986 research outputs found

    Uncovering protein interaction in abstracts and text using a novel linear model and word proximity networks

    Get PDF
    We participated in three of the protein-protein interaction subtasks of the Second BioCreative Challenge: classification of abstracts relevant for protein-protein interaction (IAS), discovery of protein pairs (IPS) and text passages characterizing protein interaction (ISS) in full text documents. We approached the abstract classification task with a novel, lightweight linear model inspired by spam-detection techniques, as well as an uncertainty-based integration scheme. We also used a Support Vector Machine and the Singular Value Decomposition on the same features for comparison purposes. Our approach to the full text subtasks (protein pair and passage identification) includes a feature expansion method based on word-proximity networks. Our approach to the abstract classification task (IAS) was among the top submissions for this task in terms of the measures of performance used in the challenge evaluation (accuracy, F-score and AUC). We also report on a web-tool we produced using our approach: the Protein Interaction Abstract Relevance Evaluator (PIARE). Our approach to the full text tasks resulted in one of the highest recall rates as well as mean reciprocal rank of correct passages. Our approach to abstract classification shows that a simple linear model, using relatively few features, is capable of generalizing and uncovering the conceptual nature of protein-protein interaction from the bibliome. Since the novel approach is based on a very lightweight linear model, it can be easily ported and applied to similar problems. In full text problems, the expansion of word features with word-proximity networks is shown to be useful, though the need for some improvements is discussed

    Statistical methods for fine-grained retail product recognition

    Get PDF
    In recent years, computer vision has become a major instrument in automating retail processes with emerging smart applications such as shopper assistance, visual product search (e.g., Google Lens), no-checkout stores (e.g., Amazon Go), real-time inventory tracking, out-of-stock detection, and shelf execution. At the core of these applications lies the problem of product recognition, which poses a variety of new challenges in contrast to generic object recognition. Product recognition is a special instance of fine-grained classification. Considering the sheer diversity of packaged goods in a typical hypermarket, we are confronted with up to tens of thousands of classes, which, particularly if under the same product brand, tend to have only minute visual differences in shape, packaging texture, metric size, etc., making them very difficult to discriminate from one another. Another challenge is the limited number of available datasets, which either have only a few training examples per class that are taken under ideal studio conditions, hence requiring cross-dataset generalization, or are captured from the shelf in an actual retail environment and thus suffer from issues like blur, low resolution, occlusions, unexpected backgrounds, etc. Thus, an effective product classification system requires substantially more information in addition to the knowledge obtained from product images alone. In this thesis, we propose statistical methods for a fine-grained retail product recognition. In our first framework, we propose a novel context-aware hybrid classification system for the fine-grained retail product recognition problem. In the second framework, state-of-the-art convolutional neural networks are explored and adapted to fine-grained recognition of products. The third framework, which is the most significant contribution of this thesis, presents a new approach for fine-grained classification of retail products that learns and exploits statistical context information about likely product arrangements on shelves, incorporates visual hierarchies across brands, and returns recognition results as "confidence sets" that are guaranteed to contain the true class at a given confidence leve

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented

    Methods for efficient object categorization, detection, scene recognition, and image search

    Get PDF
    In the past few years there has been a tremendous growth in the usage of digital images. Users can now access millions of photos, a fact that poses the need of having methods that can efficiently and effectively search the visual information of interest. In this thesis, we propose methods to learn image representations to compactly represent a large collection of images, enabling accurate image recognition with linear classification models which offer the advantage of being efficient to both train and test. The entries of our descriptors are the output of a set of basis classifiers evaluated on the image, which capture the presence or absence of a set of high-level visual concepts. We propose two different techniques to automatically discover the visual concepts and learn the basis classifiers from a given labeled dataset of pictures, producing descriptors that highly-discriminate the original categories of the dataset. We empirically show that these descriptors are able to encode new unseen pictures, and produce state-of-the-art results in conjunct with cheap linear classifiers. We describe several strategies to aggregate the outputs of basis classifiers evaluated on multiple subwindows of the image in order to handle cases when the photo contains multiple objects and large amounts of clutter. We extend this framework for the task of object detection, where the goal is to spatially localize an object within an image. We use the output of a collection of detectors trained in an offline stage as features for new detection problems, showing competitive results with the current state of the art. Since generating rich manual annotations for an image dataset is a crucial limit of modern methods in object localization and detection, in this thesis we also propose a method to automatically generate training data for an object detector in a weakly-supervised fashion, yielding considerable savings in human annotation efforts. We show that our automatically-generated regions can be used to train object detectors with recognition results remarkably close to those obtained by training on manually annotated bounding boxes

