
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Dartmouth College Ph.D Dissertations Theses and Dissertations

8-1-2014

Methods for efficient object categorization, detection, scene Methods for efficient object categorization, detection, scene

recognition, and image search recognition, and image search

Alessandro Bergamo
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bergamo, Alessandro, "Methods for efficient object categorization, detection, scene recognition, and
image search" (2014). Dartmouth College Ph.D Dissertations. 45.
https://digitalcommons.dartmouth.edu/dissertations/45

This Thesis (Ph.D.) is brought to you for free and open access by the Theses and Dissertations at Dartmouth Digital
Commons. It has been accepted for inclusion in Dartmouth College Ph.D Dissertations by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/dissertations
https://digitalcommons.dartmouth.edu/theses_dissertations
https://digitalcommons.dartmouth.edu/dissertations?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/dissertations/45?utm_source=digitalcommons.dartmouth.edu%2Fdissertations%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

METHODS FOR EFFICIENT OBJECT CATEGORIZATION,
DETECTION, SCENE RECOGNITION, AND IMAGE SEARCH

DARTMOUTH COMPUTER SCIENCE TECHNICAL REPORT
TR2014-764

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Alessandro Bergamo

DARTMOUTH COLLEGE

Hanover, New Hampshire

August 2014

Examining Committee:

(chair) Lorenzo Torresani

Dragomir Anguelov

Chris Bailey-Kellogg

Devin J. Balkcom

F. Jon Kull, Ph.D.
Dean of Graduate Studies

Abstract

In the past few years there has been a tremendous growth in the usage of digital

images. Users can now access millions of photos, a fact that poses the need of having

methods that can efficiently and effectively search the visual information of interest.

In this thesis, we propose methods to learn image representations to compactly rep-

resent a large collection of images, enabling accurate image recognition with linear

classification models which offer the advantage of being efficient to both train and

test. The entries of our descriptors are the output of a set of basis classifiers evalu-

ated on the image, which capture the presence or absence of a set of high-level visual

concepts. We propose two different techniques to automatically discover the visual

concepts and learn the basis classifiers from a given labeled dataset of pictures, pro-

ducing descriptors that highly-discriminate the original categories of the dataset. We

empirically show that these descriptors are able to encode new unseen pictures, and

produce state-of-the-art results in conjunct with cheap linear classifiers. We describe

several strategies to aggregate the outputs of basis classifiers evaluated on multiple

subwindows of the image in order to handle cases when the photo contains multiple

objects and large amounts of clutter. We extend this framework for the task of object

detection, where the goal is to spatially localize an object within an image. We use

the output of a collection of detectors trained in an offline stage as features for new

detection problems, showing competitive results with the current state of the art.

ii

Since generating rich manual annotations for an image dataset is a crucial limit of

modern methods in object localization and detection, in this thesis we also propose

a method to automatically generate training data for an object detector in a weakly-

supervised fashion, yielding considerable savings in human annotation efforts. We

show that our automatically-generated regions can be used to train object detectors

with recognition results remarkably close to those obtained by training on manually

annotated bounding boxes.

iii

To my beautiful wife, Niusha, for being a light in the dark, for your wisdom,

your patience, and your infinite love.

iv

Acknowledgment

I want to first and foremost thank my wife, Niusha, who has been more than support-

ive during my dedication and long hours put into my PhD. I could have not made it

without you.

I want to also thank my entire family, for being proud of me and having supported

me every day: Mamma, Papa, Laura, Francesca, Hossein, Giti, and Donya.

I also want to thank my advisor Lorenzo Torresani, for having supervised me all

these years. Thank you for persuading me into doing a PhD. I am happy you did.

I want to express my gratitude to my thesis committee members. Chris Bailey-

Kellogg, and Devin J. Balkcom, thank you to have followed my work from the be-

ginning. Dragomir Anguelov, you have been a tremendous mentor to me. I hope to

work with you again soon.

