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Abstract— Autonomous robots operating in semi- or unstruc-
tured environments, e.g. during search and rescue missions,
require methods for online on-board creation of maps to
support path planning and obstacle avoidance. Perception based
on stereo cameras is well suited for mixed indoor/outdoor
environments. The creation of full 3D maps in GPS-denied
areas however is still a challenging task for current robot
systems, in particular due to depth errors resulting from stereo
reconstruction. State-of-the-art 6D SLAM approaches employ
graph-based optimization on the relative transformations be-
tween keyframes or local submaps. To achieve loop closures,
correct data association is crucial, in particular for sensor input
received at different points in time. In order to approach this
challenge, we propose a novel method for submap matching.
It is based on robust keypoints, which we derive from local
obstacle classification. By describing geometrical 3D features,
we achieve invariance to changing viewpoints and varying light
conditions. We performed experiments in indoor, outdoor and
mixed environments. In all three scenarios we achieved a final
3D position error of less than 0.23% of the full trajectory. In
addition, we compared our approach with a 3D RBPF SLAM
from previous work, achieving an improvement of at least 27%
in mean 2D localization accuracy in different scenarios.

I. INTRODUCTION

In search and rescue (SAR) scenarios, supporting the
situational awareness of the rescue workers is crucial in order
to improve their efficiency as well as to keep them out of
danger. As the mission environments after disasters typically
include areas that are hard or dangerous to access, mobile
robots can be deployed to support them. In such partially
destroyed, semi- or unstructured indoor and outdoor envi-
ronments, (D)GPS-like global methods for accurate external
localization might not be available at all times. Furthermore,
communication delays and failures are to be expected to
occur during the mission. (Semi-)autonomous operation of
the robots is thus required to deal with these challenges
and to relieve operators of tedious low-level control tasks.
In order for the robots to operate in a previously unknown
environments, local and global localization and mapping
has to be performed online and on-board the individual
systems. In SAR scenarios, performing full 6D localization
and generating a 3D map can be advantageous, in partic-
ular when operating in caves or multi-story buildings with
indoor areas as well as when deploying aerial robots like
quadrotors.We therefore designed a mapping framework for
robots operating in GPS-denied, previously unknown indoor
as well as rough-terrain outdoor environments. Semi-global
stereo matching (SGM) [1] on images gathered by a pair
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Fig. 1. Top: Lightweight Rover Unit (LRU) with 3D representation of a
crater in our outdoor testbed, corresponding to the central part of the map
displayed below. Bottom: Top-down view on resulting 3D map generated
by our SLAM system (green path: SLAM estimates available to the robot
at its respective positions, blue: SLAM graph edges between subsequent
submaps from sensor fusion, yellow: edges representing submap matches).

of cameras provides us with dense depth information under
varying light conditions, even in mixed indoor/outdoor envi-
ronments. For global optimization, we employ incremental
graph SLAM methods to minimize the quadratic error on the
robot’s estimated trajectory. These can run online and on-
board the robot to provide a global pose and map estimate
at any time. A particular challenge is the association of
sensor data to generate loop closures by matching features
extracted from the environment model. Compared to laser
scanners, stereo cameras typically have a narrow angle of
view. This complicates the crucial data association between
a measurement and a (partial) map. We compensate this
by following a submapping approach that locally integrates
multiple measurements from an area of limited size.

