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Bagging linear sparse Bayesian learning models for
variable selection in cancer diagnosis

Chuan Lu, Andy Devos, Johan A. K. SuykenSenior Member, IEEECarles Alls,
and Sabine Van Huffel,Senior Member, IEEE

Abstract—This work investigates variable selection and clas- biopsy and examination by a pathologist of morphological
sification_for _biomed@cal dgtasets with a sm_all sample size a_nd appearance of stained tissue specimens in the microscope
a very high input dimension. The sequential sparse Bayesian [9][1]. This method depends on the high expertise of the

learning methods with linear bases are used as the basic variable . .
selection algorithm. Selected variables are fed to the kernel based pathologists. Microarrays and MRS offer the hope that cancer

probabilistic classifiers: Bayesian least squares support vector classification can be objective and highly accurate, helping the
machines (LS-SVMs) and relevance vector machines (RVMs). We clinicians to choose appropriate treatments. The challenge of
employ the bagging techniques for both variable selection and classification using microarrays and MR spectra lies in: (1) the
model building in order to improve the reliability of the selected 346 number of input variables and a relatively small number
variables and the predictive performance. This modelling strategy .
is applied to real-life medical classification problems, including of samples, and (2) the presence Of n0|se_ and artefactg.
two binary cancer diagnosis prob|ems based on microarray Kernel based methOdS are Of pal‘tlcular Interest fOI‘ thIS taSk
data and a brain tumor multiclass classification problem using since they can deal with high dimensional data in nature and
spectra acquired via magnetic resonance spectroscopy. The work have been supported by both statistical learning theory and
is experimentally compared to other variable selection methods. empirical results [10][29][7]. Despite the early success, the
It is shown that the use of bagging can improve the reliability L . .
and stability of both variable selection and model prediction. presence of a significant almoun.t of irrelevant variables (fea-
tures) or measurement noise might hamper the performance
and interpretation of predictive models.

Variable selection (VS) is therefore used to identify the
variables most relevant for classification. This is important
|. INTRODUCTION for medical classification, as it can have an impact not only
the accuracy and complexity of the classifiers, but also

Index Terms— Variable selection, sparse Bayesian learning,
bagging, kernel based probabilistic classifiers, microarray, mag-
netic resonance spectroscopy (MRS).

Recent advances in technologies such as microarrays &R h " fd L It is also heloful f
magnetic resonance (MR) have facilitated the collection gp the economics o ata_l acqwsmor). tis also Neprutor
genomic, proteomic and metabolic data that can be used erstan'dlng the qnderlylng mechamsms of the disease. This
medical decision support. For example, DNA microarrays eﬁgmd assist d_rug discovery and egrly diagnosis. .
able us to simultaneously monitor the expression of thousand eve ral stgnstlcal and _co_mputatlonal approaches to variable
of genes [9][1]. It is then possible to compare the overa?le ection exist for classifying such data. The first approach

differences in gene expression between normal and disea@e&ariable ranking followed by a selection (or filtering) step,

cells. Magnetic resonance spectroscopy (MRS) [16] is ableL‘ggually accompanied with cross-validation (CV), to determine

provide detailed chemical information about the metabolité e number of variables to use in the classifier. The ranking

criteria could be based on e.g. correlatitstatistics and some
dpultivariate methods such as recursive feature elimination
(RFE) with support vector machines (SVMs) [10][7]. The
Hagcond approach is the so-called wrapper approach, which
arches for the optimal combination of variables according

presented in living tissue. In particuldn vivo proton MRS
offers considerable potential for clinical applications, e.g. f
brain tumor diagnosis [16][17].

Much attention has been paid to class prediction in t

context of such new diagnostic tools, particularly for cancéf

diagnosis. The task is to classify and predict the category ofgsome performance measures of the models [30][22][18].

sample on the basis of its gene expression profile or the MR The embedded approach combines the two tasks of variable

spectrum. Conventional cancer diagnosis has been based lﬁCt'on and model fitting into one opt|m|z_at|on procedure.
The embedded SVM based algorithms typically reformulate

This work was supported by the projects of IUAP Phase V-22, of thihe standard SVM optimization problem in order to select only

G.0269.02, and EU projects BIOPATTERN (FP6-2002-IST 508803), eTU

MOUR (FP6-2002-LIFESCIHEALTH 503094) and HEALTHagents (FPG_addition_aI c_onstraints and adopting objective functions such as
2005-IST 027214). CL was supported by a doctoral grant of K.U.Leuvegeneralization bound [29]. Nevertheless, these methods usually

AD was supported by an IWT grant (IWT-Viaanderen). require an additional cross-validation step for choosing the
CL is with Dept. of Computer Science, University of Wales, Aberystwyth defined b f iabl

UK (e-mail: cul@aber.ac.uk). AD, JS and SVH are with SCD-SISTA, EsaPredefined number of variables. o

Dept. of Electrical Engineering, Katholieke Universiteit Leuven, Belgium In [15] the Bayesian automatic relevance determination

(e-mail: sabine.vanhuffel@esat.kuleuven.ac.be). CA is with Departament@gRD) algorithms were exploited. This type of embedded
Bioguimica i Biologia Molecular, Universitat Aut@amma de Barcelona, 08193 ’