Finally, a special thanks goes to my friends and collaborators Mohammad Raste-

gari and Chen Fang, with whom our friendship has extended beyond the walls of my

PhD, and Sudipta Sinha, who has been a wonderful guru. I learned a lot from all of

you.

v

Contents

1 Introduction 1

2 Related work 11

3 Descriptors for object categorization 17

3.1 Introduction . 17

3.2 General framework . 18

3.3 PiCoDes . 22

3.4 Meta-Classes . 27

3.5 Experiments . 31

3.5.1 Datasets . 31

3.5.2 Low-level descriptors . 32

3.5.3 Learning classifier-based descriptors 36

3.5.4 Evaluation setup . 39

3.5.5 Experiments on Caltech 256 39

4 Descriptors for scene recognition 60

4.1 Introduction . 60

4.2 Methods . 61

4.3 Experiments . 65

vi

CONTENTS CONTENTS

4.3.1 Datasets . 65

5 Descriptors for object detection 70

5.1 Introduction . 70

5.2 DetClassemes . 72

5.2.1 Modeling our descriptor . 72

5.2.2 Learning the descriptor . 74

5.2.3 Utilize our descriptor . 74

5.3 Experiments . 75

5.3.1 Implementation of our descriptor 75

5.3.2 Experiments on PASCAL 2007 76

6 Weakly-supervised object detection 79

6.1 Introduction . 79

6.2 Self-taught Object Localization . 82

6.2.1 Input Grayout . 82

6.2.2 Agglomerative Clustering . 84

6.3 Weakly-Supervised Detection using STL 86

6.4 Experiments . 87

6.4.1 Self-taught Localization . 87

6.5 Qualitative results . 92

6.5.1 Weakly-supervised Detection 93

7 Software 102

7.1 vlg extractor . 102

7.2 LIBLINEAR bitmap . 103

Appendix 107

vii

CONTENTS CONTENTS

A Support Vector Machine 108

B Approximated feature map 111

C Multiple-kernel combiner 113

D Object detector model 115

References 116

viii

List of Figures

1.1 Application: image search . 2

1.2 Text limitations for describing visual information 3

1.3 Application: search in personal photo collections 5

3.1 Visualization of PiCoDes projections 22

3.2 Visualization of the Meta-Class tree 30

3.3 Example images from Caltech-256 . 33

3.4 Example images from ImageNet . 34

3.5 Accuracy versus PCA-compression trade off 38

3.6 Recognition results on Caltech-256 50

3.7 Recognition results on Caltech-256 51

3.8 Recognition results on ILSVRC-2010 53

3.9 Recognition results on ILSVRC 2010 54

3.10 Recognition results on ILSVRC-2010 55

3.11 Meta-Class node levels usage . 56

3.12 Different types of Meta-Class trees 57

3.13 Accuracy versus compactness trade off 58

3.14 Compactness versus recognition time 58

3.15 Object-class search results on ILSVRC-2010 59

ix

LIST OF FIGURES LIST OF FIGURES

4.1 Example images from MIT-67 . 62

4.2 Example images from SUN-397 . 63

5.1 Detection results on PASCAL-2007 78

6.1 Gray-out technique . 80

6.2 Comparison bounding-box proposal methods 89

6.3 Comparison bounding-box proposal methods on the benchmark ILSVRC-

2012-LOC . 90

6.4 Comparison bounding-box proposal methods 90

6.5 Gray-out technique: successes . 98

6.6 Gray-out technique: successes . 99

6.7 Gray-out technique: failures . 100

6.8 Weakly-supervised detection results on ILSVRC-2012-LOC-200rnd . . 101

x

List of Tables

3.1 List of image descriptors . 36

3.2 Highest and lowest active nodes in the Meta-Class tree 52

3.3 Recognition results on ILSVRC-2010 53

4.1 Categorization results on PASCAL-2007 66

4.2 Recognition results on SUN 397 . 67

4.3 Recognition results on SUN-397 . 69

5.1 Detection results on PASCAL-2007 76

6.1 Highest-scoring bounding boxes . 94

6.2 Highest-scoring bounding boxes . 95

6.3 Weakly-supervised object detection: best and worst classes 97

xi

Chapter 1

Introduction

Nowadays digital images are everywhere, and in large quantity. Advances in camera

and storage technologies have made the acquisition and saving of pictures simple and

convenient for the common user, who now keeps thousands of documents instead of

a few dozen as before. Moreover, web-based platforms for media sharing like Flickr,

Facebook, or Google+ allow the users to share and have access to millions of visual

documents. Online commerce services like Amazon or eBay all provide pictures of

their listed items, in order to allow users to purchase what they like visually. We

argue that one of the biggest challenges from a user standpoint is how to search the

visual information of interest, in an effective and efficient fashion.

