20,038 research outputs found

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 335)

    Get PDF
    This bibliography lists 143 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during March, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Aircraft technology opportunities for the 21st Century

    Get PDF
    New aircraft technologies are presented that have the potential to expand the air transportation system and reduce congestion through new operating capabilities, and at the same time provide greater levels of safety and environmental compatibility. Both current and planned civil aeronautics technology at the NASA Ames, Lewis, and Langley Research Centers are addressed. The complete spectrum of current aircraft and new vehicle concepts is considered including rotorcraft (helicopters and tiltrotors), vertical and short takeoff and landing (V/STOL) and short takeoff and landing (STOL) aircraft, subsonic transports, high speed transports, and hypersonic/transatmospheric vehicles. New technologies for current aircraft will improve efficiency, affordability, safety, and environmental compatibility. Research and technology promises to enable development of new vehicles that will revolutionize or greatly change the transportation system. These vehicles will provide new capabilities which will lead to enormous market opportunities and economic growth, as well as improve the competitive position of the U.S. aerospace industry

    An integrated approach to indoor contaminant modelling

    Get PDF
    Air pollutants are those chemicals that are not generally present in the atmosphere because of natural causes but are disseminated into the air by human activity. In most parts of Europe, outdoor pollutants are principally the products of combustion from space heating, power generation, chemical industry waste, or from motor vehicle traffic (McGinlay 1997). Indoor air environments contain a myriad of inorganic and organic gases and vapors typically in trace (parts-per-billion) quantities. The chemical composition of air varies widely between particular locations as well as between measurements taken at different times for the same location. The nature of these variations is such that it is difficult to definitively characterize a typical indoor air environment with respect to specific contaminants present and concentration levels. A large number of air pollutants have known or suspected harmful effects that can be manifested on plant or animal life and/or the environment. Pollutants may not only prove a problem in the immediate vicinity of their emission, but they can travel long distances and react with other species present in the atmosphere to produce secondary pollutants (Weschler 2004)

    Advanced Manned Launch System (AMLS) study

    Get PDF
    To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed

    Simulation and BIM in building design, commissioning and operation: a comparison with the microelectronics industry

    Get PDF
    Analogy between the Microelectronics and Building industries is explored with the focus on design, commissioning and operation processes. Some issues found in the realisation of low energy buildings are highlighted and techniques gleaned from microelectronics proposed as possible solutions. Opportunities identified include: adoption of a more integrated process, use of standard cells, inclusion of controls and operational code in the design, generation of building commissioning tests from simulation, generation of building operational control code (including self-test) from simulation, inclusion of variation and uncertainties in the design process, use of quality processes such as indices to represent design robustness and formal continuous improvement methods. The possible integration of these techniques within a building information model (BIM) flow is discussed and some examples of enabling technologies given

    Renal Association Clinical Practice Guideline on Haemodialysis

    Get PDF
    © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.This guideline is written primarily for doctors and nurses working in dialysis units and related areas of medicine in the UK, and is an update of a previous version written in 2009. It aims to provide guidance on how to look after patients and how to run dialysis units, and provides standards which units should in general aim to achieve. We would not advise patients to interpret the guideline as a rulebook, but perhaps to answer the question: "what does good quality haemodialysis look like?"The guideline is split into sections: each begins with a few statements which are graded by strength (1 is a firm recommendation, 2 is more like a sensible suggestion), and the type of research available to back up the statement, ranging from A (good quality trials so we are pretty sure this is right) to D (more like the opinion of experts than known for sure). After the statements there is a short summary explaining why we think this, often including a discussion of some of the most helpful research. There is then a list of the most important medical articles so that you can read further if you want to - most of this is freely available online, at least in summary form.A few notes on the individual sections: 1. This section is about how much dialysis a patient should have. The effectiveness of dialysis varies between patients because of differences in body size and age etc., so different people need different amounts, and this section gives guidance on what defines "enough" dialysis and how to make sure each person is getting that. Quite a bit of this section is very technical, for example, the term "eKt/V" is often used: this is a calculation based on blood tests before and after dialysis, which measures the effectiveness of a single dialysis session in a particular patient. 2. This section deals with "non-standard" dialysis, which basically means anything other than 3 times per week. For example, a few people need 4 or more sessions per week to keep healthy, and some people are fine with only 2 sessions per week - this is usually people who are older, or those who have only just started dialysis. Special considerations for children and pregnant patients are also covered here. 3. This section deals with membranes (the type of "filter" used in the dialysis machine) and "HDF" (haemodiafiltration) which is a more complex kind of dialysis which some doctors think is better. Studies are still being done, but at the moment we think it's as good as but not better than regular dialysis. 4. This section deals with fluid removal during dialysis sessions: how to remove enough fluid without causing cramps and low blood pressure. Amongst other recommendations we advise close collaboration with patients over this. 5. This section deals with dialysate, which is the fluid used to "pull" toxins out of the blood (it is sometimes called the "bath"). The level of things like potassium in the dialysate is important, otherwise too much or too little may be removed. There is a section on dialysate buffer (bicarbonate) and also a section on phosphate, which occasionally needs to be added into the dialysate. 6. This section is about anticoagulation (blood thinning) which is needed to stop the circuit from clotting, but sometimes causes side effects. 7. This section is about certain safety aspects of dialysis, not seeking to replace well-established local protocols, but focussing on just a few where we thought some national-level guidance would be useful. 8. This section draws together a few aspects of dialysis which don't easily fit elsewhere, and which impact on how dialysis feels to patients, rather than the medical outcome, though of course these are linked. This is where home haemodialysis and exercise are covered. There is an appendix at the end which covers a few aspects in more detail, especially the mathematical ideas. Several aspects of dialysis are not included in this guideline since they are covered elsewhere, often because they are aspects which affect non-dialysis patients too. This includes: anaemia, calcium and bone health, high blood pressure, nutrition, infection control, vascular access, transplant planning, and when dialysis should be started.Peer reviewe

    MODIS information, data and control system (MIDACS) operations concepts

    Get PDF
    The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios

    Construction safety and digital design: a review

    Get PDF
    As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safet

    Integrated controls and health monitoring for chemical transfer propulsion

    Get PDF
    NASA is reviewing various propulsion technologies for exploring space. The requirements are examined for one enabling propulsion technology: Integrated Controls and Health Monitoring (ICHM) for Chemical Transfer Propulsion (CTP). Functional requirements for a CTP-ICHM system are proposed from tentative mission scenarios, vehicle configurations, CTP specifications, and technical feasibility. These CTP-ICHM requirements go beyond traditional reliable operation and emergency shutoff control to include: (1) enhanced mission flexibility; (2) continuously variable throttling; (3) tank-head start control; (4) automated prestart and post-shutoff engine check; (5) monitoring of space exposure degradation; and (6) product evolution flexibility. Technology development plans are also discussed
    • …
    corecore