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Bagging linear sparse Bayesian learning models for
variable selection in cancer diagnosis

Chuan Lu, Andy Devos, Johan A. K. Suykens,Senior Member, IEEE,Carles Aŕus,
and Sabine Van Huffel,Senior Member, IEEE

Abstract— This work investigates variable selection and clas-
sification for biomedical datasets with a small sample size and
a very high input dimension. The sequential sparse Bayesian
learning methods with linear bases are used as the basic variable
selection algorithm. Selected variables are fed to the kernel based
probabilistic classifiers: Bayesian least squares support vector
machines (LS-SVMs) and relevance vector machines (RVMs). We
employ the bagging techniques for both variable selection and
model building in order to improve the reliability of the selected
variables and the predictive performance. This modelling strategy
is applied to real-life medical classification problems, including
two binary cancer diagnosis problems based on microarray
data and a brain tumor multiclass classification problem using
spectra acquired via magnetic resonance spectroscopy. The work
is experimentally compared to other variable selection methods.
It is shown that the use of bagging can improve the reliability
and stability of both variable selection and model prediction.

Index Terms— Variable selection, sparse Bayesian learning,
bagging, kernel based probabilistic classifiers, microarray, mag-
netic resonance spectroscopy (MRS).

I. I NTRODUCTION

Recent advances in technologies such as microarrays and
magnetic resonance (MR) have facilitated the collection of
genomic, proteomic and metabolic data that can be used for
medical decision support. For example, DNA microarrays en-
able us to simultaneously monitor the expression of thousands
of genes [9][1]. It is then possible to compare the overall
differences in gene expression between normal and diseased
cells. Magnetic resonance spectroscopy (MRS) [16] is able to
provide detailed chemical information about the metabolites
presented in living tissue. In particular,in vivo proton MRS
offers considerable potential for clinical applications, e.g. for
brain tumor diagnosis [16][17].

Much attention has been paid to class prediction in the
context of such new diagnostic tools, particularly for cancer
diagnosis. The task is to classify and predict the category of a
sample on the basis of its gene expression profile or the MRS
spectrum. Conventional cancer diagnosis has been based on
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Bioqúımica i Biologia Molecular, Universitat Autoǹoma de Barcelona, 08193
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biopsy and examination by a pathologist of morphological
appearance of stained tissue specimens in the microscope
[9][1]. This method depends on the high expertise of the
pathologists. Microarrays and MRS offer the hope that cancer
classification can be objective and highly accurate, helping the
clinicians to choose appropriate treatments. The challenge of
classification using microarrays and MR spectra lies in: (1) the
large number of input variables and a relatively small number
of samples, and (2) the presence of noise and artefacts.

Kernel based methods are of particular interest for this task
since they can deal with high dimensional data in nature and
have been supported by both statistical learning theory and
empirical results [10][29][7]. Despite the early success, the
presence of a significant amount of irrelevant variables (fea-
tures) or measurement noise might hamper the performance
and interpretation of predictive models.

Variable selection (VS) is therefore used to identify the
variables most relevant for classification. This is important
for medical classification, as it can have an impact not only
on the accuracy and complexity of the classifiers, but also
on the economics of data acquisition. It is also helpful for
understanding the underlying mechanisms of the disease. This
could assist drug discovery and early diagnosis.

Several statistical and computational approaches to variable
selection exist for classifying such data. The first approach
is variable ranking followed by a selection (or filtering) step,
usually accompanied with cross-validation (CV), to determine
the number of variables to use in the classifier. The ranking
criteria could be based on e.g. correlation,t-statistics and some
multivariate methods such as recursive feature elimination
(RFE) with support vector machines (SVMs) [10][7]. The
second approach is the so-called wrapper approach, which
searches for the optimal combination of variables according
to some performance measures of the models [30][22][18].

The embedded approach combines the two tasks of variable
selection and model fitting into one optimization procedure.
The embedded SVM based algorithms typically reformulate
the standard SVM optimization problem in order to select only
a fixed number of variables. This can be done via imposing
additional constraints and adopting objective functions such as
generalization bound [29]. Nevertheless, these methods usually
require an additional cross-validation step for choosing the
predefined number of variables.

In [15] the Bayesian automatic relevance determination
(ARD) algorithms, were exploited. This type of embedded
methods can automatically determine the number of selected
variables. However, they seem to be sensitive to a small
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permutation of the training set, rendering their results less
reliable from a biological point of view.

In this paper, we explore an alternative method that follows
the Bayesian ARD approach, and show how the reliability of
the selected variables and classification performance can be
improved by using bagging and feeding various bootstrap vari-
ables to various types of probabilistic models. Moreover, by
utilizing the sparse Bayesian learning with logistic functions,
this method requires no nuisance hyperparameters tuning.

The rest of the paper is organized as follows. Section II
introduces sparse Bayesian learning algorithms. A brief re-
view of the two kernel based probabilistic classification algo-
rithms is given in Section III, namely Bayesian least squares
support vector machines (BayLSSVM) and relevance vector
machines (RVM). The bagging strategy for variable selection
and modelling are proposed in Section IV. Section V lists the
compared methods for variable selection and modelling. These
methods are applied to the three cancer classification problems,
as described in Section VI with results and the biological
interpretation of some selected variables. Sections VII and VIII
end the paper with a discussion and some conclusions.