In this thesis we consider the problem of efficient visual object-category search

by a set of examples. The task is stated as the following: a user defines a query

by providing a small collection of images while an automatic system retrieves the

relevant images from a large image database. We do not set any constraints about

the number or type of query images. Furthermore, the database may contain millions

of pictures; nevertheless, we want to perform an accurate search very efficiently.

We can think of several real scenarios why this type of search can be useful. In

1

Introduction

Figure 1.1: Application usage (1): advanced filtering of the pictures retrieved by a classic
image-search engine.
The user enters the textual query ”mouse” and performs an initial search. The text descrip-
tion is vague, therefore there is a large variety of results: computer input devices, animals,
cartoon characters, clipart, etc. The user now selects a few images that best characterize
his needs, and the system will filter the results in real-time according to his selection. This
multiple selection allows the user to specify a general or more specific new visual category,
as he desires. Current filtering options based on size, color, and image type are too simple
for this task and non utilitarian.

Fig. 1.1 a user is trying to search for an object of interest using an image search

engine and providing a text description. We can see that the textual information is

ambiguous, and can refer to a large variety of visual content.

Even if a precise text description was provided, the search might not return the

desired results, because it may happen that a list of words can be expanded in several

visual concepts. For instance the word ”hawksbill” denotes both a crag in Arkansas

as well as a type of sea turtle. As another example, ”camel” can be referred to either

the animal or a brand of cigarettes. These pictures may have a little bit in common

visually, and form multiple visual clusters as shown in Figure 1.2.

These examples all show that taking the actual visual content of the image into

account is of critical importance in order to achieve satisfactory results. In this thesis

we want to study methods that allow the user to select a few images that better

visually describe his needs (see Fig. 1.1, center), and the search engine will either

re-rank the previously gathered pictures, or perform a new search from scratch using

only the visual query provided by the user.

Another interesting application scenario that motivates this thesis, is visual search

2

Introduction

Sea Turtle Crag in Arkansas

(a) Hawksbill

Animal Brand of Cigarettes

(b) Camel

Figure 1.2: Text is very limiting to describe visual information. For instance the word
”hawksbill” denotes both a crag in Arkansas as well as a type of sea turtle. The word
”camel” can be referred to as the animal or a brand of cigarettes.

in personal photo collections. Users typically store large amounts of personal pho-

tographs, a fact that poses non-trivial challenges in searching the photos of interest.

The automatic organization of the pictures based on shooting time or manual tag-

ging is not effective in the long term and/or as the collection grows. Automated

tagging of pictures is limited to simple, pre-defined categories. The user rarely has

time to manually tag the pictures but even if one does, it is not clear which tags will

be useful in future needs. Automated tagging of pictures is limited to pre-defined

categories that don’t go beyond simple concepts (e.g. ”mountain”, ”beach”, etc..).

In summary, the interactive nature of searching and browsing large image collections

calls for the ability to allow users to define their own personal query categories to be

recognized. As described in Fig. 1.3, the systems we propose in this thesis avoid any

offline labeling and simply allows searching the information only when it is needed.

We believe that defining a visual query consisting of multiple images carries much

3

Introduction

more expressiveness than a query with a single image. For instance, in the example in

Fig. 1.1 if we had selected only the image with the white background we could expect

the search engine to gather only images with Mickey Mouse in the foreground and a

clean white background, performing almost an object-instance search. Instead, while

selecting images with different backgrounds we are implicitly telling the system that

that background is variable. This is the peculiarity and key-difference from all other

search systems founded on content-based retrieval [58, 15], where the query consists

of a single image.

Note that while specifying a small collection of images, the user defines implicitly

an arbitrary visual category. However, we need to take into consideration that the

system is not aware of this novel category until at query time; this makes the system

substantially different from classic recognition methods which assume a fixed set of

classes [19, 65].