As the central contribution of this work, we developed an
algorithm to select and match pairs of stereo-vision based
submaps, thereby computing an estimate for their relative
transformation as well as for its uncertainty. In order to
generate accurate and robust matches, we introduce multiple
filtering and selection steps. As a starting point, during
submap creation, we compute local obstacle maps. These
contain the 2.5D results from a stereo-error adaptive obstacle
classification, which we presented in [2]. The depth error of
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any stereo algorithm grows quadratically with the distance
to the cameras. Therefore we have to consider it early on
in our mapping pipeline, as the association between camera
viewpoints and depth data will be lost after the integration
into submaps. The local obstacle maps thereby allow the
computation of robust keypoints, which is the first step of
the submap matching process. We characterize them with
CSHOT descriptors [3], which combine geometrical and
visual characteristics. Features based on the 3D geometry
of the environment are particularly invariant to a robot’s
viewpoint as well as to varying light conditions. We thereby
overcome a typical limitation of purely image-based features
like SIFT, while still having the option to include texture
information. As the second step, we select and rank potential
matches based on the expected success rate of the matching
process as well as on their expected impact on the graph
optimization. This creates a prioritized work queue for the
remaining parts of the matching algorithm, which as the third
step performs a keypoint matching. On success, we employ
the resulting transformation as the initial estimate for an
Iterative Closest Point (ICP) optimization, which constitutes
the fourth step. We perform the ICP on the full pointcloud
that, in contrast to the local obstacle maps, also includes
the traversable ground. This ensures a high precision of the
final transformation, in particular w.r.t. the z-axis as well
as roll and pitch angles. The fifth and final step of our
matching pipeline constitutes a rating of the uncertainty of
the resulting transformation as well as an outlier filtering.
We integrated our novel submap matching algorithm with
our SLAM framework and performed experiments in our
outdoor testbed (see Figure 1), in an indoor lab environment
as well as in a mixed indoor/outdoor setting. We thereby
demonstrated the applicability of our methods to different
scenarios and their robustness to varying environments and
light conditions. With our mapping system, we were able to
achieve a final 3D position error of less than 0.23% of the
full trajectory in all three scenarios. In addition, we compared
our novel approach to a 3D RBPF SLAM from our previous
work [2], achieving an improvement of at least 27 % in mean
2D localization accuracy in different scenarios.

II. RELATED WORK

The large body of related work concerned with the task
of simultaneous localization and mapping (SLAM) can be
partitioned into three major techniques: Extended Kalman
Filters (EKF), Rao-Blackwellized particle filters (RBPF), and
graph optimization approaches. For a general overview, see
[4], [5] and [6]. EKF approaches model their landmark-based
maps as multivariate Gaussians. Their major drawback is
the quadratic growth of the computational effort with the
number of landmarks [5], however variations with lower
complexity exist [6]. RBPFs [7] [8] are typically employed
to optimize a distribution over robot trajectories along with
grid maps. They yield robust solutions for planar localization
and mapping, as we recently demonstrated for stereo vision
data with appropriate preprocessing [2]. However, extensions
from three to six degrees of freedom are computationally

challenging w.r.t. runtime and memory requirements [9], as
the number of particles needs to grow exponentially with the
size of the state space to avoid weight collapse [10]. RBPFs
are thus not well suited for 6D SLAM.

While graph SLAM approaches have started out as batch
methods [11] for offline use, recent advances in incremental
graph optimization [12] allow their application for online
localization and mapping. They thus currently appear as
the most promising method for 6D SLAM. Their graph
represents robot poses and (optional) landmarks as nodes, in-
terconnected by their associated measurements. These edges,
weighted by the Gaussian measurement uncertainty, serve as
constraints for global optimization, which is then applied
to minimize their quadratic error. This process is sensitive
to overconfident false measurements, resulting e.g. from
erroneous data associations. However several methods that
are robust to outliers have been developed [13]. The size of
the graph and thus the worst-case computational effort on
loop closures grows with the traveled distance. Constraining
the optimization to local regions [14] or removing nodes
through marginalization [6] are techniques to deal with this
challenge. While graph optimization constitutes the back-
end of a SLAM framework, the front-end is concerned with
solving the data association task. Established methods are the
identification of landmarks, e.g. in form of image features
[15], the matching of visual key-frames [16], as well as
the registration of depth data through Iterative Closest Point
(ICP) techniques [17].

Submapping approaches [18] aggregate local sensor data
into multiple maps of limited size and attach their origins as
poses to the graph. This allows for a sparse graph structure
and thereby efficient optimization steps while keeping more
information compared to key-frame approaches. In addition,
they are also suitable for multi-robot scenarios, for example
by matching and merging 2D occupancy grid maps using
Hough transforms [19]. They however require linear features,
typically lacking in unstructured environments. Reid et al.
[18] designed a graph-based multi-robot SLAM system,
using a brute-force GPU-based correlation search on 2D
occupancy maps to find matches. Labbé and Michaud [20]
employ graph SLAM for multi-session mapping, using a
laser rangefinder and a Kinect. Loop closures are detected
through matching of SURF features, which however are
not robust to changes in viewpoint and illumination. Kinect
fusion [17] is a popular algorithm for the generation of
consistent 3D RGBD maps and smooth 3D reconstruction,
using a frame-to-frame ICP registration. However global loop
closure optimization is not performed. As for 3D registration,
ICP approaches often become trapped in minimums and fail
to provide correct solutions, the use of 3D feature descriptors
[21] has become popular in order to find correspondences
within pointclouds. The central challenge is to select and
describe robust 3D features. Yousif et al. [22] highlight
the importance of robust keypoints by employing ranked
order statistics to achieve improvements over other subsam-
pling techniques for frame-to-frame registration in indoor
scenarios. While SHOT [23] feature descriptors are used



for pointcloud matching in texture-less environments, we
employ CSHOT [3] features to include texture information
where available. Furthermore, in [2] we have shown that our
local obstacle maps yield good geometric landmarks for both
indoor and outdoor scenarios.