Cerdanyola del Vadls, Spain. methods can automatically determine the number of selected
Copyright (c) 2006 IEEE. Personal use of this material is permitted. ~ variables. However, they seem to be sensitive to a small
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permutation of the training set, rendering their results lessth a penalty of) " log|wy,|, which encourages sparsity.

reliable from a biological point of view. Given «, the posterior parameter distribution can be derived
In this paper, we explore an alternative method that followsa the Bayes’ rule

the Bayesian ARD approach, and show how the reliability of 9 5 9

the selected variables and classification performance can be p(wly, &, 0%) = p(ylw, 0% )p(wle) /p(yle, o%),  (4)

improved by using bagging and feeding various bootstrap vagihich is also Gaussian, with variance and mean of

ab_l_e§ to various types of _probablll_stlc models._ Moreove_r, by 2= (0207® + A andp = o258 y. (5)

utilizing the sparse Bayesian learning with logistic functions,

this method requires no nuisance hyperparameters tuning. The hyperparametersx can be estimated using type I
The rest of the paper is organized as follows. Section thaximum likelihood, in which the marginal likelihood is

introduces sparse Bayesian learning algorithms. A brief mmaximized. And the marginal likelihood can be computed by:

view of the two kernel based probabilistic classification algo- o0

rithms is given in Section Ill, namely Bayesian least squares p(yle,o?) = / p(ylw,o”)p(wla)dw

support vector machines (BayLSSVM) and relevance vector - 1

machines (RVM). The bagging strategy for variable selection = (2n)~N2|C|m /2 exp(—§yTC_1y) (6)

and modelling are proposed in Section IV. Section V lists the

compared methods for variable selection and modelling. ThegbereC = B~ + ®A~'®7, with B = 02 and A =
methods are applied to the three cancer classification probleaisg(as, . .., a).

as described in Section VI with results and the biological For binary classification problems, one can utilize the lo-
interpretation of some selected variables. Sections VIl and Vgistic functiong(a) = 1/(1 4+ e~®) [25]. The computation of
end the paper with a discussion and some conclusions. the likelihood is based on the Bernoulli distribution:

1. BAsic AL(IBORITHM-FOR VARIABLE SELECTION p(ylw) = H 9(F e W)Y [1 — g(F (%3 W))]1 ¥, (7)
A. Sparse Bayesian learning n=1

Supervised learning infers a functional relatign— f( ) wherey, €{0,1}. There is no noise variance in this case,
from a training setD = {x,,y,}1_;, with x,, € R? and and a local Gaussian approximation is used to compute the
y € IR. Sparse Bayesian learning (SBL) applies Bayesigsterior distribution of the weights(w|y, «) and the mar-
ARD to models linear in their parameters so that sparggnal likelihood p(y|a). For a givena, we can estimate the
solutions (i.e. with many parameters equal to zero) can hfean and variance of the weighfs &nd ) by an iteratively
obtained [25]. Its predlct|on op givenx can be based upon:reweighted least squares algorithm (e.g. the Newton-Raphson

method [2]). The following expressions are exploited [25]:

fxw :Z Wi P (X)=W ¢( )- 1) =N
m=0 S = (@"Be+A)!
Two forms of basis function®,,,(z) are considered here: 0 o= EQTBS,\’

(
Odm(2)=2m,m = 1,---,d, (i.e. &,,(z) as the original input ~ ~ 1 —~
vari(ak))Ie), andb,, (z)=K(z,x,,),m =1,---, N, whereK(.,.) andy = ®p+B™(y—g(®h)),
denotes some symmetric kernel functiaty(z) is set to 1 where B = diag(f1,...,0n), With 3, = g(f(xn; ))[1 —
in order to include an intercept (bias) term in the emerging f(x,; f))].
model. The basic variable selection algorithm relies on the The optimization process, i.e. maximization of the marginal
sparse Bayesian learning model using the first form of basilgelihood with respect tax and possibly2, can be performed
functions, termed the linear basis functions. In contrast, tegficiently using an iterative re-estimation procedure [25][3].
relevance vector machines (RVMs) take the kernel represg@nfast sequential learning algorithm has also been introduced
tation for the basis function. The RVM will be revisited inin [26], which enables us to efficiently process data of high

Section 1lI-B as a probabilistic classifier. dimensionality. We have adapted this algorithm to our appli-
For a regression problem, the likelihood of the data for @tions, which will be detailed in the next subsection.

sparse Bayesian learning model can be expressed as: The most relevant variables for the classifier can be obtained

from the resulting sparse solutions, if the original variables are

p(y|w,o?) = (2#02)_]\[/2 eXp{—ny ew|?}, (2) taken as basis functions in the SBL model. This type of model

. . . . is referred to as the linear SBL models in this paper.
whereo? is the variance of the i.i.d. noise, thé x M design ! ! n this pap

matrix ® = [p(x1), p(x2), ..., (xy)]". The parameterss g sequential sparse Bayesian learning algorithm

are given a Gaussian prior The sequential SBL algorithm [26] starts from a zero basis,
adds or deletes a basis function at each iteration step, or
p(wla) = H N (w0, a7,1) 3 updates a hyperparametey, until convergence.
m=0 For optimization of the hyperparametess the objective
where a = {a,,} is a vector of hyperparameters, with ondunction uses the logarithm of the marginal likeliho6¢x) =
hyperparametet,,, assigned to each model parametey. As  log p(y|a, 0?). It is shown in [26][3] that we may analyze
illustrated in [25][3], this is equivalent to using a regularizatiothe properties of(a) by decomposing it into the marginal
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likelihood £(ax_;) with ¢; (the ith column of ®) excluded,
and the marginal likelihood(«;) including only ¢,. That is
L(a) = L{o_;) + (), wherel(o;) = 3[log a; — log(a; +

