81 research outputs found

    Autonomous surveillance for biosecurity

    Full text link
    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance.Comment: 26 pages, Trends in Biotechnology, 3 March 2015, ISSN 0167-7799, http://dx.doi.org/10.1016/j.tibtech.2015.01.003. (http://www.sciencedirect.com/science/article/pii/S0167779915000190

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 344)

    Get PDF
    This bibliography lists 125 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during January, 1989. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    An investigation into common challenges of 3D scene understanding in visual surveillance

    Get PDF
    Nowadays, video surveillance systems are ubiquitous. Most installations simply consist of CCTV cameras connected to a central control room and rely on human operators to interpret what they see on the screen in order to, for example, detect a crime (either during or after an event). Some modern computer vision systems aim to automate the process, at least to some degree, and various algorithms have been somewhat successful in certain limited areas. However, such systems remain inefficient in general circumstances and present real challenges yet to be solved. These challenges include the ability to recognise and ultimately predict and prevent abnormal behaviour or even reliably recognise objects, for example in order to detect left luggage or suspicious objects. This thesis first aims to study the state-of-the-art and identify the major challenges and possible requirements of future automated and semi-automated CCTV technology in the field. This thesis presents the application of a suite of 2D and highly novel 3D methodologies that go some way to overcome current limitations.The methods presented here are based on the analysis of object features directly extracted from the geometry of the scene and start with a consideration of mainly existing techniques, such as the use of lines, vanishing points (VPs) and planes, applied to real scenes. Then, an investigation is presented into the use of richer 2.5D/3D surface normal data. In all cases the aim is to combine both 2D and 3D data to obtain a better understanding of the scene, aimed ultimately at capturing what is happening within the scene in order to be able to move towards automated scene analysis. Although this thesis focuses on the widespread application of video surveillance, an example case of the railway station environment is used to represent typical real-world challenges, where the principles can be readily extended elsewhere, such as to airports, motorways, the households, shopping malls etc. The context of this research work, together with an overall presentation of existing methods used in video surveillance and their challenges are described in chapter 1.Common computer vision techniques such as VP detection, camera calibration, 3D reconstruction, segmentation etc., can be applied in an effort to extract meaning to video surveillance applications. According to the literature, these methods have been well researched and their use will be assessed in the context of current surveillance requirements in chapter 2. While existing techniques can perform well in some contexts, such as an architectural environment composed of simple geometrical elements, their robustness and performance in feature extraction and object recognition tasks is not sufficient to solve the key challenges encountered in general video surveillance context. This is largely due to issues such as variable lighting, weather conditions, and shadows and in general complexity of the real-world environment. Chapter 3 presents the research and contribution on those topics – methods to extract optimal features for a specific CCTV application – as well as their strengths and weaknesses to highlight that the proposed algorithm obtains better results than most due to its specific design.The comparison of current surveillance systems and methods from the literature has shown that 2D data are however almost constantly used for many applications. Indeed, industrial systems as well as the research community have been improving intensively 2D feature extraction methods since image analysis and Scene understanding has been of interest. The constant progress on 2D feature extraction methods throughout the years makes it almost effortless nowadays due to a large variety of techniques. Moreover, even if 2D data do not allow solving all challenges in video surveillance or other applications, they are still used as starting stages towards scene understanding and image analysis. Chapter 4 will then explore 2D feature extraction via vanishing point detection and segmentation methods. A combination of most common techniques and a novel approach will be then proposed to extract vanishing points from video surveillance environments. Moreover, segmentation techniques will be explored in the aim to determine how they can be used to complement vanishing point detection and lead towards 3D data extraction and analysis. In spite of the contribution above, 2D data is insufficient for all but the simplest applications aimed at obtaining an understanding of a scene, where the aim is for a robust detection of, say, left luggage or abnormal behaviour; without significant a priori information about the scene geometry. Therefore, more information is required in order to be able to design a more automated and intelligent algorithm to obtain richer information from the scene geometry and so a better understanding of what is happening within. This can be overcome by the use of 3D data (in addition to 2D data) allowing opportunity for object “classification” and from this to infer a map of functionality, describing feasible and unfeasible object functionality in a given environment. Chapter 5 presents how 3D data can be beneficial for this task and the various solutions investigated to recover 3D data, as well as some preliminary work towards plane extraction.It is apparent that VPs and planes give useful information about a scene’s perspective and can assist in 3D data recovery within a scene. However, neither VPs nor plane detection techniques alone allow the recovery of more complex generic object shapes - for example composed of spheres, cylinders etc - and any simple model will suffer in the presence of non-Manhattan features, e.g. introduced by the presence of an escalator. For this reason, a novel photometric stereo-based surface normal retrieval methodology is introduced to capture the 3D geometry of the whole scene or part of it. Chapter 6 describes how photometric stereo allows recovery of 3D information in order to obtain a better understanding of a scene, as well as also partially overcoming some current surveillance challenges, such as difficulty in resolving fine detail, particularly at large standoff distances, and in isolating and recognising more complex objects in real scenes. Here items of interest may be obscured by complex environmental factors that are subject to rapid change, making, for example, the detection of suspicious objects and behaviour highly problematic. Here innovative use is made of an untapped latent capability offered within modern surveillance environments to introduce a form of environmental structuring to good advantage in order to achieve a richer form of data acquisition. This chapter also goes on to explore the novel application of photometric stereo in such diverse applications, how our algorithm can be incorporated into an existing surveillance system and considers a typical real commercial application.One of the most important aspects of this research work is its application. Indeed, while most of the research literature has been based on relatively simple structured environments, the approach here has been designed to be applied to real surveillance environments, such as railway stations, airports, waiting rooms, etc, and where surveillance cameras may be fixed or in the future form part of a mobile robotic free roaming surveillance device, that must continually reinterpret its changing environment. So, as mentioned previously, while the main focus has been to apply this algorithm to railway station environments, the work has been approached in a way that allows adaptation to many other applications, such as autonomous robotics, and in motorway, shopping centre, street and home environments. All of these applications require a better understanding of the scene for security or safety purposes. Finally, chapter 7 presents a global conclusion and what will be achieved in the future