II. BASIC ALGORITHM FOR VARIABLE SELECTION

A. Sparse Bayesian learning

Supervised learning infers a functional relationy ↔ f(x)
from a training setD = {xn, yn}N

n=1, with xn ∈ IRd and
y ∈ IR. Sparse Bayesian learning (SBL) applies Bayesian
ARD to models linear in their parameters so that sparse
solutions (i.e. with many parameters equal to zero) can be
obtained [25]. Its prediction ony givenx can be based upon:

f(x;w)=
M∑

m=0

wmφm(x)=wTφ(x). (1)

Two forms of basis functionsφm(z) are considered here:
φm(z)=zm,m = 1, · · · , d, (i.e. φm(z) as the original input
variable), andφm(z)=K(z,xm),m = 1, · · · , N , whereK(., .)
denotes some symmetric kernel function.φ0(z) is set to 1
in order to include an intercept (bias) term in the emerging
model. The basic variable selection algorithm relies on the
sparse Bayesian learning model using the first form of basis
functions, termed the linear basis functions. In contrast, the
relevance vector machines (RVMs) take the kernel represen-
tation for the basis function. The RVM will be revisited in
Section III-B as a probabilistic classifier.

For a regression problem, the likelihood of the data for a
sparse Bayesian learning model can be expressed as:

p(y|w, σ2) = (2πσ2)−N/2 exp{− 1
2σ2

‖y −Φw‖2}, (2)

whereσ2 is the variance of the i.i.d. noise, theN ×M design
matrix Φ = [φ(x1),φ(x2), . . . ,φ(xN )]T . The parametersw
are given a Gaussian prior

p(w|α) =
M∏

m=0

N (wm|0, α−1
m ) (3)

where α = {αm} is a vector of hyperparameters, with one
hyperparameterαm assigned to each model parameterwm. As
illustrated in [25][3], this is equivalent to using a regularization

with a penalty of
∑

m log |wm|, which encourages sparsity.
Given α, the posterior parameter distribution can be derived
via the Bayes’ rule

p(w|y,α, σ2) = p(y|w, σ2)p(w|α)/p(y|α, σ2), (4)

which is also Gaussian, with variance and mean of

Σ = (σ2ΦT Φ + A)−1 andµ = σ−2ΣΦT y. (5)

The hyperparametersα can be estimated using type II
maximum likelihood, in which the marginal likelihood is
maximized. And the marginal likelihood can be computed by:

p(y|α, σ2) =
∫ ∞

−∞
p(y|w, σ2)p(w|α)dw

= (2π)−N/2|C|−1/2 exp(−1
2
yT C−1y) (6)

where C = B−1 + ΦA−1ΦT , with B = σ−2I and A =
diag(α1, . . . , αM ).

For binary classification problems, one can utilize the lo-
gistic functiong(a) = 1/(1 + e−a) [25]. The computation of
the likelihood is based on the Bernoulli distribution:

p(y|w) =
N∏

n=1

g(f(xn;w))yn [1− g(f(xn;w))]1−yn , (7)

where yn ∈ {0, 1}. There is no noise variance in this case,
and a local Gaussian approximation is used to compute the
posterior distribution of the weightsp(w|y,α) and the mar-
ginal likelihood p(y|α). For a givenα, we can estimate the
mean and variance of the weights (µ̂ andΣ̂) by an iteratively
reweighted least squares algorithm (e.g. the Newton-Raphson
method [2]). The following expressions are exploited [25]:

Σ̂ = (ΦT BΦ + A)−1,

µ̂ = Σ̂ΦT Bŷ,

and ŷ = Φµ̂ + B−1(y − g(Φµ̂)),

where B = diag(β1, . . . , βN ), with βn = g(f(xn; µ̂))[1−
g(f(xn; µ̂))].

The optimization process, i.e. maximization of the marginal
likelihood with respect toα and possiblyσ2, can be performed
efficiently using an iterative re-estimation procedure [25][3].
A fast sequential learning algorithm has also been introduced
in [26], which enables us to efficiently process data of high
dimensionality. We have adapted this algorithm to our appli-
cations, which will be detailed in the next subsection.

The most relevant variables for the classifier can be obtained
from the resulting sparse solutions, if the original variables are
taken as basis functions in the SBL model. This type of model
is referred to as the linear SBL models in this paper.

B. Sequential sparse Bayesian learning algorithm

The sequential SBL algorithm [26] starts from a zero basis,
adds or deletes a basis function at each iteration step, or
updates a hyperparameterαm until convergence.

