. Different fragmentation techniques used in MS/MS yield differing dominant fragment

ions. Collision-induced dissociation (CID) is the traditional fragmentation technique used in MS/MS and it

yields b-ions and y-ions as dominant ions. With the development of new fragmentation techniques, alternative

MS/MS spectra appeared in recent years. Higher-energy collisional dissociation (HCD) spectra have similar

dominant ions as CID spectra but with more abundant ions in the low mass region (typically below 200

Dalton); specifically, immonium ions (IMs) and internal ions [36]. Electron capture dissociation (ECD) and

electron transfer dissociation (ETD) preferentially produce variants of c-ions and z-ions, and occasionally

a-ions [31–33]. In addition, all the fragment ions usually lose small molecules such as H2O and NH3 in the

fragmentation process.

Database searching, peptide tagging and de novo sequencing [17] are the most popular methods for

peptide sequencing using MS/MS spectra. The success of database searching typically relies on the candidate

peptides generated from an existing protein database and the effectiveness of the scoring scheme measuring

the similarity between theoretical spectra and experimental spectra [46]. De novo sequencing does not need

a prior database, and thus has the ability to identify proteins that are not included in current databases,

proteins resulting from mutations, proteins with unexpected modifications and so on. The main challenge
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in de novo sequencing is to extract enough information from experimental spectra (usually accounting for

noise and missing data) to infer the correct peptide sequences. Peptide tagging [21, 22] is usually used with

database searching or de novo sequencing to reduce the scale of computation. With the recent development

of high mass accuracy MS/MS and alternative fragmentation techniques, de novo sequencing has shown

promising developments because of the availability of different types of spectra with more information in

them [48]. Therefore, this study focuses on MS/MS de novo peptide sequencing.

With the appearance of alternative MS/MS spectra resulting from different fragmentation techniques,

novel computational methods have emerged to enhance de novo peptide sequencing performance. For ex-

ample, pNovo [72], which employs a spectrum graph model and combines immonium ions (IM) and internal

fragment ion information from HCD spectra, has achieved superior peptide sequencing results. Apart from

the algorithms based on single spectrum peptide sequencing, many researchers have tried to use multiple

spectra from the same peptide to infer peptide sequences [31,75,77,79]. Multiple spectra peptide sequencing

extracts information from all spectra, and thus has the potential to increase the accuracy and practicality

of de novo sequencing [105]. The use of a pair of spectra from CID (or HCD) and ECD (or ETD) fragmen-

tation is the major focus of active study because of the complementary properties of these spectra pairs.

Some successful methods include CompNovo [77], ADEPTS [31], pNovo+ [75], and NovoPair [81]. Recently,

a universal de novo sequencing tool named UniNovo has been proposed [84]. It is based on a spectrum

graph model, can be used for various types of spectra, and achieves satisfying sequencing results on various

experiential datasets. At this moment, there is still a lack of methods particularly designed for spectra with

similar dominant ions, for instance, CID and HCD spectra pairs.

A straightforward way of utilizing CID and HCD spectra pairs for sequencing is to combine the two spectra

into a single one. However, more noise may be introduced by this method. Ion redundancy is another problem

since the spectra have the same (or similar) dominant fragment ions. Therefore, in order to better use the

information from these spectra, a new de novo peptide sequencing method is needed. Here, such a method

for CID and HCD spectra pairs is proposed. The proposed method includes a merging criterion for CID and

HCD spectra and a parent mass correction step that considers the unique features of this spectra pair, and

it contains a modification of our previously proposed algorithm for HCD spectrum [73] to perform de novo

sequencing on merged spectra. Peptide tags and amino acid compositions are used to reduce the scale of

computation in the proposed method. The proposed method is then implemented as MATLAB code.

The reminder of the paper is organized as follows: Section 2 presents the design of the proposed method,

Section 3 shows the experimental results and performance analysis, and finally Section 4 concludes the paper

and gives some directions for future work.
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6.2 Methods overview

In this section, the proposed method is briefly introduced. The detailed methodology is in the Additional

Files section. The proposed method first considers unique features from experimental spectra to generate

a merged spectrum Sm, and then uses fragment ions in the experimental spectra to conduct a parent mass

correction. After that, it uses peptide tags from Sm to break a whole peptide sequence into smaller regions.

Assume that Thres is the threshold controlling the size of the regions. If the mass range of a region is larger

than Thres, more tags are used to further decompose it until all regions are no larger than the predefined

threshold. A previously proposed method for HCD spectra, NovoHCD [73], with modifications is then applied

for sequencing using Sm. Detailed information about NovoHCD and its modification is in the Additional

Files section.

Another important aspect of the method’s design is the types of fragment ions considered. Some common

fragment ions observed in CID and HCD spectra have been introduced in the previous section. Based on

the literature [17,32,33,41,73], ions listed in Table 6.1 are considered in the proposed method. In Table 6.1,

mCO is the mass of a molecule of CO.
∑

(residue mass) is the mass sum of all amino acids from an end

amino acid of a peptide sequence to the amino acid at the current cleavage site. bm and ym are the masses of

the b-ion and y-ion at the current cleavage site, respectively. In Table 6.1, the first column lists the type of

ion, and the second and third columns give two ways to calculate the mass of that type of ion. The second

column is the calculation based on previous residues, which gives the relationship of consecutive cleavage

sites on a peptide backbone. The third column is the calculation based on other ions (either b- or y- ions) at

the same cleavage site.

Table 6.1: Ion types considered in CID and HCD spectra

Ion Type Mass calculation from residues Mass calculation from other ions

a
∑

(residue mass)− 26.9871 bm −mCO

b
∑

(residue mass) + 1.0078 bm

x
∑

(residue mass) + 44.9977 ym +mCO

y
∑

(residue mass) + 19.0814 ym

In addition, two other ions frequently observed in HCD spectra, immonium ions (IM) and internal frag-

ment ions, are considered. Internal b- and y- ion with length up to two amino acids are also considered.

They provide supplemental information for peptide sequencing as well as candidate ranking. Other useful

ions include fragment ions at the end of the peptide backbone like b1-ions and y1-ions, and a2/b2-ion pairs.

Furthermore, the complementary ion relationships in Equations (1)-(2) hold for ions in Table 6.1. In the

equations, mp is the mass of the parent peptide P , N is the peptide length, and i ∈ {1, 2, . . . , N}.
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|mp + 2mH − (bi + yN−i)| = 0 (6.1)

|mp + 2mH − (ai + xN−i)| = 0 (6.2)

In the proposed method, all ions introduced above and small molecule loss (such as H2O and NH3) are

considered.

