137 research outputs found

    Multi-Robot Navigation and Cooperative Mapping in a Circular Topology

    Get PDF
    Cooperative mapping of an environment by a team of multiple robots is an important problem to advance autonomous robot tasks for example in the field of service robotics or emergency assistance. A precise, global overview of the area the robots are working in, and the ability to navigate this area while avoiding obstacles and collisions between robots is a fundamental requirement for a large number of higher level robot-tasks in those domains. A cooperative mapping, navigation and communication framework supposing unknown initial relative robot positions is developed in this project based on the ROS libraries. It realizes robot displacement, localization and mapping under realistic real-world conditions. Such, the framework provides the underlying functions needed to realize a task of human activity observation in the future. Initially , local maps are individually constructed by the robots using the common gmapping SLAM algorithm from the ROS libraries. The robots are evolving on circles around the scene keeping a constant distance towards it or they can change radius, for example to circumvent obstacles. Local maps are continuously tried to align to compute a joint, global representation of the environment. The hypothesis of a common center point shared between the robots greatly facilitates this task, as the translation between local maps is inherently known and only the rotation has to be found. The map-merging is realized by adapting several methods known in literature to our specific topology. The developed framework is verified and evaluated in real-world scenarios using a team of three robots. Commonly available low-cost robot hardware is utilized. Good performances are reached in multiple scenarios, allowing the robots to construct a global overview by merging their limited local views of the scene

    Review, Classification and Comparison of the Existing SLAM Methods for Groups of Robots

    Get PDF
    Nowadays the promising line of research is an application of groups of mobile robots to various tasks. An effective SLAM algorithm is one of their main success factors. Due to the increasing popularity of the open-source robots framework, ROS, the best methods should be implemented on this platform. The development should be based on the theoretical research of the subject area. So, the paper is justified by this fact. Multi-robot SLAM methods have been classified according to their key features. Their advantages and disadvantages have been identified. The methods have also been compared according to the available experimental data. The methods most suitable for implementation have been selected

    Submap Matching for Stereo-Vision Based Indoor/Outdoor SLAM

    Get PDF
    Autonomous robots operating in semi- or unstructured environments, e.g. during search and rescue missions, require methods for online on-board creation of maps to support path planning and obstacle avoidance. Perception based on stereo cameras is well suited for mixed indoor/outdoor environments. The creation of full 3D maps in GPS-denied areas however is still a challenging task for current robot systems, in particular due to depth errors resulting from stereo reconstruction. State-of-the-art 6D SLAM approaches employ graph-based optimization on the relative transformations between keyframes or local submaps. To achieve loop closures, correct data association is crucial, in particular for sensor input received at different points in time. In order to approach this challenge, we propose a novel method for submap matching. It is based on robust keypoints, which we derive from local obstacle classification. By describing geometrical 3D features, we achieve invariance to changing viewpoints and varying light conditions. We performed experiments in indoor, outdoor and mixed environments. In all three scenarios we achieved a final 3D position error of less than 0.23% of the full trajectory. In addition, we compared our approach with a 3D RBPF SLAM from previous work, achieving an improvement of at least 27% in mean 2D localization accuracy in different scenarios

    Development of an adaptive navigation system for indoor mobile handling and manipulation platforms