    Matching Possible Mitigations to Cyber Threats: A Document-Driven Decision Support Systems Approach

    Get PDF
    Despite more than a decade of heightened focus on cybersecurity, the threat continues. To address possible impacts, cyber threats must be addressed. Mitigation catalogs exist in practice today, but these do not map mitigations to the specific threats they counter. Currently, mitigations are manually selected by cybersecurity experts (CSE) who are in short supply. To reduce labor and improve repeatability, an automated approach is needed for matching mitigations to cyber threats. This research explores the application of supervised machine learning and text retrieval techniques to automate matching of relevant mitigations to cyber threats where both are expressed as text, resulting in a novel method that combines two techniques: support vector machine classification and latent semantic analysis. In five test cases, the approach demonstrates high recall for known relevant mitigation documents, bolstering confidence that potentially relevant mitigations will not be overlooked. It automatically excludes 97% of non-relevant mitigations, greatly reducing the CSE’s workload over purely manual matching

    Human-machine cooperation in large-scale multimedia retrieval : a survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Human-Machine Cooperation in Large-Scale Multimedia Retrieval: A Survey

    Get PDF
    Large-Scale Multimedia Retrieval(LSMR) is the task to fast analyze a large amount of multimedia data like images or videos and accurately find the ones relevant to a certain semantic meaning. Although LSMR has been investigated for more than two decades in the fields of multimedia processing and computer vision, a more interdisciplinary approach is necessary to develop an LSMR system that is really meaningful for humans. To this end, this paper aims to stimulate attention to the LSMR problem from diverse research fields. By explaining basic terminologies in LSMR, we first survey several representative methods in chronological order. This reveals that due to prioritizing the generality and scalability for large-scale data, recent methods interpret semantic meanings with a completely different mechanism from humans, though such humanlike mechanisms were used in classical heuristic-based methods. Based on this, we discuss human-machine cooperation, which incorporates knowledge about human interpretation into LSMR without sacrificing the generality and scalability. In particular, we present three approaches to human-machine cooperation (cognitive, ontological, and adaptive), which are attributed to cognitive science, ontology engineering, and metacognition, respectively. We hope that this paper will create a bridge to enable researchers in different fields to communicate about the LSMR problem and lead to a ground-breaking next generation of LSMR systems

    Fault analysis using state-of-the-art classifiers

    Get PDF
    Fault Analysis is the detection and diagnosis of malfunction in machine operation or process control. Early fault analysis techniques were reserved for high critical plants such as nuclear or chemical industries where abnormal event prevention is given utmost importance. The techniques developed were a result of decades of technical research and models based on extensive characterization of equipment behavior. This requires in-depth knowledge of the system and expert analysis to apply these methods for the application at hand. Since machine learning algorithms depend on past process data for creating a system model, a generic autonomous diagnostic system can be developed which can be used for application in common industrial setups. In this thesis, we look into some of the techniques used for fault detection and diagnosis multi-class and one-class classifiers. First we study Feature Selection techniques and the classifier performance is analyzed against the number of selected features. The aim of feature selection is to reduce the impact of irrelevant variables and to reduce computation burden on the learning algorithm. We introduce the feature selection algorithms as a literature survey. Only few algorithms are implemented to obtain the results. Fault data from a Radio Frequency (RF) generator is used to perform fault detection and diagnosis. Comparison between continuous and discrete fault data is conducted for the Support Vector Machines (SVM) and Radial Basis Function Network (RBF) classifiers. In the second part we look into one-class classification techniques and their application to fault detection. One-class techniques were primarily developed to identify one class of objects from all other possible objects. Since all fault occurrences in a system cannot be simulated or recorded, one-class techniques help in identifying abnormal events. We introduce four one-class classifiers and analyze them using Receiver-Operating Characteristic (ROC) curve. We also develop a feature extraction method for the RF generator data which is used to obtain results for one-class classifiers and Radial Basis Function Network two class classification. To apply these techniques for real-time verification, the RIT Fault Prediction software is built. LabView environment is used to build a basic data management and fault detection using Radial Basis Function Network. This software is stand alone and acts as foundation for future implementations
    corecore