After determining the types of ions, the next step in the proposed method is to merge the paired CID and

HCD spectra into one spectrum. This is done using an iterative selection process. An initial set S0
m is created

by collecting three types of ions: ions from both spectra with very small mass difference, complementary

ion pairs from both spectra, and all IMs from the HCD spectrum. The mass difference threshold for the

selection is denoted as δ1. Any ion pair with very small mass difference is transformed into a single ion in

the merged spectrum, with its m/z value being the average and intensity being the sum of the contributing

values, respectively. From S0
m, successive iterative steps create a series of sets Si

m, where i ∈ [1, t]. To form

Si
m , the iterative step selects ions from the remainder of the original spectra pair where the mass difference

between the candidate ion and an ion in the previously generated set Si−1
m is close to one amino acid (mass

difference threshold δ1). In addition, ion intensity information is considered. To be specific, if Imax is the

highest intensity value of ions in the spectra pair, then a candidate ion must have intensity value greater than

or equal to Imax

2 . The reason of having Imax divided by 2 is from past experience, and the users can also

choose other suitable values. With larger values, the threshold becomes lower, and more ions including more

noise could be selected; with smaller values, the threshold becomes higher, and more noise could be filtered

out but some fragment ions may be lost, too. Ions meeting these criteria are added into the set Si
m. The

iterative process terminates when no more ions can be selected. As a post-processing step, the remaining

ions in the spectra pair are re-examined. Any ion having intensity larger than the two ions on either side of

it is added to Si+1
m . All selected ions in Si

m from the above steps comprise the final merged spectrum Sm.

Since two MS/MS spectra are used in the proposed method, there are two parent masses. The two masses

may be different, though they should be close. Thus, a parent mass correction is performed to determine a

single, unique mass value for the subsequent peptide sequencing. The details are presented in the Additional

Files section.

The proposed method also modifies our previous proposed de novo peptide sequencing method for HCD

spectra. A major difference is the inclusion of a spectra merging step. Here, we give a simple example to

show how the merging step works. Assume the m/z value, intensity pairs of two experimental spectra are

Sc = {(130,0.3), (182, 0.2), (199, 0.5), (346,0.7), (433,0.5), (466, 0.3)} (representing a CID spectrum) and

Sh = {(60,0.2), (130,0.5), (217,0.4), (231, 0.3), (493,0.5)} (representing a HCD spectrum), respectively.

The meaning of different fonts and underlining will be explained in the following content. Spectra Sc and

Sh are also shown in Figures 6.1 and 6.2. The parent mass for both spectra is mp = 648. Mass difference

threshold δ1 = 0.01Da. In order to simplify the calculation and focus on the principles of the method, we use

integer m/z values, assume that all ions are in charge state +1, and do not consider loss of small molecules.
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Figure 6.1: The spectrum of Sc

All intensity values in Sc and Sh are in the range of [0,1] to simplify the calculation.

We first find ions forming S0
m. As shown on spectrum Sc and Sh Figure 6.3 (blue double arrow with

label “Same M/Z” on it), since both spectra have m/z value 130, it is added into S0
m. Its intensity is the

sum of two ions’ intensity values. During the check for IMs in the HCD spectrum, the first ion (m/z=60) is

selected as it indicates glutamic acid (mass difference is within the threshold δ1). Then we use parent mass

to find out complementary ions. Since | 648 + 2mH − (217 + 433) |= 0, ions having mass values as 217 and

433 are complementary ions. Therefore, S0
m = {(60, 0.2), (130, 0.8), (217, 0.4), (433, 0.5)} whose elements are

highlighted in boldface above and shown in Figure 6.3 as spectrum S0
m.

Having S0
m, we conduct the iteration by using amino acid masses and ion intensities. First we consider

amino acid mass differences. Pair (130,0.8) is in S0
m while the pair (231,0.3) is not yet in the set. We observe

that | (231 − 130) − aT |≤ δ1 where aT is the mass of threonine (referenced ions are highlighted by a black

arrow in Figure 6.3). Hence the ion with m/z value of 231 could potentially be added to S1
m. However, its

intensity does not satisfy the intensity criterion. Pair (217,0.4) is in S0
m while the pair (346,0.7) is not. We

observe that | (346− 217)− aE |≤ δ1 where aE is the mass of glutamic acid (referenced ions are highlighted

by a black dashed arrow in Figure 6.3). Further the intensity of (346,0.7) satisfies the intensity criterion.

Therefore (346,0.7) is added to S1
m. This is denoted by (346,0.7) appearing in italic in a preceding paragraph.
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Figure 6.2: The spectrum of Sh

Since there are no more ions in the remaining spectra satisfying the amino acid difference relationship with

the ions in S0
m, S1

m = (346, 0.7).

Similarly, pair (346,0.7) is in S1
m while the pair (493,0.5) has not been added yet. We observe that

| (493 − 346) − aF |≤ δ1 and the intensity of (493,0.5) satisfies the intensity criterion. (493,0.5) is added

to S2
m (referenced ions are highlighted by a black dashed line in Figure 6.3). This is denoted by (493,0.5)

appearing in italic in a preceding paragraph. Since there are no more ions in the remaining spectra satisfying

the amino acid difference relationship with the ions in S1
m, S2

m = {(493, 0.5)}. At this time, as there are no

more ions that can be selected by using amino acid masses, the iteration stops. All ions selected from the

iteration are added together and shown as spectrum S0 ∪ S1 ∪ S2 in Figure 6.3.

Finally, by checking the intensities of the remaining ions in both spectra, ion (199,0.5) is selected.

Sm3 = {(199, 0.5)}. In this example, ions (182,0.2), (199,0.5), and (466,0.3) (underlined above and shown

in the spectrum Sleft
c in Figure 6.3) are left from the CID spectrum and none are left from the HCD

spectrum. Therefore, in this example, the final merged spectrum of the HCD and CID spectra pair is

Sm = {(60, 0.2), (130, 0.8), (217, 0.4), (433, 0.5), (346, 0.7), (493, 0.5), (199, 0.5)}, as shown on the spectrum

Sm in Figure 6.3.
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Figure 6.3: An example of the spectra merging process

6.3 Experiments and Results

In this section, the performance of the proposed method for CID and HCD spectra pairs is evaluated.

Our previously proposed de novo peptide sequencing method for HCD spectra, NovoHCD [73], and another

method for HCD and ETD spectra, pNovo+ [75] (with the option for HCD spectra), are used for comparison.