    Get PDF
    A fundamental technology enabling the autonomous behavior of mobile robotics is navigation. It is a main prerequisite for mobile robotics to fulfill high-level tasks such as handling and manipulation, and is often identified as one of the key challenges in mobile robotics. The mapping and localization as the basis for navigation are intensively researched in the last few decades. However, there are still challenges or problems needed to be solved for online operating in large-scale environments or running on low-cost and energy-saving embedded systems. In this work, new developments and usages of Light Detection And Ranging (LiDAR) based Simultaneous Localization And Mapping (SLAM) algorithms are presented. A key component of LiDAR based SLAM algorithms, the scan matching algorithm, is explored. Different scan matching algorithms are systemically experimented with different LiDARs for indoor home-like environments for the first time. The influence of properties of LiDARs in scan matching algorithms is quantitatively analyzed. Improvements to Bayes filter based and graph optimization based SLAMs are presented. The Bayes filter based SLAMs mainly use the current sensor information to find the best estimation. A new efficient implementation of Rao-Blackwellized Particle Filter based SLAM is presented. It is based on a pre-computed lookup table and the parallelization of the particle updating. The new implementation runs efficiently on recent multi-core embedded systems that fulfill low cost and energy efficiency requirements. In contrast to Bayes filter based methods, graph optimization based SLAMs utilize all the sensor information and minimize the total error in the system. A new real-time graph building model and a robust integrated Graph SLAM solution are presented. The improvements include the definition of unique direction norms for points or lines extracted from scans, an efficient loop closure detection algorithm, and a parallel and adaptive implementation. The developed algorithm outperforms the state-of-the-art algorithms in processing time and robustness especially in large-scale environments using embedded systems instead of high-end computation devices. The results of the work can be used to improve the navigation system of indoor autonomous robots, like domestic environments and intra-logistics.Eine der grundlegenden Funktionen, welche die Autonomie in der mobilen Robotik ermöglicht, ist die Navigation. Sie ist eine wesentliche Voraussetzung dafür, dass mobile Roboter selbständig anspruchsvolle Aufgaben erfüllen können. Die Umsetzung der Navigation wird dabei oft als eine der wichtigsten Herausforderungen identifiziert. Die Kartenerstellung und Lokalisierung als Grundlage für die Navigation wurde in den letzten Jahrzehnten intensiv erforscht. Es existieren jedoch immer noch eine Reihe von Problemen, z.B. die Anwendung auf große Areale oder bei der Umsetzung auf kostengünstigen und energiesparenden Embedded-Systemen. Diese Arbeit stellt neue Ansätze und Lösungen im Bereich der LiDAR-basierten simultanen Positionsbestimmung und Kartenerstellung (SLAM) vor. Eine Schlüsselkomponente der LiDAR-basierten SLAM, die so genannten Scan-Matching-Algorithmen, wird näher untersucht. Verschiedene Scan-Matching-Algorithmen werden zum ersten Mal systematisch mit verschiedenen LiDARs für den Innenbereich getestet. Der Einfluss von LiDARs auf die Eigenschaften der Algorithmen wird quantitativ analysiert. Verbesserungen an Bayes-filterbasierten und graphoptimierten SLAMs werden in dieser Arbeit vorgestellt. Bayes-filterbasierte SLAMs verwenden hauptsächlich die aktuellen Sensorinformationen, um die beste Schätzung zu finden. Eine neue effiziente Implementierung des auf Partikel-Filter basierenden SLAM unter der Verwendung einer Lookup-Tabelle und der Parallelisierung wird vorgestellt. Die neue Implementierung kann effizient auf aktuellen Embedded-Systemen laufen. Im Gegensatz dazu verwenden Graph-SLAMs alle Sensorinformationen und minimieren den Gesamtfehler im System. Ein neues Echtzeitmodel für die Grafenerstellung und eine robuste integrierte SLAM-Lösung werden vorgestellt. Die Verbesserungen umfassen die Definition von eindeutigen Richtungsnormen für Scan, effiziente Algorithmen zur Erkennung von Loop Closures und eine parallele und adaptive Implementierung. Der entwickelte und auf eingebetteten Systemen eingesetzte Algorithmus übertrifft die aktuellen Algorithmen in Geschwindigkeit und Robustheit, insbesondere für große Areale. Die Ergebnisse der Arbeit können für die Verbesserung der Navigation von autonomen Robotern im Innenbereich, häuslichen Umfeld sowie der Intra-Logistik genutzt werden

    Multi-Robot FastSLAM for Large Domains

    Get PDF
    For a robot to build a map of its surrounding area, it must have accurate position information within the area, and to obtain accurate position information within the area, the robot needs to have an accurate map of the area. This circular problem is the Simultaneous Localization and Mapping (SLAM) problem. An efficient algorithm to solve it is FastSLAM, which is based on the Rao-Blackwellized particle filter. FastSLAM solves the SLAM problem for single-robot mapping using particles to represent the posterior of the robot pose and the map. Each particle of the filter possesses its own global map which is likely to be a grid map. The memory space required for these maps poses a serious limitation to the algorithm\u27s capability when the problem space is large. The problem will only get worse if the algorithm is adapted to multi-robot mapping. This thesis presents an alternate mapping algorithm that extends the single-robot FastSLAM algorithm to a multi-robot mapping algorithm that uses Absolute Space Representations (ASR) to represent the world. But each particle still maintains a local grid to map its vicinity and periodically this grid map is converted into an ASR. An ASR expresses a world in polygons requiring only a minimal amount of memory space. By using this altered mapping strategy, the problem faced in FastSLAM when mapping a large domain can be alleviated. In this algorithm, each robot maps separately, and when two robots encounter each other they exchange range and odometry readings from their last encounter to this encounter. Each robot then sets up another filter for the other robot\u27s data and incrementally updates its own map, incorporating the passed data and its own data at the same time. The passed data is processed in reverse by the receiving robot as if a virtual robot is back-tracking the path of the other robot. The algorithm is demonstrated using three data sets collected using a single robot equipped with odometry and laser-range finder sensors