III. SYSTEM ARCHITECTURE

In Figure 2, we present an overview over our software
architecture. We employ ROS as a middleware to connect the
individual components. For the task at hand, we introduce
a division into three layers: perception, local and global
mapping as well as planning and control.

Fig. 2. Software architecture block diagram. The focus of this paper is on
the local and global mapping part.

Our only sensors are a pair of cameras and an IMU, similar
to our setup in [2]. We employ an FPGA implementation of
the Semi-Global Matching (SGM) algorithm [1] for dense
stereo matching and use the results to compute visual odom-
etry estimates as outlined in [24] [25]. We fuse these with
IMU data in an keyframe-based Extended Kalman Filter
(EKF) with time-delay compensation for real-time robust
local pose estimates [26]. For these steps, we employ the
same implementations as on our flying robots [26]. The
resulting pose estimates are utilized both for the integration
of measurements in our local submaps as well as for relative
transformation estimates between the submaps within our
SLAM graph. The pose and map estimates can readily be
utilized for path planning, for example by using the local
and global obstacle maps as input to the ROS Navigation
Stack1 for obstacle avoidance and global planning. While we
performed our mapping experiments presented in this work
through teleoperation, we already conducted preliminary
experiments on semi-autonomous waypoint-navigation with
the full system.

IV. MAPPING

A. Local Obstacle Mapping

We generate local obstacle maps from stereo data aligned
by local pose estimates [2]. They can be used for fast

1http://wiki.ros.org/navigation

local path planning and obstacle avoidance. The stereo error
in the distance lc from the camera ∆lc ≈ ∆pPz lc

f t

√
2

grows quadratically in the z-direction Pz and varies for
different camera systems (with mean pixel error ∆p, focal
length f and stereo-baseline t) [25]. In order to receive
robust obstacles, we thus consider the stereo error of our
camera system for step and slope estimation. Furthermore,
we detect negative edges, like cliffs or stairheads, directly
in the depth image. These represent distinctive landmarks
in the environment. As a final step, we filter outliers and
perform a time-based probabilistic integration. Our obsta-
cle mapping pipeline has proven to be robust to varying
environmental conditions and sensor setups. The resulting
obstacles constitute discriminative and robust geometric fea-
tures for our submap matching approach, since we have
already successfully applied them as input for a particle-filter
based 3D SLAM [2]. In addition, we utilize them for a final
alignment check. As we employ the obstacle maps also for
local path planning, this processing step does not generate
any additional computational overhead, in contrast to [22].

B. Submapper

Our submapping component generates and manages
submaps of limited size. They can be composed to a full
3D map, e.g. for visualization and navigation purposes, as
well as employed for submap matching. From the greyscale
and depth images, we first compute 3D pointclouds. We only
consider points within a maximum distance of 3.5 m from the
camera, because for larger distances the stereo error would
exceed the map voxel density. Each new submap is anchored
with its origin at the robot’s current pose, which is added
as a node to the SLAM graph (see Section IV-D). During
the creation of the submap, we use local pose estimates
from the sensor fusion algorithm to integrate pointclouds
into the local coordinate frame of the submap. In our current
setup, a submap contains both, a full pointcloud, as well as
an obstacle pointcloud, resulting from the aforementioned
obstacle mapping step. In order to limit the drift within
the submaps while still providing a sufficient submap size
for matching, we empirically determined system-dependent
criteria to trigger submap creation. We start new submaps
after a maximum driven distance of 2.5 m or a maximum
integrated rotation of 90 ◦, whichever criterion is met first.
Due to the keyframe-based fusion algorithm, the pose error
is only increased while the camera is moving. In future work,
we consider the estimation uncertainty within a submap as
an additional criterion to start new submaps. To finalize a
submap, we apply a voxel-grid filter with a resolution of 3 cm
in order to reduce the impact of the radial distribution and the
computational requirements for subsequent processing steps.