More information about NovoHCD and pNovo+ can be found in the Additional Files section. We also tried

to use UniNovo [84] in the comparison. However, instead of reporting whole peptide sequences, UniNovo

produced partial peptide sequences along with numerical values representing the mass sums of unidentified

parts. Hence, UniNovo is not included in the comparison. The reasons for choosing NovoHCD and pNovo+

are as follows. First, the proposed method focuses on the merger of the two experimental spectra, and uses a

sequencing method similar to the one in NovoHCD. The result difference between the proposed method and

NovoHCD is expected to show the contribution of using merged spectra. Secondly, to our knowledge, there

is no more method available for CID and HCD spectra pairs other than the proposed one. Considering the
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similarity between the two types of spectra, a comparison between the proposed method and other methods

designed for HCD spectra is expected to show the improvement of using spectra pairs. Lastly, pNovo+ is used

to conduct peptide sequencing on the spectra generated by the spectra merging step in the proposed method.

A comparison of pNovo+ and proposed method in this case can show the effectiveness difference of peptide

sequencing models in these two methods. The detailed experimental process and results are presented below.

6.3.1 Datasets

There are two pairs of CID and HCD spectral datasets used in the experiments: SCX CID decon and

SCX HCD decon, plus SCX CID no decon and SCX HCD no decon [98]. Both dataset pairs are from the

data used in [98]. MS/MS spectra were generated from a hybrid tandem mass spectrometer; they were an-

alyzed on an ETD enabled Orbitrap Velos instrument (Thermo Fisher Scientific, Bremen) connected to an

Agilent 1200 HPLC system [98]. The experimental spectra were then interpreted using Mascot software ver-

sion 2.3.02 (Matrix Science, UK). Details about the sample, instrument, and parameters used for generating

the expermental spectra can be seen in [98].

The original datasets contain various fragmentation MS/MS spectra including CID, HCD, and ETD spec-

tra. The CID and HCD spectra were chosen for the experiments here. The latter dataset pair (labelled with

“ no decon”) contains spectra without deconvolution while the other pair contains spectra with deconvolu-

tion. Each spectrum comes with a precursor ion charge value and a peptide sequence indicating the peptide as

determined by Mascot. In order to conduct our experiments, spectra pairs having the same peptide sequence

were selected from the paired datasets.

When each spectrum in a spectra pair is used separately and single-spectrum-based methods output

identical and correct results, there is no need to use the proposed method for paired spectra sequencing.

Such spectra pairs are of sufficient quality that any one of the two produces satisfying results. The remaining

paired spectra constitute a much more rigorous test and those were used in testing the proposed method and

comparing it with the other sequencing algorithms. We used NovoHCD as the single-spectrum-based method

to implement this selection strategy for constructing the test data set. The spectra charges and the numbers

of selected pairs of spectra in the testing datasets are summarized in Table 6.2.

Table 6.2: Number of selected spectra pairs and charges in each dataset used in the experiments

Dataset pair Charge of selected spectra Number of selected spectra

SCX CID decon
+2 to +6 403

SCX HCD decon

SCX CID no decon
+2 to +5 578

SCX HCD no decon
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Table 6.3: Parameters used in the experiments

Parameter Role in proposed method Value

δ1 Generation of S0
m in spectra merging 0.01Da

δ2 Iteration in spectra merging 0.01Da

Thres Multiple tags used in modified NovoHCD 1600Da

Number of tags Tag integration in modified NovoHCD 10 per spectrum

Number of output sequences Candidate output 3 per spectrum

6.3.2 Parameters

There are several parameters in the proposed method, and the values used are listed in Table 6.3. All these

values are set according to our previous study and experiments [73, 100], but they can be changed by users

to suit their needs.

6.3.3 De novo peptide sequencing performance

We investigated the performance of different methods by comparing full length peptide sequencing accuracy.

For each spectrum (merged or experimental), a series of candidate sequences are output with ranking scores

associated with them. A higher rank indicates greater confidence in the correctness of the predicted sequence.

The top three ranked candidates are considered in the performance comparison. If any one of the three

candidates interpreted from a spectrum is correct, we say that the method achieves a full length accuracy

for the given spectrum. The results for full length accuracy comparison are presented in Figures 6.4 and 6.5.

In the comparison, results from NovoHCD and the proposed method are categorized together and compared

with pNovo+. One reason for that is that the models of NovoHCD and the proposed method are similar,

so they can be categorized together and compared to pNovo+ (HCD spectra option). The other reason is

that NovoHCD is applied to each of HCD and CID spectra alone, the proposed method is applied on merged

spectra only, and pNovo+ is applied on both cases. Therefore, NovoHCD and the proposed method can be

categorized together.

From Figures 6.4 and 6.5 one can see that for both dataset pairs, the proposed method achieves higher

full length accuracy than NovoHCD when using merged spectra. Since the two methods have similar se-

quencing models, this comparison implies that the merger of the two spectra successfully provides additional

information for better peptide sequencing without introducing excessive noise or losing essential information.

The proposed method also outperforms pNovo+ where the latter uses CID or HCD spectra alone. This

proves the significance for peptide sequencing by using paired spectra with similar dominant ions. When

pNovo+ conducted peptide sequencing on the spectra generated from the spectra merging step in the pro-
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Figure 6.4: Full length sequencing accuracy comparison on SCX CID decon and SCX HCD decon
testing datasets.

posed method, it achieved a lower number of correctly identified peptides on both dataset pairs. This implies

an improvement of the sequencing model in the proposed method as compared to pNovo+. Finally, it is

noticeable that pNovo+ does not have a dramatic difference on these three cases while the proposed method

along with NovoHCD does have a steady performance improvement. This may be because pNovo+ is de-

signed for HCD spectra and/or ETD spectra but not HCD and CID spectra pairs, and the model may not

work better for the merged spectra with additional information. In contrast, the proposed method, with an

extended model based on NovoHCD, is designed for merged spectra. The proposed method successfully takes

use of additional information from merged spectra and thus has better accuracy than pNovo+, even when

the latter is given the same spectra generated the merging step in the proposed method.

One key feature contributing to the success of the proposed method is the spectra merging step. This

step extracts additional signal ions from spectra pairs without introducing excessive noise, which provides a

sound foundation for the graph model built upon the merged spectra. In the algorithm of pNovo+, one ion

in a spectrum is converted into several vertices in the graph model, which could introduce additional noise.

This may effect its performance on the experimental datasets. The other key feature of the proposed method

is the model for sequencing. Multiple types of edges in the graph model represent different relationships

between vertices, and the AACs limit the numbers of edges and thus reduce the incidence of false positive

amino acids in the predicted candidate sequences. With the use of multiple tags, the number of possible

AACs can be restricted to an acceptable scale (≤ 1600Da), and the amount of calculation is reduced.