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    Stereo Visual SLAM for Mobile Robots Navigation

    Get PDF
    Esta tesis está enfocada a la combinación de los campos de la robótica móvil y la visión por computador, con el objetivo de desarrollar métodos que permitan a un robot móvil localizarse dentro de su entorno mientras construye un mapa del mismo, utilizando como única entrada un conjunto de imágenes. Este problema se denomina SLAM visual (por las siglas en inglés de "Simultaneous Localization And Mapping") y es un tema que aún continúa abierto a pesar del gran esfuerzo investigador realizado en los últimos años. En concreto, en esta tesis utilizamos cámaras estéreo para capturar, simultáneamente, dos imágenes desde posiciones ligeramente diferentes, proporcionando así información 3D de forma directa. De entre los problemas de localización de robots, en esta tesis abordamos dos de ellos: el seguimiento de robots y la localización y mapeado simultáneo (o SLAM). El primero de ellos no tiene en cuenta el mapa del entorno sino que calcula la trayectoria del robot mediante la composición incremental de las estimaciones de su movimiento entre instantes de tiempo consecutivos. Cuando se usan imágenes para calcular esta trayectoria, el problema toma el nombre de "odometría visual", y su resolución es más sencilla que la del SLAM visual. De hecho, a menudo se integra como parte de un sistema de SLAM completo. Esta tesis contribuye con la propuesta de dos sistemas de odometría visual. Uno de ellos está basado en un solución cerrada y eficiente mientras que el otro está basado en un proceso de optimización no-lineal que implementa un nuevo método de detección y eliminación rápida de espurios. Los métodos de SLAM, por su parte, también abordan la construcción de un mapa del entorno con el objetivo de mejorar sensiblemente la localización del robot, evitando de esta forma la acumulación de error en la que incurre la odometría visual. Además, el mapa construido puede ser empleado para hacer frente a situaciones exigentes como la recuperación de la localización tras la pérdida del robot o realizar localización global. En esta tesis se presentan dos sistemas completos de SLAM visual. Uno de ellos se ha implementado dentro del marco de los filtros probabilísticos no parámetricos, mientras que el otro está basado en un método nuevo de "bundle adjustment" relativo que ha sido integrado con algunas técnicas recientes de visión por computador. Otra contribución de esta tesis es la publicación de dos colecciones de datos que contienen imágenes estéreo capturadas en entornos urbanos sin modificar, así como una estimación del camino real del robot basada en GPS (denominada "ground truth"). Estas colecciones sirven como banco de pruebas para validar métodos de odometría y SLAM visual

    From Monocular SLAM to Autonomous Drone Exploration

    Full text link
    Micro aerial vehicles (MAVs) are strongly limited in their payload and power capacity. In order to implement autonomous navigation, algorithms are therefore desirable that use sensory equipment that is as small, low-weight, and low-power consuming as possible. In this paper, we propose a method for autonomous MAV navigation and exploration using a low-cost consumer-grade quadrocopter equipped with a monocular camera. Our vision-based navigation system builds on LSD-SLAM which estimates the MAV trajectory and a semi-dense reconstruction of the environment in real-time. Since LSD-SLAM only determines depth at high gradient pixels, texture-less areas are not directly observed so that previous exploration methods that assume dense map information cannot directly be applied. We propose an obstacle mapping and exploration approach that takes the properties of our semi-dense monocular SLAM system into account. In experiments, we demonstrate our vision-based autonomous navigation and exploration system with a Parrot Bebop MAV

    A DISTRIBUTED ONLINE 3D-LIDAR MAPPING SYSTEM

    Get PDF
    corecore