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ABSTRACT

STATISTICAL METHODS FOR FINE-GRAINED RETAIL PRODUCT
RECOGNITION

İPEK BAZ

Electronics Engineering Ph.D THESIS, JULY 2019

Thesis Supervisor: Assoc. Prof. Dr. Müjdat ÇETİN

Thesis Co-supervisor: Dr. Erdem YÖRÜK

Keywords: Fine-grained classification, Retail product classification, Confidence
sets, Context-aware classification, Hidden Markov Models, Conditional random

fields, Hierarchical classification, Convolutional neural networks.

In recent years, computer vision has become a major instrument in automating
retail processes with emerging smart applications such as shopper assistance, visual
product search (e.g., Google Lens), no-checkout stores (e.g., Amazon Go), real-time
inventory tracking, out-of-stock detection, and shelf execution. At the core of these
applications lies the problem of product recognition, which poses a variety of new
challenges in contrast to generic object recognition.

Product recognition is a special instance of fine-grained classification. Considering
the sheer diversity of packaged goods in a typical hypermarket, we are confronted
with up to tens of thousands of classes, which, particularly if under the same prod-
uct brand, tend to have only minute visual differences in shape, packaging texture,
metric size, etc., making them very difficult to discriminate from one another. An-
other challenge is the limited number of available datasets, which either have only a
few training examples per class that are taken under ideal studio conditions, hence
requiring cross-dataset generalization, or are captured from the shelf in an actual
retail environment and thus suffer from issues like blur, low resolution, occlusions,
unexpected backgrounds, etc. Thus, an effective product classification system re-
quires substantially more information in addition to the knowledge obtained from
product images alone.
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In this thesis, we propose statistical methods for a fine-grained retail product recog-
nition. In our first framework, we propose a novel context-aware hybrid classifica-
tion system for the fine-grained retail product recognition problem. In the second
framework, state-of-the-art convolutional neural networks are explored and adapted
to fine-grained recognition of products. The third framework, which is the most
significant contribution of this thesis, presents a new approach for fine-grained clas-
sification of retail products that learns and exploits statistical context information
about likely product arrangements on shelves, incorporates visual hierarchies across
brands, and returns recognition results as "confidence sets" that are guaranteed to
contain the true class at a given confidence level.
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ÖZET

İNCE TANELI PERAKENDE ÜRÜN TANIMA SISTEMI IÇIN ISTATISTIK
YÖNTEMLERI

İPEK BAZ

Elektronik Mühendisliği DOKTORA TEZİ, TEMMUZ 2019

Tez Danışmanı: Doç. Dr. Müjdat ÇETİN

Tez Eş-danışmanı: Dr. Erdem YÖRÜK

Anahtar Kelimeler: İnce taneli sınıflandırma, Perakende ürün sınıflandırması,
Güven kümeleri, Bağlam duyarlı sınıflandırma, Saklı Markov Modeli, Koşullu

rasgele alanlar, Hiyerarşik sınıflandırma, Konvolüsyonel sinir ağları.

Son yıllarda bilgisayarlı görme; alışveriş yardımı, görsel ürün arama (ör. Google
Lens), kasaların kullanılmadığı mağazalar (ör. Amazon Go), gerçek zamanlı stok
takibi, stok dışı algılama ve raf uygulaması gibi akıllı uygulamaların geliştirilmesiyle
birlikte perakende süreçlerinin otomasyonunda çok önemli bir araç haline gelmiştir.
Bu uygulamaların temelinde, genel nesne tanımanın aksine çeşitli yeni zorluklar
içeren ürün tanıma sorunu yatmaktadır

Ürün tanıma en ince ayrıntıyı içeren çoklu benzer ürünlere dair özel bir
sınıflandırma örneğidir. Bir hipermarketteki paketlenmiş ürünlerin çeşitliliği göz
önüne alındığında, aynı marka altında sadece şekil, ambalaj dokusu, metrik
boyut vb. küçük görsel farklılıklar göstermeleri dolayısıyla, birbirlerinden ayırt
edilmelerinde güçlük çekilen on binlerce farklı ürünle karsı karsıya kalınmaktadır.
Başka bir zorluk ise, ideal stüdyo koşullarında alınan ürün başına sadece birkaç
eğitim setine sahip sınırlı sayıda veri kümesi olmasıdır. Bunun sonucu olarak, çapraz
veri kümesi genellemesine ihtiyaç duyulur ya da veri kümeleri gerçek bir perakende
ortamında raftan alınarak elde edilir. Bu yüzden bulanıklık, düşük çözünürlük, ka-
panma, beklenmedik arka planlar vb. sorunlarla karşı karşıya kalınır. Bu nedenle,
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etkili bir ürün sınıflandırma sistemi, ürün resimlerinden elde edilen bilgilere ek olarak
büyük ölçüde daha fazla bilgi gerektirir.

Bu tezde, ince ayrıntıyı içeren çoklu benzer perakende ürün tanıma sistemi için
istatistiksel yöntemler önermekteyiz. İlk çerçevede, ince ayrıntıyı içeren çoklu ben-
zer perakende ürün tanıma problemi için yeni alışılmadık bağlama bağlı bir hibrit
sınıflandırma sistemi önermekteyiz. İkinci çerçevede, son teknoloji evrişimsel sinir
ağları incelenmiş ve ince ayrıntıyı içeren çoklu benzer ürünleri sınıflandırması için
adapte edilmiştir. Bu tezin en önemli katkısının yer aldığı üçüncü çerçevede ise, (1)
raflardaki olası ürün düzenlemeleri hakkında istatistiksel bağlam bilgisini öğrenen
ve kullanan, (2) markalar arasındaki görsel hiyerarşileri kuran ve (3) sınıflandırıcı
çıktısını gerçek sınıf etiketini belirli bir güven seviyesinde içerecek şekilde garanti
eden "güven setleri" olarak veren çoklu benzer bir perakende ürün tanıma sistemi
önerilmektedir.
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CHAPTER 1

Introduction

Object classification, which is one of the most fundamental problems in computer
vision, can be defined as the process of identifying the class of each object in a
given image. Object classification has become a critical task in various applications,
which have expanded into surveillance, medical image analysis, face recognition,
self-driving systems and many others.

In the past few years, product recognition applications have gained increasing inter-
est in computer vision. Retail product classification systems can be used for assisted
shopping by the customers, tracking of the consumer product arrangements on the
shelves, and real-time management of inventory distortions such as out-of-stock and
overstock. In this thesis, we focus on the problem of fine-grained classification for
determining retail product classes from product images. We consider challenges of
fine-grained product recognition in which the observed product image alone is insuf-
ficient for efficient classification. The challenges of retail product classification can
be addressed by supplementing the product classifier with other pieces of statistical
information obtained from (1) the contextual relationship between the products on
retail shelves, (2) the class hierarchy, and (3) other features of the product classes.
With this perspective, in this thesis, we develop statistical methods for fine-grained
retail product recognition systems.

1.1 Challenges

Fine-grained classification is one of the challenging problems in computer vision
[124, 30, 16]. In retail stores, there are a large number of fine-grained product
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classes and many products have a similar appearance in terms of shape, color, tex-
ture, and metric size. Generally, in computer vision problems, the performance
of the fine-grained classification is improved by increasing the number of training
images. However, as in other real-world applications, there are limited datasets in
the retail product recognition problem. Besides, the product images are captured
under real-world conditions. So, the captured images are very likely to suffer from
many problems such as different viewing angles, blurriness, occlusions, unexpected
background parts, and very different lighting conditions. Such complications in
the product images make the retail product recognition problem more challenging.
Accordingly, an effective product classification system needs further information in
addition to knowledge obtained from the product image.

In this section, we discuss the challenges of the fine-grained categorization of retail
products. In particular, we focus on the main challenges caused by (1) the size
of dataset, (2) intra-class variability and inter-class similarity and (3) real-world
market environments. In addition to these challenges, there are a large number
of fine-grained product classes in retail stores and it also makes the problem more
complex and challenging.

Table 1.1 Existing retail product datasets in the literature.

Datasets # of categories # of images # of objects # of samples per class
Grozi-120 [43] 120 11870 - -
Grocery products (GP-20) [80] 80 9030 - -
Freiburg Groceries [63] 25 5021 - -
RPC dataset exemplar [118] 200 53739 53739 -
RPC dataset checkout [118] 200 30000 367935 -
Vispera [3] 794 11557 108090 136
Soft-drinks [3] 178 9283 32315 182
Beverage [3] 69 3210 17282 250
Confectionery[3] 144 5191 29262 183
Cleaners [3] 86 1639 7901 91

1.1.1 Lack of Data

Annotated and labeled data are generally one of the most critical components for
object recognition problems, especially for fine-grained problems. Although the
performance of fine-grained classification is generally improved by increasing the
number of training images, there are limited datasets in the problem of fine-grained
product recognition [43, 80, 63, 118, 3] (See Table 1.1). However, the size of the
dataset plays a crucial role in building a good classifier and finding the small varia-

2



tions between visually similar classes.

Another crucial issue in object recognition is the class imbalance problem when
the class distribution is highly imbalanced due to the lack of data. In particular,
in datasets that deal with fine-grained categories, the number of samples per class
often depends on the rarity of the classes. Because of unbalanced distribution in
datasets, minority class objects are more likely to be misclassified. Especially, in
fine-grained classification problems (e.g., retail product recognition), insufficient and
unbalanced datasets make the problem more challenging.

1.1.2 Inter-class similarities and intra-class variation

Many products of the category or brand often have very small visual differences in
terms of shape, color, texture, and metric size. For example, similar products only
have minor differences in packaging details as shown in Figures 1.1, 1.2, and 1.3.

Another source of difficulty is large-intra-class variations. For example, products
may exhibit a different appearance due to the challenges caused by the real-world
environment. Figures 1.1 1.2, and 1.3 illustrate the large intra-class variability within
the same product class. The small inter-class variations and the large intra-class
variations caused by fine-grained nature of the problem makes it more challenging.

(a) 2.5lt (b) 1.5lt (c) 1lt (d) 450ml

Figure 1.1 Visual similarity between different coke classes and large variability within
the same product class. Each sub-figure shows samples from one of four coke classes
with different metric sizes. The first image in each sub-figure shows a high-quality
sample. The second and third images in each sub-figure are examples of problematic
product images in the dataset.
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(a) Peach Juice (b) Special Peach Juice (c) Apricot Juice (d) Orange Juice

Figure 1.2 Inter-class similarity and intra-class variation for retail products. Visually
similar, yet distinct four product classes are displayed: (a) Peach Juice (b) Special
Peach Juice (c) Apricot Juice, and (d) Orange Juice.

Figure 1.3 Large variability within the same class. Each row represents samples of a
particular product class. These product classes are different types of a can of juice
(a) Cappy Mix juice, (b) Cappy Orange juice, (c)Peach juice, and (d) Cherry juice.
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1.1.3 Capturing product images under varying conditions

In product classification applications, product images are captured under real-world
supermarket conditions. So, the captured images are very likely to suffer from
many problems such as different viewing angles, blurriness, occlusions, unexpected
backgrounds, and very different lighting conditions.

• Lighting: The lighting conditions are varying in supermarket environments.
Theses conditions and shadows affect the lighting in a product image as shown
in Figure 1.4.

Figure 1.4 Each row represents sample images of a particular product class, which
are captured under different lighting conditions.

• Rotation: Products appear on the shelves in multiple forms, such as rotated
or slightly slanted form. All of these forms can be visually very different from
each other as shown in Figure 1.5.
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Figure 1.5 Each row represents sample images of a particular product class, which
are rotated or slanted.

• Reflections: Packages of some retail products are reflective and the appear-
ance of these objects may change in different lighting conditions as shown in
Figure 3.1.

Figure 1.6 Each row represents sample images of a particular product class which
has reflective packages.

6



• Occlusion: Another main challenge in the supermarket environment is oc-
clusion in which the retail product in an image is not completely visible. For
example, special offers and advertisements may occlude the packages of prod-
ucts (See Figure 1.7).

Figure 1.7 Each row represents sample images of a particular product class, which
is occluded.

• Scale: In retail stores, there are product classes which have exactly the same
appearance but different metric size. In Figure 1.1, a sample of the four coke
classes, which have different metric size, are shown. In addition to that, in our
problem, the distance between the product and the camera is not fixed. For
these reasons, product classification systems should consider the scale changes
due to the variation of product distance from the camera.

1.2 Recent work on retail product recognition

Recently, recognition of products on retail shelves has become an interesting research
topic in computer vision [2, 1, 80, 43, 5, 78, 12, 92, 53, 44, 99, 111, 110]. Several
commercial product search systems exist and obtain good classification results on
some product categories with specific planar shapes and textures such as CDs and
books [2, 1]. The methods in [80, 43, 5, 78, 12, 53, 44, 99, 111, 110] focus on retail
product recognition on shelves.
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The work in [80] introduces a new multimedia database of 120 grocery products,
GroZi-120. Three commonly used object recognition/detection algorithms (color
histogram matching, SIFT matching, and boosted Haar-like features) are applied.
[43] presents a dataset of 26 grocery product classes and proposes a hierarchical al-
gorithm. First, possible labels that a test image may contain are filtered by ranking
the output of a fine-grained classifier. Second, fast dense pixel matching is per-
formed for the classes in the filtered list. Then, multi-label image classification is
achieved based on the matching score, context, and recognition localization results.
In contrast to our approach, [43] simultaneously recognizes and localizes all the indi-
vidual products in a shelf image with only one single training image per label. They
claim that failure cases are mainly due to the significant visual resemblance between
training images, blurry conditions of test images, and wrong facing products. Our
experiments show that our proposed method can potentially solve these problems.
[5] proposes an inference graph, ViCoNet, that builds contextual relationships of
retail objects in a scene. Their dataset consists of 62 product classes which are from
non-similar categories such as pasta and detergent. Unlike our approach, this work
involves only a small number of classes and the problem posed is not a fine-grained
recognition problem. Their emphasis is more on efficiency than the accuracy of
recognition.

The most relevant methods to ours among previous work are [78, 12], which used
a dataset very similar to our dataset in terms of the number of classes and sample
product images. [78] extracts and matches SURF features. The classifier returns
several similar products for each product image similar to our approach. However,
in the next step, disambiguation steps are applied to eliminate recognitions and the
method returns a single recognized product. They correctly recognize 87.4% of the
223 products and indicate that all the products that were misclassified were classified
as products from the same group which consists of visually similar products. [12]
presents a context-aware product classification system. It improves the accuracy of
context-free classifiers such as Support vector machine (SVMs), by combining them
with a graphical model based on Hidden Markov Models (HMMs) or Conditional
Random Fields (CRFs). This context-aware approach recognizes all the products
on the shelf by using input product images and knowledge learned about which
products tend to be adjacent in planograms.

The use of deep learning techniques in product recognition has been limited so
far because the available datasets consist of a small number of images per class.
Some recent pieces of work [92, 53, 110] have considered deep leaning techniques for
product recognition and detection. In [92], a deep neural network called ScaleNet
is proposed. This method estimates object scales in images and generates object
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proposals for product detection. In [53], a convolutional neural network (CNN),
is used for recognizing objects with only a single training example per class. The
method proposed in [53] uses a multi-view dataset to improve recognition. Unlike
our approach, their aim is not fine-grained recognition. Their emphasis is more on
robustness to viewpoint changes with a limited training dataset. As indicated in
[53], the method should be extended for robustness to occlusions, lighting changes,
and many other types of challenges in the real world. In [110], to extract region
proposals from the query image, a state-of-the-art object detector known as Yolo-v2
[95] is used by fine-tuning the network. Then, each cropped region proposal is sent
to another CNN (VGG-16 [102]) which computes an ad-hoc image representation.
These are then deployed to recognize products through a K-NN similarity search
in a database. Finally, they apply a final refinement step that aims to prune out
false detections among similar products and re-rank the first K-NN found in the
previous step in order to fix possible recognition mistakes. Their emphasis is more
on refinement steps than utilizing deep learning methods for product recognition.

1.3 Motivation for and highlights of the proposed methods

In this thesis, our goal is to create a classification system to address the prob-
lem of fine-grained product recognition by utilizing both context information and
taxonomic relationships between the product classes. We are concerned about fine-
grained classification of item patches using their spatial arrangements on the scene,
and not about detecting them. The detection step can be integrated using a generic
product detector or applying sliding windows in conjunction with our method.

In light of the aforementioned challenges and potential remedies, we use substan-
tially more information obtained from contextual realationship between products on
retail shelves and taxonomic relationship between retail products in addition to the
knowledge obtained from product images alone.

1.3.1 Contextual relationship in retail shelves

In product recognition, the context information can be extracted in the form of
contextual priors, since products on the shelves are not arranged randomly, but
according to a spatial arrangement plan, the so-called "planogram", which is carefully
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Figure 1.8 A sample planogram.

Figure 1.9 Sample retail shelf images from datasets [3].

crafted to optimize sales (See Figure 1.8). In general, planograms are specific to the
store or the shelf of concern, but they do share one common principle: different
instances of the same product or those belonging to the same brand or category are
to be placed adjacent to each other. Accordingly, except for any shelf distortions
incurred by shoppers, we observe a rather "smooth" spatial formation of shelf items
and similar contexts for each individual product (See Figure 1.9). This motivates
us to develop a context-aware classification system, which statistically models the
contextual relationship between the products on retail shelves and combines this
model with existing object recognition methods, for the problem of fine-grained
retail product classification.
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1.3.2 Taxonomic relationship between retail products

As in many real-world image classification problems, the retail product classes in-
herently form a hierarchy consisting of many levels of abstraction. This information
enables the classifier to identify very similar classes. In a fine-grained classification
setting, the taxonomic relationship between similar classes are closer than other
classes and the confusion between highly-similar classes is more likely than the con-
fusion between dissimilar classes. Standard classification methods return a single
estimate but do not have a satisfactory performance for some real-world applica-
tions. Even the most advanced methods may not be able to output the correct
answer by returning a singleton estimate in challenging applications such as fine-
grained product recognition. In the large scale image classification problems like
the ImageNet challenge, the deep learning models report the top-5 error rate, which
is the fraction of test images for which the correct label is not among the top-5
most probable classes, to show the performances of the models. Thus, in a fine-
grained classification problem like product recognition, returning either a ranked
list or a small set of predictions based on the class hierarchy, which is guaranteed
to contain the true class at a given confidence level, may well be preferable than
a single class prediction without such statistical guarantees. These approaches are
called "set-based" classifiers. A human operator can be employed to find the true
class from returned recognition sets which may consist of more than one recognition
suggestion. In such strategies, there is a natural trade-off between the accuracy and
the average size of the recognition sets. This trade-off can be managed by specifying
the desired level of confidence in the classifier outputs. This motivates us to develop
a product classifier system which utilizes both taxonomic relationships between the
product classes and set-based approaches.

Moreover, the arrangements of the products on the shelves are also consistent with
a product taxonomy. That is, shelves tend to contain certain product categories
only (e.g., soft drinks, confectionery, etc.), and certain brands tend to be displayed
next to each other. This implies that the context can be exploited in a coarse-to-fine
sense and not just in the finest level. For this reason, we propose a classification
system which combines the contextual relationship between the product classes with
the taxonomic relationships and the set-based approach. In fact, in contrast to the
common flat classification paradigm, where a single class is to be returned for a query,
both context and class hierarchy can be integrated into a statistical model, such that
given some target confidence level 1− ε, we can return a minimal set of results, the
so-called “confidence set” [98], for which the probability of not containing the true
class will be less than ε ∈ [0,1]. This motivates us to propose a new context-aware
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and hierarchical approach for fine-grained product recognition

Most state-of-the-art convolutional neural network (CNN) methods achieve near-
perfect performance and some of them achieve even better results than humans for
challenging image classification applications. However, the use of deep learning tech-
niques in product recognition has been limited. This also motivates us to implement
these state-of-the-art CNNs for the fine-grained retail product recognition problem.

1.4 Contributions of this thesis

The main contributions of this thesis are:

• We propose a new hybrid system that classifies the fine-grained retail products
on a store shelf. Novel aspects of the proposed method include (1) combining
the context-free classifier and context information via an HMM or CRF, (2)
applying this concept to fine-grained recognition of products arranged in retail
shelves, and (3) presenting experimental results on a large dataset, collected
from actual retail stores.

• The state-of-the-art deep networks are implemented for fine-grained retail
product classification. To the best of our knowledge, these deep networks have
not been applied in any previous work on fine-grained retail product classifica-
tion. In addition to that, extensive experiments on four retail product datasets
using four deep network structures have been conducted.