For optimization of the hyperparametersα, the objective
function uses the logarithm of the marginal likelihoodL(α) =
log p(y|α, σ2). It is shown in [26][3] that we may analyze
the properties ofL(α) by decomposing it into the marginal
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likelihood L(α−i) with φi (the ith column ofΦ) excluded,
and the marginal likelihood̀(αi) including only φi. That is
L(α) = L(α−i) + `(αi), where`(αi) = 1

2 [log αi − log(αi +
si) + q2

i

αi+si
], si = φT

i C−1
−i φi and qi = φT

i C−1
−i y, C−i is

C with the contribution ofφi removed. Sincesi and qi are
independent ofαi, one can obtain a unique maximum ofL(α)
with respect toαi by setting the first derivative of̀(αi) to
zero. The optimal values forαi are:

α̃i =
s2

i

q2
i − si

, if q2
i > si, (8)

α̃i = ∞, if q2
i ≤ si. (9)

One convenient way to derivesi and qi is to utilize these
expressions:si = αiSi

αi−Si
, qi = αiQi

αi−Si
, and whenαi = ∞,

si = Si andqi = Qi. In practice the two quantitiesSi andQi

are computed using the following equations:

Si = φT
i C−1φi = φT

i Bφi − φT
i BΦΣ̂ΦT Bφi (10)

Qi = φT
i C−1ŷ = φT

i Bŷ − φT
i BΦµ̂, (11)

whereΦ, Σ̂ and µ̂ contain only the parts corresponding to
the basis functions included in the model (withαm < ∞).

The marginal likelihood maximization algorithm jointly
optimizes the weights and the hyperparameters{αm}Mall

m=0,
with Mall the maximum index for the basis functions. In
case of linear basis functions,Mall = d; in case of kernel
basis functionsMall = N . Define the complete set of possible
indices for the basis functions asIall, containing the integer
numbers from0 to Mall. Our modified algorithm of SBL for
classification utilizing the logistic function is as follows.

1) Initialize the model with only an intercept:α0 < ∞ (e.g.
α0 = (yT y/N)−2), and ∀m > 0, αm = ∞. Initialize the
index set of the bases in the modelIsel ← {0}.

2) Given currentα, estimateΣ̂ andµ̂ using the IRLS algorithm
for the logit model. Note that̂Σ andµ̂ are only related to the
basis functions included in the current model, initially with
only one scalar element. AndΦ starts with only one column
vectorφ0 = [1, · · · , 1]T1×N .

3) Randomly selectMout bases with the indices ofIout ⊆ (Iall\
Isel). SetIcan ← Iout ∪ Isel.

4) For each basis vector in the candidate setsφm, m ∈ Ican,
compute the value ofsm and qm, find the optimal action
with respect to eachαm, then calculate∇m, the corresponding
change in marginal likelihoodL(α) after taking that action.
The following rules are used:
• If q2

m > sm and αm < ∞ (i.e. φi is in the model),
estimate α̃m using ( 8), ∇m =

Q2
m

Sm+[α̃−1
m −α−1

m ]−1 −
log{1 + Sm[α̃−1

m − α−1
m ]}.

• If q2
m > sm andαm =∞, addφm to the model, compute

α̃m using (8),∇m =
Q2

m−Sm

Sm
+ log Sm

Q2
m

.

• If q2
m ≤ sm andαm <∞, then deleteφm, setα̃m =∞,

∇m =
Q2

m
Sm−αm

− log(1− Sm
αm

).

5) Select one basism∗ = arg max∇m, take the corresponding
action, i.e.αm∗ ← α̃m∗ and updateΦ andIsel.

6) If convergence is reached then stop, otherwise goto step 2).

The number of bases to be screened for updatingαm is
the number of bases in the model plusMout, the predefined
number of randomly selected bases from those not used by
the model. AlthoughMout should be chosen empirically over

computational efficiency, quite a wide range of values may
give satisfactory results. In our experiments, it is fixed to 100.
Here the optimization procedure is considered to be converged
when the maximum value of|log(α̃m/αm)|m∈Ican in step 4
is very small, e.g. lower than10−6.

However, we should also be aware of the uncertainty in-
volved in the basis function selection, which might result from
the existence of multiple solutions and the sensitivity of the
algorithm to small perturbations of experimental conditions.
Attempts to tackle this problem are for example bagging and
committee machines. Here we will focus on the very simple
bagging approach, which will be described in Section IV.

III. K ERNEL BASED PROBABILISTIC CLASSIFIERS

Support Vector Machines (SVM) are now a state-of-the-
art technique for pattern recognition [27]. A standard SVM
classifier takes the formy(x) = sign[wT

f ϕ(x) + b] in the
feature (primal) space withϕ(.) : IRd → IRdf , where df

is the dimension of the feature space. It is inferred from
data with binary targetsyi ∈ {±1} by solving the following
optimization problem:

min
wf ,b,ξ

J (wf , b, ξ) =
1
2
wT

f wf + C

N∑
i=1

ξi, (12)

subject toyi(wfϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N .
This can be conveniently solved in its dual formula-

tion. It turns out that f(x;wf , b) = wT
f ϕ(x) + b =∑N

i=1 ai yi K(x,xi) + b, whereai is called a support value,
andK(·, ·) is a chosen positive definite kernel. The most com-
mon kernels include linear kernels and radial basis function
(RBF) kernels. Here we only considered models with linear
kernels, defined asK(x, z) = xT z.

A. Bayesian LS-SVM classifier

The LS-SVM is a least squares version of SVM, and
is closely related to Gaussian processes and kernel Fisher
discriminant analysis [23][24]. The training procedure for LS-
SVM is reformulated as

min
wf ,b,e

J (wf , b, e) =
1
2
wT

f wf +
λ

2

N∑
i=1

e2
i , (13)

subject toyi[wT
f ϕ(xi) + b] = 1− ei, i = 1, . . . , N .