C. Submap Matching

In this section, we describe the processing pipeline of our
submap matching component, as outlined in Figure 2.

1) Selection of Valid Submaps and Keypoints: The final
submaps are sequentially sent to the matching module. Not
all submaps are equally suitable for matching. There are



different criteria that can be applied a priori to select valid
submaps. Initially, we dismiss submaps that are too small in
size (< 5 m2) or contain less than 2000 points. As most envi-
ronments, especially indoor, contain areas with minor slope
and roughness, like floors and straight walls, keypoints taken
in those regions would result in indiscriminative descriptors
and thus lead to wrong matches. In order to select distinctive
geometric features, we employ the submap’s precomputed
obstacle pointcloud to define valuable keypoints for the
matching, see Section IV-A. As we consider the stereo
error within the depth image during obstacle map creation,
they contain solely robust obstacles, in particular w.r.t. to
changing viewpoints and camera distances. We get the cor-
responding keypoints within the full pointcloud by applying
a nearest neighbor search. Considering lower resolutions
and stereo errors, arrangements of obstacles provide more
reliable landmarks in order to distinguish different submaps
than a single obstacle. For example, individual stones in
an outdoor environment can look quite similar, even from
different viewpoints, depending on the resolution of the map.
A lower resolution reduces the computational load, which is
an issue for on-board computation on systems with limited
resources, and thus worthwhile for our application. Hence,
we define a minimum bounding box in the x/y-plane of
4 m2 for an obstacle formation with a resolution of 3 cm,
since feature descriptors of small separate obstacles might
be ambiguous for lower resolutions. Stereo measurement
errors can lead to sparse outliers, which corrupt the resulting
pointcloud and lead to errors in its local characteristics like
normals and curvatures, thereby affecting the map matching.
We thus apply a statistical filter to remove outliers based on
their distribution of distances to neighboring points [27]. The
remaining submaps, including their precomputed keypoints,
are cached in an indexed container, which is used to search
for potential matching pairs. For multi-robot systems, we also
include submaps created by different robots in order to look
for inter-robot matches.

2) Selection of Potential Matching Pairs: As the matching
step is time consuming and the whole SLAM system is
running on-board and online, computational load is an issue.
Despite the fact that the matching itself is not a time critical
operation, a brute force approach would not be reasonable,
since trying out all n!

2(n−2)! combinations would computation-
ally be impossible on a single machine within an acceptable
timeframe. By a priori determining possible matches, we
in addition exclude potential false positives. Therefore, it is
important to score and rank potential matching pairs w.r.t. to
their probability to match as well as the expected impact of
the matches on global optimization. In particular, as match-
ing is not performed in real-time, it can be implemented as a
background process that always deals with the currently most
promising pairs of maps, being executed only when sufficient
resources are available. For a multi-robot scenario, including
systems with limited computational power like light-weight
UAVs, it would also be easily possible to outsource this
computational step to another machine. We use thresholds on
the minimum overlap of the bounding boxes of two submaps

in the x/y-plane, taking into account the 2σ covariance
bounds for their origins, which we obtain online from the
graph SLAM. In addition, we require the bounding boxes of
the obstacle keypoints and of the corresponding pointclouds
to overlap by at least 3 m2 and 4 m2 respectively. In order
to compute the expected impact of the matches on global
optimization, we look at the time of creation of the submaps.
Assuming a constant drift, matches of consecutive submaps
are less valuable than matches bridging a long temporal
distance. For future work, we plan to make use of the
variance estimates between submaps to devise an improved
heuristic for ranking. Furthermore, in order to obtain a
consistent 3D map of the environment, we discovered that
evenly distributed matches are preferable. A concentration
within a relatively small area can result in a large error
in distant parts of the map due to the influence of angular
errors. Therefore, we organize the submaps on a 2D grid with
a resolution of 3m, each cell representing a histogram bin
that contains the number of matches performed on submaps
located in the respective cell. Consequently, we prioritize
submaps in cells with less votes.