• We propose a novel retail product classifier that combines (i) a visually trained
class hierarchy, (ii) corresponding coarse-to-fine classifiers, and (iii) context
priors learned as nested HMMs across retail shelves, and (iv) a confidence-set
predictor that returns as recognition output confidence sets, i.e., minimal and
context-aware sets of fine-level classes at a given confidence level. To the best
of our knowledge, such a comprehensive combination of confidence sets and
spatial priors has not been exploited in the context of fine-grained product
recognition. We conducted extensive experiments and compared our method
with both conventional methods and several state-of-the-art deep learning-
based methods (Inception-Resnet-v2 [106], B-CNN [72], DenseNet-161 [60],
SENet-154 [59]. In most of the experiments, our method outperforms sev-
eral existing methods by achieving more than 99% accuracy while returning
relatively small confidence set sizes. Furthermore, we also introduce compre-
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hensive product datasets that contain fine-grained product classes consisting
of beverage, biscuits, chocolate, and hygiene products.

1.5 Thesis organization

• Chapter 2: In this chapter, we give an overview of the concepts that are
relevant to fine-grained product recognition and necessary for understanding
the work presented later in this thesis.

• Chapter 3: In this chapter, we present a novel context-aware hybrid classifi-
cation system for fine-grained retail product recognition.

• Chapter 4: In this chapter, state-of-the-art deep networks are explored and
implemented for the problem of retail product classification.

• Chapter 5: In this chapter, we present a new approach for fine-grained clas-
sification of retail products, which learns and exploits statistical context in-
formation about likely product arrangements on shelves, incorporates visual
hierarchies across brands, and returns recognition results as “confidence sets”
that are guaranteed to contain the true class at a given confidence level.

• Chapter 6: In this chapter, we conclude the thesis with a summary of our
contributions and possible research directions for future work motivated by
the open problems in retail product recognition.
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CHAPTER 2

Background

In this chapter, we review the concepts and technical background that are necessary
for understanding the work presented in this thesis.

2.1 Context-free Object Classification

In this section, we consider the problem of object recognition. Although humans
easily classify objects, object classification is difficult for vision-based implementa-
tions on machines. In the past few decades, object recognition applications have
gained increasing interest in computer vision.

In literature, there are a variety of approaches for object recognition. Recently, two
main classes of approaches have been widely used to solve object recognition prob-
lems. The first class of approaches is based on traditional vision algorithms, which
firstly extract feature vectors from images. Then, in the object classification step,
these methods use the feature vectors, which extract descriptive and discriminative
local information in images. The difficulty with this approach is that the feature ex-
traction step is handcrafted. In other words, we have to choose the most descriptive
and discriminative features for each recognition problems. Especially, in large scale
object recognition problems, the feature extraction step becomes more difficult be-
cause different object classes are better represented with different types of features.
In the literature, there are different object recognition techniques [70, 35, 87, 75],
which have been extensively used in computer vision problems.The K-Nearest Neigh-
bor (KNN), multi-class Support Vector Machine (SVM) [25, 58], and Bayesian classi-
fiers [39, 18] are commonly used classifiers with a choice of image descriptors among
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Scale Invariant Feature Transform (SIFT) [76, 75], Speeded Up Robust Features
(SURF) [10, 11], Histogram of Oriented Gradients (HOG) [27], color histogram,
and Bag of Words (BoW) [26, 68] for context-free object classification problems.
The second class of approaches is based on deep learning techniques. Generally, in
object recognition, convolutional neural networks (CNNs), which consist of multi-
level neural networks, are used as a deep network. In contrast to traditional vision
algorithms, deep learning models automatically learn descriptive features of object
classes in order to identify that object by replacing multiple stages of processing in
traditional approaches with a single CNN. CNNs can learn to extract differences
between different classes by analyzing thousands of training images. Thus, CNN
can be trained end-to-end.

In this thesis, we use SIFT feature and BoW image representation to extract the
features, and state-of-the-art CNNs and a hierarchical Bayesian classifier are used
as classifiers for retail product recognition. In the following two subsections, the
mathematical models of some traditional vision and deep learning techniques are
described in detail.

2.1.1 Traditional Vision Approaches

In general, traditional vision algorithms work by extracting feature vectors from
given images and using these extracted features to classify images. We will introduce
some commonly used feature extraction and classification techniques in detail for
object recognition.

2.1.1.1 Feature Extraction

Feature extraction is one of the most crucial steps of many vision applications in-
cluding object recognition. There are two main approaches which extract features
from the images based on computer vision applications; namely local feature and
global feature extraction. The main difference between these approaches is the way
the representation of the image. Global approaches extract features for the entire
image. In local approaches, generally, first interest points are detected and then local
feature descriptors describe the image patch around the interesting point. There-
fore, in contrast to global approaches, local features can be computed at multiple
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points, edges, corners, or image patches.

Both approaches have advantages and disadvantages. The advantages of global
features are that they are (1) much faster, (2) easy to compute, and (3) memory-
efficient. However, these methods are not invariant to transformations and they
suffer from the problems related to occlusion and cluttering. Additionally, these
methods require segmented object regions in object recognition applications [7].
Global descriptors are generally used in image retrieval, object detection, and image
classification. In object recognition, local approaches provide us extract more dis-
criminative feature which is more robust to transformations, occlusion, and clutter
[7, 112, 113].

Depend on the application, the most representative and discriminative features must
be extracted to be able to achieve a good performance. We will explain some com-
monly used local feature extractors which are more appropriate for object recogni-
tion problems (e.g., retail product recognition). In general, local feature extractors
consist of two main steps such as feature detection and feature extraction. Some
methods additionally apply image description step in which extracted features are
integrated into a vector representation to get a more discriminative vector.

Feature Detector: There are three main types of feature detectors, namely as
single-scale, multi-scale and affine invariant detectors [7]. Single scale detector is
invariant to rotation, translation, changes in illuminations and addition of noise.
Harris and Hessian detectors are the most widely used methods.

Harris detector is based on the second moment matrix and it is represented as

M(x,y) =
∑
u,v
∗

 Ix(x,y)2 IxIy(x,y)
IxIy(x,y) Iy(x,y)2

 (2.1)

where I represent the image, and Ix and Iy denote the first derivative of image in-
tensity at position g in the x and y direction respectively. It measures the cornerness
of a point in an image as follows:

c=Det(M(x,y))−K×Tr(M(x,y))2 (2.2)

Then, a non-maximum suppression step is applied to eliminate the wrongly detected
corner points [50].
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Hessian detectors are based on the Hessian matrix and represented as in Eq 2.3

M(x,y) =
∑
u,v
∗

 Ixx(x,y) IxIy(x,y)
IxIy(x,y) Iyy(x,y)

 (2.3)

where Ixx and Iyy denote the second derivative of the image intensity at position
gin the x and y direction respectively, and Ixy is the derivative of the image in
both x and y direction [66, 14]. After the non-maximum suppression, the important
blob-like structure is detected based on the determinant of the Hessian matrix.

det(M(x,y)) = IxxIyy− Ixy2 (2.4)

Compared to single-scale approaches, multi-scale detectors are invariant to scale
[7]. Laplacian-of-Gaussian (LoG) and Difference-of-Gaussian (DoG) operators are
the most widely used detectors. LoG is a linear combination of second derivatives.
Given an image I(x,y), the scale-space representation of the image is defined by
convolving the image by a Gaussian kernel G(x,y,σ) as follow:

L(x,y,σ) =G(x,y,σ)∗ I(x,y) (2.5)

G(x,y,σ) = 1
2πσ2 e

−(x2+y2)
2σ2 (2.6)

Then Laplacian of Gaussian is computed as in Eq.

∇2L(x,y,σ) = Lxx(x,y,σ) +Lyy(x,y,σ) (2.7)

where Lxx and Lyy are the second derivatives of L(x,y,σ). LoG detectors (blob)
are found by searching for scale space extrema of a scale-normalized Laplacian-of-
Gaussian ∇2L [73].

In DoG, local 3D extrema in the scale-space pyramid built with DoG filters. This
approach is used in SIFT [76, 75]. Given an image I(x,y), the DoG function is
defined by convolving the image by a Gaussian as follow:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y) = L(x,y,kσ)−L(x,y,σ) (2.8)

where k denote a constant multiplicative factor k. Then, DoG detectors (blob) are
found by searching for 3D scale-space extrema of a scale-normalized Difference-of-
Gaussian D(x,y,σ). In this thesis, we use a DoG detector to detect the interest
points for retail product recognition.
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In addition to single and multi-scale detectors, some methods are proposed which are
invariant to affine transformation [81, 82, 71]. In these methods, firstly, initial region
points using scale-invariant detectors are found (e.g., DoG and LoG). Secondly, each
initial points have normalized the region to be affine invariant using affine shape
adaptation. Then, the affine regions are iteratively estimated. Fourthly, the affine
region is updated using a selection of proper integration scale, differentiation scale,
and spatial localizations. Step 3 is repeated, if the stopping criterion is not met.

Feature Descriptor: After the feature detection step where a set of interest
points have been detected from an image at a location (x,y), scale s, and orien-
tation θ, multi-dimensional feature vectors are extracted from the detected points
or regions and this step is called feature description. SIFT [76, 75], SURF [11, 10],
and HOG [27], which are the most frequently used feature descriptors, will be ex-
plained in detail.

In the SIFT descriptor, first the orientation of a 16× 16 pixel region around the
interest point is estimated by using pixel differences.

m(x,y) =
(
(L(x+ 1,y)−L(x−1,y))2 + (L(x,y+ 1)−L(x,y−1))2

)1/2
(2.9)

θ(x,y) = tan−1L(x,y+ 1)−L(x,y−1)
L(x+ 1,y)−L(x−1,y) (2.10)

where L(x,y) denote the intensity at (x,y) in the image I, which is smoothed by the
Gaussian with the scale parameter found in the feature detection step,m(x,y) denote
the gradient magnitude and θ(x,y) denote the orientation. Second, the computed
orientation is quantized into eight bins spread over the range of 0− 360. Then,
the 16× 16 detector region is divided into a regular grid of non-overlapping 4× 4
sub-regions. For each cell, an eight-dimensional histogram of the image orientations
is computed. Each contribution to the histogram is weighted by the associated
gradient amplitude and by distance so that positions further from the interest point
contribute less. The 4×4 = 16 histograms are concatenated to make a single vector
which has 4×4×8 = 128 elements. Finally, the vector is normalized to unit length
to make it invariant to affine changes in illumination [76, 75]. In this thesis, the
SIFT descriptor is used to extract the discriminative features for retail product
recognition.

SURF is designed as an efficient alternative for SIFT. The Haar-wavelet responses
in x and y directions are used in the SURF descriptor and integral images are used
for efficient calculation of the Haar-wavelet response. The Haar-wavelet responses
in both x and y directions within a circular neighborhood of radius 6s around the
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point of interest are computed, where s denote the corresponding scale of the interest
point. The obtained responses are weighted by a Gaussian function centered at the
point of interest. Then, the Haar-wavelet responses of the pixels in a circular with
the radius of 6s s in a circular neighborhood of radius 6s around the interest point are
accumulated using a sliding window with the size of π/3. The accumulated response
yields the dominant orientation [11, 10]. In the description, a square region with
the size of the 20s around the interest point is extracted. The feature region is first
rotated using the estimated dominant orientation and divided into 4×4 sub-regions.
For each of the subregions, the Haar-wavelet responses (dx,dy, |dx|, |dy|) are extracted
at 5 × 5 regularly spaced sample points. The responses are weighted with a Gaussian
to make the descriptor more robust for deformation, noise, and translation. Finally,
the 64-dimensional SURF descriptor is defined by concatenating the sub-vectors of
4×4 regions.

v = (
∑

dx,
∑

dy,
∑
‖dx‖,

∑
‖dy‖) (2.11)

Although SURF descriptor is much faster than the SIFT, the SIFT descriptor is
more suitable for image classification problems affected by translation, rotation,
scaling, and other illumination changes (e.g., retail product recognition) [7].

The Histograms of Oriented Gradients (HOG) descriptor is a well-known global fea-
ture extraction method in computer vision [27]. In HOG, firstly, the orientation and
magnitude of the image gradients are computed at every pixel in a 64×128 window.
The image is divided into several overlapping 6×6 sub-regions, and a separate HOG
descriptor is calculated for each region. An orientation histogram with 9 channels
is computed within each cell, where the contribution to the histogram is weighted
by the gradient amplitude and the distance from the center of the cell. In other say,
central pixels affects the histograms more. For each 3×3 block of sub-regions, the
descriptors are concatenated and normalized to form a HOG descriptor [27].

Image Representation: Local features are encoded into a fixed-length vector, in
image representation. Bag of Words based approaches are very well-known in object
classification problems [26, 68]. The BoW method consists of three main parts such
as feature extraction, vocabulary learning, and spatial histogram computation. For
feature extraction, a good descriptor such as SIFT [76, 75] or SURF [10, 11], which
are invariant to intensity, rotation, scale, and affine variations, is used to efficiently
computed for interest points. In the second step, vocabulary learning, a clustering
algorithm (e.g., K-means) is applied over all the feature vectors. The centers of the
learned clusters represent each visual words and then, a dictionary, which consists
of these words, is created. In the third step, based on the clustering process, the
extracted feature vectors are mapped to the visual words by assigning each descriptor
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to the nearest word in the dictionary. Then, spatial histograms are computed. The
encoding vector, BoW is more discriminative than the feature vector and perform
remarkably good for object recognition.

2.1.1.2 Classification Based on Features

In the following discussion, it will be assumed that the features, for an object can be
represented as a point in the d-dimensional feature space defined for that particular
object recognition task. Let x denote a fixed-length feature vector and K denote
the number of object classes.

Support vector machine: SVM is a frequently used supervised learning tech-
nique in classification problems. The SVM is fundamentally a two-class classifier.
However, in general, there are more than two classes (K > 2) in object recognition
problems [25]. To adapt the SVM to multi-class problem, K number of One-vs-all
or (K× (K− 1))/2 number of one-vs-one binary classifiers are trained [58]. In the
binary classification problem, linear SVM models are represented as follows:

y(x) = wTx+b (2.12)

where b is the bias parameter. LetX= {x1, ...,xN} denote the set of training feature
vectors, N denote the number of training sample and T = t1, ..., tN , tn ∈ {−1,1}, is
the corresponding true labels. A new data points x is classified according to the
sign of y(x). In the binary SVMs, a set of hyperplanes are constructed as the
decision surface. To construct the hyperplanes, the margin of separation between
classes is maximized by using an optimization approach. A subset of the data
points in the feature space is called "support vectors". The margin is defined as the
perpendicular distance between the decision boundary and the closest of the data
points. Maximizing the margin leads to choose the decision boundary as shown in
Eq. 2.13 [25].

argmax
w,b

{ 1
||w||

min
n

[tn(wTxn) + b]
}

(2.13)

SVMs can efficiently perform both linear and non-linear classifications. In non-
linear SVM classification methods, the feature set is mapped into high-dimensional
feature spaces as kernel trick. Furthermore, in non-linear problems, different types
of kernels (e.g., RBF and polynomial) can be used to increase the performance of
the classifier.
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Bayesian Classifiers: The graphical models (i.e., Naive Bayes), are also very pop-
ular classifiers for object classification problems. The specific assumption of Naive
Bayes classifier is that each feature variable is conditionally independent of other
feature variables given the class variable, which enables a simple joint distribution
model [39]. The classifier learns distributions for different classes over the training
set. The classification decision is made by maximization of posterior probabilities
as follows

y = argmax
y∈Y

p(y|x) = argmax
y∈Y

p(x|y)p(y)
p(x) ∝ argmax

y∈Y
p(x|y)p(y) (2.14)

where y ∈ Y denote class label and P (x) can be considered as a normalization con-
stant.

Bayesian approach is also commonly used in hierarchical classification approaches in
which the classes are ordered in a hierarchy structure, typically a tree, T . In hierar-
chical classification, each leaf node of the hierarchy represents a class label. In these
methods, if an object class belongs to a certain class, it automatically belongs to all
its super-classes (ancestor nodes). There are two main approaches in a hierarchical
classification. The first method is called the global approach which builds a classifier
to predicts all the classes at once. However, the drawback of this strategy is that
it requires too complex computations, especially for large hierarchies (e.g., retail
product recognition). The second method is based on the local approaches which
train several classifiers and combine their outputs. One of the most commonly used
local approaches is the local classifier per node strategy. In this strategy, a local
classifier, a binary classifier, is built for each node Ti in the hierarchy T , except the
root node. In the classification phase, firstly, the probabilities for all local classifiers
are obtained based on the input data. Then, the score for each path in the hierarchy
is calculated by a sum of the log of the probabilities of all local classifiers in the path
as follows

score=
n∑
i=1

log(P (yi|xi,pa(yi))) (2.15)

where pa denote the parent of node i [18]. Finally, the scores for all the paths are
obtained, the leaf node of the path with the highest score is returned as the predicted
class label.

2.1.2 Deep Neural Networks
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Nowadays, deep learning methods are also widely used in object recognition prob-
lems. Deep learning is a machine learning technique which uses a cascade of many
layers of nonlinear processing units. The multilayer networks learn complex, high-
dimensional, nonlinear weights for processing units from large collections of the
training dataset. Deep learning methods have recently shown powerful performance
on object recognition tasks [15, 69, 106, 72, 60, 59, 110].

CNN consists of different types of layers and operations: convolutional layers, acti-
vation function, pooling layers, batch normalization, dropout, and fully connected
layers. In the following subsections, the role of these components in the CNN archi-
tectures is briefly described.

2.1.2.1 Convolutional Layer

A convolutional layer is composed of a set of convolutional kernels and each neuron
in a CNN act as a kernel. In CNN’s, kernels, which is a matrix of values, called
weights, are used as filters to detect features (e.g. edges and corners) throughout
an image. In a convolutional layer, the image is divided into a small block and
then these blocks, know are convolved with a specific set of weights. A convolution
operation is carried out by multiplying the elements of the kernel (weights) with the
corresponding elements of the input image area as follow:

Fl
k = (Ix,y ∗Kl

k) (2.16)

where I represents Input image, x,y shows spatial locality and Kl
k where represents

lth convolutional kernel of the kth layer. The convolutional layer provides us to
extract locally correlated pixel values by divide images into small blocks. Different
types of Convolution operation may be implemented based on the type and size of
filters, the type of padding, and the direction of convolution.

2.1.2.2 Activation Function

The outputs of the convolution layer summed with a bias term and then this sum-
mation is used as input for an activation function. Activation Functions are usually
non-linear functions. Sigmoid, tanh, max-out, rectified Linear Unit (ReLU), and
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variants of ReLU (leaky ReLU, ELU, and PReLU) are most commonly used non-
linear activation functions in CNNs. Depending on the nature of data and classifi-
cation problem, an activation function is selected and the selection of the suitable
activation function may accelerate the learning process and solve the vanishing gra-
dient problem. The activation function is defined in Eq. 2.17

Tl
k = fA(Flk) (2.17)

where Flk is an output of a convolution operation and is given as input to the
activation function. fA denote the activation function and adds non-linearity to Flk.
Activation function serves as a decision function and helps in learning a complex
pattern.

2.1.2.3 Pooling Layer

After the activation function, a pooling layer is added to the network to speed up
the training, reduce the spatial size of the feature maps, and reduce the memory
consumption. Pooling layer sums up similar information in the neighborhood of the
receptive field and outputs the dominant response within this local region. Average
pooling and max pooling are the two most commonly used nonlinear down-sampling
strategies. They also make the network invariant to translational shifts and small
distortions by combining the features.

In max pooling, a window is moved over the input and simply outputs the maximum
value in that window. In average pooling, a window is moved over the input and
simply outputs the average value in that window. A general formulation for pooling
layer is explained as follows:

Hl = fp(Fx,yl) (2.18)

where fp() represents type of pooling operation and Fx,yl represents lth input feature
map.

2.1.2.4 Batch Normalization
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Batch normalization brings the distribution of feature map values to zero mean and
unit variance as shown in Eq. 2.19

Sl
k = Hl

k

σ2 +∑
iHi

k
(2.19)

where Slk represents normalized feature map, Hl
k is input feature map and sigma

represents standard deviation in a feature map.

2.1.2.5 Dropout

In Dropout layer, some connections are randomly skipped with a certain probability.
This layer improves the generalization of the network and prevents the network from
the overfitting problem. The output of the dropout layer is used as an approximation
of all of the proposed networks.

2.1.2.6 Fully Connected Layer

In the final layers of networks, fully connected layers are used to enable the 2D
feature maps to be converted into a 1D feature vector. A fully connected layer
takes input from the output of the previous layer and globally consider the output
of all previous layers. It computes the confidence scores for each class through a
dense network. The output of a fully connected layer is then passed to a regression
function such as Softmax which maps all class sores to a vector whose elements sum
up to one.