This optimization problem can be transformed and solved
through a linear system in the dual space instead of a quadratic
programming problem as for the standard SVM case [24]:[

0 yT

y Ω + λ−1I

] [
b
a

]
=

[
0
1

]
(14)

wherea = [a1, · · · , aN ]T , and1 = [1 · · · 1]T . The matrixΩ
is defined asΩij = yiyjϕ(xi)T ϕ(xj) = yiyj K(xi,xj).

In Bayesian LS-SVM (BayLSSVM) [24][28], the LS-SVM
is integrated with the evidence framework [2], within which
the regularization parametersλ is optimized by maximizing
the posterior probability of the model. And the posterior class
probabilities can be calculated incorporating the prior class
probabilities via the Bayes’ rule.
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B. Relevance vector machines for classification

The RVM is a special case of SBL models, in which the
basis functions are given by kernel functions of the same type
as for SVMs. The sequential learning algorithm introduced in
Section II-B is again applied to the optimization of RVMs.
The predicted probability of being positive for a given input
x∗ can be computed using the logistic function:

p(y∗ = 1|x∗,y,α) =
1

1 + e−wT φ(x∗)
(15)

No simulation results are reported for the models with
nonlinear kernels in this paper. As linear classifiers perform
sufficiently well for our problems, and nonlinear models have
shown no improvement over the simple linear classifiers,
according to the results of our preliminary experiments and
some other studies on the same datasets [10][6].

IV. BAGGING STRATEGY

A. Bagging the selected variables and models

Bagging is a bootstrap ensemble method that generates indi-
viduals for its ensemble by training each classifier on a random
redistribution of the training set [4]. Each classifier’s training
set is generated by randomly drawing, with replacement, the
same number of examples as in the original training set.

It is shown that the bootstrap mean is approximately a
posterior average of a quantity of interest [13]. Suppose a
model is fitted to our training setD, obtaining the prediction
f(x) at inputx. This prediction could be the latent outcome of
e.g. a standard SVM model, or the predicted class probability
of a probabilistic model. Bootstrap aggregation or bagging
averages this prediction over a collection of bootstrap samples,
thereby reducing its variance. For each bootstrap sample
D∗b, b = 1, 2, · · · , B, we fit the model, giving prediction
f∗b(x). The bagging estimate is defined by

fbag(x) =
1
B

B∑
b=1

f∗b(x). (16)

The final class label will be decided by thresholding the
bootstrap estimate of the class probability or the latent out-
come. Bagging can push a good but unstable procedure a
significant step towards optimality, which has been witnessed
both empirically and theoretically [4][13].

An alternative bagging strategy is to bag only the predicted
class labels and the final prediction will be given by voting.
However, a reliable estimate of the class probability is essential
for medical diagnosis. The prediction averaging strategy tends
to produce bagged estimates with lower variance, especially
for small B. Therefore, the prediction averaging strategy is
preferred and advocated here.

The bagging strategy for variable selection and modelling
is outlined below. Given a training set,B bootstrap data
are randomly generated with replacement. For each bootstrap
training set, one subset of variables is selected via the linear
SBL logit models, followed by feeding these variables to a
model of interest such as Bayesian LS-SVM. Then,B subsets
of variables are chosen andB corresponding models built
based on theB bootstrap training data. Given inputx, the

class probability or the latent outcome for the bagged binary
model will be the average of theB class probabilities or latent
outcomes. The pseudo code for this is given in Algorithm 1.
B is empirically set to 30 in our experiments.

B. Strategy for the multiclass classification problems

For multiclass classification problems, we reduce thek-
class classification problem intok(k − 1)/2 pairwise binary
classification problems, which yield the conditional pairwise
probability estimates for a given inputx. The conditional
probabilities are then coupled to obtain the joint posterior
probability for each class by using Hastie’s method [12]. The
final prediction of the class will be the one for which the
highest joint probability is achieved. Accordingly the variables
used should be the union of thek(k − 1)/2 sets of variables
that are used in the same number of binary classifiers. Bagging
is applied to each binary classification individually. Only the
mean predicted probabilities from the bagged binary classifiers
are coupled in order to get the final joint posterior probability
for the multiclass classification problems.

V. COMPARED METHODS

In order to see the potential performance gain of using our
proposed methods, we have also assessed the performance of
some reference methods. We denote the proposed variable se-
lection approach as “LinSBL+Bag” (see Algorithm 1), which
bags the variables selected from the linear SBL logit models.
Accordingly the model fitting and prediction will be “bagged”
as well. Its counterpart method “LinSBL” forms a classifier
using only one subset of variables selected from a single linear
SBL logit model, which is based on the whole training set
without bootstrap repetition.

Other two variable selection methods adopted for com-
parison involve variable ranking followed by selectingNv

variables with the highest ranks. One is the popular SVM
based recursive feature elimination (RFE) method [10]. The
idea of this method is to eliminate recursively the variable
which contributes the least in the SVM model, and then rank
the variables based on the reverse order of their elimination.
The contribution of themth variable is evaluated by means
of the change in the cost function∇Jm caused by removing
the mth variable. When a linear kernel is used,∇Jm = w2

m

with wm the corresponding weight in the linear SVM model:
wm = ΣN

i=1aiximyi.
The variables can also be ranked using Fisher’s criterion [2],

which is a measure of the correlation between the variables
and the class labels. For a binary classification, the Fisher
discriminant criterion for an individual variable is given by
(µm,+ − µm,−)2/(σ2

m,− + σ2
m,+), whereµm,+ andµm,− are

the means of variablem within the positive and negative class,
respectively, andσm,+ andσm,− are the standard deviations of
the variable within each class. The larger the Fisher’s criterion,
the higher the ranking of the variable.