When using paired spectra for peptide sequencing, since two spectra are used, additional information for

the task can be extracted. When using the proposed method, the number of identified peptides using spectra
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Figure 6.5: Full length sequencing accuracy comparison on SCX CID no decon and
SCX HCD no decon testing datasets.

pairs are larger than the total number of peptides identified by using CID and HCD spectra separately. One

can arrive at this conclusion by transforming the accuracies in Figures 6.4 and 6.5 into total numbers of

identified peptides given the total number of experimental spectra. This suggests that for some spectra pairs,

individual CID and HCD spectra may contain partial information for sequencing, but not enough for the

whole peptide sequence to be identified. Then, with the combination of the two, this information can be

combined, and it becomes sufficient for sequencing. The spectra pairs for which NovoHCD failed to output

correct sequences when using either CID or HCD spectra alone were noted. The numbers of these spectra

pairs from the two experimental dataset pairs are shown in Table 6.4 under the heading “number of failed

pairs”. The numbers of these spectra pairs successfully sequenced using the proposed method are shown in

the last column of Table 6.4. From Table 6.4 one can see that there are many spectra pairs in each dataset

pair for which neither CID nor HCD spectra alone are sufficient for successful sequencing. However, correct

sequences of many of them are identified by the proposed method when using both spectra. This shows that

the proposed method for spectra pairs can fill gaps in the capabilities of single-spectrum-based methods for

de novo peptide sequencing. If a method processes the two spectra separately and combines the sequencing

results later, it may not be able to identify all of the new peptides as the proposed one does. Combining the

informative ions from both spectra makes it easy to do a successful the sequencing based on graph-theoretic

algorithms since there are sufficient information in the merged spectrum.

Furthermore, we considered the relationship between the number of correctly identified peptides and

peptide length. Comparisons between the proposed method and pNovo+ on dataset pair SCX HCD no decon

and SCX ETD no decon are shown in Figures 6.6, 6.7 and 6.8. The reason for showing the results from this

pair is because it has a larger number of spectra, and so is expected to constitute a more comprehensive
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Table 6.4: Number of successful sequencing pairs from the ones for which sequencing failed by using
CID and HCD spectra alone

Dataset Number of Number of peptides successfully

pair failed pairs sequenced by proposed method

SCX CID decon
187 80

SCX HCD decon

SCX CID no decon
248 181

SCX HCD no decon

comparison.

Figures 6.6, 6.7 and 6.8 show that the proposed method outperforms pNovo+ on every peptide length in

this pair of datasets. The identification accuracy of pNovo+ drops after length 16. However, the proposed

method achieves very good results when peptide length is greater than 16, but less than 20. (Beyond 20,

the proposed method shows some decrease.) This indicates that use of multiple tags in the proposed method

contributes to the sequencing of long peptides. Our previous study on ETD and ECD spectra showed that

with the use of multiple spectra, peptide sequencing accuracy can be greatly improved on long peptides

(typically ≥ 15 amino acid long), compared to single tag usage [100]. pNovo+, however, does not include a

strategy designed specifically for long peptides, and this may be a reason for the unsatisfying performance on

these peptides. The varied performance of the proposed method on very long peptides (≥ 20 amino acid long)

may reflect the complexity of the spectra generated by these peptides. Such complexity could cause the drop

of the performance. However, since the number of the spectra generated by these very long peptides is limited

in the experimental datasets, we believe that future experiments and analysis are needed to investigate this

phenomenon.

6.4 Conclusions and future work

In this paper, a new method of de novo peptide sequencing for CID and HCD spectra pairs is proposed.

The proposed method includes a criterion for merging pairs of CID and HCD spectra and a parent mass

correction technique. The method is a modification of our previously proposed NovoHCD method. Peptide

tags and amino acid compositions are used to reduce the scale of computation in the proposed method.

Two pairs of spectral datasets were used to investigate and compare the performance of the proposed

method and two other methods designed for single spectrum (HCD or CID) data, NovoHCD and pNovo+

(HCD option). Experimental results showed that full length peptide sequencing accuracy increased dramat-

ically through the use of spectra pairs in the proposed method, with the highest accuracy of 81.31%. The
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Figure 6.6: Comparison of the number of correctly identified peptides verses peptide length for the
proposed method and pNovo+ using only CID spectra for the latter method.

proposed method has better peptide identification accuracy than either single-spectrum-based method.

In future, we will focus on improving the accuracy of the proposed method by further analyzing the

characteristics of the wrongly identified spectra, and evaluating the proposed method on more MS/MS

datasets. In addition, we are also planning to design a universal framework of de novo sequencing for all

kinds of MS/MS spectra including CID, HCD, ETD spectra and their combinations.
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Figure 6.7: Comparison of the number of correctly identified peptides verses peptide length for the
proposed method and pNovo+ using only HCD spectra for the latter method.

Additional Files

This section describes the proposed method in detail including the spectra merging and parent mass correction

steps, and the how it extends NovoHCD [73].

Spectra merging

Since CID and HCD have similar dominant ions, the same fragment ions may occur in both spectra; for

example, a b3-ion observed in both experimental spectra. Therefore, in the merging step, such ions need

to be combined. In the proposed merging criterion, ions from both spectra with very small mass difference

are first selected. These two ions are more likely to be real fragment ions than noise since the same noise

peak is unlikely to appear in both spectra. The two ions are then transformed into one ion in the merged

spectrum with its m/z value being the average and intensity being the sum of the individual values from the

two ions, respectively. The second feature considered as a criterion in the spectra merging is complementary

ion pairs [90]. A pair of ions can be from the same spectrum or one from each spectrum; for example, a

b-ion from a CID spectrum and its complementary y-ion from a HCD spectrum. Such ions are added into

the merged spectrum. IMs and internal ions introduced previously are selected from the HCD spectrum and

also added to the merged spectrum. We denote the ions selected (or generated) from the above steps as S0
m.

The mass difference threshold used in generating S0
m is denoted as δ1.

Having S0
m as an initial set, an iterative approach is used to select more ions to add to the merged spectra.
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Figure 6.8: Comparison of the number of correctly identified peptides verses peptide length for the
proposed method and pNovo+ using merged spectra.