2.2 Context-Aware Object Classification

Recognizing an object in an image is difficult when images include blur, occlusion,
different lighting, and noise. This task becomes even more challenging when there
are fine-grained visual differences between object classes. Early studies in psychology
show that semantic context information helps the human visual system to recognize
the objects [37].
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Recently, some computer vision approaches have utilized both appearance and
context-based information extracted from objects to improve the recognition ac-
curacy [40, 86, 36, 120, 83, 54, 65]. In challenging recognition problems, appearance
information extracted from object images can successfully recognize object classes
up to a certain extent. In addition to appearance information, the use of context
knowledge, which is obtained from the interaction among objects in the scene, can
refine the appearance-based recognition systems. Context knowledge is commonly
obtained from external knowledge provided by domain experts. However, it can also
be exploited from labeled training data.

There are two main approaches which propose a context-aware system for object
recognition [40]. In the first approach, classifiers are chosen to integrate the context
feature obtained from either local or global statistics with appearance-based features.
In literature, some discriminative classifiers such as boosting [36, 120] and Logistic
Regression [83], and generative classifiers such as Naive Bayes classifier [54] have
been used to combine context and appearance features to improve the performance
of the object recognition system. In the second approach, graphical models have used
to statistically model context since they can encode the contextual dependencies be-
tween objects in real-world scenes for object categorization [61, 100, 94, 89, 122].
Generally, semantic context, which statistically models co-occurrence of an object
class with other classes in scenes, and spatial context, which encodes spatial neigh-
boring relationship among objects in scenes, are the most widely used types of
context in object recognition. In this thesis, we focus on graphical models to statis-
tically model the context in scenes.

2.2.1 Graphical Models

Graphical modeling is used in different areas including computer vision, information
theory, speech recognition, and genetic analysis [61, 6, 20, 51, 40, 120, 86]. Graphical
models provide a powerful framework for modeling the statistical context model in
object recognition problems [61].

Graphical models consist of generative and discriminative methods. A generative
model, for example, HMM, is based on the joint distribution that is factorized as
P (Y,X) = P (Y )P (Y |X). A discriminative one directly models conditional distri-
butions P (Y |X) and Conditional random field (CRF) can be given as an example
of the discriminative models. Generative models describe how a label vector Y can
probabilistically “generate” a feature vector X. However, discriminative models di-
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rectly describe how to take a feature vector X and assign it a label Y [114, 93, 105].
Although the models can be converted to the other type by using Bayes’s rule, they
are different approaches.

(a) HMMs

(b) CRFs

Figure 2.1 Graphical structures of a first-order chain HMM and a linear-chain CRF.
The HMM model defines a joint probability P (Y,X) whereas the CRF model defines
a conditional probability of P (Y |X). The HMM model only has access to the
current observation. However, in the CRF, the all observation sequence can be
reached at any time.

The main conceptual difference between discriminative and generative models is
that a conditional distribution P (Y |X) does not include a model of P (X), which
is not needed for classification anyway. The difficulty in modeling P (X) is that it
often contains many highly dependent features that are difficult to model.

CRF is the most widely used statistical approach for object recognition. In [100,
94, 89], a discriminative model is proposed for object recognition. The proposed
CRF model incorporates appearance, shape and context information to learn the
conditional distribution over the object categories. Then, the parameters of the CRF
model are estimated and the objects are recognized by finding the most likely class
for given model parameters. Furthermore, HMM is commonly used for recognition
in time-sequential images such as human action recognition [122]. The features
are extracted from a set of the time sequential images and then the features are
converted into symbols by using quantization in [122]. The HMM model parameters
are learned over the sequence of symbols.

In addition to simple statistical models, there are more complex graphical models
used in object recognition problems. In [103], a hierarchical probabilistic model is
proposed for the detection and recognition of objects. Robust part-based models
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are constructed for the visual appearance of object categories in [103]. The model
in [103] is based on a set of parts which describe the expected appearance and
position, in an object-centered coordinate frame and each object category has its
own distribution over these parts.

In the following two sections, the chain structured graphical models, namely HMM
and CRF, we are briefly introduced in the following two sections. In this thesis,
these models are used to statistically model the contextual relationship between the
product classes on the retail shelves.

2.2.1.1 Hidden Markov Models

First-order Markov Chain is a special case of HMMs. In Hidden Markov models, the
states are not directly visible. However, observations, which are dependent on the
states, are visible. Each state has a probability distribution over the possible output
observations [93]. The first-order Markov assumption is formulated as in equation
2.20.

P (y1, ....,yn|x1, ....,xn)∝

L(y1, ....,yn|x1, ....,xn) =
T∏
t=1

P (xt|yt)
T∏
t=1

P (yt|yt−1)
(2.20)

where the variable Y represents the hidden states and the variable X is used for the
observations. A is the transition matrix. It is given by equation 2.21.

A = {aij} aij = P (yj |yi) i, j = 1,2, ...,n (2.21)

E represents the emission matrix. It is formulated as follows:

E = {eij} eij = P (xj |yi) j = 1,2, ...,m j = 1,2, ...,n (2.22)

The variable π is the initial state matrix. π is the probability that the state is an
initial state.

The parameters of a HMM, {A,E,π}, are learned by maximizing P (X|A,E,π).
Generally, the Baum–Welch algorithm is used to learn the parameters. For given
model parameters and an observed sequence, most likely corresponding state se-
quence is found over all possible state sequences. The most likely sequence is pre-
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dicted efficiently by using Viterbi or Forward-Backward algorithms[93].

2.2.1.2 Conditional Random Fields

Linear chain CRF is a special case of CRFs. A linear-chain conditional random field
is a distribution P (Y |X) that takes the form:

P (Y |X) = 1
Z(x)

T∏
t=1

exp{
K∑
k=1

θkfk(yt,yt−1,xt)} (2.23)

where Y, X are random vectors, θ is a parameter vector, and fk is a set of real-valued
feature functions. The features fk are given and fixed.

Z(X) is an input-dependent normalization function and formulated as follows:

Z(X) =
∑
y

T∏
t=1

exp{
K∑
k=1

θkfk(yt,yt−1,xt)} (2.24)

As a measure to avoid overfitting, we use regularization, which is a penalty on
weight vectors. A common choice of penalty is based on a regularization parameter
1/2σ2 that determines the strength of the penalty. In CRF, the parameter estima-
tion is commonly performed by penalized maximum likelihood. The regularized log
likelihood is given by equation 2.25

l(θ) =
N∑
i=1

T∑
t=1

K∑
k=1

θkfk(y
(i)
t ,y

(i)
t−1,x

(i)
t )−

N∑
i=1

logZ(x(i))−
K∑
k=1

θk
2

2σ2 (2.25)

Both the partition function Z(X) in the likelihood and the marginal distributions
P (yt,yt−1|x) in the gradient can be computed by the forward-backward algorithm.
The function is concave and it provides that every local optimum is also a global
optimum.

In the training, well-known optimization techniques can be used to estimate the
parameters of the model. The first and simplest approach is the steepest ascent along
the gradient, but especially for the optimization of a large number of parameters,
this requires too many iterations [105].

The second approach is the Newton method which converges much faster because it
takes into account the curvature of the likelihood. However, the Hessian, which is
the matrix of all second derivatives, is computed in Newton method [105]. The size
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of the Hessian quadratically increases based on the number of parameters. In real-
world applications, tens of thousands or even more number of parameters are used
to model the CRFs, especially in fine-grained classification problems. Therefore, in
these kinds of models, storing the full Hessian requires a lot of memory.

The third approach is the quasi-Newton method. This method makes an approxima-
tion on second-order information from the first derivative of the objective function in-
stead of computing the Hessian. The use of such second-order limited-memory meth-
ods provides us much faster optimization for learning the parameters of the CRF
model [105]. In inference, Viterbi Algorithm is used to find Ŷ = argmaxY P (Y |X).

2.3 Hierarchy-aware Object Classification

Hierarchical classification is a system which recognizes classes according to a class
hierarchy. In many real-world classification problems, object classes are naturally
organized into a class hierarchy. In object recognition problems, hierarchical repre-
sentation of object classes may enable the classification algorithm to (1) find similar
object categories, (2) examine the relationships between object classes in terms of
visual similarity, (3) work not only on the finest level of the class hierarchy but also
on any of the higher levels, and (4) accelerate image categorization.

According to previous work in [98, 29, 101, 104], hierarchical classification methods
differ in several aspects. The first aspect is the type of hierarchical structure. A tree
or a Directed Acyclic Graph would be a typical example of such a structure. The
main difference between these hierarchical structures is that a node can not have
more than one parent node in the tree.

The second aspect is related to how deep the classification in the hierarchy is per-
formed. There are two main types of hierarchical classifiers in terms of the prediction
depth of the classifier. The first approach, called "flat" classifiers, always classifies
an object in the finest level of the hierarchy (on leaf nodes). The second approach,
"set-based" classifiers, performs in a way that will consider stopping the classifica-
tion at any node in any level of the hierarchy. This approach return set of classes,
namely "recognition set", as prediction [98, 29, 101, 104].

The third aspect is about the exploration of the hierarchical structure such as top-
down classifiers which consists of a set of local classifiers and global classifiers which
consider the class hierarchy at once [101]. Local methods first classify the nodes in
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the first level of the hierarchy and then recursively classify the nodes in the higher
levels of the hierarchy until the prediction of the leaf nodes is made. There are three
main types of local hierarchical classifiers such as local classifier per node, local
classifier per parent, and local classifier per level. The main disadvantage of local
classifiers is that an error at a certain level of the class hierarchy may be propagated
through the hierarchy. If the classifier can return a set of classes as prediction,
a stopping approach can be used to prevent error propagation by providing less
specific predictions.

In hierarchy-aware object classification, many methods use taxonomies that are
manually constructed using domain knowledge. In addition to taxonomies, some
studies apply hierarchical clustering algorithms [46, 9, 79, 98] to produce a nested
partitioning based on similarities in the feature space. In the following subsection,
automatic hierarchy reconstruction will be explained in detail. This procedure is
also implemented in our proposed work to construct the class hierarchy for retail
product classes.

2.3.1 Learning Hierarchical Structure for Visual Object Recognition

A hierarchy reconstruction algorithm produces a dendrogram representation as a
set of linked nodes. It looks like a tree and the similarity levels increase in the
tree from the root node to leaf nodes. The dendrogram can be used to analyze
the different clustering of the data by breaking it at different levels. Hierarchical
clustering algorithms can be split into two main techniques: merging (agglomerative)
and splitting (divisive) [62]. Since the hierarchical clustering algorithms are based on
the measure of the similarity between patterns, the similarity measure (or distance),
which is computed from the feature space, must be chosen carefully. There are
different well-known distance measures in literature such as Euclidean, Mahalanobis,
Minkowski, Cosine, Correlation and Mutual Neighbor [62].

2.3.1.1 Top-Down Divisive Method

In the divisive method, the algorithm starts with a single cluster, which consists
of all patterns and recursively split the cluster until a stopping criterion is satisfied
[62]. In top-down strategies, K-means clustering and normalized graph cuts are most
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commonly used partitioning methods. K-means clustering minimizes the distances
to cluster centers and tries to find compact clusters. Recursive application of K-
means algorithm allows the system to construct a class hierarchy. In Normalized
cuts, a dataset is denoted as GV = (V,EV ), where v ∈ V denote the nodes. A graph
GV is partitioned into GA and GB where AV and BV are two disjoint sets of nodes.
cut(vA,vB) represents the distance measured between the nodes. Normalized cuts
method try to minimize the Eq.2.26

Ncut(A,B) = cut(A,B)
cut(A,V ) + cut(A,B)

cut(B,V ) (2.26)

where cut denotes distance measures and is formulated as the sum of weights of all
edges which connect the nodes between sets A and B as follow:

cut(A,B) =
∑

a∈A,b∈B
cut(a,b) (2.27)

2.3.1.2 Bottom-up Agglomerative Method

An agglomerative approach begins with each class in a distinct single cluster and
merges clusters until the stopping criteria is satisfied.

Most bottom-up agglomerative algorithms are variants of the single-link, complete-
link, and minimum-variance algorithms [62, 117, 34, 98]. The single-link and
complete-link algorithms are the most commonly used among the hierarchical clus-
tering algorithms. The difference between the single-link and complete-link algo-
rithms is the way of defining the similarity between clusters. In both algorithms,
merging strategy is applied based on minimum distance criteria.

We will explain the most commonly used clustering strategies for agglomerative
algorithms in detail. For each methods, the following notations are used. Cluster
pa is the parent of the cluster l and r. nr and nl denote the number of objects in
clusters r and l respectively. xri is the ith object in cluster r.

Single-link: In this method, the distance between two clusters is the minimum of
the distances between all pairs of patterns drawn from the two clusters.

d(r, l) =min(dist(xri,xlj)), i ∈ (1,2, ...,nr), j ∈ (1,2, ...,nl) (2.28)
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Complete-link: This algorithm computes the distance between two clusters based
on the maximum of all pairwise distances between all pairs of patterns drawn from
the two clusters. The complete-link algorithm provides us more compact clustering
results than the single-link algorithm.

d(r, l) =max(dist(xri,xlj)), i ∈ (1,2, ...,nr), j ∈ (1,2, ...,nl) (2.29)

Average-link: This method uses the average distance between all pairs of objects
in any two clusters.

d(r, l) = 1
nrnl

nr∑
i=1

nl∑
j=1

dist(xri,xlj) (2.30)

Centroid-link: Centroid linkage uses the Euclidean distance between the cen-
troids of the two clusters.

d(r, l) = ||x̄r, x̄l||2 (2.31)

where x̄r is formulated as follow:

x̄r = 1
nr

nr∑
i=1

xr
i (2.32)

Median-link: The Euclidean distance between weighted centroids of the two clus-
ters is used as in Eq. 2.33

d(r, l) = ||x̃r, x̃l||2 (2.33)

where x̃r and x̃l are weighted centroids for the clusters r and s. If cluster r was
created by combining clusters p and q, is defined recursively as

x̃r = 1
2(x̃p+ x̃q) (2.34)

Ward: The within-cluster sum of squares is defined as the sum of the squares of
the distances between all objects in the cluster and the centroid of the cluster. The
sum of squares metric is equivalent to the following distance metric d(r, l), which is
the formula linkage uses.

d(r, l) =
√

2∗nr ∗nl
nr +nl

||x̄r, x̄l||2 (2.35)

where || ||2 is the Euclidean distance x̄r and x̄l are the centroids of clusters r and
l.
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Weighted average-link Weighted average linkage uses a recursive definition for
the distance between two clusters. If cluster r is created by combining clusters p
and q, the distance between r and another cluster l is defined as the average of the
distance between p and l and the distance between q and l.

d(r, l) = (d(p,s) +d(q,s))
2 (2.36)

2.4 Set-based Object Classification

In this section, we will analyze the classifiers in terms of the number of classes
returned by a classifier as output. An object classifier may return a single prediction
("flat" classifier) or set of classes ("set-based" classifier) as a prediction of a given
input object image. Furthermore, in some applications (e.g., biometric identification,
signature recognition, and disease diagnosis), one may prefer to take an empty set
as prediction instead of taking the wrong decision.

Generally, the posterior probability is used to decide the number of classes returned
by the classifiers. We will briefly introduce these methods. For each method, the fol-
lowing notations are used. Let N denote the number of classes, Y = {Y 1,Y 2, ...,YN}
denote the set of all product classes and X denote the extracted feature vector for a
given object image. A posterior probability P (yi|x) ∈ [0,1] can be defined by using
Bayes formula as follows:

P (yi|x) = p(yi|x).π(yi)
p(x) , i= 1,2, ...,N (2.37)

where P (yi|x)is the conditional probability density function, π(yi) is the priori prob-
ability and p(x) is the mixture density function.

p(x) =
N∑
j=1

P (x|yi).π(yi) (2.38)

2.4.1 Reject Options
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Reject options have been proposed to be able to ensure a higher reliability [23,
24, 126]. These algorithms return all classes for given object images. In rejection
based approaches, the system simply rejects the sample object image if its highest
posterior probability is less than a user-defined threshold. This strategy tries to
find the optimum rule by minimizing the error rate for a given reject rate [23, 24].
However, for some recognition problems (e.g., large-scale object recognition and fine-
grained object recognition), a rejection would require the user to make a manual
classification for hundreds of classes for a given object image.

2.4.2 Class-selective Rejection

To solve the problems of reject option, classification systems, which choose to give
a set of classes instead of a single estimate, have been proposed [48, 49, 57, 45]. In
these systems, if an input object images cannot be reliably assigned to one of the
classes, it is assigned to a subset of classes, which are most likely to fit the input
retail product image. In these methods, there is a trade-off between the error rate
and the average number of classes. So, these methods should consider the trade-off
to be able to achieve high accuracy and maximize information gain at the same
time.

There are different class-selective rejection methods which generally use the posterior
probabilities to generate the sets of classes returned by the classifiers. In class-
selective rejection methods, usually, first, the posterior distribution over classes are
computed and then the posterior probabilities are sorted in descending order as
follow:

P (yi|x) 7→ Qn(x); | Qn(x)≥Qn+1(x) i= 1,2, ...,N n= 1,2, ...,N
(2.39)

In the following, we briefly introduce class-selective rejection methods including
confidence sets method.

Top-n classes: The simplest and the most commonly used strategy uses top-n
ranking rule, in which n is an user-defined fix number (n ∈ {1,2, ...,N}). Many of
the set-based methods report the top-ranking n classes which are most likely ones
among the set of all object classes.

Cumulative method: The posterior probabilities are accumulated starting from
the largest one until the cumulative probability passes the user-defined threshold and
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the classes, whose posterior distributions are accumulated, are selected as recognition
set.

Minimum error rate: [48, 49] proposes a class-selective rejection strategy which
proposes a decision which minimizes the error rate for a given average number of
classes. [48, 49] return the number of classes which has the posterior probability
higher than the predefined threshold.

Minimum distance: [57] shows that if the class-selective rejection method does
not consider the probability relationship among classes, the method may misclassify
the given object images. They propose a method which minimizes the maximum
distance between selected classes for a given number of classes.

n= argmin
k∈[1,2,...,N ]

{Qk(x)−Qk+1(x)≥ threhold} (2.40)

Confidence sets: This method returns recognition results as “confidence sets”
that are guaranteed to contain the true class at a given confidence level 1−ε. Given
some target confidence level 1− ε, we can return a minimal set of results, the so-
called “confidence set”, for which the probability of not containing the true class
will be less than ε [98].

In this method, a hierarchical classifier, which utilizes from the constructed class
hierarchy (See Section2.3.1), is used for generating recognition set. The classifier
returns posterior probabilities for the leaf nodes of the tree T . In the first step, the
posterior probabilities P (Y ∈ Ct|X = x) for each t ∈ T as follows:

P (Y ∈ Ct|X = x) =
∑
c∈Ct

P (Y = c|X = x) (2.41)

where Ct denote the set of classes which contains classes at the leaf nodes under the
node t. Then, a set of confidence sets are formulated as in Eq. 5.6

B(x) = {t ∈ T : P (Y ∈ Ct|X = x)≥ 1− ε}. (2.42)

In the last step, the smallest set Ct in the tree T , which satisfies the confidence
constraint, is returned as confidence set.

C(x) = CT (x), T (x) = argmin
t∈B(x)

|Ct| (2.43)

In other words, the deepest node in B(x), T (x), is returned as confidence set [98].

35



The use of hierarchical structure provides us drastically reduces the expected size
of recognition sets. In this thesis, for the retail product recognition task, we use a
"confidence sets" approach to guarantee the confidence threshold and give maximum
information about the object label at the same time.
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CHAPTER 3

Context-Aware Hybrid Classification System for
Fine-Grained Retail Product Recognition

In this chapter, we present a context-aware hybrid classification system for the prob-
lem of fine-grained product class recognition. Recently, retail product recognition
has become an interesting computer vision research topic. We focus on the classi-
fication of products on shelves in a store. This is a very challenging classification
problem because many product classes are visually similar in terms of shape, color,
texture, and metric size. In shelves, same or similar products are more likely to
appear adjacent to each other and displayed in certain arrangements rather than
at random. The arrangement of the products on the shelves has a spatial conti-
nuity both in the brand and metric size. By using this context information, the
co-occurrence of the products and the adjacency relations between the products
can be statistically modeled. The proposed hybrid approach improves the accu-
racy of context-free image classifiers such as Support Vector Machines (SVMs), by
combining them with a probabilistic graphical model such as Hidden Markov Mod-
els (HMMs) or Conditional Random Fields (CRFs). The fundamental goal of the
proposed method is using contextual relationships in retail shelves to improve the
classification accuracy by executing a context-aware approach. The method intro-
duced in this chapter has been published in [12].

3.1 Related work

Recently, recognition of products on retail shelves has become an interesting research
topic in computer vision [2, 1, 80, 43, 5, 78, 12, 92, 53, 44, 99, 111, 110]. Several
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commercial product search systems exist and obtain good classification results on
some product categories with specific planar shapes and textures such as CDs and
books [2, 1]. The methods in [80, 43, 5, 78, 53, 44, 99, 111, 110] focus on retail
product recognition on shelves.