    Scene segmentation using similarity, motion and depth based cues

    Get PDF
    Segmentation of complex scenes to aid surveillance is still considered an open research problem. In this thesis a computational model (CM) has been developed to classify a scene into foreground, moving-shadow and background regions. It has been demonstrated how the CM, with the optional use of a channel ratio test, can be applied to demarcate foreground shadow regions in indoor scenes illuminated by a fixed incandescent source of light. A combined approach, involving the CM working in tandem with a traditional motion cue based segmentation method, has also been constructed. In the combined approach, the CM is applied to segregate the foreground shaded regions in a current frame based on a binary mask generated using a standard background subtraction process (BSP). Various popular outlier detection strategies have been investigated to assess their suitabilities in generating a threshold automatically, required to develop a binary mask from a difference frame, the outcome of the BSP. To evaluate the full scope of the pixel labeling capabilities of the CM and to estimate the associated time constraints, the model is deployed for foreground scene segmentation in recorded real-life video streams. The observations made validate the satisfactory performance of the model in most cases. In the second part of the thesis depth based cues have been exploited to perform the task of foreground scene segmentation. An active structured light based depthestimating arrangement has been modeled in the thesis; the choice of modeling an active system over a passive stereovision one has been made to alleviate some of the difficulties associated with the classical correspondence problem. The model developed not only facilitates use of the set-up but also makes possible a method to increase the working volume of the system without explicitly encoding the projected structured pattern. Finally, it is explained how scene segmentation can be accomplished based solely on the structured pattern disparity information, without generating explicit depthmaps. To de-noise the difference frames, generated using the developed method, two median filtering schemes have been implemented. The working of one of the schemes is advocated for practical use and is described in terms of discrete morphological operators, thus facilitating hardware realisation of the method to speed-up the de-noising process

    A coordinated UAV deployment based on stereovision reconnaissance for low risk water assessment

    Get PDF
    Biologists and management authorities such as the World Health Organisation require monitoring of water pollution for adequate management of aquatic ecosystems. Current water sampling techniques based on human samplers are time consuming, slow and restrictive. This thesis takes advantage of the recent affordability and higher flexibility of Unmanned Aerial Vehicles (UAVs) to provide innovative solutions to the problem. The proposed solution involves having one UAV, “the leader”, equipped with sensors that are capable of accurately estimating the wave height in an aquatic environment, if the region identified by the leader is characterised as having a low wave height, the area is deemed suitable for landing. A second UAV, “the follower UAV”, equipped with a payload such as an Autonomous Underwater Vehicle (AUV) can proceed to the location identified by the leader, land and deploy the AUV into the water body for the purposes of water sampling. The thesis acknowledges there are two main challenges to overcome in order to develop the proposed framework. Firstly, developing a sensor to accurately measure the height of a wave and secondly, achieving cooperative control of two UAVs. Two identical cameras utilising a stereovision approach were developed for capturing three-dimensional information of the wave distribution in a non-invasive manner. As with most innovations, laboratory based testing was necessary before a full-scale implementation can be attempted. Preliminary results indicate that provided a suitable stereo matching algorithm is applied, one can generate a dense 3D reconstruction of the surface to allow estimation of the wave height parameters. Stereo measurements show good agreement with the results obtained from a wave probe in both the time and frequency domain. The mean absolute error for the average wave height and the significant wave height is less than 1cm from the acquired time series data set. A formation-flying algorithm was developed to allow cooperative control between two UAVs. Results show that the follower was able to successfully track the leader’s trajectory and in addition maintain the given separation distance from the leader to within 1m tolerance through the course of the experiments despite windy conditions, low sampling rate and poor accuracy of the GPS sensors. In the closing section of the thesis, near real-time dense 3D reconstruction and wave height estimation from the reconstructed 3D points is demonstrated for an aquatic body using the leader UAV. Results show that for a pair of images taken at a resolution of 320 by 240 pixels up to 21,000 3D points can be generated to provide a dense 3D reconstruction of the water surface within the field of view of the cameras