Here, amino acid difference is applied to select additional ions from CID and HCD spectra pairs. For an ion

u ∈ S0
m, if there is an ion v in the CID or HCD spectrum such that the m/z difference between u and v

is close to any of the 20 amino acid masses (within a given threshold δ2), v is selected. We denote all ions

selected from this step as S1
m. Having S1

m, we use the amino acid difference to select additional ions from the

rest of the spectra pair that have one amino acid difference to the ions in S1
m, and denote the ions selected

as S2
m. This step continues iteratively until no more ions can be selected using the amino acid difference

measurement. A suitably designed threshold can be used as the stop criterion for the iteration. The last ion

set selected is denoted as St
m. One potential benefit of the iteration is that we can assign weights to the ions

selected from different rounds of iteration. The hypothesis is that ions in the initial set S0
m have the highest

confidence to be real fragment ions rather than noise, and as the iteration continues, the level of confidence

drops. In the current method, we did not introduce weights in order to simplify the calculation.

Another unique aspect of the proposed method is that it handles high confidence ions (similar m/z, IMs,

and complimentary ions) and other ions (selected using amino acid masses) separately. The former does not

need additional selection criteria, while the latter can benefit from them because of the possible false positives

introduced by comparing all 20 amino acid masses. The proposed method uses ion intensities as an additional
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selection control criterion. To be specific, if we denote the highest intensity value of the ions in the spectra

pair as Imax, ions having intensity values less than Imax

2 are not selected. The reason behind this criterion

is that usually ions with lower intensity are more likely to be noise rather than fragment ions. An intensity

comparison (low or high) is only meaningful within one spectrum. In order to use an intensity criterion on a

pair of spectra, intensity normalization is needed. The highest intensity values in both spectrum are set to

1, and the remaining intensity values are normalized according to the ratio to the highest ones. After this

process, the two spectra have the same scale of intensity values, and the intensity criterion can be applied.

Amino acid composition information is used in a subsequent stage of the method to further reduce false

positives.

In the last step of the spectra merging process, the remaining ions in the spectra pair are examined.

The “local maximum” ions [88] are put into set St+1
m in order to balance the effect of the above intensity

threshold Imax

2 . A peak is called a “local maximum” if its intensity is larger than the two peaks beside

it. Researchers have found that when applying intensity information, a simple threshold is not completely

effective for differentiating signal ions from noise ions because the ions’ intensities in a spectrum tend to

be larger in the middle of the m/z range than at the two ends for CID and HCD spectra [88]. It is more

reasonable to assume that the noise ions in a narrow m/z range are equally distributed, and that signal ions

tend to be the local maxima [88]. Finally, the merged spectrum Sm =
∪t+1

i=0 S
i
m.

Parent mass correction

In this method, two MS/MS spectra are used and each comes with a parent peptide mass. Before the de

novo sequencing, parent mass correction is conducted. The approach introduced in [81] is used here. In

this approach, all complementary ion pairs in Sm are used, and the hypothesis is that the real parent mass

has the minimal mass difference to complementary ion pair masses. Then by solving the following quadratic

expression (6.3), we get the optimal parent mass.

minΣk
j=1 | (Ij + Icj )− Pmass |2

s.t. Pinf ≤ Pmass ≤ P sup (6.3)

In expression 6.3, Ij , I
c
j are complementary ion pairs in Sm, k is the total number of complementary

ion pairs, and Pmass is the optimal parent mass. Pinf and P sup are the infimum and supremum of Pmass,

respectively, which can be set as the masses of the two experimental spectra.

NovoHCD and its modification

NovoHCD [73] is a recent solution to the de novo peptide sequencing problem for HCD spectra. It is based

on multi-edge graphs with integration of amino acid composition (AAC) and peptide tags.

NovoHCD first uses peptide tags to separate a whole peptide sequence into three parts: prefix, tag, and

suffix. Several tags are used for one spectrum and each tag is used separately. For each tag, NovoHCD
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builds a multi-edge graph model on the prefix and suffix separately to find partial peptide sequences, and

AAC information is used to limit the number of edges in the graph. NovoHCD finally combines the three

parts, each possible prefix and suffix sequences and the tags, to generate a candidate peptide. All possible

candidates based on different tags are ranked through a ranking scheme and output.

A multi-edge graph G includes five different types of edges reflecting the relationships of complementary

ions, amino acid difference between ions, and loss of small molecules of ions. Detailed definition of edges can

be seen in [73]. Having graph G, another kind of graph, induced by all vertices in G from a single cleavage

site of the peptide, can be constructed. This is named as a “basic structure” of G at a cleavage site. Then,

by finding adjacent basic structures, continuous amino acids can be inferred. The detailed steps of inferring

basic structure (and amino acids) can be seen in [73].

pNovo and its comparison with NovoHCD

pNovo [72], an alternative software designed for HCD spectra, is used for performance comparison with

NovoHCD in our previous study [73]. pNovo applies a graph-theoretic approach for sequencing. It first

converts each ion in a spectrum into several vertices representing different types of ions and merges vertices

with similar masses, and then connects two vertices if their mass difference is close to one of the 20 amino

acid masses. After that, it assigns weights to edges and generates best score paths from the graph model

using a scoring function designed by the authors.

Differences between NovoHCD and pNovo are in the graph model and scoring scheme. pNovo converts

ions from an experimental spectrum into several vertices, which could introduce additional noise into the

graph since one noisy ion is converted into several noisy vertices in the graph. With additional noisy vertices,

false positive edges can be added into the graph when comparing mass difference between two ions. This

could make the path finding very difficult and result in output of incorrect paths. In contrast, NovoHCD uses

multiple types of edges to represent different types of relationships between two ions, and no added vertex

is introduced. When forming edges of the graph in NovoHCD, AAC is used to reduce false positive edges.

The scoring scheme in pNovo includes a weight assignment and path scoring function, while NovoHCD uses

a ranking-based scoring scheme for peptide candidates. Experimental results on several HCD datasets show

that NovoHCD outperforms pNovo [72] in terms of full length sequencing accuracy.

NovoHCD must be modified for use in the proposed method. The major modifications are to the peptide

tag strategy and the candidate ranking scheme. In NovoHCD, a single tag is used for HCD spectra to separate

whole sequences into three parts. Upon further study, we found that this strategy is not effective for long

peptides (typically over 15 amino acid long). Therefore, multiple tags are used, as in [17], to separate the

whole sequences, and a predefined threshold (set to be 1600 Da for the proposed method) is used to control

if further separation is needed.