Moreover, traditional recognition techniques do not pose any constraint regarding

the efficiency in learning and testing the model, whereas in our case they are cru-

cial. The user expects results in real-time, thus we require our system to be able

to learn the novel-class object classifier on-the-fly, and evaluate it on a large-scale

image collection accurately and very efficiently. We also require the images to be de-

scribed with very compact descriptors in order to be able to keep millions of images in

memory for faster processing. This is in contrast with the direction taken from most

popular object categorization benchmarks [40, 8], that measures the performance of

recognition systems solely in terms of classification accuracy over a predefined set of

classes, and without the consideration of the computational costs.

In the first part of this thesis we consider the problem of designing a system that

can address these requirements: our goal is to develop an approach that enables accu-

rate real-time recognition of arbitrary categories in gigantic image collections, where

4

Introduction

Figure 1.3: Application usage (2): Search in personal photo collections. Bob has tons of
pictures of vacations in his personal computer and recently he was in Egypt. He wants to
see all the pictures that contains the pyramids so he just clicks on a couple of images and
our system will search all the other images containing the pyramids for him in real-time.

the classes are not defined in advance, i.e, they are not known at the time of the

creation of the database. We propose to achieve this goal by means of image descrip-

tors designed to enable good recognition accuracy with simple linear classifiers, which

can be trained efficiently and can be tested in just a few seconds even on databases

containing millions of images. Rather than optimizing classification accuracy for a

fixed set of classes, our aim is to learn a general image representation which can be

used to describe and recognize arbitrary categories, even novel classes not present in

the training set used to learn the descriptor.

We follow the framework introduced in [74], where the authors propose to use

the outputs of a predefined set of nonlinear classifiers as entries of the image de-

scriptor, which are evaluated on low-level features computed from the photo. This

implies that a simple linear classification model applied to this descriptor effectively

implements a nonlinear function of the original low-level features. As demonstrated

in recent literature on object categorization [36], these nonlinearities are critical to

achieve good categorization accuracy with low-level features. However, the advan-

tage of this approach is that our classification model, albeit nonlinear in the low-level

features, remains linear in our descriptor and thus it enables efficient training and

5

Introduction

testing. In other words, the nonlinear classifiers implementing our features are used

as a classification basis to recognize new categories via linear models. Based on this

intuition, we refer to our features as basis classes. The final classifier for a novel class

is obtained by linearly combining the outputs of the nonlinear classifiers, which we

can pre-compute and store for every image in the database, thus enabling efficient

novel-class recognition even in large datasets. Note that in [74] the authors propose

to use a hand-selected set of object classes from the real-world as basis classes; in this

case each basis classifier is simply trained as a traditional object classification model

optimized to recognize that particular base class.

In this thesis, we investigate and propose in chapter 3 several strategies to auto-

matically discover a suitable set of discriminative basis classes and so to train a more

effective set of basis classifiers. We indeed demonstrate that a better classifier-based

representation can be obtained by learning the basis classes as general ”abstract cate-

gories” optimized to yield useful features for linear models rather than hand-defining

them as real object classes. We propose two distinct strategies to learn automati-

cally the basis classes. The first one is called PiCoDes (appeared first in [10]) and

is presented in section 3.3. This approach optimizes the basis classifiers for linear

classification, i.e., it trains them to produce good recognition accuracy when used as

features with linear models. The second strategy is called Meta-Class (appeared

first in [9]) and is presented in section 3.4. This method constrains each basis class to

be a super-category obtained by grouping a set of object classes such that, collectively,

are easy to distinguish from other sets of categories. We show that our feature vectors

provide better accuracy compared to the existing work on learning compact image

codes, including [74]. On the Caltech 256 benchmark, a simple linear SVM trained on

our representation outperforms the state-of-the-art LP-β classifier [36] trained on the

same low-level features used to learn our descriptor. On the 2010 ImageNet Challenge

6

Introduction

(ILSVRC-2010) database, linear classification with our features achieves recognition

accuracy only 10.3% lower than the winner of the competition [53], whose computa-

tional cost for training and testing is several orders of magnitude higher compared to

our approach, which is a system that was trained for a week using a powerful clus-

ter of machines, a specialized hardware architecture for memory sharing, and a file

system capable of handling terabytes of data. Instead, our approach allows us to fit

the entire ILSVRC-2010 training and testing set in the RAM of a standard computer

and produce results within a day using a budget PC.