In [80], a new multimedia database of 120 grocery products, GroZi-120 is intro-
duced. For every product, two different recordings are available images extracted
from the web and camcorder video collected inside a grocery store. Each product is
represented by 5.6 average number of training images and each test image contains a
single segmented product. Three commonly used object recognition/detection algo-
rithms (color histogram matching, SIFT matching, and boosted Haar-like features)
are applied into the GroZi-120 dataset.

In [44], a dataset of 26 grocery product classes is proposed with 3235 training images
of product instances and 680 test images of supermarket shelves. A hierarchical
algorithm is proposed, where first, the possible labels that a test image may contain
through ranking the output of a fine-grained classification model are filtered. Second,
fast dense pixel matching on the images in the filtered list is performed, and the
individual products are ranked by their matching scores. Then, multi-label image
classification is achieved through minimizing an energy function through genetic
algorithm global optimization. In contrast to our approach, [44] simultaneously
recognizes and localizes all the individual products in a shelf image with only one
single training image per label

The approach in [5] proposes an inference graph - ViCoNet - that builds context
between retail objects in a scene. The system in [5] is evaluated on a large dataset
that captures the complexities of real-world data. In this paper, authors use a
co-occurrence network of 62 distinct products to model context. Their emphasis
is more on efficiency than the accuracy of recognition. Unlike our approach, their
model does not exploit fine level spatial relationships, but rather whether two classes
are present together in a large scene, as it is temporally captured by the shopper’s
sensor.

The most relevant method to ours among previous work are [78], which used a
dataset very similar to our dataset in terms of the number of classes and sample
product images. [78] extracts and matches SURF features. The classifier returns
several similar products for each product image similar to our approach. However,
in the next step, disambiguation steps are applied to eliminate recognitions and the
method returns a single recognized product. They correctly recognize 87.4% of the
223 products and indicate that all the products that were misclassified were classified
as products from the same group which consists of visually similar products.
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3.2 Motivation

In the retail industry, a diagram, which is called as planogram, is used to maximize
the potential of a store. A planogram shows how and where specific retail products
should be placed on retail shelves. The products on shelves in a store are usually
displayed in certain arrangements rather than randomly.

Generally, in planograms, the same or similar products are more likely to appear ad-
jacent to each other. Thus, there is a spatial continuity and structure in placements
of the products on the shelves in terms of both brand and metric size (See Figure
3.1). This context information provides us with knowledge of how likely certain
retail products are to be found together and can be captured through a statistical
model of the product arrangements on the shelves. This statistical model can po-
tentially improve the performance of retail product classification systems, especially
when the data are challenging. This motivates us to deal with the shortcomings of
the existing methods by incorporating a statistical context model to the product
recognition process.

3.3 Contribution

Our contribution in this work is a hybrid system that classifies the fine-grained
retail products in a store shelf. The proposed classification system combines the
strengths of context-free classifiers and context information. In computer vision,
traditional supervised classifiers train a function that can recognize products by
extracting features from observed images. In the context-free approach, the trained
classifier recognizes each retail product according to the information available in the
corresponding image. The proposed context-aware learning approach recognizes all
the products on the shelf by using input product images and knowledge learned
about which products tend to be adjacent in planograms. So, the arrangements of
the retail products on the shelf can be seen as a sequence.

The context-aware object classifiers are the recognition systems which can extract,
model and use context information. Graphical models provide a powerful framework
for modeling statistical structures in scene understanding problems [122, 103, 61, 94].
HMM is commonly used for recognition in time-sequential images such as human
action recognition [122]. The features are extracted from a set of time-sequential
images and then HMM model parameters are learned over the sequence of quantized
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Figure 3.1 A sample retail shelf image that provides motivation for the proposed
method.
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features. There are also more complex graphical models used in object recognition
problems. [103] proposes a hierarchical probabilistic model for the detection and
recognition of objects. It is based on a set of parts, which describe the expected
appearance and position in an object-centered coordinate frame, and each object
category has its own distribution over these parts. Although there are context-
aware approaches, which combine visual information with context knowledge in
other application domains [56, 47, 21, 122, 103, 61, 94], many of the studies [80,
53, 44, 99, 111, 110] on product recognition do not consider the context knowledge,
except [43, 5, 78].

The context information about the placements of the products on the shelves is not
considered in [80]. In general, the context knowledge is usually gathered from the
training images turned into statistically learned priors. However, the approach in
[43] involves a general assumption about the prior distribution. In [43], the context
knowledge is modeled such that classes, which fall under the same category, are
more likely to occur together than those, which fall in different categories. They
only consider this assumption as the context model and their dataset does not involve
a product arrangement. The experimental results in [43] show the positive effect of
the context information on the performance of the algorithm.

[5] proposes an inference graph, ViCoNet, that builds context between products in a
scene. [5] does not exploit spatial relationships, but rather whether two classes are
present together in a large scene, as it is temporally captured by a shopper’s sensor.

The approach in [78] is based on the observation that product arrangements on
shelves reveal some simple left-to-right order rules and internal logic. Context in-
formation is not the main aim of [78]; it is used in the disambiguation sub-step to
improve the overall recognition rates. It is claimed this information helps the pro-
posed system to disambiguate products whose front faces are visually identical and
leads to some increase in the overall recognition rates.

Our work is distinguished from these pieces of work, since (1) the fine-level spatial
product arrangements on the shelf are learned from the training dataset instead of
directly imposing any assumption about neighboring relationships between products,
and (2) a statistical model is proposed to encode the context information in retail
shelves.

Novel aspects of the proposed method include (1) combining the context-free clas-
sifier and context information via a HMM and CRF, (2) applying this concept to
fine-grained recognition of products arranged in retail shelves, and (3) presenting
experimental results on a large dataset, collected from actual retail stores. In this
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Figure 3.2 Flow-chart of the proposed system.

paper, two different hybrid methods are proposed. First, the hybrid approach com-
bines SVMs and a well-known generative graphical model that explicitly attempt
to model a joint probability distribution, based on hidden Markov models. In our
second hybrid approach, SVMs and a discriminative approach based on conditional
random fields are combined to form a new context-aware classifier for fine-grained
product recognition. The proposed context-aware classifiers provide us highly ac-
curate results because they benefit from the strengths of context-free classifiers and
also from context knowledge modeled by correlations between neighboring relations
of retail products.

3.4 Context-Aware Retail Product Classification

The proposed system aims to design a probabilistic model that encodes the relations
between the products on the shelf and combine that with the current vision-based
image classification methods. In a given shelf scene, we encode the underlying spatial
arrangement of products by a chain structure over horizontal product adjacencies
along-shelf rows.

In Figure 3.2, we illustrate an overview of our system. It consists of two main
parts. The first part aims to classify the retail product by using visual information
coming from the product image. In the second part, we infer the product categories
by combining the outputs of the context-free classifier from the first part with the
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learned statistical context model. Our context model is based on a chain-structured
graphical model, G=(V,E) where each node i ∈ V represents a detected product
and edges (i, j) ∈ E encode their spatial adjacency relationships in the scene. In
this work, we focus on two probabilistic graphical models, in particular, HMM and
CRF to design the chain structure. The probabilistic models are trained by learning
from the mistakes of the context-free classifier (SVMs) and the neighboring relations
between the retail products. In the following subsections, we describe the design
and implementation details of each part of our system.

3.4.1 Context-Free Classifier

The proposed context-free classification process consists of four main steps: feature
extraction, vocabulary learning, spatial histogram computation, and training-testing
the classifier. The steps involved in the context-free classification algorithm can be
summarized as follows:

1.1 Feature extraction: Dense scale-invariant feature transform (SIFT) is used
from the VLFEAT toolbox [116]. Dense SIFT is a fast algorithm for the
computation of a dense set of SIFT descriptors. Some of the best performing
image descriptors for object categorization use Dense SIFT algorithm. In our
context-free classifier system, a dense set of multi-scale (8 12 16 24 30) SIFT
descriptors are efficiently computed from a given input image.

1.2 Vocabulary learning: K-means algorithm is used to cluster a few hundred
thousand visual descriptors into a vocabulary of 300 visual words. K-means is
a very well known clustering algorithm and is often used to convert large sets
of feature descriptors into dictionaries of visual words.

1.3 Spatial histogram computation: A Kd-tree algorithm is used to map visual
descriptors to visual words efficiently [116]. Then, the visual words are accu-
mulated into a spatial histogram. After that, pre-transformation, which com-
putes an explicit feature map that applies a non-linear χ̃2-kernel, is applied
on the features to make the feature set more meaningful for linear classifiers.

1.4 Training-testing the classifier: Linear multi-class 1-vs-1 SVM is used for clas-
sification [22].
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3.4.2 Hidden Markov Model

Our first context-aware system is built by adding a HMM model to the context-free
classification system. A first-order chain HMM model is trained to evaluate, confirm
and correct the classification results performed by the initial context-free classifier
(SVM). In a first-order Markov chain, the next state in the chain is independent of
all the past states, conditioned on the knowledge of the current state [93]. In HMM,
the states are not directly visible, but observations, which are related to the states,
are visible.

Training a HMM requires calculating the model parameters involved in the transition
matrix (A), the emission matrix (E), and the prior probabilities (π) of the initial
states. There are different methods to estimate the HMM parameters. In this
work, we train the first-order HMM over the retail product sequences using the
provided data. In our case, the complete structure of each sequence in the training
set is known. Therefore, the maximum likelihood parameter estimation method is
used to estimate HMM parameters.The parameter estimation method looks for θ,
θ = {A, E,π}, which maximize the following equation:

P (X|A,E,π) =
∏
t

P (Xt|θ) (3.1)

In this method, the state transition probabilities P (Yt|Yt−1) are empirically esti-
mated by using the relative frequency of transitions observed in the sequence data,
from product label Yt−1=i to product label Yt=j as follows:

P (Yt|Yt−1) =
∑
Yt−1 = i→ Yt = j

T∑
t=1

Yt−1 = i

(3.2)

The emission probabilities P ( X=j|Y=i), where context-free classifier label is X=j
when the true label is Y=i, are estimated by using the relative frequency method.
For emission parameter estimation, we train the HMM model by using the confusion
matrix which is obtained by the context-free classifier. Although the confusion
matrix is normally used to measure the classification accuracy, in the proposed
method, the misclassified samples are used in the learning process to compute the
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emission matrix.

P (X = j|Y = i) =
∑{Y = i & X = j}

N∑
i=1

Y = i

(3.3)

The prior probabilities are estimated by using the relative frequency of initial states.
In the empirical estimation of probabilities, we could face the zero-frequency prob-
lem. In some rare events, we get zero probabilities through counting based esti-
mation. So, we introduce biases for these rare events to avoid the zero-frequency
problem. Using the trained HMM and Viterbi algorithm, the most likely label se-
quences are inferred for the given observed context-free classifier outputs on the
corresponding product images. The proposed approach improves the classification
accuracy by executing a context-aware classification taking into account the adja-
cency relations of the products on a shelf.

3.4.3 Conditional Random Fields

Conditional random fields offer several advantages over HMMs. Being a discrimina-
tive model, CRFs also avoid certain limitations of generative Markov models such
as the label bias problem [105]. Also, CRF is a random field that involved global
conditioning on the observation X, making it unnecessary to impose conditional
independence assumptions on the data. In the CRF model, X is a random variable
over data sequences to be labeled, and Y is a random variable over corresponding
label sequences. In a discriminative framework, we construct a conditional graph-
ical model P (Y |X) on label sequences are given corresponding observations [105].
The proposed linear-chain conditional random field is a distribution P (Y |X) and is
formulated as follows:

P (Y |X) = 1
Z(x)

T∏
t=1

exp{
∑
i,j∈S

θijf(yt−1 = i,yt = j) +
∑
i,j∈S

λijg(yt = i,xt = j)} (3.4)
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where i, j are distinct labels and S is the set of labels. We also assume that the
features f and g are Boolean functions.

f(yi,yj) =

1 if yt = i & yt−1 = j

0 otherwise
(3.5)

g(yi,xj) =

1 if yt = i & xt = j

0 otherwise
(3.6)

Z(x) is an input-dependent normalization function as follows:

Z(x) =
∑
Y

T∏
t=1

exp{
∑
i,j∈S

θijf(yt−1 = i,yt = j) +
∑
i,j∈S

λijg(yt = i,xt = j)} (3.7)

We estimate the parameters, θij and λij , by using penalized maximum likelihood
method [105]. In optimization step, both the partition function Z(x) in the like-
lihood and the marginal distributions in the gradient is computed by forward-
backward algorithm. Well-known optimization technique, BFGS a quasi Newton
method, is used to estimate the parameters of the model. Then, the inferred prod-
uct categories Ŷ = argmaxY P (Y |X) is similarly found by Viterbi algorithm.

3.5 Experimental Results

In this section, we present our experimental results on a dataset which consists of
the retail shelf images taken from real retail stores.

3.5.1 Dataset

For all our experiments, we use the Vispera soft-drink products dataset [3]. The
dataset consists of 3920 annotated images from retail shelves containing soft-drink
products. Sample shelf images are shown in Figure 3.3. Images are taken by a 8
MP smart phone camera from 20 different retail points, monitored over a course
of 6 months and 124 store visits. In order to maintain high image resolution and
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Figure 3.3 Sample retail shelf images from datasets [3].
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practicality of the photo shoot, multiple shelf images that partially cover the scene
of interest will be mosaicked into shelf panoramas, while also bringing them to
a convenient fronto-parallel view to minimize perspective effects. These will be
done by estimating projective transformations between each overlapping image pair,
and between each image and the approximately planar shelf-facing, respectively by
matching correspondences between images and detecting rectilinear shelf patterns
as vanishing lines.

Annotations are provided in terms of product labels and bounding boxes around soft-
drink objects. Given annotations, cropped patches of individual products, and their
arrangements in shelf rows are extracted. The resulting data contain 108090 cropped
instances of 794 distinct labels, and 11557 non-overlapping product sequences. The
number of training images in each fine-grained class varies from 10 to 1154 images
with an average of 136 images per class.

The dataset is prescreened and the samples that do not comply with the general
product arrangement structure are eliminated. We split the dataset into three
groups. 20% of the all data is used to train the context-free classifier. 70% of
the all data, is used as the test dataset for the context-free classifier and this also
used as training dataset of the graph model. 10% of the all data, is used to test
graph model.

Figure 3.4 Left: Sample shelf image from the dataset, Right: The images in the
right panel are the retrieved template images of recognized classes. In the first step,
the input images are classified by the context-free classifier. In the second step,
the classified samples are reclassified by context-aware classifier, which potentially
improves upon the results of the context-free classifier.
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Table 3.1 Results of various classifiers

Method Accuracy
Context-free(SVM) 68.45%

Context-aware(HMM) 78.02%
Context-aware(CRF) 79.86%

3.5.2 Classifier Performance

The proposed context-aware system is constructed by adding a graphical model,
such as HMM and CRF, to the context-free classification system to evaluate and
potentially correct the context-free classification outputs as shown in Figure 3.4,
of course without any information about the accuracy of the context-free classifier
outputs on the test data. The proposed classification algorithm takes a sequence
of observations (from the context-free classifier) as input, and returns a sequence
of states as output. To classify a given sequence of observations, we find the most
likely sequence of states by using Viterbi algorithm according to the trained graph
model parameters. Table 3.1 presents the comparisons of context-free and context-

Figure 3.5 Classification accuracy for the various product classes. The horizontal axis
corresponds to the product name which is represented with numbers. The vertical
axis shows probability of correct classification achieved by traditional context-free
classification and by the proposed context-aware approach.

aware classification results. It is clear that the context-aware system provides more
accurate results than the context-free classifier. The results show that we achieve
9.5% improvement using the HMM based method and 11.4% improvement using
the CRF based method. These results suggest that the use of an appropriate chain
graph model for sequence classification improves the accuracy of the context-free
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classifier by learning from the errors in the context-free classifier and context infor-
mation. The results in the Table 3.1 also show that CRF outperforms the HMM,
possibly as a consequence of the label bias problem [105], although the difference
may not be significant. However, the training a CRF requires a more computa-
tional cost. Both the partition function Z(x) in the likelihood and the marginal
distributions in the gradient can be computed by forward-backward, which uses
computational complexity O(TM2) (T is the number of sequences and M is the
number of classes). However, each training instance will have a different partition
function and marginals, so we need to run forward-backward for each training in-
stance for each gradient computation, for a total training cost of O(TM2NG), where
N is the number of training examples, and G the number of gradient computations
required by the optimization procedure [105]. For many recognition problems, this
cost is reasonable, but if the number of states is large, or the number of training
sequences is very large, then this can become expensive and time-consuming. Our
problem, retail product recognition, is a large-scale problem in terms of the number
of states and parameters. Since CRFs require a more computational cost of training
and the CRF model does not significantly outperform the HMM model, the HMM
model can be preferred as a context model for retail product recognition.

The Figure 3.6 show the confusion matrices of context-free and context-aware clas-
sifier (with HMM model) systems. The comparison between these methods shows
that the proposed approach improves the classification accuracy by executing the
second cycle of classification taking into account the context-aware relations in the
retail product dataset.

To train the HMM model, the confusion matrix of the context-free classifier is used
to calculate the emission matrix. In addition to the emission matrix, the transition
matrix (state transitions) is calculated from the training dataset based on the relative
frequency method. Figure 3.7 shows the learned transition matrix for the retail
product dataset. As we expected, the spatial relationship between the product
classes is not random and this contextual relationship can be statistically modeled
and learned from the dataset.

In Figure 3.8, sample test images and classification results for the products are
shown. A shown in Figure, 3.8, in some cases the context-free flat classifier, SVM,
confuses a product image with a visually similar class, but the context-aware one,
SVM+HMM, correctly classifies this product (see rows 2 and 3). However, in shelves,
transition probabilities between similar products which have the same metric size
are also usually high. For this reason, context information may not help address
these issues (see rows 1,4,5). To be able to improve the performance of the product
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(a) Context-free classifier results.

(b) Context-aware classifier results.

Figure 3.6 Normalized confusion matrices for a subset of the product classes.
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Figure 3.7 Transition matrix for a subset of the product categories. The matrix is
computed by the maximum likelihood parameter estimation method. The product
classes symbolized by numbers and the consecutive numbers represent the visually
similar retail products. The transitions show that same or similar products are more
likely to appear adjacent to each other.

classifier further, we need additional information in addition to the contextual model
about spatial transitions of the retail products.

3.6 Conclusion

We have proposed a hybrid context-aware product recognition system that classifies
fine-grained product categories from shelf images captured with a smartphone in
retail stores. It combines strengths of a context-free visual classifier, such as SVM,
and appropriate chain graphical models such as HMM or CRF. So, the proposed
method can improve the fine-grained retail product classification results by using
the context information on the shelf.
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Figure 3.8 Each sub-figure shows a sample test product image, ground truth class
of the test image, recognition results of the classifiers (SVM, SVM+HMM), and the
visually similar product classes for or the ground truth label. Tick and cross marks
under the item images indicate whether the classification for that product is correct
or not.
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CHAPTER 4

Deep Learning for Retail Product Recognition

In the past few years, deep learning has gained increasing interest in a variety of
applications. Recently, in most computer vision applications, a CNN, which is a
deep learning algorithm, has been widely used and has achieved state-of-the-art
performance. In this chapter, recent deep learning-based approaches have been ex-
plored and applied on retail product classification. We have implemented the current
state-of-the-art approaches used for the retail product recognition task. We have
conducted extensive experiments and compared the state-of-the-art convolutional
neural networks classifiers including SENet-154 [59], DenseNet-161 [60], B-CNN
[72], and Inception-ResNet-v2 [106] for our problem.

4.1 Related Work

Traditional retail product recognition is mainly based on local feature. These sys-
tems require people to select appropriate features for classification and the extracted
features play a significant role on the classifier performance. In some recognition
problems, deep learning methods, namely Inception-ResNet-v2 [106], B-CNN [72],
DenseNet-161 [60], SENet-154 [59], outperform the traditional vision algorithms
(e.g., ImageNet large-scale image classification [97]).

In addition to large-scale recognition problems, CNNs achieve promising results
for fine-grained object recognition applications [125, 74, 123, 41, 115, 127, 119, 72]
(e.g., fine-grained bird species and car types recognition problems). In existing deep
learning-based fine-grained object classification systems, the use of deep learning can
be organized into the four following groups: (1) general deep neural networks, mostly
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CNNs, are directly used to classify the fine-grained images, (2) deep neural networks
are used as the feature extractor, (3) multiple deep neural networks are combined
to increase performance of the classifiers especially for highly visually-similar fine-
grained images, and (4) the most discriminative regions of the fine-grained images
are found by implementing a visual attention mechanism [119, 127].

