661 research outputs found

    Identification of a biomarker panel for colorectal cancer diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignancies arising in the large bowel cause the second largest number of deaths from cancer in the Western World. Despite progresses made during the last decades, colorectal cancer remains one of the most frequent and deadly neoplasias in the western countries.</p> <p>Methods</p> <p>A genomic study of human colorectal cancer has been carried out on a total of 31 tumoral samples, corresponding to different stages of the disease, and 33 non-tumoral samples. The study was carried out by hybridisation of the tumour samples against a reference pool of non-tumoral samples using Agilent Human 1A 60-mer oligo microarrays. The results obtained were validated by qRT-PCR. In the subsequent bioinformatics analysis, gene networks by means of Bayesian classifiers, variable selection and bootstrap resampling were built. The consensus among all the induced models produced a hierarchy of dependences and, thus, of variables.</p> <p>Results</p> <p>After an exhaustive process of pre-processing to ensure data quality--lost values imputation, probes quality, data smoothing and intraclass variability filtering--the final dataset comprised a total of 8, 104 probes. Next, a supervised classification approach and data analysis was carried out to obtain the most relevant genes. Two of them are directly involved in cancer progression and in particular in colorectal cancer. Finally, a supervised classifier was induced to classify new unseen samples.</p> <p>Conclusions</p> <p>We have developed a tentative model for the diagnosis of colorectal cancer based on a biomarker panel. Our results indicate that the gene profile described herein can discriminate between non-cancerous and cancerous samples with 94.45% accuracy using different supervised classifiers (AUC values in the range of 0.997 and 0.955).</p

    Effect Size Estimation and Misclassification Rate Based Variable Selection in Linear Discriminant Analysis

    Get PDF
    Supervised classifying of biological samples based on genetic information, (e.g. gene expression profiles) is an important problem in biostatistics. In order to find both accurate and interpretable classification rules variable selection is indispensable. This article explores how an assessment of the individual importance of variables (effect size estimation) can be used to perform variable selection. I review recent effect size estimation approaches in the context of linear discriminant analysis (LDA) and propose a new conceptually simple effect size estimation method which is at the same time computationally efficient. I then show how to use effect sizes to perform variable selection based on the misclassification rate which is the data independent expectation of the prediction error. Simulation studies and real data analyses illustrate that the proposed effect size estimation and variable selection methods are competitive. Particularly, they lead to both compact and interpretable feature sets.Comment: 21 pages, 2 figure

    Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach

    Get PDF
    Background:Breast cancer is the most prevalent cancer in women in most countries of the world. Many computer aided diagnostic methods have been proposed, but there are few studies on quantitative discovery of probabilistic dependencies among breast cancer data features and identification of the contribution of each feature to breast cancer diagnosis. Methods:This study aims to fill this void by utilizing a Bayesian network (BN) modelling approach. A K2 learning algorithm and statistical computation methods are used to construct BN structure and assess the obtained BN model. The data used in this study were collected from a clinical ultrasound dataset derived from a Chinese local hospital and a fine-needle aspiration cytology (FNAC) dataset from UCI machine learning repository. Results: Our study suggested that, in terms of ultrasound data, cell shape is the most significant feature for breast cancer diagnosis, and the resistance index presents a strong probabilistic dependency on blood signals. With respect to FNAC data, bare nuclei are the most important discriminating feature of malignant and benign breast tumours, and uniformity of both cell size and cell shape are tightly interdependent. Contributions: The BN modelling approach can support clinicians in making diagnostic decisions based on the significant features identified by the model, especially when some other features are missing for specific patients. The approach is also applicable to other healthcare data analytics and data modelling for disease diagnosis

    A Hypertuned Pipeline Vector Using Meta Classifier Technique for Feature Selection in Multi Disease Prediction

    Get PDF
    Automation of health sector plays a very important role especially during this pandemic due to the side effects of either vaccination or attack of the COVID. Most of the researchers designed a system to predict whether a person suffers from a particular disease or not. Few researchers worked on prediction variants of a single disease based on symptoms but due to this COVID-19, different people are getting attacked with different diseases as a side effect. This proposed system aims to identify the multiple diseases that a person may suffer from based on the symptoms. In this paper, the dataset obtained from the open access repository “Kaggle” contains 17 symptoms combinations to identify the one of the 41 types of diseases as class label. All the symptoms may not be important for identification, so in this model, the important features are identified using the pipeline vector of different Machine Learning approaches are passed as base line classifier and decision tree classifier as meta line to the elimination function. The model has got “99.48%” accuracy for selecting the essential features using bagging and boosting algorithms

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results
    • 

    corecore