In order to render the descriptor capable of handling the presence of multiple ob-

jects and clutter typical of these datasets, we propose in chapter 4 methods to apply

our basis classifiers on many subwindows of the photo. We describe and evaluate

several strategies to aggregate the features produced from multiple subwindows into

a single compact descriptor that can be used by linear classification models. We show

that the resulting descriptors yield a significant boost in accuracy compared to feature

vectors built from basis classifiers evaluated on the whole image and are on par with

specialized object detectors tuned on the test classes. However, the training and test-

ing of linear classifiers using our descriptors have considerably lower computational

cost. We present in this thesis the first comprehensive evaluation of classifier-based

descriptors on object detection and scene recognition datasets, including the chal-

lenging PASCAL-VOC-2007, MIT 67, and SUN 397 benchmarks.

In chapter 5 of this thesis, we also studied the more general problem of object

detection. In other words, the task is to detect the presence of the objects of interest,

as well as detecting the bounding boxes surrounding them. Object detection provides

several benefits over holistic classification, including the ability to localize objects in

the image, as well as robustness to irrelevant visual elements, such as uninformative

background, clutter, or the presence of other objects. Traditionally, the object de-

7

Introduction

tection problem has been tackled by means of subwindow recognition [41, 32], where

a classifier is evaluated on an exhaustive set of candidate subwindows yielding high

scores for those containing the objects of interest. Given the large number of subwin-

dows to consider, these approaches can be used in practice only with features that are

extremely fast to extract (e.g. Histograms of Oriented Gradients (HOG) [14]), since

the typical high-dimensionality of image representations poses non-trivial challenges

in their storage.

In this work we further increase the sophistication of these object detection models

by replacing conventional sub-window representations with higher-level visual infor-

mation learned during an offline training stage. We propose to describe each candidate

subwindow in terms of the output of a set of pre-trained object detectors. Given a

new object class to detect, we simply train a linear classifier on this representation,

thus using the pre-learned object detectors as a basis for detection of new categories.

Our results on the challenging PASCAL-VOC-2007 dataset move towards the best

published results in the literature, while being conceptually much simpler to im-

plement compared to the most currently dominant approaches involving part-based

objects [32].

We notice that while whole-image classifiers can be trained with image examples

labeled merely with class information (e.g. ”chair” or ”pedestrian”), detectors require

richer labels consisting of manual selections specifying the region or the bounding box

containing the target object in each individual image example. Unfortunately, such

detailed annotations are expensive and time-consuming to acquire. This effectively

limits the applicability of object detectors to scenarios involving only few categories

(e.g., [38]). Furthermore, these manual selections are often rather subjective and

noisy, and being so, they do not provide optimal ground truth regions for training

detectors.

8

Introduction

In chapter 6 of this thesis, we introduce a novel approach that leverages on deep

convolutional networks [47] trained for whole-image recognition to localize objects

in images without additional human supervision, i.e., without using any ground-

truth bounding boxes for training. The key idea is to analyze the change in the

recognition scores when artificially graying out the color pixels of different regions of

the image. We observe that graying out a region that contains an object of a certain

category, typically causes a significant drop in recognition for that class. This intuition

is embedded into an agglomerative clustering technique that generates self-taught

localization hypotheses. For a small number of hypotheses, our object localization

scheme greatly outperforms prior subwindow proposal methods in terms of both recall

and precision 1 .

These subwindows are used as training data to learn a conventional object detec-

tor, like the one described in the appendix D. The detectors are weakly-supervised,

as we effectively replace the traditional manually-annotated bounding boxes with re-

gions automatically estimated from training images annotated only with whole-image

object-class labels. This framework enables scalable training of object detectors at

a much reduced human cost, since no manual annotation of regions is needed. We

demonstrate that these weakly-supervised detectors achieve recognition accuracy sur-

prisingly close to that obtained by using ground-truth bounding boxes as training

data.