In literature, most of the methods prefer to directly use the CNNs either as a classifier
or feature extractor [115, 119]. VGG [102], AlexNet [64], GoogleNet [107], ResNet
[52], Inception [106], SENet [59], and DenseNet [60] are the most widely used deep
networks for fine-grained classification problems. In addition to the direct use of deep
learning methods, in [72], multiple deep neural networks are combined to increase
the performance of the classifiers, especially for highly visually-similar fine-grained
images. [72] presents an effective deep architecture for fine-grained visual recognition
called Bilinear Convolutional Neural Networks (B-CNNs). B-CNN’s represent an
image as a pooled outer product of features derived from two CNNs and capture
localized feature interactions which are transitionally invariant.

The use of deep learning techniques in product recognition has been limited so
far because the available datasets [43, 80] consists of a small number of images
per class. Some recent pieces of work have considered deep leaning techniques for
product recognition and detection [92, 53, 110, 42, 38].

In [92], a deep neural network called ScaleNet is proposed. This method estimates
object scales in images and generates object proposals for product detection. In [53],
a convolutional neural network (CNN), is used for recognizing objects with only a
single training example per class. The method proposed in [53] uses a multi-view
dataset to improve recognition. Unlike our approach, their aim is not fine-grained
recognition. Their emphasis is more on robustness to viewpoint changes with a
limited training dataset. As indicated in [53], the method should be extended for
robustness to occlusions, lighting changes, and many other types of challenges in
the real world.

In [38], an approach for product detection and recognition from shelves is proposed.
Their system consists of three steps such as pre-selection, fine selection and post-
processing. In the pre-selection step, the proposed system selects the initial set of
candidate windows based on the joint information obtained from corners position
and color distribution. Then, more robust features are extracted by using BoWs
and a deep neural network (AlexNet [64]) and these features are used for candidate
selection. In the last step, the multiple detections of the same object are clustered
to produce the final result. They compared a classical Bag of Words technique
with a DNNs approach for the fine selection step. Their results show that DNNs
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based approach outperforms the traditional method on the Grozi-120 dataset [80].
However, on GP-20 dataset [43], the BoW approach achieves better results than the
DNN approach.

In [42], a novel hybrid classification approach, which combines feature-based match-
ing and one-shot deep learning with a coarse-to-fine strategy, is proposed. In [42],
firstly, the candidate regions of product objects are detected. Then, they coarsely
label the products by using recurring features in product images without any train-
ing. Thirdly, attention maps are generated and these maps are used for guiding the
classifier to focus on fine discriminative details by magnifying the influences of the
features in the candidate regions of interest [42]. They employ the VGG-16 [102]
and Res-50 [52] as the fine-grained classifier to recognize the detected products.

In [110], to extract region proposals from the query image, a state-of-the-art object
detector known as Yolo-v2 [95] is used by fine-tuning the network. Then, each
cropped region proposal is sent to another CNN (VGG-16 [102]) which computes an
ad-hoc image representation. These are then deployed to recognize products through
a K-NN similarity search in a database. Finally, they apply a final refinement step
which aims to prune out false detections among similar products and re-rank the
first K-NN found in the previous step in order to fix possible recognition mistakes.
Their emphasis is more on refinement steps than utilizing deep learning methods for
product recognition.

4.2 Motivation

Most state-of-the-art CNN-based methods achieve near-perfect performance and
some of them obtain even better results than humans for challenging image clas-
sification applications. However, the use of deep learning techniques in product
recognition has been limited. This motivates us to implement these state-of-the-art
CNNs for the fine-grained retail product recognition problem.
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4.3 Contribution

Several state-of-the-art deep networks are implemented for fine-grained retail prod-
uct classification. To the best of our knowledge, these deep networks have not been
exploited in any previous work on fine-grained retail product classification. Exten-
sive experiments on four retail product datasets using four deep network structures
have been conducted.

4.4 CNNs for Product Recognition

In this section, we briefly introduce the state-of-the-art CNNs, which are used to
construct retail product classifiers. Then, we explain the training methodology for
these CNNs.

4.4.1 Inception-ResNet-V2

Residual Network (ResNet), is a neural network architecture which provides a short-
cut element (See Figure 4.1). These shortcuts help to robustly backpropagate the
gradients and, so, it solves the problem of vanishing gradients. By integrating the
shortcut elements to a network, the gradient can skip over all intermediate layers
of the network and backpropagate the first layers of the network without being
diminished [106].

Figure 4.1 Residual block. This figure is from the original paper [52].

All inception-based architectures are the modified version of the GoogLeNet model
[107], which won the ILSVRC challenge in 2014 with a top-5 error rate of 6.7 %.
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(a) Inception module, naive version (b) Inception module with dimensionality
reduction

Figure 4.2 Inception module. This figure is from the original paper [107].

These architectures use a deep network element, namely the inception module, which
makes the network more discriminative for local patches within the receptive field.

The inception module consists of a parallel combination of 1× 1, 3× 3, and 5× 5
convolutional filters and then the outputs of the filters are concatenation (See Figure
4.2). Each result of the filters creates a different receptive field. This provides us a
multi-scale view on the input of the inception module. The multi-scale approach al-
lows the model to extract both local features extracted by small convolutional filters
and global features extracted by larger convolutional filters. Before more complex
convolutions, they reduce the number of channels by including Bottleneck layers.
This allows the network, Inception-ResNet-v2, benefits from both strengths of the
residual approach and computational efficiency of the inception module. Figure 4.3
show the Inception-ResNet-v2 modules which are the combination of Inception and
ResNet modules.

Figure 4.3 The Inception-A, Inception-B and Inception-C blocks of the schema on
the left of Figure 6 for the Inception-ResNet-v2 network, respectfully. This figure is
from the original paper [106].
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Figure 4.4 A deep DenseNet with three dense blocks. The layers between two adja-
cent blocks, namely transition layers, change feature-map sizes via convolution and
pooling. This figure is from the original paper [60].

4.4.2 Densely Connected Network (DenseNet)

DenseNet consists of densely connected CNN layers (several dense blocks and tran-
sition blocks). The outputs of each layer are connected with every other layer inside
a block as shown in Figure 4.4. In ResNet, element-wise addition is used as a con-
nection. However, in DenseNets, it is replaced by a concatenation operation. This
provides the network to keep the individual information coming from both input
and skipped layers. To reduce the number of input feature maps and computational
complexity, DenseNets use 1× 1 convolutions before each 3× 3 convolution. The
increase in the number of channels caused by the concatenation operation is com-
pressed at transition layers. The use of dens blocks dramatically reduces the number
of network parameters whilst increasing the accuracy of the classification [60].

4.4.3 Squeeze-and-Excitation Networks (SENet)

The work in [59] proposes a novel architectural unit, termed “Squeeze-and-
Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses
by explicitly modeling interdependencies between channels. The proposed mecha-
nism allows the network to perform feature recalibration, which selectively empha-
sizes informative features and suppress less useful ones. They stack several SE blocks
together to form SENet deep architecture. The SE module used in [59] is shown in
Figure 4.5. In squeeze, the features are passed through an operation, which produces
a channel descriptor by aggregating feature maps across their spatial dimensions.
This is achieved by using global average pooling. This operation provides the deep
networks an embedding of the global distribution of channel-wise feature responses.

The squeeze operation is followed by an excitation operation, which acts as a simple
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Figure 4.5 The SE module. This figure is from the original paper [59].

self-gating mechanism with a sigmoid activation and aims to fully capture channel-
wise dependencies. The excitation operation takes the embedding as input and pro-
duces a collection of per-channel modulation weights. Then, the produced weights
are applied to the feature maps to generate the output of the SE block. To limit
model complexity, they parameterize the gating mechanism by forming a bottleneck
with two fully-connected layers around the non-linearity. One of the fully connected
layers is used as a dimensionality-reduction layer (reduction ratio r) and the other
one is used as a dimensionality-increasing layer. In the final step of s SE block, the
output of the sigmoid function is rescaled.

4.4.4 Bilinear Convolutional Neural Network (BCNN)

To train a bilinear model, two CNNs (e.g, AlexNet [64], VGG [102]) are used to
extract image features. As shown in Figure 4.6, given an image I, the two CNNs,
namely CNN A and CNN B, compute two features F_A, F_B. The extracted
features, F_A and F_B has a dimensionality C×W ×H, where C is the number
of channels, W and H denote the width and height of the descriptor. The features
C×W ×H are reshaped into C×M for F_A and F_B. Then, the outer product
of F_A and F_B are computed. This returns C number of (M ×N) matrices.
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Figure 4.6 A bilinear CNN model for image classification. This figure is from the
original paper [72].

To perform orderless pooling, these C Matrices are summed and the summation
operation returns a single M ×N matrix. In the final step, this matrix is reshaped
into a 1D vector descriptor. In this proposed method, all operations are differentiable
and it enables end-to-end training.

They indicate that the proposed architecture can model local pairwise feature in-
teractions and it can be made in a transitionally invariant manner. This property
helps the classification system to solve the challenges of the fine-grained categoriza-
tion. In their experiments, the CNNs pre-trained on the ImageNet dataset [28] is
used. The pre-trained CNNs are truncated at a convolutional layer including non-
linearities and this is used as feature extractors. For fine-tuning, they add a softmax
layer. Their training procedure consists of two steps where first the only last layer
is trained and then the entire model is fine-tuned by using back-propagation for
several epochs depending on the dataset and model.

4.4.5 Training Methodology

Transfer learning is a technique that aims to transfer knowledge from an already
learned task to a new one [125]. Generally, convolutional neural networks, which
are pre-trained on large generic datasets, are either fine-tuned or used as feature
extractors for the object recognition tasks. In feature extraction method, the last
fully connected layer of a convolutional neural network, which is pre-trained on a
large dataset (e.g., ImageNet), is removed and the rest of the network is used as a
feature extractor for a new dataset. In fine-tuning, not only the last layer of the
network and but also some of the previous layers are retrained too.
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The selection of the appropriate transfer Learning technique depends on several
factors such as the size of the new dataset and its similarity with the original one
[125, 74, 123]. If the size of the dataset is not sufficient, the fine-tuning strategy may
cause over-fitting. However, a larger portion of the network can be retrained with
a sufficiently large dataset in order to achieve more task-specific results. Based on
the new classification task, the similarity between the dataset used in pre-training
and a new dataset determines the portion of the network which should be retrained
to properly fine-tune the model parameters.

In our approach, we fine-tuned the Inception-ResNet-v2 [106], B-CNN [72],
DenseNet-161 [60], and SENet-154 [59], which have been pre-trained using Ima-
geNet [97], on the training parts of our product datasets, with a batch size of 32
examples. We used the default parameter settings of available implementations.
We fine-tuned Inception-ResNet-v2 by using Adam optimizer with a learning rate
of 0.002, decayed every two epochs using an exponential rate of 0.9 and utilizing
TensorFlow [4]. We fine-tuned the remaining networks using stochastic gradient de-
scent (SGD) with momentum (set to 0.9) and an initial learning rate of 0.01 which
was reduced by a factor of 10 each time the validation loss plateaued by utilizing
PyTorch [91].

4.5 Experimental Results

In each experiment, we split the dataset into three groups to train and test the
proposed method. 80% of the entire data are used to fine-tune the network. 10%
of the data are used as the validation set and 10% of the data are used as the test
dataset.

4.5.1 Classifier Performance

Extensive experiments on four retail product datasets [3] using four deep network
structures (Inception-ResNet-v2 [106], B-CNN [72], DenseNet-161 [60], and SENet-
154 [59]) have been conducted. We examined three test cases for each of the four
datasets: in the first case we used the original dataset without the artifacts of
Gaussian blur and occlusion, in the second case the original dataset is used in
training and Gaussian blurred images are used in test to make the problem more
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Table 4.1 Results of various CNNs for Soft-drinks Dataset (178 classes)

Method Original Dataset Blurred Dataset Occluded Dataset
Accuracy Accuracy Accuracy

Inception-ResNet-v2 [106] 93.16 74.69 86.24
B-CNN [72] 95.66 91.41 95.0
DenseNet-161 [60] 97.89 96.1 97.5
SENet-154 [59] 97.97 93.44 96.19
BoW+SVM 93.11 87.90 87.20
BoW+SVM+HMM [12] 96.14 93.13 93.01

challenging, and in the third test case we randomly place some irrelevant occluder
(e.g., price tags) onto each product image in the test set for each test image. We
report our results in Chapter 5 in Tables 5.3, 5.4, 5.5, and 5.6. In this section,
we present only the results for the Soft-drinks dataset consisting of 32315 product
images of 178 distinct labels (see figure 5.6). In this dataset, the number of sample
product images in fine-grained classes varies from 180 to 330 and the average number
of images per product label is 182.

In Table 4.1, the results of state-of-the-art CNNs (Inception-ResNet-v2 [106], B-
CNN [72], DenseNet-161 [60], and SENet-154 [59]) are reported for all the test
cases. In this experiment, we report the top-1 accuracy rate, which is the fraction
of test images for which the correct label is among the top-1 most probable classes.

The inception model is outperformed by both traditional approaches (BoW+SVM
and BoW+SVM+HMM) and the deep neural networks. In Table 4.1, the compari-
son among the CNNs shows that SENet-154 [59] achieves 97.97% accuracy and out-
performs other CNNs methods for original test dataset. In this test case, DenseNet-
161 [60] achieves the second-best performance with 97.89% accuracy. Furthermore,
the results in Table 4.1 show that blurring and occluding the test dataset signif-
icantly reduce the classifiers’ performance especially Inception-ResNet-v2’s [106].
DenseNet-161 [60] is the most robust method among the deep networks for blur and
occlusion. A reason for this might be that the DenseNet architecture connects the
output of each layer with every other layer by concatenation and does not fuse previ-
ous information through element-wise addition. Such concatenation-based shortcuts
can enable the network to extract more discriminative features and fine-grained de-
tails from the early layers of the network for fine-grained product recognition.
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CHAPTER 5

Context-Aware Confidence Sets for Fine-Grained
Product Recognition

In this chapter, we present a new approach for fine-grained classification of re-
tail products, which learns and exploits statistical context information about likely
product arrangements on shelves, incorporates visual hierarchies across brands, and
returns recognition results as “confidence sets” that are guaranteed to contain the
true class at a given confidence level. Our system consists of three important compo-
nents: (i) a nested hierarchy of product classes are automatically constructed based
on visual similarities, (ii) a confidence set predictor is trained based on class pos-
teriors by using coarse-to-fine binary classifiers to discriminate each nested cluster
of the hierarchy from the remainder of classes and a Bayesian network (BN) model
that encodes the joint distribution of classifier scores with the fine-level class vari-
able, and (iii) a hidden Markov model (HMM) is trained with nested hidden states
from the class hierarchy to model spatial transition across the nodes of product class
hierarchy and resolve errors in the context-free confidence set results. Novel aspects
of the proposed method include (i) combining confidence sets and context informa-
tion via a HMM, (ii) applying this concept to fine-grained recognition of products
arranged in retail shelves, and (iii) presenting experimental results on four large
datasets, collected from actual retail stores. We compare our approach with ex-
isting confidence set approaches and state-of-the-art convolutional neural networks
classifiers including SENet-154, DenseNet-161, B-CNN, and Inception-Resnet-v2.
Our approach performs comparably or better than state-of-the-art deep classifiers
and exhibits high accuracy for relatively small confidence set sizes. The method
introduced in this chapter has been published in [13].

This chapter is organized as follows: Section 5.1 reviews the relevant literature. In
Section 5.2-5.3, we give our motivation and contributions. In Section 5.4, the pro-
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posed method is described in detail. Section 5.5 presents our experimental findings
on product recognition. Finally, Section 5.6 contains our concluding remarks.

5.1 Related Work

Our work is related to existing work on product classification, context-aware object
classification, and fine-grained classification. In Sections 3.1, 3.2, and 3.3, we pre-
sented related pieces of work on product recognition and context-aware object clas-
sification. In this section, we provide an overview the related work on fine-grained
classification and hierarchical classification.

5.1.1 Context-aware Object Recognition

Many of the studies [80, 53, 44, 99, 111, 110] on product recognition do not consider
the context knowledge, except [43, 5, 78, 12]. In contrast to the works in [43, 5, 78],
which make context assumptions, our method directly learns the context information
from shelf sequence data. In terms of context-awareness, the most relevant methods
to ours among previous work is [12]. The work in [12] proposes a probabilistic
model, which encodes the relations between the products on a shelf, and combines
that with vision-based image classification methods. However, [12] can only work at
the fine-grained level and ignores the structure of class taxonomies. Our proposed
work is distinguished from [12], since, in this paper, context information is combined
with the confidence set approach and product hierarchy in a novel way.

5.1.2 Object Recognition Using Class Hierarchy

In fine-grained classification problems, the hierarchical visual grouping is commonly
used to find similar object categories and the relationships between object classes in
terms of visual similarity. Generally, a visual taxonomy is built to accelerate image
categorization. In addition to that, hierarchical representation of object classes may
enable the classification algorithm to work not only on the finest level of the class
hierarchy but also on any of the higher levels.
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Most methods use taxonomies that are manually constructed using domain knowl-
edge such as leaves, birds, and mammals [98, 33, 29]. In addition to taxonomies,
some studies apply hierarchical clustering algorithms [46, 9, 79, 98] to produce a
nested partitioning based on similarities in the feature space. The use of product
hierarchies has been limited so far. In [43], the images are organized into hierarchi-
cal categories by using domain knowledge. For example, a Snickers chocolate bar
is classified as Food/Candy/Chocolate. In [43], The hierarchical categories do not
consider the fine-grained similarity relationship between the classes and are not used
directly in classification.

Hierarchical clustering algorithms can be split into two main techniques: merging
(agglomerative) and splitting (divisive), based on similarity metrics [62]. In [46],
a tree is built from the bottom-up. At each step, the two groups of categories
with the largest mutual confusion are joined. In [9], a nonparametric Bayesian
model is developed to group images based on low-level features. [79] proposes to
avoid disjoint partitioning and splits the class-set into overlapping sets instead by
using a top-down approach. In [98], the tree is built from the bottom-up based on
vantage-point features extracted from leaf images. We refer the reader to consult
the following Chapter 2 for more detailed information about the class hierarchy
reconstruction.

5.1.3 Set-based Fine-grained Classification

Several approaches have been proposed for recognizing fine-grained classes of birds
[16, 72, 31], flowers[85, 96], leaves [98, 96], and other objects [124, 72, 77, 90]. In most
of these approaches, first, systems find image regions that contain discriminative
information. Then, features are extracted from discriminative parts of the object
and used in a set of one-vs-all classifiers. [72] presents an effective deep architecture
for fine-grained visual recognition called Bilinear Convolutional Neural Networks (B-
CNNs). B-CNN’s represent an image as a pooled outer product of features derived
from two CNNs and capture localized feature interactions which are transitionally
invariant.

Many of the studies about fine-grained classification problems in the literature pro-
vide a single estimate to users [16, 31, 72, 85, 96, 124, 77, 90]. However, some classifi-
cation algorithms output sets of classes called “confidence sets” that are guaranteed
to contain the true class at a given confidence level [98, 29]. There are different
methods which use the posterior probabilities to generate the confidence set. In
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the first method, the posterior distributions over classes are computed to generate
confidence sets. Then, an input object image is assigned to a group of classes, for
which the cumulative posterior exceeds a confidence threshold. In another method,
classifier scores are sorted and k top-ranked classes are selected as a confidence set.

Our work is closely related to [98], which proposes a confidence set method for fine-
grained categorization of plants. They use vantage feature frames [96], which is a
special feature extraction technique for leaves. [98] computes the posterior proba-
bilities for each node of the class hierarchy and then, selects the node of minimal
size subject to the constraint of containing the true species with a given confidence
level. If the posterior probability of any leaf node at the first level of the hierarchy
is not higher than a user-specified confidence threshold, the method checks the con-
fidence of the nodes at higher levels of the hierarchy. They claim that the posterior
probabilities may be poorly estimated due to challenges in a dataset and the system
may return the node at a very high level of the hierarchy as confidence set, which
contains almost all classes, for difficult classification tasks. This causes increases in
the average confidence set size. Therefore, we used their method with an additional
constraint to decrease the expected size of the confidence sets because our datasets
are very challenging and suffer from issues like blur, occlusions, unexpected back-
grounds, etc.. We propose a strategy to limit and decrease the confidence set size
by stopping the classification at a certain level of the hierarchy. The dissimilarity
measure between the classes under the nodes of the hierarchy is used as a stopping
criterion (see Eq.5.1). Similar to the method in [98], we also compute the posterior
probabilities for each node of the hierarchy and then, select the node of a minimal
size which exceeds the user-defined confidence threshold 1− ε. However, in contrast
to [98], if the dissimilarity measure of the selected node is higher than the thresh-
old θ, the descendant node of the selected node, which has the highest posterior
probability and has a dissimilarity measure below the threshold, is returned as the
confidence set by our algorithm. The experiments in Section 5.5.3 show that our
HMM method can usually correct potential classification errors caused by limiting
the confidence sets. So, by combining confidence sets with context information,
our algorithm provides more specific classification results while guaranteeing high
accuracy.