3) Keypoint Matching: We start by retrieving the top
element of our priority queue, which contains potential
matches. First, we estimate the surface normals for each
point in the submap as they are important properties of
geometric surfaces. For this purpose, we execute a local least-
squares plane fitting. As we are considering different camera
systems and submap resolutions, we employ a resolution
rres adaptive point radius rN = min(0.2 m, 4 rres). Local
surface properties, like normals and curvatures, are used to
characterize a 3D feature. In order to locally describe the
previously selected keypoints, we compute the 3D feature
descriptor SHOT [23], which computes unique signatures
of histograms of orientations. A spherical support structure
is used to encode information about the topology (surface).
For the final descriptor, all the local histograms are stitched
together. SHOT is rotational invariant and robust to noise
and clutter. It provides unique and unambiguous 3D fea-
tures, while being computational efficient. As we are using
cameras, we employ the extended descriptor CSHOT [3],
which additionally include texture information to improve
the accuracy of SHOT with limited impact on the com-
putational effort. We cache the feature descriptors for our
keypoints, since the corresponding final submaps will not
change afterwards. Only the submap origins will be subject
to optimization within the graph SLAM algorithm. The
aforementioned initial preprocessing steps thus have to be
computed only once for each submap and can be used for
matching several times as part of different pairs of submaps.

The actual matching can easily be parallelized as it is a
read-only operation on the cached submap data. We search
for correspondences between the submaps, applying the Eu-
clidean distance function to determine the similarity of two
keypoints. We assume descriptors with a maximum distance
of 0.2 as potentially describing the same geometric feature
for the next step. In order to dismiss outliers from the set of
matching keypoints, we utilize Random Sample Consensus



Fig. 3. Left: Keypoints (white) and correspondences (yellow) between two submaps. Right: Resulting final submap alignment after ICP optimization.

(RANSAC) on the resulting transformation estimates. As a
final step, we perform Hough voting on the remaining pairs
of keypoints, which is a 3D correspondence grouping that
can deal with occlusions and clutter [28]. The algorithm
allows for multiple instances of the model to be found. A
relative position w.r.t. the model centroid is associated to
each feature. Evidence for possible centroid positions in the
current scene is accumulated with each corresponding feature
casting a vote in a 3D Hough space. By associating each
correspondence with a local reference frame, the remaining
three degrees of freedom are taken into account. In particular,
this method is effective for real-time stereo setups providing
very noisy 3D data [28]. In case that more than one model
is found within the estimated covariance bounds, we choose
the one that exhibits the most correspondences. In Figure 3,
we present an example for a successful match.

4) Full Pointcloud ICP Optimization: For a final refine-
ment of the obtained 6D transformation, we employ the
Iterative Closest Point (ICP) algorithm to minimize the
metric matching error. ICP provides accurate results but
requires close-enough initial estimates as input to avoid local
minimums. The resulting transformation is estimated based
on Singular Value Decomposition (SVD). The right image
in Figure 3 shows the final alignment of two submaps after
ICP optimization. In particular in environments where a
large proportion of the map represents the ground plane,
as for example an indoor floor, the ICP algorithm is able
to significantly improve the transformation. As on the one
hand such areas lack robust 3D features, on the other hand
they work well for an ICP. By matching points on the ground,
especially errors in roll, pitch and height can be compensated.

5) Outlier Filtering and Match Uncertainty Estimation:
Before incorporating submap matches into the SLAM graph,
it is important to filter false positives and matches that do not
fit the corresponding variances. Already a single false con-
nection between graph nodes can lead to map inconsistency
and high pose errors. Although robust optimization methods
exist [13], it is better to filter erroneous correspondences
early on. We dismiss matches between pairs of submaps as
outliers if their relative 6D transformation tn,m exceeds the
2σ bounds of the difference of graph SLAM estimates for
the submap origins sn and sm. We compare the individual
degrees of freedom as their uncertainties can differ greatly.

∆tn,m = tn,m 	 (sm 	 sn)

|∆tn,mτ | < 2
∑

(σnτ , σ
m
τ ) ∀ τ ∈ {x, y, z, roll, pitch, yaw}

In particular the estimates for roll and pitch are very accu-
rate due to the integration of IMU data, thus thresholds on
these two angles yield valuable criteria for outlier rejection.

Second, we verify the resulting registration between
submaps by validating the overlay of their local obstacle
maps. Applying the estimated transform, we receive an over-
lapping region. Within this intersection, the arrangements
of obstacles must be aligned very well if the right model
has been found. We perform a nearest neighbor search for
each obstacle point located within the submap intersection,
employing the submap resolution as the maximum search
radius. However due to occlusions and changes in viewpoint,
not all obstacle keypoints can be aligned. If we find an
alignment with a respective neighbor for more than 70%
of all obstacle points, we assume the obstacle maps to be
correctly aligned.