For the ranking scheme, NovoHCD considers parent peptide mass Pmass and the number of IMs in a

HCD spectrum. The magnitude of mass difference between a peptide candidate sequence Pcan and Pmass is
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denoted as ∆mP . In the proposed method, internal ions in the merged spectrum are also included. Internal

ions in the form of b- and y- ions with length of up to two amino acids are considered. Given Pcan, we list

all internal ions from it and compare them to the merged spectrum. The number of matched internal ions

and the number of IMs are added, and denoted as AA. For a given pair of spectra, the ranking score of Pcan

can be represented as a vector CP (AA,∆mP ). The ranking approach first sorts CP according to its initial

element AA in decreasing order, and then arranges ∆mP in increasing order as a secondary key. After this

process, all candidates are ranked. In the proposed method, for a pair of input spectra, the top 3 ranked

candidates are output.
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Chapter 7

Summary and Future Work

7.1 Summary

Peptide sequencing from MS/MS has become an important topic in proteomics. It provides essential infor-

mation for protein structure and function study. With the development of MS/MS ionization techniques

and various MS/MS spectra generated from them, suitable computational methods are needed for the data

interpretation. Currently, de novo peptide sequencing methods have drawn a lot of attention because of their

unique advantages compared to database searching. Many algorithms for de novo peptide sequencing have

been developed with application to different types of MS/MS spectra. The main limitations of current de

novo peptide sequencing methods are the lack of suitable models reflecting MS/MS spectra, limited infor-

mation extracted from the spectra, and inefficient use of multiple spectra. This thesis aims to address some

of the limitations in current peptide sequencing methods with the four objectives listed in Chapter 1. The

work presented in Chapters 2 to 6 of the thesis has achieved these objectives.

Chapter 2 presents a comprehensive review of de novo peptide sequencing methods and achieves Objective

1. It summarizes recent developments of computational methods for various types of typical experimental

data, compares and analyzes their advantages and disadvantages, points out the limitations of current studies,

and identifies directions for improvements and new method design.

In Chapter 3, a new model containing useful information from the MS/MS spectra is developed for de

novo peptide sequencing. It modifies the traditional spectrum graph model to be a graph with multiple types

of edges and integrated amino acid combination (AAC) information and peptide tags. This method is then

evaluated on HCD spectra and compared with another competing method on several experimental datasets.

Results show that it outperforms other methods over the five datasets.

Based on the success of the method proposed in Chapter 3, other types of MS/MS spectra, ECD and ETD

spectra, to be specific, are studied in Chapter 4. A de novo sequencing method named NovoExD designed

for ECD and ETD spectra is presented in this chapter. NovoExD modifies the previous model in Chapter 3

and considers multiple peptide tags and fragment ion charge information. Experiments conducted on three

different datasets show that NovoExD outperforms another similar method. Objectives 2 and 3 have been

achieved by the methods developed in Chapters 2 and 3.

Objective 4 is about methods for multiple spectra. Chapter 5 presents a framework for multiple spectra
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sequencing with new features and models. It is applied to paired CID (or HCD) and ECD (or ETD) spectra.

These spectra pairs have different dominant fragment ions and are complementary to each other. There are

already some other methods for these spectra pairs, and results on several experimental datasets show that

the proposed method outperforms similar methods available.

Chapter 6 presents a de novo peptide sequencing method for CID and HCD spectra pairs. These spectra

pairs have similar dominant ions but are accompanied by other ion types with different properties. Less

attention has been paid in the literature to these spectra pairs. Experimental results show that the proposed

method works well on several testing datasets, and identifies some new peptides that other single-spectrum-

based methods cannot identify. Objective 4 is accomplished by these two chapters. Therefore, all objectives

proposed for the thesis have been achieved.

To sum up, the following works have been completed in this thesis:

• Reviewed de novo peptide sequencing methods, analyzed their advantages and disadvantages, and found

limitations and potential improvement directions.

• Based on the literature review, proposed a new graph model for de novo peptide sequencing and applied

it to HCD spectra.

• Revised the proposed method for HCD spectra, and developed a new de novo peptide sequencing

method for ECD and ETD spectra by considering their unique features.

• Developed a framework for de novo peptide sequencing of multiple spectra and applied it to paired

CID (or HCD) and ECD (or ETD) spectra.

• Proposed a new de novo peptide sequencing method for CID and HCD spectra pairs including a

specifically designed spectra merging criteria and modification of a previously proposed method for

paired spectra sequencing.

7.2 Contributions

The thesis provides a series of novel computational de novo peptide sequencing methods for different types of

MS/MS spectra. All proposed methods have been evaluated on several experimental datasets and compared

with other methods. In the following, specific contributions are listed:

• A comprehensive literature review of de novo peptide sequencing methods of MS/MS spectra is given.

It summarizes the development of the methods, analyzes the advantages and disadvantages of different

methods, and provides guidelines for filling gaps between current methods and developing advanced

methods as further study.
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• An improved graph model for de novo peptide sequencing is proposed with multiple types of edges

reflecting different relationships between ions in an MS/MS spectrum. It is applied to a new type of

MS/MS spectra, HCD spectra, for peptide sequencing.

• A new de novo peptide sequencing method is proposed with multiple peptide tags and amino acid

composition information included to reduce the complexity and increase accuracy of the method. It is

applied to ECD and ETD spectra with the consideration of their unique features.

• A framework for de novo peptide sequencing of multiple spectra is developed with application to paired

CID (or HCD) and ECD (or ETD) spectra. The framework provides general guidelines for the de novo

peptide sequencing of multiple spectra, and is potentially applicable to various spectra combinations

with suitable modification.

• A new de novo peptide sequencing method for CID and HCD spectra pairs is developed. It includes a

specifically designed spectra merging criteria and modifies a previously proposed method to suit CID

and HCD spectra pairs.

7.3 Future Work

Based on the work presented in the thesis of de novo peptide sequencing, the following directions for future

research work are proposed.

• De novo peptide sequencing methods for spectra with post-translational modifications (PTMs).

One major advantage of de novo peptide sequencing is its independence of a protein database. Thus

it has the ability to identify peptides with PTMs. Among all kinds of spectra, ECD and ETD spectra

are the most suitable for identifying peptides with PTMs because of the unique features of these

spectra. A computational method for ECD and ETD spectra without consideration of PTMs has been

presented in this thesis (NovoExD). With suitable modification, it can be extended to the case with

PTMs. A practical way to start is to consider one common PTM, and make adjustment of the amino

acid masses used in the method. After that, more PTMs could be considered. One recent study has

claimed that only a limited number of PTMs can occur in a peptide although the types of PTMs can

be numerous [106]. Therefore, researchers should consider limiting the number of PTMs per spectrum

in the designed method.

• New methods for multiple spectra de novo peptide sequencing.