In retail product recognition, to the best of our knowledge, the existing methods in
the literature [80, 43, 5, 78, 12, 53, 44, 99, 111, 110] do not exploit the information
coming from the taxonomy of the product classes to improve the classifier perfor-
mance. Furthermore, there is no previous work which uses hierarchical classification
and confidence set approaches, in product recognition problems. The use of class hi-
erarchy and confidence sets makes our method more efficient, robust, and accurate,
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especially when the data are challenging.

5.2 Motivation

Product recognition is a special instance of fine-grained classification [124, 16, 98].
Considering the sheer diversity of packaged goods in a typical hypermarket, we are
confronted with up to tens of thousands of different classes, which, if under the
same product brand, tend to have only minute visual differences in shape, packag-
ing texture, metric size, etc. making them very difficult to discriminate from one
another. Another challenge is the limited number of available datasets, which ei-
ther have only a few training examples per class that are taken under ideal studio
conditions [80, 43, 53], hence requiring cross-dataset generalization, or are captured
from the shelf in an actual retail environment and thus suffer from issues like blur,
low resolution, occlusions, unexpected backgrounds, etc. Thus, an effective prod-
uct classification system requires substantially more information in addition to the
knowledge obtained from product images alone.

In [98, 29], hierarchical classification approaches are proposed. They choose to give
a recognition set, which contains a set of classes and is called as "confidence set",
instead of a single estimate by tracing along the hierarchy. Their experimental re-
sults show that the use of class hierarchy and the set-based approaches improves
the performance of the fine-grained classification system. However, in real-world
classification problems, some test images are very problematic due to the challenges
caused by the real-world environment. In these challenging test cases, the hierar-
chical methods in [98, 29] generally output the root node as a predicted label. So,
they yield 100% accuracy with uninformative produced labels, especially for these
challenging cases. Also, as we increase the confidence threshold, specificity is traded
off for higher accuracy rate in these methods. In [29], the classifier can select the
appropriate level, trading off specificity for accuracy in case of uncertainty. But,
they cannot guarantee to satisfy the confidence threshold. This motivates us to deal
with the shortcomings of the existing methods by incorporating the context model
and class hierarchy into the retail product recognition process.
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5.3 Contribution

In light of the aforementioned challenges and potential remedies, we propose a new
context-aware and hierarchical approach for fine-grained product recognition, which
consists of three important components: (i) A hierarchical clustering of product
classes based on their visual similarities to approximate a product taxonomy, (ii)
A confidence-set predictor that is composed of (ii.1) coarse-to-fine binary classifiers
sensitive to each node of the hierarchy, and (ii.2) a Bayesian Network (BN) model
that encodes the joint distribution of classifier scores with the true class; and finally
(iii) A hidden Markov model that uses context-free confidence set predictions ob-
tained from the BN as observations, and combines them with contextual information
about spatial transitions across the nodes of the class hierarchy to finally decode the
hidden product sequences on the shelves. The overall system (see Figure 5.1) takes
as input the spatial sequence of product detections on real shelf images but with
unknown class information, and returns minimal confidence sets for each spot on
the shelf, while adhering with the context priors and ensuring that the true class is
present within each predicted confidence set at some user-defined confidence level.
Accordingly, we measure the performance of our method not only by the classifica-
tion accuracy but also by the size of confidence sets returned, where the smaller is
the better.

To better demonstrate the effectiveness of incorporating context and product hier-
archy, in contrast to context-free baseline methods and state-of-the-art deep neural
networks, we based our approach primarily on conventional image descriptors and
classifiers. In particular, we use dense SIFT+BoW features as our image descriptors,
with which we construct the visual clustering of product classes into a coarse-to-fine
hierarchy, as well as train support vector machine (SVM) classifiers for each cluster
node. Thus, we are concerned about the fine-grained classification of item patches
using their spatial arrangements on the scene, and not about detecting them.

We make multiple contributions to a practically relevant fine-grained classification
problem, namely product recognition. We present a novel retail product classifier
that combines (i) a visually trained class hierarchy, (ii) corresponding coarse-to-fine
classifiers, and (iii) context priors learned as nested HMMs across retail shelves, and
(iv) returns as recognition output confidence sets, i.e., minimal and context-aware
sets of fine-level classes at a given confidence level. To the best of our knowledge,
such a comprehensive combination of confidence sets and spatial priors has not been
exploited in the context of fine-grained product recognition.

Furthermore, to show the effectiveness of our approach and to encourage researchers
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in relevant fields, we also introduce comprehensive product datasets that contain
fine-grained product classes consisting of beverage, biscuits, chocolate, and hygiene
products. We conducted extensive experiments and compared our method with both
conventional methods (BoW+SVM, BN) and several state-of-the-art deep learning-
based methods (Inception-Resnet-v2 [106], B-CNN [72], DenseNet-161 [60], SENet-
154 [59]. In most of the experiments, our method outperforms several existing meth-
ods by achieving more than 99% accuracy while returning relatively small confidence
set sizes.

5.4 Proposed Method

The proposed approach consists of three main parts (see Figure 5.1(a) for the flow
diagram). In the first part, we automatically construct a nested hierarchy of classes
based on their visual similarities. In the second part, we train coarse-to-fine binary
classifiers, each dedicated to an individual node of the hierarchy, while treating its
consisting classes as positive samples and the rest as negative. Then, we use the same
class hierarchy as the dependency structure among classifier scores to implement a
Bayesian network that models the joint distribution of these scores with the true
class, and that is used to predict confidence sets based on class posteriors. In the
third part, an HMM is trained with nested hidden states from the class hierarchy to
model contextual relations between (sets of) classes and resolve errors in the context-
free confidence sets results. In inference, the overall system (see Figure 5.1(b)) takes
as input the spatial sequence of product detections on real shelf images but with
unknown class information, and returns minimal confidence sets for each spot on
the shelf, while adhering with the context priors.
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Figure 5.1 Overview of the proposed system. (a) Training: The context-aware
and hierarchical system consists of three main components: A hierarchical cluster-
ing of product classes (ii) A confidence-set predictor (iii) An hidden Markov model.
(b) Inference: Given an input product image, first, features are extracted. Then,
confidence sets, which contain visually coherent classes, are found. Finally, contex-
tual relationships in retail shelves are used to improve the classification accuracy by
executing a context-aware approach.
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5.4.1 Image Descriptors

In this work, we used Bag-of-Words (BoW) descriptors formed from a codebook of
dense SIFT features for representing the visual information from product images.
In the first step, the dense set of multi-scale SIFT features are computed with
five patch sizes (8, 12, 16, 24, 30) by using the VLFEAT toolbox [116]. In the
second step, vocabulary learning, K-means algorithm is used to cluster large sets of
feature descriptors into dictionaries of 768 visual words. In the third step, spatial
histograms are computed. A Kd-Tree algorithm is used to map visual descriptors
to visual words efficiently. Then, the visual words are accumulated into a spatial
histogram. After that, pre-transformation, which computes an explicit feature map
that applies a nonlinear χ̃2-kernel, is applied on the features to make the feature set
more meaningful for linear classifiers. At the end of this step, a 2304 dimensional
feature set is computed.

5.4.2 Class Hierarchy

Let Y denote the set of all product classes. We construct a tree-structured class
hierarchy T via a nested partitioning of Y down to its individual members. In
particular, each node t of T will carry a subset Ct ⊆Y , where equality holds for the
root node t0 of T .

Figure 5.2 Flowchart of hierarchical representation of the retail product categories
based on visual similarities.

T is formed by bottom-up agglomerative clustering of the data, where we start from
singleton nodes, i.e., individual classes and iteratively merge most similar pair of
pending nodes to a new and larger cluster (See Figure 5.2). While doing so, each
node t is represented by ūt of BoW vectors pooled from samples belonging to classes
in Ct. We used Wards criterion, where the dissimilarity of two pending nodes l and
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Figure 5.3 Top: Class tree and sub-tress of 80 classes in the Beverage dataset
is shown where the vertical axis represents the distance between classes, and the
horizontal axis represents the product classes. Bottom: Zoom-in to the sub-tree
(15 classes).

r, with respective node centers ūl and ūr and cluster sizes nl and nr, is given by

d(l, r) = nlnr
nl+nr

||ūl− ūr||2 (5.1)

Figure 5.3 shows an example tree T produced this way on 80 fine-grained product
classes. Note how the visual clustering will reveal semantic class groupings with
categories, brands, packaging types appearing in the hierarchy as one goes from top
to bottom.

As explained next, the class hierarchy T will be of core importance for multiple
purposes: We will (i) train coarse-to-fine product classifiers dedicated to individual
nodes of T , (ii) define a Bayesian network on classifier responses using T as our
network topology, (iii) encode nested context priors via a HMM with spatial tran-
sitions between the nodes of T , and (iv) eventually generate confidence sets as our
recognition results from the nodes of T .
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Figure 5.4 A sample Bayesian network for 7 classes.

5.4.3 Coarse-to-Fine Binary Classifiers

For each node t of the class hierarchy T , except for its root t0, we train a binary SVM
classifier ft to discriminate classes from Ct from the rest Y \Ct, where BoW vectors
from the former are treated as positive instances, and the remaining samples are
labeled as negative. Clearly, t0 is excluded, since with Ct0 = Y , no negative samples
are available to train Et0 . As a result, we obtain a collection E = {et : t ∈ T \{t0}}
of classifiers that discriminate Y at different resolutions.

5.4.4 Bayesian Network Model on Classifier Node Scores

Given a test sample with true class Y ∈ Y , let X = {Xt : t ∈ T \ t0} denote the
set of SVM scores returned by the collection E of classifiers, where each Xt is the
real-valued signed margin of the data sample to the decision boundary of et.

In our method, the variables, SVM scores, Xt, are used to learn local discriminant
function at node t and are assumed univariate normal. A normal density function
is defined with parameters µ and σ as follows;

E[X] = µ V [X] = σ2 N(x;µ;σ2) (5.2)

In our problem, there is sufficient data to reliably estimate the mean and the variance
to learn the local discriminant function.

We model the joint distribution p(x,y) = p(x|y)p(y) of SVM scores with the class
variable, by a Bayesian network, where p(y) is assumed uniform over Y and the
dependency structure among X is copied from the precomputed class tree T , with its
root t0 being excluded. Accordingly, eachXt is assumed conditionally independent of
its ancestors given its parent score Xpa(t) = xpa(t) under T , and the class membership
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Y = y, such that we can factor their joint conditional density as

p(x|y) = g1(x1|y)g2(x2|y)
∏

t∈T\{t0,t1,t2}
gt(xt|xpa(t),y) (5.3)

where gt are local conditional densities, with g1 and g2 corresponding to the imme-
diate two children of t0.

The dependencies between the random variables, nodes, are represented as DAGs
with directed arcs from the parents to the child and formulated as follow:

p(xt|x1, ...,xpa(t) = p(xi|xpa(t)) (5.4)

Conditional independence between those random variables, nodes, provides us only
concentrating on the correlation between parents and their children. According to
dependency relations in Bayesian Networks, in the proposed network, three param-
eters (mean, variance, correlation with parent) for joint pdf calculations in each
non-root node and two parameters (mean and variance) for nodes t1 and t2, which
are the children of the root node, are estimated. The densities ft(xt|xpa(t), c) are
obtained by using bivariate normal distribution.

According to bivariate normal distribution, if x1, x2 are jointly normal with means
and standard deviations µ1, µ2, σ1, σ2 and correlation coefficient ρ, then f(x1|x2)
is normal. The conditional expectation of xt given, xpa(t) is formulated as follow:

E[X|Y ] = E[X] +ρ
σ1
σ2

(Y −E[Y ]) (5.5)

The variance of joint normal distribution is found by the following formulations:

V [X|Y ] = E[(X−ρσ1
σ2

)2] = (1−ρ2)σ1
2 (5.6)

We model (Xt,Xpa(t)) to be jointly normal given Y = y, with conditional means
{µt,y,µpa(t),y}, variances {σ2

t,y,σ
2
pa(t),y} and class-conditional correlation ρt,y. Then

gt(xt|xpa(t),y) is also normal with mean µt,y + ρt,y
σt,y

σpa(t),y
(xpa(t)−µpa(t),y) and vari-

ance (1−ρt,y2)σ2
t,y, and is given by

gt(xt|xpa(t),y) = 1
σt,y

√
2π(1−ρt,y)

exp
(xt−µt,y−ρt,y σt,y

σpa(t),y
(xpa(t)−µpa(t),y))2

2(1−ρt,y2)σ2
t,y

 (5.7)
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Similarly, g1 and g2 corresponding to largest cluster nodes t1 and t2 are modeled
as normal densities parametrized by respective class-conditional means µ1,y, µ2,y

and variances σ2
1,y, σ2

2,y. Sample mean and standard deviation are used to estimate
the parameters of a normal distribution for a sufficiently large dataset. We refer
the reader to consult the following references for a more detailed information about
bivariate normal distribution [17, 98].

5.4.5 Confidence Set Predictor

The proposed confidence set predictor is trained based on the class hierarchy, T ,
and the class posteriors computed by using the BN model. The confidence sets are
selected by tracing along the hierarchy [98]. Thus, the confidence sets are restricted
to the nodes of the hierarchy of product classes based on visual similarity.

In the proposed method, the classification is stopped at a certain level of the hi-
erarchy instead of returning a node at a very high level of the hierarchy as the
confidence set for challenging test images. To do this, the distances between classes
is used as an additional constraint. The agglomerative hierarchical clustering al-
gorithm in Section 5.4.2 returns an array, D, which gives the distances of pairwise
cluster merges (See Eq. 5.1). By thresholding, D, subgroups that join at a distance
below a threshold θ are put in the same cluster. Let U denote the union of subtrees
corresponding to those clusters, U ⊂ T . These subtrees consist of visually similar
classes as shown in Figure 5.3, where each subtree gets its own color in the tree.

In addition to the class hierarchy, posterior probabilities are also used to generate the
confidence sets. In BNs with continuous variables, exact inference is only possible
when all the continuous variables are Gaussian and have no discrete children, as in
our case. According to Bayes’ theorem, the posterior probabilities are proportional
to the likelihood when the prior is uniform.

The proposed confidence set predictor consists of three main steps. In the first step,
the posterior probabilities P (Y ∈ Ct|X=x) are computed for each node t ∈ T .

P (Y ∈ Ct|X = x) =
∑
y∈Ct

P (Y = y|X = x)

=
∑
y∈Ct

p(x|y)p(y)
p(x) =

∑
y∈Ct

p(x|y)∑
y∈Y

p(x|y)

(5.8)
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In the second step, the set of nodes for which the class posterior exceeds 1− ε is
selected as follows:

S(x) = {t : P (Y ∈ Ct|X=x)> 1− ε, t ∈ U} (5.9)

where ε∈ [0,1] is a small error tolerance and U denotes the union of the subtrees. In
the final step, the confidence set is determined as the smallest confidence set among
the set of candidate nodes S(x) as in Eq.5.10. If S(x) is empty, by construction the
most confident node will be one of the roots of the subtrees U .

fCS(x) =


argmin
Ct∈S(x)

|Ct|, if S(x) 6= ∅.

argmax
Ct∈U

P (Y ∈ Ct| X = x), otherwise.
(5.10)

Classes in the same subtree (confidence set) have a small distance from one an-
other, while classes in different subtrees are at a large distance from one another.
In fine-grained classification, it is less likely to misclassify a sample object image
into a class with no relation to the true class than into a class close to the true
class, and commonly confused classes are visually similar. Therefore, our method
restricts confidence sets to containing similar classes based on the class hierarchy and
the dissimilarity constraint. By using the proposed strategy, we want to maintain
high specificity of the confidence sets, while not sacrificing more on the confidence
guarantees. The efficiency of this algorithm will be demonstrated in a variety of
experiments in Section 5.5.3.

5.4.6 Context-aware Refinement with HMM

The proposed context-aware system is performed by adding a HMM model to the
context-free confidence set predictor.

Let Y = (Y (1),Y (2), ...,Y (n)) be the hidden sequence of n adjacent objects (true
labels). Suppose, for each spot k ∈ 1,2, ...,n, the confidence set predictor returns an
observed confidence set C l found at level l in the hierarchy, which is a variable-length
list of classes. Note that, level indices l for different spots k do not need to be same.
Let C = (C l1t1(1),C l2t2(2), ...,C lntn(n)) denote the observed sequences of confidence sets.
Let B = (Bl1(1),Bl2(2), ...,Bln(n)) denote the sequence of hidden sets, where each
element is from the same level as the corresponding observed confidence sets in
C, and where Blk(k) contains the unknown ground truth labels Y (k) for all k =
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(1,2, ...,n). We construct an HMM over set sequences C (observations) and B
(hidden set states). State spaces of both observations (C’s) and hidden states (B’s)
are T , but the observations come from the confidence set predictor and the hidden
states correspond to the ground-truth.

Training an HMM requires calculating the model parameters involved in the tran-
sition matrix, the emission matrix, and the prior probabilities of the initial states.
If training data contains the class labels, the HMM parameters can be empirically
computed from the training data by the maximum likelihood estimation. In this
work, all emission and transition parameters are computed by maximum likelihood
estimation approach. Transition probabilities P (b|b′) among hidden states can be
written using transition probabilities P (y|y′) among hidden true labels.

P (b|b′) =
∑
y∈b

P (y|b′)

=
∑
y∈b

∑
y′∈b′

P (y|y′, b′)P (y′|b′) = 1
|b′|

∑
y∈b

∑
y′∈b′

P (y|y′)
(5.11)

P (y|y′) is empirically estimated by using the relative frequency of transitions ob-
served in the sequence data from object label Y (k−1) = y′ to object label Y (k)= y.

The emission probabilities P (c|b) between observed and ground-truth confidence sets
are estimated using emissions P (z|y) between their singleton counterparts where
sets c and b belong to the same level of the class hierarchy, and P (y|b) are taken
uniformly.

P (c|b) =
∑
z∈c

P (z|b) =
∑
z∈c

∑
y∈b

P (z|y,b)P (y|b)

= 1
|b|
∑
z∈c

∑
y∈b

P (z|y)
(5.12)

The maximum likelihood estimator, which is the MAP estimator argmaxy
P (Y = y|Z = z) when the prior is uniform, is used as the context-free classifier. The
context-free classifier returns only the classes with the maximum posterior prob-
ability, which is computed by using joint probabilities encoded by the BN (See
Section 5.4.5). Outputs of this classifier are used to find the singleton counterparts
of the observed confidence sets. The emission probabilities P (Z = z|Y = y), where
the context-free classifier label is Z=z when the true label is Y=y, are empirically
estimated by using maximum likelihood estimation.

Now, given confidence set observations c = (cl1t1(1), cl2t2(2), ..., clntn(n)) (deduced from
the proposed confidence set model), argmaxbP (b|c) can be found with standard
Viterbi decoding using the above transition (Eq.5.11) and emission (Eq.5.12) prob-
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Figure 5.5 Diagrammatic representation of context-aware refinement with HMM.
A sample test shelf sequence data and constructed hierarchy are provided to the
context-free confidence set predictor as input and it returns predicted confidence
sets at each spot. Then, through the use of context information, the HMM model
aims to improve upon the classification results of the confidence set predictor.
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abilities. Note that, this can also be done across different levels of the class hierarchy,
where level lk can vary along the sequence. For any level l of tree T , let C l denote
the l-level confidence set of objects. Accordingly, when the confidence set C1 is
found at 1-level (level of the leaf nodes) in the hierarchy, it contains a single class
Y and the problem boils down to conventional flat classification in which classifiers
are restricted to return a single class.

The proposed HMM model is trained to evaluate, confirm, and correct the clas-
sification results performed by the context-free approach (See Figure 5.5). Unlike
conventional flat classifiers which are restricted to output singleton classes, in the
proposed HMM model, the predicted confidence sets are used as the observations
and the observations can consist of more than one class. Given context-free sugges-
tions of the confidence sets at each spot, the proposed context-aware confidence sets
approach uses the context information (coarse or fine depending on the level) and
tries to recover a more coherent sequence of confidence sets.

5.5 Experimental Results

We empirically demonstrate our proposed method’s effectiveness on several fine-
grained datasets described in Section 5.5.1. We provide experimental settings in
Section 5.5.2 and a comparison with state-of-the-art approaches for image classifi-
cation in Section 5.5.3. We then present an ablation study, where we evaluate the
key elements of our proposed method; confidence sets and context-aware strategies
in Section 5.5.4.