Nv is tuned by 10-fold cross-validation using SVMs. A
coarse-to-fine strategy is utilized to search forNv within a
range of possible values. TheNv with the lowest 10-fold CV
error rate were selected, and the tie breaking rule is to choose
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Input : Training setD, number of bootstrap samplesB, classifier
L (such as SVM, LS-SVM, RVM).

Output : model ensemblefbag.

for b = 1 to B do
D∗b=bootstrap sample fromD;
V ∗b= LinSBL (D∗b) / * Select subset of variables
V ∗b via linear sparse Bayesian learning * / ;
f∗b = L(D∗b, V ∗b);

end
fbag(x) = 1

B

∑B

b=1
f∗b(x);

Algorithm 1 : Ensemble modelling using LinSBL+Bag for
variable selection.

Input : Training setD, variable ranking methodRanking (such as
RFE and Fisher), classifierL (such as SVM, LS-SVM, RVM).

Output : modelf .

R = Ranking(D) / * Get a list of variable rankings * / ;
V = SVMCV(D, R) / * Select V which consists of Nv

variables with the highest ranking by SVM CV * / ;
f = L(D, V );

Algorithm 2 : Modeling using Ranking+CV for variable
selection.

the smallest number of variables. These two VS methods are
denoted by “RFE+CV” and “Fisher+CV”, respectively.

Note that no bagging has been applied for these reference
methods. Our preliminary experiments show that the effect in
bagging the models is more prominent when the variables vary
among different bootstrap data. However, it becomes too time
consuming to bootstrap variable selection with the methods of
“Ranking + CV” (see Algorithm 2).

Concerning the modelling techniques, in addition to the
advocated probabilistic models, we use the standard linear
SVM classifier as a baseline model. We fix the regularization
hyperparameter of SVM to106, high enough to keep the
training error low. Unlike other probabilistic models, the final
SVM classifiers do not generate naturally the probability out-
put. Hence, for the multiclass classification problem, the final
predicted class labels are decided by voting, using the pairwise
binary SVM classification results. We also compare the kernel-
based models with the decision tree models obtained from
C4.5 [19], which is a classical machine learning algorithm.
The output of the bagged C4.5 models is given by voting.

VI. EXPERIMENTS

A. Experimental settings

The generalization performance of the models in conjunc-
tion with variable selection was evaluated by 30 runs of
randomized holdout cross-validation. For each run, a fixed
proportion of data were taken for training and the rest for
test, and the spiltting of the dataset was random stratified.

We applied a full cross-validation, where the variable selec-
tion was conducted prior to each model fitting process for each
realization of the training data. An incomplete cross-validation,
i.e. a cross-validation after variable selection may lead to a
serious underestimation of the prediction error [21].

The performance is measured by the mean accuracy (Acc)
and the mean area under the ROC curve (AUC) [11] and the
corresponding standard error (SE) of the mean.

Our matlab programs used for these experiments were built
upon several toolboxes, including the SparseBayes V1.01

(with modifications) for the sequential sparse Bayesian learn-
ing, the Spider2 for RFE, SVM and C4.5 modelling, and LS-
SVMlab 3 for Bayesian LS-SVM modelling.

Note that in our experiments, all classifiers were tested with
the same series of variable selection techniques.

B. Binary cancer classification based on microarray data

Two benchmark binary cancer classification problems based
on DNA microarray data have been considered. The first prob-
lem aims to discriminate between two types of leukemia: acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia
(AML). The dataset includes 72 samples (47 of AML and 25
of ALL) with 7129 gene expression values4 [9][10].

The second problem aims to differentiate tumors from
normal tissues using colon cancer data. The dataset contains
information of 40 tumor and 22 normal colon tissues. Each
tissue is associated with 2000 gene expression values5 [1][10].

All microarray data have been normalized to zero mean and
unit variance. Each realization of the training set contains 50
data points, the test set includes the rest of the data of size 22
and 12 in leukemia and colon cancer data, respectively. These
two problem cases are both linearly separable, however, they
both have very high dimensionality and small sample size.

By default, the class priors were set to the proportions of
the classes in the training set in the binary classifications. The
accuracy and the AUC for the leukemia and colon cancer
classification problems are reported in Table I and Table II,
respectively, where the highest value of accuracy or AUC for
each type of classifier (in row) is indicated in bold. The mean
number of selected variables (Nv) for each variable selection
(VS) method within one trial is also given. Note that, only the
accuracy measure is reported for C4.5 decision tree classifiers,
as the latent outcome is not available for C4.5 models for the
ROC analysis.

We see that RFE+CV and LinSBL selected less variables
and resulted in a consistently lower test performance than
Fisher+CV and LinSBL+Bag. Models using only a small
subset of variables selected by Fisher+CV and LinSBL+Bag
achieved a similar test result as the models without variable
selection. Comparing different C4.5 models in terms of accu-
racy, the bagged C4.5 performed significantly better than the
other single C4.5 models. All the other kernel-based models
performed better than these decision trees. Among the kernel
based models, the use of variable selection is considered more
significant than the choice of any particular type of classifier
with regard to the model performance.