2 .
si) + i)y si = ¢ CZi¢i andg; = ¢ Cjy, C_; is
C with the contribution of¢; removed. Sinces; and ¢; are

independent ofy;, one can obtain a unique maximumOfa)
with respect tow; by setting the first derivative of(«;) to
zero. The optimal values fax; are:

computational efficiency, quite a wide range of values may
give satisfactory results. In our experiments, it is fixed to 100.
Here the optimization procedure is considered to be converged
when the maximum value dlog(&.,./am)|mez.,, IN Step 4
is very small, e.g. lower thah0—5.

However, we should also be aware of the uncertainty in-
volved in the basis function selection, which might result from
the existence of multiple solutions and the sensitivity of the

can

) algorithm to small perturbations of experimental conditions.
S5

a = — L if ¢ > s, (8) Attempts to tacklle this problem are for example bagging and
4 — Si committee machines. Here we will focus on the very simple
& = oo, if ¢ <s;. (9) bagging approach, which will be described in Section IV.

One convenient way to derive andg; is to utilize these
expressionss; = ;?isg,. q = —;f’g,, and whenq; = oo,
s; = S; andgq; = Q;. In practice the two quantitieS; and Q)

are computed using the following equations:
S;
Qi

where ®, & and i contain only the parts corresponding t
the basis functions included in the model (with), < o).
The marginal likelihood maximization algorithm jointly
optimizes the weights and the hyperparametgs, } /2!,
with M,; the maximum index for the basis functions. In
case of linear basis functiond/.; = d; in case of kemel gypject toy;(wep(x;) +b) >1—&,& >0,i=1,...,N.
basis functions\/,; = N. Define the complete set of possible This can be conveniently solved in its dual formula-

indices for the basis functions &, containing the integer tion. It turns out that f(x; we, b) wlp(x) + b =
numbers from0 to M,y. Our modified algorithm of SBL for N K(x,x;) + b, whereq;, is called a support value

o . .. .. . . i=1 i Yi
classification utilizing the logistic function is as follows. andK (-, ) is a chosen positive definite kernel. The most com-

1) Initialize the model with only an intercepti, < oo (e.g. Mon kernels include linear kernels and radial basis function
a0 = (y'y/N)™2), andVm > 0,a,, = oo. Initialize the (RBF) kernels. Here we only considered models with linear
index set of the bases in the modgl, « {0}. kernels, defined a& (x,z) = xT'g.

Given currenio, estimateX and i using the IRLS algorithm

for the logit model. Note thak and i are only related to the
basis functions included in the current model, initially wit
only one scalar element. And starts with only one column
vectorgpo = [1,- -, 1]f v

Randomly selecd/,; bases with the indices @ut C (Zan'\
Isel)- SetZcan — Zout U Zgel.

For each basis vector in the candidate sets,m € Zcan,
compute the value o%,, and ¢, find the optimal action
with respect to each.,,, then calculaté/,,,, the corresponding
change in marginal likelihood’(«) after taking that action.
The following rules are used:

o If g2, > sm anda,, < oo (i.e. ¢; is in the model),
estimated»m Using (8), Vm == % -
log{1 + Smlan! — ail]}. nor

o If g5, > sm anda,, = 0, add¢,,, to the model, compute
&m using (8),V,, = % + log )

o If g7 < sm andam < oo, then deletepr,, setdm = oo,

Vi = 5, 2~ log(l— ) wherea = [ay,---,ay]T, and1 = [1---1]T. The matrix$2
Select one basis:* = argmax V,,, take the corresponding . -8 = 141, AN] T )
action, i.e.cum+ «— Gun= and update® and Z. is defined ?501‘3‘ = yiyip(xi)" p(x)) = yiy; K(xi,%;5).

6) If convergence is reached then stop, otherwise goto step 2). In Bayesian LS-SVM (BayLSSVM) [24][28], the LS-SVM

~_is integrated with the evidence framework [2], within which

The number of bases to be screened for updatipgis the regularization parametebsis optimized by maximizing

the number of bases in the model pli&,.;, the predefined e posterior probability of the model. And the posterior class

number of randomly selected bases from those not used B¥papilities can be calculated incorporating the prior class
the model. AlthoughV/,,; should be chosen empirically OVeryrobabilities via the Bayes' rule.

IIl. KERNEL BASED PROBABILISTIC CLASSIFIERS

Support Vector Machines (SVM) are now a state-of-the-
art technique for pattern recognition [27]. A standard SVM
classifier takes the formy(x) = sign[w! ¢(x) + b] in the
feature (primal) space withp(.) : RY — R%, where d;
is the dimension of the feature space. It is inferred from
data with binary targety; € {+1} by solving the following
%ptimization problem:

¢TC ¢ = I Bop; — 6T B&LS B, (10)
¢ C 'y = ¢! By — oI BEj, (11)

N
1
min J(we, b, &) = §W?Wf + CZE% (12)

We .
Y i=1

2)
tA. Bayesian LS-SVM classifier

The LS-SVM is a least squares version of SVM, and
is closely related to Gaussian processes and kernel Fisher

discriminant analysis [23][24]. The training procedure for LS-
SVM is reformulated as

3)

4)

N
‘AIIEil)I}ej(Wf, b,e) = %W?Wf + g Z e2, (13)
subject toy; [wlo(x;) +b] =1 —¢;,i =1, .Z._.l, N.