For the optimization steps done in the graph SLAM
algorithm, it is essential to deliver an uncertainty measure
for the estimated 6D transformation for each matched pair
of submaps. Therefore, we estimate the variance for each of
the six degrees of freedom from the root-mean-square error
(RMSE) w.r.t. the nearest neighbor distances between the
two aligned pointclouds:

σx = σy = σz = RMSE; σroll = arctan
(

2·RMSE
dyz

)
σpitch = arctan

(
2·RMSE
dxz

)
; σyaw = arctan

(
2·RMSE
dxy

)
with dyz, dxz, dxy denoting the diameters of the overlap
between the matched submaps in the respective planes.

D. Graph SLAM

For global optimization, we construct a graph containing
the submaps as the only nodes, connected by their relative
pose estimates. Thereby we differentiate two different types
of edges in the graph. First, relative pose estimates between
consecutive submap origins are available from our sensor
fusion of visual odometry and IMU data, as described in
Section III. Second, submap matches constitute additional
connections between pairs of submaps that lead to loop
closure constraints within the graph, as visualized in Fig-
ure 4. All edges are weighted by their estimated Gaussian
uncertainty. We perform incremental, online graph optimiza-
tion, employing the iSAM2 optimizer [12] from the GTSAM
toolbox2, which is freely available as open source software.
By solely including submap origins as nodes, we construct a

2https://collab.cc.gatech.edu/borg/gtsam/



Fig. 4. Schematic of SLAM graph. The rectangles represent the submaps’
bounding boxes. The two highlighted ones overlap and match, resulting in
a corresponding edge in the graph. Through global graph optimization, the
origins of all submaps are corrected on loop closures.

sparse graph, compared to SLAM approaches that include
all robot pose estimates. The computational effort for its
incremental optimization is at a negligible level compared
to the processing of 3D pointclouds, which is performed in
parallel. However, the graph can also easily be extended to
include landmarks or object detections, GPS fixes and other
relative or absolute low-frequency measurements that might
be available. In [29] we extended this approach by introduc-
ing a novel graph topology to combine local reference filter
estimates for online multi-robot SLAM.

V. EXPERIMENTS

A. Robot Hardware Setup

For our experiments, we employed two different robots
with similar sensor setup, our Lightweight Rover Unit (LRU),
see Figure 1, and a Pioneer 3-AT (P3AT) robot. We equipped
both robots with a Xsens MTi-10 IMU and a stereo camera
system (baseline: 9 cm), allowing us to gather dense depth
data both indoors and outdoors as it is robust to the effects
of bright sunlight. On the P3AT we mounted Guppy F-
080B cameras (1/3” chip size, resolution: 1032 × 778),
on the LRU Guppy PRO F-125B cameras (1/3” chip size,
resolution: 1292 × 964), both with f = 5 mm lens. Our
computation stack consists of an Intel Core i7-3740QM CPU
with 2.70 GHz and an additional Spartan 6 LX75 FPGA
Eval Board, allowing us to perform dense stereo matching
at 14.6 Hz with a resolution of 1024× 508.

B. Experimental Scenarios

We evaluated our method in three different scenarios:
1) Outdoor: Unstructured environment with several types

of gravel. It contains a small crater and rocks of
different sizes, see Figure 1. Due to larger rocks and
steep slopes, the crater can be entered only from one
side. Robot: LRU, stereo framerate: 4.8 Hz.

2) Indoor: Lab environment with rooms and hallways, see
Figure 7. Robot: P3AT, stereo framerate: 14.6 Hz.

3) Mixed Indoor & Outdoor: Our indoor scenario, ex-
tended by two loops around the building, see Figure 8.
Robot: P3AT, stereo framerate: 14.6 Hz.