Additionally, the test performance from the LinSBL and
LinSBL+Bag were compared via pairedt-tests for each clas-
sifier. Thep-values of comparison on AUC are all< 10−4 for
the leukemia data, and all< 0.015 for the colon data.

1http://research.microsoft.com/mlp/RVM/SparseBayesV1.00.tar.gz
2http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
3http://www.esat.kuleuven.ac.be/sista/lssvmlab/
4available online at www.genome.wi.mit.edu/MPR/datasetALL AML.html
5available online at microarray.princeton.edu/oncology/affydata/index.html
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TABLE I

TEST RESULTS FOR LEUKEMIA CANCER CLASSIFICATION.

VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Nv 7129 43.30 5.10 3.50 49.10

Classifier Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC Acc(%) AUC(%)
SVM 95.61 99.29 92.42 97.29 90.30 94.88 90.45 94.43 92.42 98.01

±0.73 ±0.23 ±0.89 ±0.64 ±1.19 ±1.17 ±0.92 ±0.94 ±0.92 ±0.46
BayLSSVM 89.85 98.78 92.73 97.62 90.00 95.01 88.94 93.50 93.79 98.48

±1.05 ±0.34 ±1.04 ±0.59 ±1.29 ±1.11 ±1.02 ±1.40 ±1.02 ±0.41
RVM 90.15 96.22 93.03 97.26 90.45 94.93 89.85 93.72 93.18 98.24

±1.34 ±0.77 ±0.85 ±0.61 ±1.24 ±1.10 ±1.17 ±1.17 ±1.00 ±0.47
C4.5 85.00 86.82 86.82 88.79 92.58

±1.00 ±1.04 ±1.12 ±0.85 ±0.84

TABLE II

TEST RESULTS FOR COLON CANCER CLASSIFICATION.

VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Nv 2000 114.30 9.73 6.50 107.17

Classifier Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%)
SVM 81.94 85.31 80.28 85.83 81.36 83.54 76.39 81.67 86.11 87.71

±1.80 ±2.22 ±2.10 ±2.26 ±2.18 ±3.10 ±2.03 ±2.23 ±1.73 ±1.93
BayLSSVM 85.00 88.65 85.28 89.27 81.11 86.15 76.67 84.48 84.44 89.06

±1.73 ±1.71 ±1.56 ±1.60 ±2.11 ±2.79 ±2.08 ±2.09 ±1.65 ±1.78
RVM 83.61 87.71 83.61 86.98 81.67 86.46 73.06 82.40 79.17 87.71

±1.82 ±2.16 ±1.73 ±2.17 ±2.30 ±2.75 ±2.41 ±2.23 ±1.99 ±1.88
C4.5 73.61 76.39 76.67 73.33 84.17

±2.61 ±2.08 ±2.62 ±1.82 ±1.60

C. Classification of brain tumors based on MRS data

The method has also been applied to a multiclass classi-
fication problem of brain tumors using short echo time1H
MRS data. The dataset consists of 205 spectra in the frequency
domain. The full spectrum (a row vector of magnitude values)
has been normalized to unit norm. Only the frequency region
of interest from 4.17 to 0 ppm (a measure of the chemical shift
in a field independent frequency scale) was used in this study,
corresponding to 138 input variables. The dataset contains the
records from four major types of brain tumor: meningiomas
(Class 1, 57 spectra), astrocytomas grade II (Class 2, 22 spec-
tra), glioblastomas (87 spectra) and metastases (39 spectra)
[6]. However, the last two types of tumor are very difficult to
distinguish. Our experience on this dataset is that, the trained
models did not perform as well as a majority classifier, which
assigns the majority class in the training set to all the test cases.
Therefore, we merged the two tumor types - glioblastomas
and metastases - into one class of aggressive tumors (Class
3), and only dealt with the three-class classification problem.
For details of the data acquisition and preprocessing procedure
for this dataset, the readers are referred to [6].

Since the data are unbalanced, the model using the default
priors will lead to a relatively low sensitivity for astrocytomas
grade II. Thus, we decided to use equal priors for all binary
classifiers, which resulted in a “satisfactory” sensitivity and
specificity for all three classes. Table III reports the average
test AUC for each pairwise binary classification, and Table IV
presents both the training and test accuracy of the brain tumor
classification problems using equal class priors. Again, in these
tables, the highest AUC of each binary classification for each
type of model (in row) is indicated in bold.

For the pairwise binary classification, similar observations
can be found as with the microarray data. For the 3-class brain
tumor diagnosis, as reported in Table IV, LinSBL+Bag got a

consistently higher accuracy than the rest of variable selection
methods. Also, the paired t-tests on accuracy indicate that
LinSBL+Bag performed significantly better than LinSBL with
a p-value< 10−4 for each model type.

D. Biological relevance of the selected variables

We examined the most frequently selected variables from
the LinSBL+Bag method and their biological relevance for
each dataset. The heatmap in Fig. 1 and 2 shows the
occurrence of such highly selected genes in each randomized
cross-validation for the leukemia data and the colon cancer
data, respectively.