This optimization problem can be transformed and solved
through a linear system in the dual space instead of a quadratic
programming problem as for the standard SVM case [24]:

T

o]

y | @+A T }{H

Sm
ol

(14)

—Qm

5)
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B. Relevance vector machines for classification class probability or the latent outcome for the bagged binary

The RVM is a special case of SBL models, in which thgodel will be the average of thi class probabilities or latent
basis functions are given by kernel functions of the same tyBicomes. The pseudo code for this is given in Algorithm 1.
as for SVMs. The sequential learning algorithm introduced iff 1S €émpirically set to 30 in our experiments.

Section 1I-B is again applied to the optimization of RVMs. _ o
The predicted probability of being positive for a given inpuB. Strategy for the multiclass classification problems

x. can be computed using the logistic function: For multiclass classification problems, we reduce the
1 class classification problem inte(k — 1)/2 pairwise binary
(15)  classification problems, which yield the conditional pairwise
No simulation results are reported for the models witHrObab!l!t.y estimates for a given |npu§. The .cc.mdmonall
; . ) . o robabilities are then coupled to obtain the joint posterior
nonlinear kernels in this paper. As linear classifiers perforPn " . .
- : robability for each class by using Hastie’s method [12]. The
sufficiently well for our problems, and nonlinear models ha & - . .
inal prediction of the class will be the one for which the

shown.no improvement over the §|mple “near.ClaSS'f'erﬁéghestjoint probability is achieved. Accordingly the variables
according to the results of our preliminary experiments an

: used should be the union of thiék — 1)/2 sets of variables
some other studies on the same datasets [10][6]. that are used in the same number of binary classifiers. Bagging

IV. BAGGING STRATEGY is applied to each binary classification individually. Only the
A Bagaing th lected variabl d model mean predicted probabilities from the bagged binary classifiers
- bagging the selected variables and models are coupled in order to get the final joint posterior probability

Bagging is a bootstrap ensemble method that generates ifgi-the multiclass classification problems.
viduals for its ensemble by training each classifier on a random

redistribution of the training set [4]. Each classifier’s training V. COMPARED METHODS
set is generated by randomly drawing, with replacement, the . . .
g y y 9 P In order to see the potential performance gain of using our

same number of examples as in the original training set.
It is shown that the bootstrap mean is approximately %lroposed methods, we have also assessed the performance of
. . . some reference methods. We denote the proposed variable se-
posterior average of a quantity of interest [13]. Suppose;a

model is fitted to our training sdD, obtaining the prediction lection approach as *LinSBL+Bag” (see Algorithm 1), which

) . - ags the variables selected from the linear SBL logit models.
f(x) atinputx. This prediction could be the latent outcome ogccordingly the model fitting and prediction will be “bagged”

e.g. a standard SVM model, or the predicted class probabilltg o N o
of a probabilistic model. Bootstrap aqareaation or baqgir well. Its counterpart method “LinSBL” forms a classifier

P X L P aggreg 99 l?Sing only one subset of variables selected from a single linear
averages this prediction over a collection of bootstrap sampI%%L logit model, which is based on the whole training set
thereby reducing its variance. For each bootstrap sam '

D** b = 1,2,---,B, we fit the model, giving prediction B\/ﬁg:)hut bfotstrap_ rslpetltul)n.t_ thods adooted f
£*(x). The bagging estimate is defined by er two variable selection methods adopted for com-

parison involve variable ranking followed by selecting,
18 variables with the highest ranks. One is the popular SVM
foag(x) = 5 > F(x). (16) based recursive feature elimination (RFE) method [10]. The
b=1 idea of this method is to eliminate recursively the variable
The final class label will be decided by thresholding thehich contributes the least in the SVM model, and then rank
bootstrap estimate of the class probability or the latent odbe variables based on the reverse order of their elimination.
come. Bagging can push a good but unstable procedurdtz contribution of themth variable is evaluated by means
significant step towards optimality, which has been witnessefithe change in the cost functidv.7,, caused by removing
both empirically and theoretically [4][13]. the mth variable. When a linear kernel is uséd.,,, = w2,
An alternative bagging strategy is to bag only the predictenth w,, the corresponding weight in the linear SVM model:
class labels and the final prediction will be given by votingv, = XX | a;zimy;.
However, a reliable estimate of the class probability is essentialThe variables can also be ranked using Fisher’s criterion [2],
for medical diagnosis. The prediction averaging strategy tendbich is a measure of the correlation between the variables
to produce bagged estimates with lower variance, especialyd the class labels. For a binary classification, the Fisher
for small B. Therefore, the prediction averaging strategy idiscriminant criterion for an individual variable is given by
preferred and advocated here. (fm,+ = fim,—)?/ (02, _ + 0% 1), wherep,, . and i, _ are
The bagging strategy for variable selection and modellithe means of variable: within the positive and negative class,
is outlined below. Given a training sef3 bootstrap data respectively, and, . ando,, _ are the standard deviations of
are randomly generated with replacement. For each bootstthe variable within each class. The larger the Fisher’s criterion,
training set, one subset of variables is selected via the linghe higher the ranking of the variable.
SBL logit models, followed by feeding these variables to a NV, is tuned by 10-fold cross-validation using SVMs. A
model of interest such as Bayesian LS-SVM. ThBrsubsets coarse-to-fine strategy is utilized to search fé¢ within a
of variables are chosen anB corresponding models built range of possible values. Thé, with the lowest 10-fold CV
based on theB bootstrap training data. Given inpwt, the error rate were selected, and the tie breaking rule is to choose