    Air Force Institute of Technology Research Report 2000

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics

    DDI: Drones Detection and Identification using Deep Learning Techniques

    Get PDF
    Drones are becoming increasingly popular not only for recreational purposes but in day-to-day applications in engineering, medicine, logistics, security and others. Besides their useful applications, an alarming concern in regards to the physical infrastructure security, safety and privacy arose due to the potential of their use in malicious activities. To address this problem, wework towards the proposed solution by the following twofold contribution, first we propose a novel solution that automates the drone detection and identification processes using drone's acoustic features with different deep learning algorithms. However, the lack of acoustic drone datasets hinders the ability to implement an effective solution. Therefore, we aim to fulfil this gap by introducing a hybrid drone acoustic dataset composed of recorded drone audio clips and artificially generated drone audio clips using a state of the art deep learning model known as the Generative Adversarial Network. Furthermore, we examine the effectiveness of using drone audio with different deep learning algorithms, namely, the Convolutional Neural Network, the Recurrent Neural Network and the Convolutional Recurrent Neural Network in drone detection and identification. Moreover, we investigate the impact our proposed hybrid dataset has on drone detection. The second contribution is laying the foundation for the next step of the anti-drone proposed system which is focused around swarm drones localisation and tracking using data fusion of audio and radio frequency signals using deep learning techniques. This is made possible through the design of a novel swarm of drones simulator. Our findings prove the advantage of using deep learning techniques with acoustic data for drone detection and identification while confirming our hypothesis on the benefits of using the Generative Adversarial Networks to generate real-like drone audio clips with an aim of enhancing the detection of new and unfamiliar drones

    Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective

    Full text link
    Machine Learning models are being deployed as parts of real-world systems with the upsurge of interest in artificial intelligence. The design, implementation, and maintenance of such systems are challenged by real-world environments that produce larger amounts of heterogeneous data and users requiring increasingly faster responses with efficient resource consumption. These requirements push prevalent software architectures to the limit when deploying ML-based systems. Data-oriented Architecture (DOA) is an emerging concept that equips systems better for integrating ML models. DOA extends current architectures to create data-driven, loosely coupled, decentralised, open systems. Even though papers on deployed ML-based systems do not mention DOA, their authors made design decisions that implicitly follow DOA. The reasons why, how, and the extent to which DOA is adopted in these systems are unclear. Implicit design decisions limit the practitioners' knowledge of DOA to design ML-based systems in the real world. This paper answers these questions by surveying real-world deployments of ML-based systems. The survey shows the design decisions of the systems and the requirements these satisfy. Based on the survey findings, we also formulate practical advice to facilitate the deployment of ML-based systems. Finally, we outline open challenges to deploying DOA-based systems that integrate ML models.Comment: Under revie

    Augmented Reality Simulation Modules for EVD Placement Training and Planning Aids

    Get PDF
    When a novice neurosurgeon performs a psychomotor surgical task (e.g., tool navigation into brain structures), a potential risk of damaging healthy tissues and eloquent brain structures is unavoidable. When novices make multiple hits, thus a set of undesirable trajectories is created, and resulting in the potential for surgical complications. Thus, it is important that novices not only aim for a high-level of surgical mastery but also receive deliberate training in common neurosurgical procedures and underlying tasks. Surgical simulators have emerged as an adequate candidate as effective method to teach novices in safe and free-error training environments. The design of neurosurgical simulators requires a comprehensive approach to development and. In that in mind, we demonstrate a detailed case study in which two Augmented Reality (AR) training simulation modules were designed and implemented through the adoption of Model-driven Engineering. User performance evaluation is a key aspect of the surgical simulation validity. Many AR surgical simulators become obsolete; either they are not sufficient to support enough surgical scenarios, or they were validated according to subjective assessments that did not meet every need. Accordingly, we demonstrate the feasibility of the AR simulation modules through two user studies, objectively measuring novices’ performance based on quantitative metrics. Neurosurgical simulators are prone to perceptual distance underestimation. Few investigations were conducted for improving user depth perception in head-mounted display-based AR systems with perceptual motion cues. Consequently, we report our investigation’s results about whether or not head motion and perception motion cues had an influence on users’ performance
    • …
    corecore