It is noteworthy that the genes that were selected by the
LinSBL+Bag method are mostly biologically interpretable. In
the leukemia cancer classification, the three top ranked genes
identified by our algorithm are all among the informative genes
according to [9]. The highest ranked gene is zyxin (gene
4847 according to its order in the original dataset), which
encodes an LIM domain protein localized at focal contacts
in adherent erythroleukemia cells. CD33 (gene 1834) is the
differentiation antigen encoding cell surface protein, for which
monoclonal antibodies have been demonstrated to be useful in
distinguishing lymphoid from myeloid lineage cells.

In the colon cancer data, the most important gene which
is identified by our method corresponds to mRNA for
uroguanylin precursor (gene 377). Guanylin and uroguanylin
have been recently found to be linked to colon cancer, and
treatment with uroguanylin was found to have possible thera-
peutic significance [15][20]. The gene with the second highest
rank (Gene 1772) is a collagen alpha2 (XI) chain which is
involved in cell adhesion, and collagen degrading activity
is part of the metastatic process for colon carcinoma cells
[10][14].

For the class prediction of brain tumors, we examined
the corresponding metabolites of which the magnitude values



IEEE TRANSCTIONS ON TECHNOLOGY IN BIOMEDICINE, VOL. X, NO. XX, XX 200X 7

TABLE III

TEST AUC (%) FOR PAIRWISE BINARY CLASSIFICATION OF BRAIN TUMORS.

VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Class pair 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3

Classifier Nv 138 138 138 39.17 114.57 9.03 6.10 23.10 14.07 4.30 9.50 6.20 31.17 59.67 55.40
SVM 99.82 97.52 92.14 98.75 96.17 95.06 98.18 96.56 92.23 96.99 96.51 90.78 98.17 97.76 96.01

±0.08 ±0.26 ±0.77 ±0.41 ±0.89 ±0.69 ±0.56 ±0.37 ±0.95 ±0.62 ±0.37 ±1.07 ±0.88 ±0.28 ±0.44
BayLSSVM 99.62 97.33 95.15 98.67 96.85 95.43 97.44 97.04 94.23 96.94 96.88 93.38 99.65 97.95 96.44

±0.16 ±0.27 ±0.56 ±0.39 ±0.39 ±0.63 ±0.57 ±0.30 ±0.70 ±0.57 ±0.34 ±0.82 ±0.15 ±0.26 ±0.40
RVM 98.47 97.55 96.87 98.60 96.82 95.80 97.52 97.18 95.57 96.99 97.02 94.52 99.70 97.94 96.19

±0.37 ±0.27 ±0.37 ±0.38 ±0.47 ±0.65 ±0.74 ±0.32 ±0.67 ±0.72 ±0.35 ±0.70 ±0.13 ±0.26 ±0.42

TABLE IV

TRAINING AND TEST ACCURACY FOR BRAIN TUMOR THREE-CLASS CLASSIFICATION.

VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Nv 138 115.97 37.37 17.9 98.73

Classifier Train(%) Test(%) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%)
SVM 100.00 85.25 95.72 85.54 100.00 85.05 99.95 83.92 96.40 86.91

±0.00 ±0.69 ±1.07 ±1.10 ±0.00 ±0.70 ±0.05 ±0.43 ±0.30 ±0.71
BayLSSVM 99.25 86.37 94.57 86.47 98.54 85.15 96.20 86.37 96.84 89.51

±0.12 ±0.75 ±0.52 ±0.66 ±0.18 ±0.66 ±0.25 ±0.79 ±0.20 ±0.55
RVM 89.17 87.72 89.49 87.11 94.55 87.11 94.60 86.72 94.67 89.95

±0.31 ±0.76 ±0.34 ±0.61 ±0.43 ±0.70 ±0.38 ±0.76 ±0.19 ±0.56
C4.5 98.10 78.75 95.77 80.15 98.00 79.90 97.49 79.90 99.05 84.02

±0.17 ±0.73 ±0.46 ±0.70 ±0.16 ±0.72 ±0.23 ±0.80 ±0.13 ±0.70
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Fig. 1. Genes selected by LinSBL+Bag from the 30 realizations of the
training sets for leukemia cancer microarray data. The x-axis labels in the
bottom the rank of the gene, and on the top the index of the gene in the
original microarray data matrix. The y-axis refers to the run number in the
30 randomized cross-validations. Only the genes that were selected more than
30 times in all the30×30=900 linear SBL models are listed in the plot. The
gray level in each cell corresponds to the number of occurrences that a gene
was selected in bootstrapping for one realization of the training set.

 377
 1772

 1231
 493

 1920
 419

 1325
 792

 1635
 1895

 1924
 1110

 1473
 559

 788
 391

 1582
 625

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

5

10

15

20

25

30 0

2

4

6

8

10

12

14

16

Fig. 2. Genes selected by LinSBL+Bag from the 30 realizations of the
training set for colon cancer microarray data. See Fig. 1 for details.

appeared to be significant in the pairwise binary classification
problems. Fig. 3 depicts the mean spectra of the three classes,

as well as the metabolites associated with their resonance
frequencies [8]. The two horizontal bars, below each mean
spectrum, represent the selection rate of each variable in pair-
wise discrimination with another tumor class. The selection
rate for variablem was computed by dividing the total number
of selection occurrences by30 × 30 = 900. We can take
the selection rate as a means of importance measure for the
variables. By examination of the figure and incorporating the
domain knowledge, we were able to figure out the metabolites
that are important or useful for the classification.