In all scenarios we used a 3D map resolution of 3 cm. For
our outdoor tests, we purposely reduced the stereo framerate
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in order to highlight the robustness of our localization and
mapping framework. We acquired ground truth position data
through a Leica total station that tracks a prism attached
to the robot. As the robot and the tachymeter use different
reference systems, we performed an initial spatial (rigid
transformation) and temporal path alignment. Therefore, we
assume that the fusion error within the first 3 m is negligible
and estimate the transformation of the corresponding trajec-
tories by applying a least squares error minimization. In our
indoor lab environment, we employed an Advanced Realtime
Tracking (ART) system attached to the ceiling to receive
ground truth for the robot trajectories. The tracking area
however is limited to approx. 3 m×4 m. We thus limit the
evaluation for our indoor scenario to the partial trajectories
for which ground truth is available (25 m out of 71 m). For
the mixed indoor & outdoor scenario the ratio of the ground
truth trajectory compared to the full path is very small. We
therefore restrict the evaluation to the measured positions
after each round and the final map quality, which depends
heavily on the localization.

C. Results and Discussion

In this section we discuss the results of our experiments
executed in the three aforementioned scenarios, which repre-
sent different challenges for our SLAM system. We compare
the estimated SLAM paths to ground truth trajectories as well
as to the fusion estimates, computed from visual odometry
and IMU data. In addition, we perform a comparison of
our novel approach with a 3D RBPF SLAM system from
previous work [2]. It is important to note that for all of our
evaluation results, we always use the sequentially logged 3D
position estimates of the SLAM algorithm at each particular
point in time, and not a afterwards fully optimized trajectory.
Hence, before the first and in between submap matches, the
SLAM trajectory is solely depending on the fusion estimate.
This results in a larger overall trajectory error compared to
a fully optimized path. However, for an autonomous robot,
only the current estimate is available for navigation tasks at
a particular point in time. We thus focus on this criterion
for evaluation. Nevertheless, we achieve promising results
compensating the drift of the fusion estimate, see Figure 5.
The generated 3D maps presented in our evaluation however
are based on the fully optimized graph.

1) Outdoor: In Figure 1 we show the final map (3 cm
resolution) of the outdoor testbed, generated by our SLAM
framework. We drove four rounds through the unstructured
environment, including a passage through the crater. The map
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Fig. 6. Estimated robot trajectories in our outdoor scenario.

scenario outdoor indoor mixed
2D bounding box [m]x[m] 11x17 8x13 25x37
driven dist. [m] 148.7 70.7 326.3
mean linear vel. [m/s] 0.355 0.304 0.329
duration [s] 652.8 295.2 1187.7
num. of submap matches 12 10 16
3D position error fusion SLAM fusion SLAM fusion SLAM
mean [m] 1.10 0.26 0.32 0.13 - -
std [m] 0.62 0.14 0.17 0.05 - -
rms [m] 1.26 0.30 0.36 0.14 - -
max [m] 2.43 0.73 0.52 0.35 - -
final [m] 2.40 0.33 0.49 0.04 6.94 0.25

TABLE I
COMPARISON OF 3D LOCALIZATION ERRORS IN ALL THREE SCENARIOS

(GROUND TRUTH FOR STATISTICAL EVAL. NOT AVAILABLE FOR MIXED SCENARIO)

represents an overlay of all generated submaps, positioned
according to the graph SLAM pose estimates. All submaps
visually appear correctly aligned to each other, indicating the
accuracy of our SLAM system. The respective sequentially
recorded robot trajectories are presented in Figure 6, which
clearly shows the deviation of the fusion path from the actual
robot trajectory. In Figure 5, we compare the resulting 3D
position error (w.r.t. ground truth) of our SLAM approach
with the fusion results. After a driven distance of more than
20 m, the first successful match is generated and incorporated
as an edge into the SLAM graph. Up to this point, the
SLAM estimate is equal to the fusion path. The correction
of the position error highly depends on the quality of the
matches and the locations of the matched pairs of submaps.
Our results show that we achieve a strong improvement for
the position estimate over the full distance. In Table I, we
present an evaluation of the corresponding 3D trajectories
w.r.t. ground truth. To avoid biases, we excluded consecutive
measurements for time intervals, in which the robot did
not move. In our outdoor scenario, we achieve a mean 3D
position error of 0.26 m compared to 1.10 m for the fusion
estimate. The final 3D position deviation is 0.22% w.r.t. the
length of the full trajectory.