5.5.1 Dataset Description

We have collected fine-grained datasets of retail products, which cover soft-drinks,
cleaners, confectionery, and beverage categories [3]. These four challenging Vispera
retail product datasets were used for experimental evaluation. Images are taken by
an 8MP smartphone camera from 20 different retail stores monitored over a course
of 6 months. Annotations are provided in terms of product labels and bounding
boxes around retail objects.
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Figure 5.6 Soft-drinks Dataset: Sample images from datasets [3]. Each image
corresponds to a different product class.

Soft-drinks: The dataset consists of soft-drink products [3]. It contains 32315
cropped instances of 178 distinct labels and 9238 non-overlapping product shelf
sequences. The number of sample product images in fine-grained classes varies from
180 to 330. Figure 5.6 shows sample product images from the dataset.
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Figure 5.8 Beverage Dataset: Sample images from datasets [3]. Each image
corresponds to a different product class.

Figure 5.7 Confectionery Dataset Dataset: Sample images from datasets [3].
Each image corresponds to a different product class.

Confectionery: In this dataset, the products range from biscuits to cakes, wafers
to chocolate, and crackers to candy [3]. The segmentation and manual labeling of
these kinds of products are very challenging problems. In this dataset, there are some
mislabeled and mis-segmented retail product samples. These samples make product
recognition more challenging. This dataset contains 29262 cropped instances of 160
distinct labels and 5191 non-overlapping product sequences. The number of training
images in fine-grained classes varies from 61 to 553. Figure 5.7 shows sample product
images from the dataset.

Beverage: This dataset contains 17282 cropped instances of 69 distinct beverage
product classes and 3210 non-overlapping product sequences [3]. The number of
product images in fine-grained classes varies from 70 to 822. Figure 5.8 shows
sample product images from the dataset.
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Figure 5.9 Cleaners Dataset: Sample images from datasets [3]. Each image cor-
responds to a different product class.

Cleaners: The dataset consists of cleaning agents, as well as personal care and
hygiene products [3]. The dataset contains 7901 cropped instances of 86 distinct
labels with 60-396 exemplars in each fine-grained classes. There are 1639 non-
overlapping product sequences. Figure 5.9 shows sample product images from the
dataset.

Although all the datasets contain product images which suffer from real-world con-
ditions such as blur, occlusion, and different lighting as shown in Figure ??, we also
created more challenging test images by occluding the original images and blurring
the original datasets with a 2-D Gaussian smoothing filter (σ = 5,11×11 kernel) to
test the robustness of our approach.. Sample original, blurred, and occluded test
images are shown in Figure 5.10.

5.5.2 Experimental Settings

In each experiment, we split the dataset into four groups to train and test the
proposed method. 30% of the entire data is used to train the local classifiers at each
node of the product hierarchy. 30% of the data is used to evaluate SVM scores and
estimate the parameters of the BN. 30% of the data is used as the training dataset
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(a) Original Test Images

(b) Blurred Test Images

(c) Occluded Test Images

Figure 5.10 Samples of original, blurred, and occluded test images.

of the HMM and the remaining is used for testing the overall system. For competing
methods, we use 10% of the data for testing and the remaining for training. In all
experiments, we use ε= 10−2, where 1− ε denotes the confidence threshold, and θ is
30% of the maximum distance in the hierarchy T , where θ is used to find the group
of nodes in the T whose dissimilarity is less than θ.

5.5.3 Classifier Performance

To evaluate the performance of our proposed method, several context-free classifiers
are tested. The first four are flat classifiers which are restricted to output singleton
classes. In Chapter 4, the recent deep learning-based approaches have been explored
and implemented to obtain high accuracies for retail product classification. These
state-of-the-art deep convolutional neural networks (Inception-ResNet-v2 [106], B-
CNN [72], DenseNet-161 [60] and SENet-154 [59]) are compared with our proposed
method. We fine-tuned Inception-ResNet-v2 [106], B-CNN [72], DenseNet-161 [60],
and SENet-154 [59], which have been pre-trained using ImageNet [97] on the training
parts of our product datasets, with a batch size of 32 examples. We used the default
parameter settings of available implementations. We fine-tuned Inception-Resnet-v2
by using Adam optimizer with a learning rate of 0.002, decayed every two epochs
using an exponential rate of 0.9 and utilizing TensorFlow [4].
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Table 5.1 Context-free classifiers.

Method Description Output of the
classifier

Inception-ResNet-v2,
B-CNN

DenseNet-161,
SENet-154
(top-1)

The deep learning model outputs only the classes considered most probable. Singleton

Inception-ResNet-v2, B-CNN
DenseNet-161, SENet-154

(top-5)

The recognition sets are generated by ranking the output of the softmax
layer of the deep network and selecting the top-ranking 5 classes.

Recognition Set
RS=5

Inception-ResNet-v2, B-CNN
DenseNet-161, SENet-154

RS

In CNNs, Softmax layer assigns probabilities to each class in a multi-class
problem. The recognition sets are generated by sorting the output of
the softmax layer in descending order and selecting classes until the total
mass exceeds 1− ε.

Recognition Set
RS>=1

CS

In , a confidence sets method based on a Bayesian network is proposed for
fine-grained categorization of plants. In their method, vantage
feature frames, which is a special feature extraction technique for leaves, is
used. For product recognition, we implemented their algorithm with a
different feature extraction technique (BoW).

Recognition Set
RS>=1

Table 5.2 Context-aware classifiers.

Method Description Output of the
classifier

CSlim+HMM
This is our proposed context-aware confidence sets method that combines
the context-free confidence set method with a HMM, as described in Sec-
tion 5.4.6

Recognition Set
|RS|>=1

BoW+SVM+HMM [12] The flat SVM classifier is combined with HMM. Singleton

85



We fine-tuned the remaining networks using stochastic gradient descent (SGD) with
momentum (set to 0.9) and an initial learning rate of 0.01 which was reduced by a
factor of 10 each time the validation loss plateaued by utilizing PyTorch [91].

The remaining context-free methods are set-based approaches, which return recog-
nition sets (RSs) (just like the confidence sets involved in our approach). In set-
based approaches, a RS may contain more than one recognition suggestion. This
is a variation we implemented for a fair comparison with our set-based approach.
Inception-ResNet-v2_cum [106], B-CNN_cum [72], DenseNet-161_cum [60], and
SENet-154_cum [59], which select classes until the total mass exceeds 1− ε were
implemented. In addition, Inception-ResNet-v2 (top-5) [106], B-CNN (top-5) [72],
DenseNet-161 (top-5) [60] and SENet-154 (top-5) [59], which returns the top-ranking
5 classes, were implemented. These state-of-the-art architectures are considered as
commonly accepted baseline set-based methods for object recognition. In addition
to deep CNN architectures, [98], which is the only work that proposed a confidence
sets method for fine-grained classification, was implemented. Detailed descriptions
of the context-free classifiers are given in Table 5.1.

In addition to context-free classifiers, two different context-aware classifiers (see
Table 5.2), which are able to extract, interpret and use context information
for classification, are tested. First one, CSlim+HMM, is our proposed context-
aware confidence sets method and the other is a context-aware flat baseline clas-
sifier (BoW+SVM+HMM [12]). In our experiments, both set-based approaches
(Inception-ResNet-v2_cum [106], Inception-ResNet-v2 (top-5) [106],B-CNN_cum
[72], B-CNN (top-5) [72], DenseNet-161_cum[60], DenseNet-161 (top-5)[60] and
SENet-154_cum [59], SENet-154 (top-5) [59], CS [98], and CSlim+HMM) and the
other classifiers which output a singleton class ( BoW+SVM+HMM [12], Inception-
ResNet-v2 [106], B-CNN [72], DenseNet-161 [60] and SENet-154 [59]), are evaluated.
Also, experiments evaluate the classifiers in terms of context-awareness.

The performance is measured in terms of recognition accuracy, the average size of
the recognition set (RS), and its standard deviation. We tested all these methods
on four challenging retail product datasets and reported our results in Tables 5.3,
5.4, 5.5, and 5.6. We examined three test cases for each of the four datasets: in the
first case we used the original dataset without the artifacts of Gaussian blur and
occlusion, in the second case the original dataset is used in training and Gaussian
blurred images are used in test to make the problem more challenging, and in the
third test case we randomly place some irrelevant occluder (e.g., price tags) onto
each product image in the test set for each test image. In Tables 5.3, 5.4, 5.5 and 5.6,
the second, third and fourth columns show the results of the first case, the results
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Table 5.3 Results of various classifiers for Beverage Dataset (69 classes)

Method
Test Original Dataset Test Blurred Dataset Test Occluded Dataset

Accuracy RSa
Accuracy RSa

Accuracy RSa

Mean SDc(σ) Mean SDc(σ) Mean SDc(σ)
Inception-ResNet-v2 (top-1)[106] 76.06 1 - 46.62 1 - 66.02 1 -
Inception-ResNet-v2 (top-5) [106]b 97.8 5 - 92.50 5 - 96.36 5 -
Inception-ResNet-v2_cum[106]b 96.42 4.5932 5.48 84.09 5.4319 5.38 95.67 6.7524 7.37
B-CNN (top-1)[72] 88.79 1 - 80.81 1 - 87.08 1 -
B-CNN (top-5)[72]b 98.21 5 - 97.65 5 - 98.16 5 -
B-CNN_cum[72]b 98.19 3.98 4.64 97.55 4.51 7.26 97.84 4.9 6.78
DenseNet-161 (top-1)[60] 89.12 1 - 82.58 1 - 87.13 1 -
DenseNet-161 (top-5)[60]b 98.06 5 - 97.26 5 - 98.09 5 -
DenseNet-161_cum[60]b 98.18 3.96 7.85 96.84 6.31 10.45 97.64 4.06 7.81
SENet-154 (top-1)[59] 87.41 1 - 77.65 1 - 83.70 1 -
SENet-154 (top-5)[59]b 98.2 5 - 97.73 5 - 98.14 5 -
SENet-154_cum[59]b 98.12 3.79 7.99 96.57 5.34 9.76 97.58 8.07 14.18
BoW+SVM+HMM[12] 82.61 1 - 76.97 1 - 69.89 1 -
CS[98]b 97.4 13.51 24.9 96.19 13.95 29.1 96.63 21.35 32.1
CSlim+HMMb 98.23 3.48 1.85 97.75 3.35 1.81 97.78 3.52 1.83
a Recognition Set (RS).
b Accuracy guarantee, 1− ε, is set to 0.99.
c Standard Deviation (SD).
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of the second test cases are shown in the fifth, sixth and seventh columns and the
results of the occluded test case are shown in the last three columns.

Beverage: In Table 5.3, the comparison among the context-free flat classi-
fiers (Inception-ResNet-v2 (top-1) [106],B-CNN [72] (top-1), DenseNet-161 (top-
1) [60] and SENet-154 (top-1 [59]) shows that DenseNet-161 [60] achieves the
best result (89.12% accuracy). Among context-free confidence sets approaches,
(CS [98], Inception-ResNet-v2_cum [106], Inception-ResNet-v2 (top-5) [106], B-
CNN_cum [72], B-CNN (top-5) [72], DenseNet-161_cum[60], DenseNet-161 (top-
5)[60] and SENet-154_cum [59], SENet-154 (top-5) [59]), B-CNN (top-5) achieved
the best accuracy with 98.21% by returning top-5 predict labels. Among all con-
fidence sets approaches (CSlim+HMM, CS [98], Inception-ResNet-v2 (top-5)[106],
Inception-ResNet-v2_cum [106], B-CNN_cum [72], B-CNN (top-5) [72], DenseNet-
161_cum[60], DenseNet-161 (top-5)[60] and SENet-154_cum [59], SENet-154 (top-
5) [59]), our proposed method, CSlim+HMM, achieves the best performance with
98.23% accuracy. Our method returns 3.48 average RSs size, which has a standard
deviation of 1.85. Compared to other set-based methods, CSlim+HMM returns
relatively small RSs with a small standard deviation.

Blurring the test dataset significantly reduces the classifiers’ performance especially
Inception-ResNet-v2’s [106]. Our proposed method, CSlim+HMM, significantly out-
performs all set-based strategies and all flat classifiers with 97.75% accuracy and 3.35
average RS size. Product recognition is very challenging when the objects are par-
tially occluded. The results in the last three columns of Table 5.3 show that the
best result is achieved by B-CNN (top-5) [72]. B-CNN (top-5) [72], DenseNet-161
(top-5)[60] and SENet-154 (top-5) [59] perform equally well in terms of accuracy
by returning top-5 classes. These methods are slightly better than our method
(CSlim+HMM), which achieves a classification accuracy of 97.78% with only 3.52
average RS size when the products are occluded. However, these methods return
a larger average RSs than our method to achieve the accuracy listed in Table 5.3.
The standard deviation of the RSs returned by our method is smaller than other
confidence sets based approaches.

Cleaners: Our results on the Cleaners dataset are summarized in Table 5.4. The re-
sults in Table 5.4 emphasize that the proposed context-aware confidence set method,
CSlim+HMM, outperforms all the other conventional and deep learning methods for
all test cases including original, blurred, and occluded test dataset. Our method has
satisfied the accuracy guarantee for original test dataset with only 1.65 average RS
size.
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Table 5.4 Results of various classifiers for Cleaners Dataset (86 classes)

Method
Test Original Dataset Test Blurred Dataset Test Occluded Dataset

Accuracy RSa
Accuracy RSa

Accuracy RSa

Mean SDc(σ) Mean SDc(σ) Mean SDc(σ)
Inception-ResNET-v2 (top-
1)[106]

94.25 1 - 79.37 1 - 91.25 1 -

Inception-ResNet-v2 (top-5)[106]b 99.25 5 - 97.50 5 - 99.00 5 -
Inception-ResNET2_cum[106]b 99.7 2.6550 5.69 98.38 7.7425 11.59 99.12 4.0875 7.82
B-CNN (top-1)[72] 96.74 1 - 96.13 1 - 94.08 1 -
B-CNN (top-5)[72]b 99.7 5 - 99.47 5 - 99.39 5 -
B-CNN_cum[72]b 99.63 2.17 4.83 99.5 2.62 5.38 99.39 4.63 8.42
DenseNet-161 (top-1)[60] 95.41 1 - 94.45 1 - 95.05 1 -
DenseNet-161 (top-5)[60]b 99.7 5 - 99.46 5 - 99.47 5 -
DenseNet-161_cum[60]b 99.35 2.35 5.76 99.3 3.53 8.78 99.44 3.88 9.55
SENet-154 (top-1)[59] 96.01 1 - 93.24 1 - 91.55 1 -
SENet-154 (top-5)[59]b 99.63 5 - 99.39 5 - 99.43 5 -
SENet-154_cum[59]b 99.59 2.43 6.97 99.51 5.94 12.93 99.47 6.84 13.18
BoW+SVM+HMM[12] 93.19 1 - 91.58 1 - 88.61 1 -
CS[98]b 99.14 2.29 6.9 99.1 5.44 15.43 99.3 9.28 21.8
CSlim+HMMb 99.72 1.6254 1.31 99.7 2.5065 1.85 99.51 3.0213 2.16
a Recognition Set (RS).
b Accuracy guarantee, 1− ε, is set to 0.99.
c Standard Deviation (SD).
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As shown in the last six columns of Table 5.4, it is also clear that the proposed
method (CSlim+HMM) is resistant to occlusion and blurring, and satisfies the ac-
curacy guarantee while returning relatively small RSs.

Confectionery: In Table 5.5, the comparison among the context-free flat classi-
fiers shows that SENet-154 (top-1)[59], achieves 95.50% accuracy for original test
dataset. Among confidence sets approaches (CSlim+HMM, CS [98], Inception-
ResNet-v2(Top5)[106], Inception-ResNet-v2_cum [106], B-CNN_cum [72], B-CNN
(top-5) [72], DenseNet-161_cum[60], DenseNet-161 (top-5)[60] and SENet-154_cum
[59], SENet-154 (top-5) [59]), Inception-ResNet-v2_cum [106], DenseNet-161 (top-
5)[60], SENet-154 (top-5) [59], yields- 99.3% accuracy by returning top-5 predictions
as recognition sets for each test sample. Although this method performs slightly bet-
ter than our proposed context-aware confidence sets method, CSlim+HMM, which
achieves 99.2% accuracy with only 2.09 average RS size for original data test, it
produces a larger RS . The reason is that parameter estimation and automatic
hierarchy construction are more difficult in the Confectionery dataset than in oth-
ers, because there are some mislabeled and mis-segmented retail product samples
in this challenging dataset. CSlim+HMM returns relatively small confidence sets
sizes while satisfying the given accuracy guarantee. In extreme test cases including
blurred and occluded datasets, our method, CSlim+HMM, outperforms all methods
by returning relatively small RSs with a small standard deviation.
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Table 5.5 Results of various classifiers for Confectionery Dataset (144 classes)

Method
Test Original Dataset Test Blurred Dataset Test Occluded Dataset

Accuracy RSa
Accuracy RSa

Accuracy RSa

Mean SDc(σ) Mean SDc(σ) Mean SDc(σ)
Inception-ResNET-v2 (top-
1)[106]

95.02 1 - 88.45 1 - 93.47 1 -

Inception-ResNet-v2 (top-5)[106]b 99.12 5 - 98.60 5 - 98.67 5 -
Inception-ResNET2_cum[106]b 99.3 2.49 4.24 99.07 4.1973 8.29 98.64 2.5560 5.5492
B-CNN (top-1)[72] 94.77 1 - 91.75 1 - 94.77 1 -
B-CNN (top-5)[72]b 99.23 5 - 98.49 5 - 98.81 5 -
B-CNN_cum[72]b 99.12 2.88 8.36 98.73 5.24 12.35 98.80 3.61 9.90
DenseNet-161 (top-1)[60] 94.98 1 - 92.68 1 - 94.27 1 -
DenseNet-161 (top-5)[60]b 99.3 5 - 98.67 5 - 98.85 5 -
DenseNet-161_cum[60]b 99.21 2.85 9.81 99.01 3.69 11.10 98.7 3.76 13.18
SENet-154 (top-1)[59] 95.50 1 - 92.83 1 - 94.59 1 -
SENet-154 (top-5)[59]b 99.3 5 - 98.67 5 - 98.85 5 -
SENet-154_cum[59]b 99.22 4.61 16.34 98.91 5.33 15.46 98.77 4.75 13.17
BoW+SVM+HMM[12] 87.85 1 - 79.86 1 - 77.24 1 -
CS [98]b 97.95 11.7 20.2 97.57 17.49 24 97.48 24.52 28.5
CSlim+HMMb 99.20 2.09 1.68 99.10 2.4 1.75 98.85 2.64 1.82
a Recognition Set (RS).
b Accuracy guarantee, 1− ε, is set to 0.99.
c Standard Deviation (SD).
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Soft-drinks: In the original test case, Inception-ResNet-v2_cum [106] achieved the
best accuracy with 99.6% on original test data as shown in Table 5.6, but it return the
largest RS on average. DenseNet-161 (top-5) [60] and our method, CSlim+HMM,
perform equally well in terms of accuracy and achieve 99.4% accuracy. However,
DenseNet-161(top-5) [60] return top-ranking 5 classes as RS while our method is
returning a single estimate at most of the time. For occluded test data, Inception-
ResNet-v2_cum [106] achieved the best accuracy %99.48 with 11.72 average RS size
In this case, we achieve a classification accuracy of 99.1% with only 1.77 average RS
size, which is much smaller than Inception-ResNet-v2_cum [106]. Also, DenseNet-
161 (top-5) [60], SENet-154 (top-5) [60], and B-CNN (top-5) [60] obtain %99.2
accuracy by returning top-ranking 5 classes. Although some set-based deep learning
methods performed equally well or slightly better than our context-aware confidence
sets method, CSlim+HMM, in terms of accuracy, these methods returned relatively
large RSs with a high standard deviation. We argue that this is because Inception-
ResNet-v2_cum [106] returned RSs containing almost all classes for challenging test
images. In the blurred test case, our method CSlim+HMM outperforms all methods
in terms of both accuracy and average RS size. All the results in Table 5.6 show
that compared with other methods, our method, CSlim+HMM, is more robust and
informative especially with challenging, low-quality data.
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Table 5.6 Results of various classifiers for Soft-drinks Dataset (178 classes)

Method
Test Original Dataset Test Blurred Dataset Test Occluded Dataset

Accuracy RSa
Accuracy RSa

Accuracy RSa

Mean SDc(σ) Mean SDc(σ) Mean SDc(σ)
Inception-ResNET-v2 (top-
1)[106]

93.16 1 - 74.69 1 - 86.24 1 -

Inception-ResNet-v2 (top-5)[106]b 99.31 5 - 97.66 5 - 97.78 5 -
Inception-ResNET2_cum[106]b 99.6 4.3021 10.32 97.60 7.8839 12.8 99.48 11.7179 19.27
B-CNN (top-1)[72] 95.66 1 - 91.41 1 - 95.0 1 -
B-CNN (top-5)[72]b 99.31 5 - 99.0 5 - 99.2 5 -
B-CNN_cum[72]b 99.3 1.50 2.61 98.93 3.14 5.56 99.1 2.06 4.11
DenseNet-161 (top-1)[60] 97.89 1 - 96.1 1 - 97.5 1 -
DenseNet-161 (top-5)[60]b 99.4 5 - 98.85 5 - 99.21 5 -
DenseNet-161_cum[60]b 99.29 1.69 6.27 98.49 2.89 10.58 99.08 2.24 9.03
SENet-154 (top-1)[59] 97.97 1 - 93.44 1 - 96.19 1 -
SENet-154 (top-5)[59]b 99.31 5 - 99.0 5 - 99.28 5 -
SENet-154_cum[59]b 99.26 1.52 6.18 98.22 2.71 9.58 99.05 3.71 12.58
BoW+SVM+HMM[12] 96.14 1 - 93.13 1 - 93.01 1 -
CS [98]b 97.95 5.04 11.0 97.29 10.4 21.2 97.2 11.0 19.9
CSlim+HMMb 99.4 1.25 1.7 99.0 1.74 1.7 99.1 1.77 1.9
a Recognition Set (RS).
b Accuracy guarantee, 1− ε, is set to 0.99.
c Standard Deviation (SD).
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Figure 5.11 Accuracy versus average size of the RS’s for all tests. When we increase
1− ε, in our method, the increase in the average size of RS’s is generally smaller
than other methods.