This thesis is organized as follows: In chapter 2 we introduce all related prior work

relevant for all the topics treated in this thesis. We will discuss all the alternative

methods we considered that could be potentially used to tackle the problems discussed

in the introduction.

1Informally, the recall can be viewed as the probability that each object in the image is covered
by at least one subwindow, whereas precision is the chance that a subwindow covers an object.

9

Introduction

Then, in chapter 3 we introduce methods for learning compact global image rep-

resentations: PiCoDes presented in section 3.3, and Meta-Class in section 3.4. In

section 3.5 we present an extensive set of experiments for whole-image categorization

on both medium and large scale benchmarks.

Next, in chapter 4 we propose several extensions for these methods to make the

descriptor capable of handling the presence of multiple objects and clutter in the

pictures. In section 4.3 we propose an exhaustive set of experiments showing the

advantages in terms of accuracy of these extensions, providing state-of-the-art results

on challenging benchmarks like MIT 67, SUN 397, PASCAL-VOC-2007.

Later, in chapter 5 we extend this framework to tackle the object detection task,

showing in section 5.2 how to learn a bank of detectors offline, whose outputs will be

used as features. In section 5.3 we experimentally show how these features can be

used for a new detection task, showing improvements on the benchmark PASCAL-

VOC-2007.

In chapter 6 we present a framework to automatically generate bounding box

training data for an object detector, in a weakly-supervised fashion by making use

solely of the whole-image class label annotation. We show in section 6.4 that these

weakly-supervised detectors yield precision close to the one obtained by making use of

human-annotated data. Lastly, in chapter we finally conclude this thesis and discuss

the possible future work.

10

Chapter 2

Related work

The problem of object class recognition in large datasets has been the subject of

much recent work. While nonlinear classifiers (see appendix A) are recognized as

state-of-the-art in terms of categorization accuracy [36, 47], they are difficult to scale

to large training sets. Thus, much more efficient linear models (see appendix A) are

typically adopted in recognition settings involving a large number of object classes,

with many image examples per class [19]. As a result, much work in the last few

years has focused on methods to retain high recognition accuracy even with linear

classifiers. We can loosely divide these methods in three categories.

The first category comprises techniques to approximate nonlinear kernel distances

via explicit feature maps [55, 79]. For many popular kernels in computer vision, these

methods provide analytical mappings to higher-dimensional feature spaces where in-

ner products approximate the kernel distance. This permits to achieve results com-

parable to those of the best nonlinear classifiers with simple linear models. However,

these methods are typically applied to hand-crafted features that are already high-

dimensional and they map them to spaces of further increased dimensionality (≥ 3

times as large, depending on the implementation). As a result, they pose high stor-

11

Related work

age costs in large-scale settings. We presented the method introduced in [79] in more

detail in the appendix B.

A second line of work [65] involves the use of vectors containing a very large number

of features (up to several millions) so as to obtain a high degree of linear separability.

The idea is similar to that of explicit feature maps, with the difference that these

high-dimensional signatures are not produced with the goal of approximating ker-

nel distances between lower-dimensional features but rather to yield higher accuracy

with linear models. In order to be able to keep large datasets in memory with such

representations, the vectors are typically stored in compressed form and then decom-

pressed quickly and one at a time during training and testing [65, 44]. An exception

is the work of Lin et al. [53] where the high storage and I/O costs caused by their

high-dimensional descriptor were absorbed by a large system infrastructure consisting

of Apache Hadoop to distribute computation and storage over many machines.

Finally, the third strand of related work involves the use of image descriptors

encoding categorical information as features; the image is represented in terms of

its closeness to a set of basis object classes [82, 74, 16] or as the response map to a

set of detectors [52]. Even linear models applied to these high-level representations

have been shown to produce good categorization accuracy. These descriptors can

be viewed as generalizing attributes [49, 30, 50], which are semantic characteristics

selected by humans as associated with the classes to recognize.