p(ys = 1|xs,y, @) = T oowTot)
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Input : Training setD, number of bootstrap samplés, classifier
L (such as SVM, LS-SVM, RVM).
Output : model ensemblgfy, .

for b=1to B do

D*b=bootstrap sample fronD;
V*b= LinSBL (D*?) / » Select subset of variables

V*b via linear sparse Bayesian learning */;

f*b — L(D*b, V*b);
end

fbag(x) = % Zszl f*b(x);

Algorithm 1: Ensemble modelling using LinSBL+Bag for

variable selection.

Input : Training setD, variable ranking metho®anking (such as

RFE and Fisher), classifidt (such as SVM, LS-SVM, RVM).

Our matlab programs used for these experiments were built
upon several toolboxes, including the SparseBayes V1.0
(with modifications) for the sequential sparse Bayesian learn-
ing, the Spidet for RFE, SVM and C4.5 modelling, and LS-
SVMlab 2 for Bayesian LS-SVM modelling.

Note that in our experiments, all classifiers were tested with
the same series of variable selection techniques.

B. Binary cancer classification based on microarray data

Two benchmark binary cancer classification problems based
on DNA microarray data have been considered. The first prob-
lem aims to discriminate between two types of leukemia: acute
lymphoblastic leukemia (ALL) and acute myeloid leukemia

Output: model f. (AML). The dataset includes 72 samples (47 of AML and 25

R = Rankin * i i i */; ; ;

Ui C$%7%)%it o I('e';t Of‘/"axﬁgﬁ g;';'g?ss o Ni *| of ALL) with 7129 gene expression valué9][10].

variables with the highest ranking by SVM CV ! The second problem aims to differentiate tumors from
f=L(D,V) normal tissues using colon cancer data. The dataset contains
Algorithm 2: Modeling using Ranking+CV for variable information of 40 tumor and 22 normal colon tissues. Each
selection. tissue is associated with 2000 gene expression VAI[LgELO].

All microarray data have been normalized to zero mean and
unit variance. Each realization of the training set contains 50
the smallest number of variables. These two VS methods @f#a points, the test set includes the rest of the data of size 22
denoted by “RFE+CV” and “Fisher+CV", respectively. and 12 in leukemia and colon cancer data, respectively. These
Note that no bagging has been applied for these referengg problem cases are both linearly separable, however, they
methods. Our preliminary experiments show that the effect jpth have very high dimensionality and small sample size.
bagging the models is more prominent when the variables varygy gefault, the class priors were set to the proportions of
among different bootstrap data. However, it becomes t00 tifig classes in the training set in the binary classifications. The
consuming to bootstrap variable selection with the methods gfcyracy and the AUC for the leukemia and colon cancer
“Ranking + CV” (see Algorithm 2). _ N classification problems are reported in Table | and Table I,
Concerning the modelling techniques, in addition to thgspectively, where the highest value of accuracy or AUC for
advocated probabilistic models, we use the standard linggfch type of classifier (in row) is indicated in bold. The mean
SVM classifier as a baseline model. We fix the regularizatigfymper of selected variabled’{) for each variable selection
hyperparameter of SVM td0°, high enough to keep the sy method within one trial is also given. Note that, only the
training error low. Unlike other probabilistic models, the finahccuracy measure is reported for C4.5 decision tree classifiers,
SVM classifiers do not generate naturally the probability 0uks the latent outcome is not available for C4.5 models for the
put. Hence, for the multiclass classification problem, the finRloc analysis.
predicted class labels are decided by voting, using the pairwisgye see that RFE+CV and LinSBL selected less variables
binary SVM classification results. We also compare the kerneln g resulted in a consistently lower test performance than
based models with the decision tree models obtained frgfyher+cv and LinSBL+Bag. Models using only a small
C4.5 [19], which is a classical machine learning algorithmy hqet of variables selected by Fisher+CV and LinSBL+Bag
The output of the bagged C4.5 models is given by voting. 4chieved a similar test result as the models without variable
VI. EXPERIMENTS selection. Comparing different C4.5 models in terms of accu-
. . racy, the bagged C4.5 performed significantly better than the
A. Experimental setfings other single C4.5 models. All the other kernel-based models
The generalization performance of the models in conjungerformed better than these decision trees. Among the kernel
tion with variable selection was evaluated by 30 runs ®fased models, the use of variable selection is considered more
randomized holdout cross-validation. For each run, a fixegynificant than the choice of any particular type of classifier
proportion of data were taken for training and the rest ffith regard to the model performance.
test, and the spiltting of the dataset was random stratified.  Additionally, the test performance from the LinSBL and
We applied a full cross-validation, where the variable seleginsBL+Bag were compared via paireetests for each clas-
tion was conducted prior to each model fitting process for eagfier. Thep-values of comparison on AUC are atl 10~4 for
realization of the training data. An incomplete cross-validatiofhe |eukemia data, and att 0.015 for the colon data.
i.e. a cross-validation after variable selection may lead to a
serious underestimation of the prediction error [21]. ;http://research.micrpsoﬂ.com/mIp/RVM/SparseBaygsVl.OO.tar.gz
. http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
The performance is measured by the mean accuracy (Ac ttp-/lwww.esat kuleuven.ac.be/sista/lssymiab/
and the mean area under the ROC curve (AUC) [11] and theayailable online at www.genome.wi.mit.edu/MPR/dagt ALL _AML.html
corresponding standard error (SE) of the mean. Savailable online at microarray.princeton.edu/oncology/affydata/index.html
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TABLE |
TEST RESULTS FOR LEUKEMIA CANCER CLASSIFICATION
VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Ny 7129 43.30 5.10 3.50 49.10