We also compared confidence sets approaches with different confidence thresholds on
all datasets. Figure 5.11 presents the average size of the RSs versus accuracy curves
for CSlim+HMM, CS [98], and Inception-ResNet-v2_cum [106], B-CNN_cum [72],
DenseNet-161_cum [60], and SENet-154_cum [59]. We set the accuracy guarantee
1− ε to {0.99,0.95,0.9,0.8,0.7,0.6,0.5}. Note that our CSlim+HMM can satisfy the
given accuracy guarantee except only one test on the Beverage dataset for which the
accuracy guarantee is set to 0.99. As we increase the confidence threshold, the aver-
age size of RSs significantly increases for CS [98] and Inception-ResNet-v2_cum[106]
compared to our method, CSlim+HMM, especially when the datasets are challeng-
ing. In confidence sets methods, the performance is measured by the accuracy and
the average size of the set of candidates. Our CSlim+HMM approach and deep
networks (B-CNN_cum [72], DenseNet-161_cum [60], and SENet-154_cum [59])
perform equally well in terms of accuracy on Beverage, Confectionery, and Soft-
drinks test datasets, but, our proposed method returns relatively smaller RSs. The
results on the Cleaners dataset show that our method outperforms others in terms
of both accuracy and RSs size for all confidence levels.
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(a) Confidence sets method in [98]
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(b) Cumulative version of [59]
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(c) Our proposed method

Figure 5.12 The distribution of the size of the recognition sets returned by several
methods, while testing on the Beverage Dataset [3].
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The methods proposed in [98, 59] and our proposed method are also compared in
terms of the distribution of recognition sets returned, and the results are shown
in Figure in Figure 5.12. The methods are tested on Beverage Dataset [3], which
consist of 69 different beverage product classes and the accuracy guarantee, 1− ε,
is set to 0.99. As seen in Figure 5.12(a)-5.12(b), in some challenging test cases,
methods of [98, 59] return recognition sets containing almost all classes (See Table
5.3 in Section 5.5.3 for the details).

We also test the MAP_k-top-ranked and SVM_k-top-ranked recognition set ap-
proaches with different k values as shown in Figure 5.13, which represent the size of
the recognition set. In MAP_k-top, the RSs are generated by ranking the posterior
probabilities and selecting the top-ranking k classes. In SVM_k-top, the RSs are
generated by ranking the SVM scores and selecting the top-ranking k classes. Al-
though we have increased the size of the RS to k = 5 for these two RSs approaches,
our proposed context-aware confidence set method, CSlim+HMM, gives the best
results with less than two estimates on average as RS for all test cases.

Figure 5.13 Recognition rates of different k-top ranked confidence set approaches.
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(d)

Figure 5.13 Scatter plots in which the x-axis and the y-axis represents the accuracy
rates of the different methods. Each point in the plots corresponds class-specific
recognition accuracy for the 178 product classes.

5.5.4 Ablation Study

To gain a better understanding of the improvements provided by various components
of our proposed method, we conduct additional experiments for an ablation study as
shown in Table 5.7 and Figure 5.13. We analyzed results on the Beverage, Cleaners,
Confectionery, and Soft-drinks datasets using versions of our approach that aim to
demonstrate the effect of using context, confidence sets, and class hierarchy. In
Section 5.4.3, BoW+SVM binary classifiers at each node of T are trained and then,
the classifier scores are used to learn the Bayesian network. For ablation study,
we used BoW+SVM as a flat baseline classifier. Then, in Section 5.4.4, Bayesian
network on classifiers is learned. MAP, which outputs only the classes with the
maximum posterior probability computed by using joint probabilities encoded by
the Bayesian network, is additionally implemented as a flat and hierarchical classifier
which uses BN with embedded class hierarchy. In Section 5.4.5, the context-free
piece in our framework called CSlim is proposed.
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Table 5.7 Additional experiments for ablation studies of the proposed method.

Dataset Method
Original Dataset Blurred Dataset Occluded Dataset

Accuracy RSa
Accuracy RSa

Accuracy RSa

Mean SDc Mean SDc Mean SD c

Beverage

BoW+SVM 74.18 1 - 66.42 1 - 58.84 1 -
MAP 75.39 1 - 69.96 1 - 60.89 1 -
MAP+HMM 90.24 1 - 87.84 1 - 78.18 1 -
CSlimb 92.16 3.47 1.86 92.54 3.35 1.8 92.49 3.52 1.85
CSlim+HMMb 98.23 3.48 1.85 97.75 3.35 1.81 97.78 3.52 1.83

Cleaners

BoW+SVM 90.75 1 - 87.29 1 - 84.99 1 -
MAP 94.34 1 - 88.26 1 - 80.20 1 -
MAP+HMM 96.34 1 - 92.27 1 - 85.20 1 -
CSlimb 98.4 1.63 1.3 98.1 2.51 1.85 98.04 3.02 2.15
CSlim+HMMb 99.72 1.63 1.31 99.7 2.51 1.85 99.51 3.02 2.16

Confectionery

BoW+SVM 83.40 1 - 77.69 1 - 69.36 1 -
MAP 88.35 1 - 80.55 1 - 71.31 1 -
MAP+HMM 92.99 1 - 83.34 1 - 81.25 1 -
CSlimb 95.30 2.09 1.7 95.37 2.48 1.76 94.92 2.7 1.8
CSlim+HMMb 99.20 2.09 1.68 99.10 2.4 1.75 98.85 2.64 1.82

Soft-drinks

BoW+SVM 93.11 1 - 87.90 1 - 87.20 1 -
MAP 93.61 1 - 83.45 1 - 83.32 1 -
MAP+HMM 97.64 1 - 93.06 1 - 93.61 1 -
CSlimb 97.05 1.25 1.7 96.28 1.74 1.86 96.38 1.77 1.9
CSlim+HMMb 99.4 1.25 1.7 99.0 1.74 1.7 99.1 1.77 1.9

a Recognition Set (RS).
b Accuracy guarantee, 1− ε, is set to 0.99.
c Standard Deviation (SD).
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Table 5.7 summarizes how performance gets improved by adding each component
into our method. The comparison between MAP and BoW+SVM shows us the effect
of using a class hierarchy for flat classifiers. In most of the case, the MAP performs
better than BoW+SVM. As seen in Table 5.7, using the context-free confidence set
strategy, CSlim, improves the performance of the context-free flat classifier MAP.
By allowing the use of confidence sets as the output of the classifier, CSlim enables
significant increases in classification accuracy. To show the importance of context-
awareness for a flat classifier, MAP, we additionally implement MAP+HMM, which
is the context-aware version of MAP. The results show that the context model
improves the performance of MAP in all test cases. CSlim and CSlim+HMM are
both confidence set approaches. The comparison between these context-free and
context-aware confidence set methods indicates that the use of context information
provides significant improvement in classifier performance. Moreover, from Table
5.7, we see that both CSlim+HMM and MAP+HMM are context-aware methods,
but, CSlim+HMM achieves higher accuracy than MAP+HMM by allowing returns
in the form of a recognition set, which may contain more than one recognition
suggestion.

All our extensive experimental results show that in product recognition, there are
two typical reasons for the poor performance: (1) distorted product images cap-
tured in the supermarket environment with blur, occlusions, varied viewing angles,
and different lighting conditions, and (2) visually similar products which have fine-
grained differences. The first issue can be potentially addressed by the context-aware
nature of the proposed method. In shelves, transition probabilities between similar
objects which have a different metric size and between dissimilar objects are low.
In such cases, analysis of the context-free flat classifiers and their context-aware
versions show that context information may potentially improve the classification.
In Figure 5.14, sample test sequences and classification results for individual prod-
ucts in the sequence are shown. As seen in Figure 5.14(e), generally, small-sized
products (e.g., Coca-cola 1 lt) are placed on the upper shelves while large size (e.g.,
Coca-cola 1.5 lt) products are on the lower shelves. The context-free flat classifier,
MAP, confused a product image (Coca-cola 1.5 lt) with a similar class (Coca-cola 1
lt), but the context-aware one, MAP+HMM, correctly classifies this product. How-
ever, in shelves, transition probabilities between the similar products which have the
same metric size are usually high (See Figure 5.14(f)). So, context information may
not help address the second issue raised above about the fine-grained nature of the
problem. The classification results in Figure 5.14(f) show that use of confidence sets,
CSlim, extends the recognition set to contain the true class with a certain confidence
level and addresses the second issue. By combining the confidence set approach and
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context information, our final method, CSlim+HMM, remains robust even for the
classification of visually similar products and distorted or low-quality product im-
ages for which the traditional and context-free classifiers and even state-of-the-art
methods may give inaccurate results as shown in Figure 5.14.

5.6 Conclusion

We have presented a hierarchical context-aware confidence set approach for fine-
grained classification problems. Our proposed object classification method is ro-
bust, especially when dealing with both fine-grained similarities between classes
and problematic images that suffer from blur, occlusions, varied viewing angles, and
different lighting conditions. Our method outputs confidence sets which contain
objects from the same groups instead of a singleton class if the output of the classi-
fier is not confident at the finest level of the hierarchy. The proposed method tries
to give maximum information about the object label without being wrong. Thus,
the suggested confidence sets, which are guaranteed to contain the true lass at a
given confidence level, can be used for a final check by a human operator to find
the true classes with relatively less effort. Moreover, the context-aware nature of
the proposed system helps improve the performance of the classifier, especially for
classification of low-quality or problematic images.

We have applied our method to classifying retail products and demonstrated its
effectiveness on several product datasets [3]. We conducted extensive experiments
and compared our method with both conventional methods and several deep learning
methods (Inception-Resnet-v2 [106], B-CNN [72], DenseNet-161 [60] and SENet-
154 [59]) which are the state-of-the-art methods for image classification in various
domains. In most of the experiments, our method outperforms existing methods by
achieving more than 99% accuracy while returning relatively small confidence sets
sizes. Compared with other methods, our experiments emphasize that the proposed
approach yields better performance and can potentially address central problems of
fine-grained product classification especially when processing low-quality images.
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Figure 5.14 Each sub-figure shows a sample test shelf sequence data, ground truth
class of the test images in the shelf sequence and recognition results of the classifiers
( CSlim, CSlim+HMM, MAP, MAP+HMM ) for individual products in the test
sequences. In each test sequence, the annotated test images are indicated with
different colored boxes. Same colored boxes are also used to indicate outputs of
the classifiers for each test image in the given sequence data. Tick and cross marks
under the item images indicate whether the classification for that spot is correct or
not. 103



CHAPTER 6

Conclusion and Future Work

In this chapter, we provide a summary of this thesis and possible future research
directions.

6.1 Summary of this thesis

In this thesis, we propose statistical methods for retail product classification that
exploit (1) context information obtained from the retail shelves, (2) class hierarchy
constructed based on visual similarity between product classes, and (3) the confi-
dence sets based approach.

First, we propose a context-aware hybrid classification system for the problem of
fine-grained product class recognition. In shelves, same or similar products are
more likely to appear adjacent to each other and displayed in certain arrangements
rather than at random. The arrangement of the products on the shelves has a
spatial continuity both in the brand and metric size. In our approach, the co-
occurrence of the products and the adjacency relations between the products on
retail shelves are statistically modeled. The proposed hybrid approach improves
the accuracy of context-free image classifiers such as Support Vector Machines, by
combining them with a probabilistic graphical model such as Hidden Markov Models
or Conditional Random Fields. The main aim of the proposed method is to use
contextual relationships in retail shelves and make the classification system context-
aware to improve the classification accuracy.

Second, the recent deep learning-based approaches, which have achieved state-of-the
art performance in a variety of vision applications, have been explored to obtain high
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accuracy for retail product classification. We implemented the current state-of-the-
art CNN approaches for the retail product recognition task. We conducted exten-
sive experiments and compared the state-of-the-art convolutional neural networks
classifiers including SENet-154 [59], DenseNet-161 [60], B-CNN [72], and Inception-
Resnet-v2 [106] for our problem.

Third, we propose a new approach for fine-grained classification of retail products
that learns and exploits statistical context information about likely product arrange-
ments on retail shelves, incorporates visual hierarchies across product classes, and
returns recognition results as "confidence sets", which are guaranteed to contain the
true class at a given confidence level, instead of a single prediction. Our system
consists of three important components: (i) a nested hierarchy of product classes
are automatically constructed based on visual similarities, (ii) a confidence set pre-
dictor is trained based on class posteriors by using coarse-to-fine binary classifiers
to discriminate each nested cluster of the hierarchy from the remainder of classes
and a Bayesian network model that encodes the joint distribution of classifier scores
with the fine-level class variable, and (iii) an hidden Markov model is trained with
nested hidden states from the class hierarchy to model spatial transitions across the
nodes of product class hierarchy and resolve errors in the context-free confidence
set results. The main novel aspects of this work is threefold: (i) combining confi-
dence sets and context information via an HMM, (ii) applying the proposed method
to fine-grained recognition of products, and (iii) presenting experimental results on
four large datasets, collected from actual retail stores. Our proposed approach per-
forms comparably or better than state-of-the-art deep classifiers and achieves high
accuracy for relatively small confidence set sizes.

6.2 Future research directions

Given the recent success of deep learning methods in a variety of image classification
problems, the main future research direction might establish connections between
the context-aware and hierarchical classification approaches presented in this thesis
and deep learning methods. However, the-state-of-the-art deep networks outperform
other methods thanks to hundreds or thousands of labeled training examples. Thus,
additional labeled training samples may be needed to be able to properly train the
deep networks and achieve state-of-the-art performance for the problem of retail
product recognition.
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In the literature, recurrent convolutional architectures are used to model sequential
data in vision problems such as activity recognition, image captioning, and video
description applications. These networks are end-to-end trainable and suitable for
large-scale visual understanding tasks. The main difference between recurrent neural
networks (RNNs) and the conventional feed-forward neural networks is that RNNs
includes at least one feedback loop between the input and output. In this manner,
RNNs utilize sequential information in the input and can memorize. The most
common application for RNNs is speech recognition. In these applications, the
order of the words and the connection between them are utilized.

Long-short term memory (LSTM) is a special form of the traditional RNN [55].
LSTMs are proposed to solve the gradient vanishing and exploding problems in
RNNs. LSTM can model long-term dependencies in a sequence. The work in [88]
compares a generative model, HMM, and LSTM approaches to model the sequential
information in the context of action recognition. Their results show that Recur-
rent neural networks are suitable for sequential data prediction and may slightly
outperform the traditional generative models. However, training an RNN requires
hundreds or thousands of labeled examples. For this reason, they indicate that gen-
erative graphical models (e.g., HMMs) are still better than deep networks under
conditions where the training dataset does not contain a sufficiently large number of
images. In contrast to RNNs, HMMs can learn with fewer examples with favorable
training times.

[32] proposes Long-term Recurrent Convolutional Networks (LRCNs), which com-
bines the strengths of rapid progress in CNNs for visual recognition problems, and
the growing desire to apply such models to time-varying inputs and outputs [32].
LRCN processes the variable-length visual input with a CNN. Then, the outputs
of the CNN are fed into a stack of recurrent sequence models. In the final step,
the LSTM returns a variable-length prediction. Their experiments show that utiliz-
ing deep networks for both visual recognition and sequence learning task improves
the performance of the system and outperforms the state-of-the-art methods. This
hybrid system is similar to the ones that we mentioned in Chapter 3. Hence, in
the future, a LSTM network could be explored to model the contextual relation-
ship between the product on retail shelves and then a context-aware hybrid system,
which combines the strength of CNNs and LSTMs, could be explored for product
recognition.

Convolutional Neural Networks have achieved state-of-the-art results in image clas-
sification applications. Thanks to the availability of large and labeled datasets (e.g.,
ImageNet), CNNs automatically extract discriminative classification features from
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the training images, which are used to recognize complex objects. This enables
CNNs to significantly outperform traditional computer vision approaches on some
classification problems, which have large-scale datasets. In [19], different feature
visualization methods are proposed. The visualization of the features is important
to evaluate the reliability of the features. It also may also provide us with an oppor-
tunity to identify possible reasons behind misclassification, and the discriminative
patches in an object image [19]. To the best of our knowledge, these feature visu-
alization and special feature extraction methods for retail products have not been
exploited in the literature. Hence, a feature visualization method could be explored
in the future to find and analyze the most discriminant features for the retail product
recognition problem.

In [19], a hierarchy-aware CNN is proposed. They show that making CNNs
hierarchy-aware enables them to outperform the traditional CNNs. Furthermore, the
hierarchy-aware strategy accelerates the training convergence. They select AlexNet
as a reference architecture and analyze the classification power of convolutional lay-
ers to extended the network to be hierarchy-aware. For this purpose, they create
branches from these layers in which group-level classification is performed. After
that, the group error is back-propagated and the most separable groups are selected
by using the corresponding feature detectors.[19]. Their experimental results show
that (1) the features extracted at the early layers of the networks can distinguish
groups at the high level of the class hierarchy, and (2) the extracted features at
deep layers discriminate the fine-grained difference between visually similar classes.
Hence, a hierarchy-aware CNN could be explored in the future to utilize the strength
of both taxonomic relationships between product classes, and CNNs for the problem
of retail product recognition.

In addition to deep learning-based feature methods, examining the methods devel-
oped in this thesis for solving other recognition problems could be another interesting
direction for future work. Although we have applied the context-aware confidence
set approach, which we have developed in Chapter 5 of this thesis, to retail prod-
ucts only, our algorithm is general and can be applied to other fine-grained object
recognition problems such as plant/animal species recognition and clothing style
recognition, as well as challenging recognition problems involving object sequences
such as handwriting recognition.

We also plan to extend our model to 2D with spatial product configurations on
shelves including horizontal and vertical adjacencies. To design the 2D model, 2D
Markov Random Fields (MRFs) can be used over spatial product configurations
based on horizontal and vertical adjacencies. If the graphical model has no loops
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such as a tree or a polytree, then exact inference can be performed by dynamic
programming with a complexity linear in the number of detections. Accordingly,
parameter estimation problem is solved by Belief Propagation (also known as Sum-
Product Algorithm, Forward-Backward Algorithm), and the inference is similarly
found by Viterbi Algorithm. However, if the graphical model has loops, then the
implementing of exact inference is impossible. In this case we can use approximate
methods like Loopy Belief Propagation, Mean Field Approximation, and Alpha Ex-
pansion [67, 108, 84]. In addition to loop problem in 2D graphical model design,
our retail shelf model does not have regular grid like as in images. In other word,
there are different number of products in each shelves. So, a new method should be
proposed to solve irregular grid problem for 2D graphical model of the retail shelves.

Most computationally complex classifiers (e.g., CNNs) requires a large amount of
training data to train. Labeling so much data is time consuming and expensive. Es-
pecially, datasets for fine-grained image classification are relatively small compared
to traditional image classification datasets. This causes to overfitting. For this
reason, data augmentation is a widely used technique which increase the number
of training samples, without actually collecting new samples [8, 109, 121]. Crop-
ping, padding, and rotating are commonly used as data augumentation strategy
to train complex classification systems, especially CNNs. Recently, Generative Ad-
versarial Nets(GANs) have been used to generate more labeled data. Datasets for
fine-grained retail product recognition are also limited in terms of number of training
samples. In a recent work [109], some of the training image samples are generated
by a GAN. Their system learns unsupervisedly to transform images taken in ideal
studio settings into images captured in real retail stores. Their results show that
the use of image-to-image translation GAN provides us making the classifier more
robust to domain shift issue, increasing the training set and improving the classifier
performance.
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