For example, in contrast to the other two classes, the
astrocytomas grade II have a relatively high level6 in the
frequency regions of both total creatine (Cr) and myo-inositol
(mI)/ glycine (Gly). These variables were also selected most
frequently in all three pairwise binary classification problems,
particularly for differentiating Class 1 from 2. Indeed, in
these regions the selection rate has the darkest color and
reaches a value close to0.5. To discriminate meningiomas
from the aggressive class, more frequency regions are used:
not only Cr and mI/Gly, but also Glutamate (Glu), Glutamine
(Gln), Lipids, N-acetyl containing macromolecules (NAC).
Interestingly, Cr does play a role in the maintenance of energy
metabolism. While NAC resonances at the usual NAA (N-
acetyl aspartate) chemical shift may appear in the solid or
cystic areas of brain tumors.

However one must be cautious when interpreting the se-
lected variables for such MR spectra: the resonances at the
same position may originate in different compounds depending
on the tumor type. For example, the 2.03 ppm peak originates
mostly from Lipids in Class 3 tumors, while it is safe to label
it NAC for Class 1 and 2. It may have NAA contribution, but
other N-acetyl compounds are contributing varying amounts
[5]. The whole region at 2-2.6 ppm may have variable contri-
bution from macromolecules (mostly proteins).

6The “level” here refers to relative intensity in the spectra as they are scaled
to unit norm.
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Fig. 3. Mean spectrum of the brain tumors and the selection rate of the
variables using LinSBL+Bag from the 30 runs of cross-validation for the
pairwise binary classification. The dotted line is the mean± SD spectrum.

VII. D ISCUSSION

From both the binary and multiclass examples, we can
clearly see how bagging improves the performance of the
single model using only one subset of variables. There is a
significant gap in predictive performance between the methods
of LinSBL and LinSBL+Bag in our experiments. This gap
might result from: on the one hand the large uncertainty
because of the small sample size of the training data, and
on the other hand the sensitivity of SBL itself.

The results also show that models with only a small portion
of variables can perform as well as, and sometimes even better
than the models with the complete set of variables. More
importantly selected variables could help in interpreting and
understanding the underlying mechanism of the diseases.

As to the modelling techniques, the kernel-based models
performed consistently better than the decision-tree models.
And the Bayesian probabilistic models performed somehow
better than the standard SVMs. This might be partially due
to the fact that the hyperparameters for SVMs were not opti-
mized. Our main focus was on the models with probabilistic
output which is important in biomedical diagnosis, without the
burden of cross-validation for hyperparameter tuning.

It is also worth mentioning that the linear SBL model
is itself a probabilistic model with an automatic variable
selection mechanism. It achieved a similar performance as
the probabilistic kernel models in all these experiments. For
example, in the brain tumor diagnosis problem, a single
LinSBL model and a bagged LinSBL model yielded a mean
test accuracy of86.03±0.63% and89.46±0.52%, respectively.

To get an idea of the computational efficiency of our VS
methods, we computed the average CPU time in a CV trial
consumed by LinSBL+Bag on 30 bootstrap training samples.
The simulations were conducted on cluster machines with
Pentium processors (1GHz). Around 7 minutes and 3 minutes
were needed for the leukemia data and the colon data, respec-

tively. For prediction of brain tumors, in total 24 minutes were
used for all 3 pairs of binary classification problems.

One limitation of the bagging strategy is that there is no
single model to be returned. To deal with this problem, one
can adapt a similar approach as described in [22], in which
the linear discriminant analysis (LDA) was bootstrapped, to
generate an “averaged” classifier using the weighted average
of theB sets of model parameters. To do so, a transformation
from our linear kernel-based models to variable based models
could be done and the selection frequency for the variables
should also be taken into account. One direction for future
investigation could be to establish a mechanism for integrating
multiple models into a single structure model, which would
become easy to explain clinically.

VIII. C ONCLUSIONS

The most significant problem for classification addressed
here lies in the use of datasets with a small sample size and
a huge dimensionality. The populations are usually underrep-
resented in this situation, which might result in a serious bias
towards the training set, i.e. with a high training performance
for a single model after variable selection and possibly a much
lower generalization performance on the unseen data. This
motivates the use of a bagging strategy in order to improve the
reliability and lower the uncertainty in both variable selection
and modelling.

Experimental results confirm the advantages of the bagging
strategy. Indeed, bagging can enhance the reliability of variable
selection and model prediction, thereby increasing the general-
ization performance of the models. Unlike the popular variable
ranking methods such as RFE and the Fisher’s criterion meth-
ods, our proposed method requires no additional step in order
to decide on the number of variables to be used in the models.
The variables are selected within a Bayesian framework, and
the procedure is shown to be computationally efficient if the
sample size is small. The number of occurrences of a variable
being selected can serve as an importance measure for the
variable. Our results imply that the linear sparse Bayesian
learning plus bagging deserves to play an important role in
variable selection for biomedical classification tasks.
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