Multiple spectra sequencing continues to increase in popularity with the availability of various kinds of

MS/MS spectra. Two computational methods have been presented in the thesis for different pairs of

spectra. However, there is still room for new for multiple spectra sequencing methods for other spectra

combinations; for example, CID, HCD, and ETD.
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• Preprocessing methods for multiple spectra de novo peptide sequencing.

There are already a lot of preprocessing methods developed for traditionally used CID spectra, but

not many for multiple spectra sequencing techniques. One key preprocessing step in these techniques

is spectra merging. New methods can focus on the improvement of merging criteria for the pairs of

spectra studied in this thesis, or the merging of other kinds of spectra combinations. In addition,

effective denoising methods for these spectra can be another potential research topic.

• Software development for the proposed de novo peptide sequencing methods.

A series of computational methods are presented in this thesis, and it would be helpful to develop

integrated software packages for interested users. All presented methods can be integrated into one

single software package to be applicable for peptide sequencing of different types of spectra or spectra

combinations.

92



References

[1] Bin Ma and Richard Johnson. De novo sequencing and homology searching. Molecular & Cellular
Proteomics, 11(2):1–16, 2012.

[2] Ingvar Eidhammer, Kristian Flikka, Lennart Martens, and Svein-Ole Mikalsen. Computational methods
for mass spectrometry proteomics. John Wiley & Sons, 2008.

[3] Michael Kinter and Nicholas E Sherman. Protein Sequencing and Identification Using Tandem Mass
Spectrometry. John Wiley & Sons, 2000.

[4] Katheryn A Resing and Natalie G Ahn. Proteomics strategies for protein identification. FEBS Letters,
579:885–889, 2005.

[5] Richard S Johnson and Klaus Biemann. Computer program (DEQPEP) to aid in the interpretation of
high-energy collision tandem mass spectra of peptides. Biomedical & Environmental Mass Spectrometry,
18(11):945–957, 1989.

[6] Leo McHugh and Jonathan W Arthur. Computational methods for protein identification from mass
spectrometry data. PLoS Computational Biology, 4(2), 2008.

[7] Ruedi Aebersold and David R Goodlett. Mass spectrometry in proteomics. Chemical Reviews,
101(2):269–296, 2001.

[8] Vicki H Wysocki, Katheryn A Resing, Qingfen Zhang, and Guilong Cheng. Mass spectrometry of
peptides and proteins. Methods, 35(3):211–222, 2005.

[9] Fred W McLafferty. Interpretation of Mass Spectra. University Science Books, 1993.

[10] James J Pitt. Principles and applications of liquid chromatography-mass spectrometry in clinical
biochemistry. The Clinical Biochemist Reviews, 30(1):19, 2009.

[11] Alan G Marshall, Christopher L Hendrickson, and George S Jackson. Fourier transform ion cyclotron
resonance mass spectrometry: a primer. Mass Spectrometry Reviews, 17(1):1–35, 1998.

[12] Raymond E March. Quadrupole ion trap mass spectrometry: theory, simulation, recent developments
and applications. Rapid Communications in Mass Spectrometry, 12(20):1543–1554, 1998.

[13] Seungjin Na, Eunok Paek, and Cheolju Lee. Structural characterization of peptides via tandem mass
spectrometry of their dilithiated monocations. Analytical Chemistry, 80(5):1520–1528, 2008.

[14] Changjiang Xu and Bin Ma. Software for computational peptide identification from MS/MS data.
Drug Discovery Today, 11(13):595–600, 2006.

[15] Bobbie-Jo M Webb-Robertson and William R Cannon. Current trends in computational inference from
mass spectrometry-based proteomics. Briefings in Bioinformatics, 8(5):304–317, 2007.

[16] Michael R Hoopmann and Robert L Moritz. Current algorithmic solutions for peptide-based proteomics
data generation and identification. Current Opinion in Biotechnology, 24(1):31–38, 2013.

[17] Yan Yan, Anthony J Kusalik, and Fang-Xiang Wu. NovoGMET:De novo peptide sequencing using
graphs with multiple edge types (GMET) for ETD/ECD spectra. In The 10th International Symposium
on Bioinformatics Research and Applications (ISBRA2014), pages 200–211, 2014.

93



[18] Hao Chi, Kun He, Bing Yang, Zhen Chen, Rui-Xiang Sun, Sheng-Bo Fan, Kun Zhang, Chao Liu,
Zuo-Fei Yuan, Quan-Hui Wang, Si-Qi Liu, Meng-Qiu Dong, and Si-Min He. pFind-Alioth: a novel
unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data.
Journal of Proteomics, 125(0):89 – 97, 2015.

[19] Yaojun Wang, Fei Yang, Peng Wu, Dongbo Bu, and Shiwei Sun. OpenMS-Simulator: an open-source
software for theoretical tandem mass spectrum prediction. BMC Bioinformatics, 16(1):110:1–6, 2015.

[20] Jimmy K Eng, Brian C Searle, Karl R Clauser, and David L Tabb. A face in the crowd: recognizing
peptides through database search. Molecular & Cellular Proteomics, 10(11):R111–009522, 2011.

[21] Chongle Pan, Byung Park, William McDonald, Patricia Carey, Jillian Banfield, Nathan VerBerkmoes,
Robert Hettich, and Nagiza Samatova. A high-throughput de novo sequencing approach for shotgun
proteomics using high-resolution tandem mass spectrometry. BMC Bioinformatics, 11(1):118, 2010.

[22] David L Tabb, Ze-Qiang Ma, Daniel B Martin, Amy-Joan L Ham, and Matthew C Chambers. DirecTag:
accurate sequence tags from peptide MS/MS through statistical scoring. Journal of Proteome Research,
7(9):3838–3846, 2008.

[23] Marshall Bern and David Goldberg. De novo analysis of peptide tandem mass spectra by spectral
graph partitioning. Journal of Computational Biology, 13(2):364–378, 2006.

[24] Peter A DiMaggio and Christodoulos A Floudas. De novo peptide identification via mixed-integer linear
optimization and tandem mass spectrometry. Computer Aided Chemical Engineering, 24:989–994, 2007.

[25] Bingwen Lu and Ting Chen. Algorithms for de novo peptide sequencing using tandem mass spectrom-
etry. Drug Discovery Today: Biosilico, 2(2):85–90, 2004.

[26] Vlado Dancik, Theresa A Addona, Karl R Clauser, James E Vath, and Pavel A Pevzner. De novo
peptide sequencing via tandem mass spectrometry. Journal of Computational Biology, 6(3-4):327–342,
1999.

[27] Rainer Cramer. Editorial for “advances in biological mass spectrometry and proteomics”. Methods,
54:349–350, 2011.