Classifier Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC Acc(%) AUC(%)
SVM 95.61 99.29 92.42 97.29 90.30 94.88 90.45 94.43 92.42 98.01

+0.73 +0.23 +0.89 +0.64 +1.19 +1.17 +0.92 +0.94 +0.92 +0.46
BayLSSVM 89.85 98.78 92.73 97.62 90.00 95.01 88.94 93.50 93.79 98.48

+1.05 +0.34 +1.04 +0.59 +1.29 +1.11 +1.02 +1.40 +1.02 +0.41
RVM 90.15 96.22 93.03 97.26 90.45 94.93 89.85 93.72 93.18 98.24

+1.34 +0.77 +0.85 +0.61 +1.24 +1.10 +1.17 +1.17 +1.00 +0.47
C4.5 85.00 86.82 86.82 88.79 92.58

+1.00 +1.04 +1.12 +0.85 +0.84

TABLE Il
TEST RESULTS FOR COLON CANCER CLASSIFICATION
VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Ny 2000 114.30 9.73 6.50 107.17

Classifier Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%) Acc(%) AUC(%)
SVM 81.94 85.31 80.28 85.83 81.36 83.54 76.39 81.67 86.11 87.71

+1.80 +2.22 +2.10 +2.26 +2.18 +3.10 +2.03 +2.23 +1.73 +1.93
BayLSSVM 85.00 88.65 85.28 89.27 81.11 86.15 76.67 84.48 84.44 89.06

+1.73 +1.71 +1.56 +1.60 +2.11 +2.79 +2.08 +2.09 +1.65 +1.78
RVM 83.61 87.71 83.61 86.98 81.67 86.46 73.06 82.40 79.17 87.71

+1.82 +2.16 +1.73 +2.17 +2.30 +2.75 +2.41 +2.23 +1.99 +1.88
C4.5 73.61 76.39 76.67 73.33 84.17

+2.61 +2.08 +2.62 +1.82 +1.60

consistently higher accuracy than the rest of variable selection
methods. Also, the paired t-tests on accuracy indicate that
The method has also been applied to a multiclass classinsBL+Bag performed significantly better than LinSBL with
fication problem of brain tumors using short echo tirté a p-value < 10~4 for each model type.
MRS data. The dataset consists of 205 spectra in the frequency
domain. The full spectrum (a row vector of magnitude values). Biological relevance of the selected variables
has been normalized to unit norm. Only the frequency region\ye examined the most frequently selected variables from
of interest from 4.17 to 0 ppm (a measure of the chemical shiffy | insBL+Bag method and their biological relevance for
in a field independent frequency scale) was used in this study,.,, qataset. The heatmap in Fig. 1 and 2 shows the
corresponding to 138 input variables. The dataset contains i, rrence of such highly selected genes in each randomized
records from four major types of brain tumor: meningiomag g \ajidation for the leukemia data and the colon cancer
(Class 1, 57 spectra), astrocytomas grade Il (Class 2, 22 SP§Sta, respectively.
tra), glioblastomas (87 spectra) and metastases (39 spectiqy js noteworthy that the genes that were selected by the
[6,]' _Hovyever, the last t_WO types o_f tumor are very difficult ,tq_inSBL+Bag method are mostly biologically interpretable. In
distinguish. Our experience on this dataset is that, the traingd |6 kemia cancer classification, the three top ranked genes
models did not perform as well as a majority classifier, whiglyenified by our algorithm are all among the informative genes
assigns the majority class in the training set to all thetest CasgScording to [9]. The highest ranked gene is zyxin (gene
Therefore, we merged the two tumor types - glioblastomgg 7 according to its order in the original dataset), which
and metastases - into one class of aggressive tumors (Clasgodes an LIM domain protein localized at focal contacts
3), and c_)nly dealt with the .thr'ee—class classmcat!on problem. - yherent erythroleukemia cells. CD33 (gene 1834) is the
For details of the data acquisition and preprocessing procedifferentiation antigen encoding cell surface protein, for which
for this dataset, the readers are referred to [6]. monoclonal antibodies have been demonstrated to be useful in
Since the data are unbalanced, the model using the defgyifinguishing lymphoid from myeloid lineage cells.
priors will lead to a relatively low sensitivity for astrocytomas |n the colon cancer data, the most important gene which
grade Il. Thus, we decided to use equal priors for all binapy identified by our method corresponds to mRNA for
classifiers, which resulted in a “satisfactory” sensitivity angroguanylin precursor (gene 377). Guanylin and uroguanylin
specificity for all three classes. Table 11l reports the averaggve been recently found to be linked to colon cancer, and
test AUC for each pairWise binary ClaSSiﬁcation, and Table |v6atment with uroguany”n was found to have possib|e thera-
presents both the training and test accuracy of the brain tunpiutic significance [15][20]. The gene with the second highest
classification problems using equal class priors. Again, in theggk (Gene 1772) is a collagen alpha2 (XI) chain which is
tables, the highest AUC of each binary classification for eagfyolved in cell adhesion, and collagen degrading activity
type of model (in row) is indicated in bold. is part of the metastatic process for colon carcinoma cells
For the pairwise binary classification, similar observatior{20][14].
can be found as with the microarray data. For the 3-class brairFor the class prediction of brain tumors, we examined
tumor diagnosis, as reported in Table IV, LinSBL+Bag got the corresponding metabolites of which the magnitude values