2) Indoor: Untextured and reflective surfaces, like white
walls, as well as regular patterns, especially radiators, con-
stitute challenges for the stereo algorithm in an indoor envi-
ronment. This results in stereo mismatches and consequently
in corrupted depth images and submaps. In order to test our
system under such challenging circumstances, we drove three
loops through a lab, including a floor passage. This corridor

Fig. 7. Indoor run: Top-down view on final 3D map generated by our
SLAM system (red: fusion path, green: SLAM path)

Fig. 8. Mixed indoor/outdoor run: Top-down view on final 3D map
generated by our SLAM system (red: fusion path, green: SLAM path). All
estimates refer to the sequentially logged data available at each particular
point in time, not an afterwards fully optimized trajectory.

in particular constitutes tricky conditions, containing planar
white walls and a partially reflective ground plane, i.e. few
texture as well as almost no unique geometric features. In
addition, jumps in the fusion estimate occur due to wrong
stereo matches, In Figure 7 we present the indoor map
generated by our SLAM system for this scenario. Despite all
challenging conditions, the submap matching still provides
good results and we receive a coherent 3D map. Compared
to the ground truth acquired through our tracking system, we
achieve a mean 3D trajectory error with our SLAM system
of 0.13 m in contrast to 0.32 m for the fusion, as shown in
the second column of Table I.

3) Mixed Indoor & Outdoor: In this scenario, we ex-
tended our indoor setup by driving two loops around the
building. We thereby want to highlight the robustness of our
approach, as it can cope with indoor and outdoor environ-
ments using the same set of parameters. We only evaluate
the quality of the map as well as the final 3D positions after
each round as the area of our tracking system is too small
for meaningful evaluation of the full trajectory. After the
first outdoor loop, the fusion and SLAM estimates result in
the same position error of 3.17 m, since no submap match
has been added to the SLAM graph yet. After the second
loop and multiple submap matches, the final 3D position



outdoor scenario 2D position error [m]
mean std rms max final

3D RBPF SLAM (prev. work [2]) 0.22 0.13 0.26 0.63 0.22
6D graph SLAM (Section IV) 0.16 0.10 0.19 0.41 0.08

indoor scenario 2D position error [m]
mean std rms max final

3D RBPF SLAM (prev. work [2]) 0.14 0.08 0.17 0.36 0.19
6D graph SLAM (Section IV) 0.07 0.03 0.08 0.19 0.03

TABLE II
COMPARISON WITH A RBPF SLAM [2] IN DIFFERENT SCENARIOS

error of our SLAM framework is 0.25 m compared to a
fusion error of 6.94 m, see Table I. In Figure 8 we show
the final map, after a driven distance of 326.3 m, all created
submaps are aligned according to their poses estimated by the
graph SLAM algorithm. The outlined green path represents
the sequentially logged SLAM estimates at each particular
point in time, not a fully optimized trajectory. Hence, in
areas where no loop-closures are incorporated it solely relies
on the fusion estimate. Taking all three experiments into
consideration, we have shown that our localization and
mapping approach is capable to generate valid loop closures
in both indoor, outdoor and mixed environments, resulting
in consistent, globally optimized 3D maps.

4) Comparison to RBPF SLAM: Furthermore, we com-
pared our submap based 6D SLAM approach with a 3D
Rao-Blackwellized particle filter presented in our previous
work [2] and show the results in Table II. We achieve an
improvement of the mean 2D position error of 27 % and
50 % in the indoor and outdoor scenario respectively.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented a novel map matching
technique for stereo-vision based submaps. We apply our pre-
vious work on local obstacle maps as one of multiple filtering
steps in order to gain robust keypoints with discriminative
geometric features for the matching process. We evaluated
the localization accuracy of our novel submap matching
pipeline within our SLAM framework. Therefore, we per-
formed experiments in three different scenarios, thereby
demonstrating its ability to achieve drift-free and accurate lo-
calization in previously unknown indoor, outdoor and mixed
environments. In addition, we compare our novel approach to
a 3D RBPF SLAM developed in previous work [2], showing
a significant improvement on 2D localization accuracy. Fur-
thermore, our approach generates high-resolution 3D maps
(3 cm voxel size) of the environment, containing both a full
pointcloud for visualization and post-processing as well as
the obstacle classification, which can directly be used for
path planning. For future work, we plan to approach multi-
robot scenarios that involve varying viewpoints as well as dif-
ferent sensors for the individual robots. We have shown that
our novel approach to map matching already yields robust
results w.r.t. changes in viewpoint and light conditions, for
example in the mixed scenario. Another challenge for future
research is the merging of submaps, once a good relative
transformation estimate between them has been found. This
is necessary to keep computational and memory requirements
within a limited workspace independent of the runtime.
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