[28] Ingvar Eidhammer, Kristian Flikka, Lennart Martens, and Svein-Ole Mikalsen. Computational methods
for mass spectrometry proteomics. John Wiley & Sons, 2008.

[29] Vicki H Wysocki, George Tsaprailis, Lori L Smith, and Linda A Breci. Mobile and localized protons:
a framework for understanding peptide dissociation. Journal of Mass Spectrometry, 35(12):1399–1406,
2000.

[30] Alex G Harrison. To b or not to b: the ongoing saga of peptide b ions. Mass Spectrometry Reviews,
28(4):640–654, 2009.

[31] Lin He and Bin Ma. ADEPTS: advance peptide de novo sequencing with a pair of tandem mass
spectra. Journal of Bioinformatics and Computational Biology, 8:981–994, 2010.

[32] Maria Fälth, Mikhail M Savitski, Michael L Nielsen, Frank Kjeldsen, Per E Andren, and Roman A
Zubarev. Analytical utility of small neutral losses from reduced species in electron capture dissociation
studied using SwedECD database. Analytical Chemistry, 80(21):8089–8094, 2008.

[33] Robert J Chalkley, Katalin F Medzihradszky, Aenoch J Lynn, Peter R Baker, and Alma L Burlingame.
Statistical analysis of peptide electron transfer dissociation fragmentation mass spectrometry. Analytical
Chemistry, 82(2):579–584, 2010.

[34] Alan L Gray, John G Williams, Ahmet T Ince, and Martin Liezers. Communication. noise sources in
inductively coupled plasma mass spectrometry: an investigation of their importance to the precision of
isotope ratio measurements. Journal of Analytical Atomic Spectrometry, 9:1179–1181, 1994.

94



[35] Adrian Guthals and Nuno Bandeira. Peptide identification by tandem mass spectrometry with alternate
fragmentation modes. Molecular & Cellular Proteomics, 11(9):550–557, 2012.

[36] Annette Michalski, Nadin Neuhauser, Jürgen Cox, and Matthias Mann. A systematic investigation
into the nature of tryptic HCD spectra. Journal of Proteome Research, 11(11):5479–5491, 2012.

[37] John EP Syka, Joshua J Coon, Melanie J Schroeder, Jeffrey Shabanowitz, and Donald F Hunt. Peptide
and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the
National Academy of Sciences of the United States of America, 101(26):9528–9533, 2004.

[38] Roman A Zubarev, Neil L Kelleher, and Fred W McLafferty. Electron capture dissociation of multiply
charged protein cations. A nonergodic proces. Journal of the American Chemical Society, 120(16):3265–
3266, 1998.

[39] Leann M Mikesh, Beatrix Ueberheide, An Chi, Joshua J Coon, John EP Syka, Jeffrey Shabanowitz,
and Donald F Hunt. The utility of ETD mass spectrometry in proteomic analysis. Biochimica et
Biophysica Acta (BBA) - Proteins and Proteomics, 1764(12):1811 – 1822, 2006.

[40] Julia Wiesner, Thomas Premsler, and Albert Sickmann. Application of electron transfer dissociation
(ETD) for the analysis of posttranslational modifications. Proteomics, 8(21):4466–4483, 2008.

[41] Min-Sik Kim and Akhilesh Pandey. Electron transferm dissociation mass spectrometry in proteomics.
Proteomics, 12(4-5):530–42, 2012.

[42] Rovshan G Sadygov, Daniel Cociorva, and John R Yates. Large-scale database searching using tandem
mass spectra: looking up the answer in the back of the book. Nature Methods, 1(3):195–202, 2004.

[43] Jimmy K Eng, Ashley L McCormack, and John R Yates. An approach to correlate tandem mass
spectral data of peptides with amino acid sequences in a protein database. Journal of the American
Society for Mass Spectrometry, 5(11):976–989, 1994.

[44] Matthias Mann and Matthias Wilm. Error-tolerant identification of peptides in sequence tags. Ana-
lytical Chemistry, 66(24):4390–4399, 1994.

[45] Bassil I Dahiyat and Stephen L Mayo. De novo protein design: fully automated sequence selection.
Science, 278:82–87, 1997.

[46] Fang-Xiang Wu, Pierre Gagne, Arnaud Droit, and Guy G Poirier. RT-PSM, a real-time program for
peptide-spectrum matching with statistical significance. Rapid Communications in Mass Spectrometry,
20(8):1199–1208, 2006.

[47] Mikhail M Savitski, Michael L Nielsen, and Roman A Zubarev. New data base-independent, sequence
tag-based scoring of peptide MS/MS data validates mowse scores, recovers below threshold data, singles
out modified peptides, and assesses the quality of MS/MS techniques. Molecular & Cellular Proteomics,
4(8):1180–1188, 2005.

[48] Bingwen Lu and Ting Chen. Algorithms for de novo peptide sequencing using tandem mass spectrom-
etry. BioSilico, 2:85–90, 2004.

[49] Neil C Jones and Pavel A Pevzner. An Introduction to Bioinformatics Algorithms. Cambridge, Mas-
sachusetts: MIT press, 2004.

[50] Tsuneaki Sakurai, Kenji Matsuo, Hideo Matsuda, and Ituso Katakuse. Paas 3: a computer program to
determine probable sequence of peptides from mass spectrometric data. Biological Mass Spectrometry,
11(8):396–399, 1984.

[51] Hubert A Scoble, James E Biller, and Klaus Biemann. A graphics display-oriented strategy for the
amino acid sequencing of peptides by tandem mass spectrometry. Fresenius Journal of Analytical
Chemistry, 327(2):239–245, 1987.

95



[52] Yan Yan, Shenggui Zhang, and Fang-Xiang Wu. Applications of graph theory in protein structure
identification. Proteome Science, 9(Suppl 1):S17, 2011.

[53] Christian Bartels. Fast algorithm for peptide sequencing by mass spectroscopy. Biomedical & Envi-
ronmental Mass Spectrometry, 19:363–368, 1990.

[54] Wade M Hines, Arnold M Falick, Alma L Burlingame, and BradfordWGibson. Pattern-based algorithm
for peptide sequencing from tandem high energy collision-induced dissociation mass spectra. Journal
of the American Society for Mass Spectrometry, 3(4):326–336, 1992.

[55] Jorge Fernández-de Cossio, Javier Gonzalez, and Vladimir Besada. A computer program to aid the
sequencing of peptides in collision-activated decomposition experiments. Computer Applications in the
Biosciences: CABIOS, 11(4):427–434, 1995.
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