C. Classification of brain tumors based on MRS data



IEEE TRANSCTIONS ON TECHNOLOGY IN BIOMEDICINE, VOL. X, NO. XX, XX 200X

TABLE IIl
TESTAUC (%) FOR PAIRWISE BINARY CLASSIFICATION OF BRAIN TUMORS
VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
CIassEair 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3 1vs.2 1vs.3 2vs.3
Classifier N, 138 138 138 39.17 11457 9.03 6.10 2310 14.07 430 950 620 3117 59.67 55.40
SVM 99.82 97.52 92.14 9875 96.17 95.06 98.18 96.56 92.23 96.99 96.51 90.78 98.17 97.76 96.01
+0.08 4+0.26 +0.77 +0.41 +0.89 +0.69 +0.56 +0.37 +0.95 +0.62 +0.37 +1.07 +0.88 +0.28 +0.44
BayLSSVM 99.62 97.33 95.15  98.67 96.85 9543 9744 97.04 9423 96.94 96.88 93.38 99.65 97.95 9644
+0.16 +0.27 4+0.56 +0.39 +0.39 +0.63 +0.57 4+0.30 +0.70 4+0.57 +0.34 +0.82 +0.15 40.26 +0.40
RVM 98.47 97.55 96.87 98.60 96.82 95.80 9752 97.18 9557 96.99 97.02 9452 99.70 97.94 96.19
+0.37 40.27 +0.37 40.38 +£0.47 +0.65 +0.74 +0.32 +0.67 +0.72 4+0.35 +£0.70 +0.13 +0.26 +0.42
TABLE IV
TRAINING AND TEST ACCURACY FOR BRAIN TUMOR THREECLASS CLASSIFICATION
VS method All Fisher+CV RFE+CV LinSBL LinSBL+Bag
Ny 138 115.97 37.37 17.9 98.73
Classifier Train(%) Test(%) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%) Train(%) Test(%)
SVM 100.00  85.25 95.72 85.54 100.00  85.05 99.95 83.92 96.40 86.91
4+0.00  +0.69 +1.07  +1.10 +0.00  +0.70 +0.05  40.43 +0.30  +0.71
BayLSSVM 99.25 86.37 94.57 86.47 98.54 85.15 96.20 86.37 96.84 89.51
+0.12  40.75 +0.52  +0.66 +0.18  +0.66 +0.25  40.79 +0.20  +0.55
RVM 89.17 87.72 89.49 87.11 94.55 87.11 94.60 86.72 94.67 89.95
+0.31  +0.76 +0.34  £0.61 +0.43  £0.70 +0.38  40.76 +0.19  40.56
C45 98.10 78.75 95.77 80.15 98.00 79.90 97.49 79.90 99.05 84.02
+0.17  40.73 +0.46  40.70 +0.16  +0.72 +0.23  40.80 +0.13  40.70
A G N S S as well as the metabolites associated with their resonance
20 . .
frequencies [8]. The two horizontal bars, below each mean
4 18 . . . .
° — spectrum, represent the selection rate of each variable in pair-
* wise discrimination with another tumor class. The selection
10 1 14 . T
— rate for variablen was computed by dividing the total number
" ] "’ of selection occurrences by0 x 30 = 900. We can take
° the selection rate as a means of importance measure for the
|| 8 . . . . . .
2 ] variables. By examination of the figure and incorporating the
° domain knowledge, we were able to figure out the metabolites
“C ] ! that are important or useful for the classification.
2 .
. | For example, in contrast to the other two classes, the
tor o2 e s e T e oo astrocytomas grade Il have a relatively high |&vel the

Fig. 1. Genes selected by LinSBL+Bag from the 30 realizations of tﬁéequency_ regions of both tOta_l creatine (Cr) and my0-|n05|tol
training sets for leukemia cancer microarray data. The x-axis labels in tG@l)/ glycine (Gly). These variables were also selected most
bottom the rank of the gene, and on the top the index of the gene in fipquently in all three pairwise binary classification problems,

original microarray data matrix. The y-axis refers to the run number in the
30 randomized cross-validations. Only the genes that were selected more

#agticularly for differentiating Class 1 from 2. Indeed, in

30 times in all the30x30=900 linear SBL models are listed in the plot. Thethese regions the selection rate has the darkest color and
gray level in each cell corresponds to the number of occurrences that a ggagches a value close th5. To discriminate meningiomas

was selected in bootstrapping for one realization of the training set.
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Fig. 2. Genes selected by LinSBL+Bag from the 30 realizations of th%t
training set for colon cancer microarray data. See Fig. 1 for details.
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from the aggressive class, more frequency regions are used:
not only Cr and ml/Gly, but also Glutamate (Glu), Glutamine
(GIn), Lipids, N-acetyl containing macromolecules (NAC).
Interestingly, Cr does play a role in the maintenance of energy
metabolism. While NAC resonances at the usual NAA (N-
acetyl aspartate) chemical shift may appear in the solid or
cystic areas of brain tumors.

However one must be cautious when interpreting the se-
lected variables for such MR spectra: the resonances at the
same position may originate in different compounds depending
on the tumor type. For example, the 2.03 ppm peak originates
mostly from Lipids in Class 3 tumors, while it is safe to label
it NAC for Class 1 and 2. It may have NAA contribution, but
her N-acetyl compounds are contributing varying amounts
[5]. The whole region at 2-2.6 ppm may have variable contri-
bution from macromolecules (mostly proteins).

appeared tO- be significant in the pairwise binary CIaSSiﬁcatiorbThe “level” here refers to relative intensity in the spectra as they are scaled
problems. Fig. 3 depicts the mean spectra of the three classesnit norm.
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tively. For prediction of brain tumors, in total 24 minutes were
used for all 3 pairs of binary classification problems.

One limitation of the bagging strategy is that there is no
single model to be returned. To deal with this problem, one
T e e i oI | it iy 4 ] CAN adapt a similgr approach. as described in [22], in which
s s s e 2w eennsensees - the linear discriminant analysis (LDA) was bootstrapped, to
Foer sstogomas ot oo 77T, generate an “averaged” classifier using the weighted average
r saw " o Lids Uipids of the B sets of model parameters. To do so, a transformation

/Gin Glu,Gin NAC L&C‘L i ) :
/\/\JM/«M from our linear kernel-based models to variable based models

IR u ! ! could be done and the selection frequency for the variables
SR S SRS should also be taken into account. One direction for future
Lo Upids investigation could be to establish a mechanism for integrating

multiple models into a single structure model, which would

become easy to explain clinically.
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wton ate ppm The most significant problem for classification addressed
w i i w T e — here lies in the use of datasets with a small sample size and
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0. . . . .

a huge dimensionality. The populations are usually underrep-

Fig. 3. Mean spectrum of the brain tumors and the selection rate of th@sented in this situation, which might result in a serious bias
variables using LinSBL+Bag from the 30 runs of cross-validation for thgowards the training set, i.e. with a high training performance

irwise bi lassification. The dotted line is the measD trum. . - . .

painvise tinary classfication. The dotted fine Is the m SPECUM-£or a single model after variable selection and possibly a much
lower generalization performance on the unseen data. This

VIl. DISCUSSION motivates the use of a bagging strategy in order to improve the

From both the binary and multiclass examples, we Céﬁliability and lower the uncertainty in both variable selection

clearly see how bagging improves the performance of tRgd mode'“ng- ] _
single model using only one subset of variables. There is a=XPerimental results confirm the advantages of the bagging

significant gap in predictive performance between the methogsategy- Indeed, bagging can enhance the reliability of variable

of LinSBL and LinSBL+Bag in our experiments. This gap'selection and model prediction, thereby increasing the general-
might result from: on the one hand the large uncertain&ation performance of the models. Unlike the popular variable

because of the small sample size of the training data, a@lking methods juch zstFE and the F;sg_e_r’s clriterion me(;h-
on the other hand the sensitivity of SBL itself. ods, our proposed method requires no additional step in order

[%decide on the number of variables to be used in the models.

The results also show that models with only a small portia iabl lected withi B ian f K and
of variables can perform as well as, and sometimes even be f variables are selecled within a bayesian iramework, an
e procedure is shown to be computationally efficient if the

than the models with the complete set of variables. Mogb o .
mple size is small. The number of occurrences of a variable

importantly selected variables could help in interpreting antf”. lected ) : for th
understanding the underlying mechanism of the diseases. €ing selected can Serve as an importance measure for the

As to the modelling techniques, the kernel-based mod Igriable. Our results imply that the linear sparse Bayesian

performed consistently better than the decision-tree mod farning plus bagging deserves 1o play an important role in

And the Bayesian probabilistic models performed someho\{ﬁ”able selection for biomedical classification tasks.
better than the standard SVMs. This might be partially due ACKNOWLEDGMENTS
to the fact that the hyperparameters for SVMs were not opti- The authors would like to thank the anonymous reviewers for
mized. Our main focus was on the models with probabilistibe detailed and valuable comments. Use of the brain tumor data
output which is important in biomedical diagnosis, without thprovided by the EU funded INTERPRET project (IST-1999-10310,
burden of cross-validation for hyperparameter tuning. http://carbon.uab.es/INTERPRET) is gratefully acknowledged.
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