The approaches presented in this thesis in chapter 3 are closely related to this third

line of work, as they all represent images in terms of the outputs of classifiers learned

for a set of basis classes. However, while the prior work made use of hand-selected

categories to define the base classes, our work automatically builds an optimized

collection of categories for the given objective. Section 3.2 will describe in detail the

differences between our image descriptors and the work introduced in [74].

12

Related work

We note that this line of work is also evocative of the use of attributes [49, 30, 50]

which are fully-supervised classifiers trained to recognize certain properties in the

image such as ”has beak”, ”near water”. While attributes have been used as features

for recognition in specialized domains (e.g., animal recognition [50] or face identifica-

tion [49]), we demonstrate that by choosing a large and varied set of object categories

as basis classes, it is possible to employ the resulting descriptor as an effective uni-

versal feature representation for general object categorization. Furthermore, we show

that this feature vector can be binarized with little loss of recognition accuracy to

produce a compact binary code that allows even gigantic image collections to be kept

in memory for more efficient testing.

In this thesis we also consider how to extend classifier-based descriptors to yield

good recognition accuracy even for photos containing multiple objects and clutter.

Operating in these scenarios requires factoring out the background and the irrelevant

visual elements, while representing the multiple objects in the scene. Our approach

is inspired by Li et al. [52] who have proposed to use the localized outputs of object

detectors as image features. The advantage of this representation (called Object-

Bank) is that it encodes spatial information. Furthermore, object detectors are more

robust to clutter and uninformative background than classifiers evaluated on the en-

tire image. However, their representation is very high-dimensional (the ObjectBank

descriptor includes over 40,000 real-valued entries) and as such is not adequate for

large-scale recognition. In chapter 4 we will present and test several strategies to ag-

gregate the outputs of basis classifiers evaluated on multiple subwindows in a single

low-dimensional descriptor.

Deep networks [7] have very recently gained great popularity due to their out-

standing performance on different tasks, including large-scale image categorization

[48, 24, 69], face verification [73], video recognition [46], and speech recognition [22].

13

Related work

Note that PiCoDes, the method introduced in section 3.3 can be viewed as im-

plementing a form of deep belief network [43], where low-level features are pumped

through a set of learned nonlinear functions organized in layers. However, our ap-

proach differs from traditional deep learning methods in terms of the training objec-

tive, the optimization algorithm, the type of nonlinearities, and also in our use of the

output layer as a representation for subsequent recognition.

The problem of object detection has been traditionally approached as the task of

exhaustive sub-image recognition [41, 32]: for every category of interest, a classifier

is evaluated at every possible rectangular subwindow of the image, thus performing a

brute-force sliding window search. In order to maintain the computation manageable

despite the large number of subwindows to consider, these approaches are constrained

to use features that are extremely fast to extract. Representative efficient sub-image

descriptors include the Histograms of Oriented Gradients (HOG) [14] and the Haar

features [80] which can be calculated in constant time at every location by using

integral images.

Recently, a few authors [2, 75] have introduced the idea of efficiently identifying

inside the image the rectangular subwindows that are most likely to contain objects,

regardless of their class. Particularly the method of selective search (SS) originally

proposed in [75] shows a recall (fraction of the true objects that are identified by

the method) approaching 97% for a small number of candidate subwindows (on av-

erage about 1500 per image). This desirable property, coupled with the efficiency

of their algorithm, implies that relatively few subwindows need to be considered to

accurately localize and recognize objects. In turn, this enables the practical applica-

tion of sophisticated features and object detection models, which instead would be

prohibitive in a traditional sliding-window scenario. For example, the system of [75]

achieves state-of-the-art results by training a nonlinear SVM on a spatial pyramid

14

Related work

of histograms computed from 3 distinct local appearance descriptors. Despite the

complexity of this model, the computational cost of recognition remains low if the

classifier is applied only to the 1500 candidate sub-images rather being exhaustively

evaluated over all possible subwindows.

Leveraging the prior work on candidate subwindow proposal methods, we propose

in chapter 5 a detector-based subwindow descriptor. The approaches presented in [74]

and [52] are similar in spirit to ours. Similary to [74] we use the output of non-linear

classifiers as features. However, while in [74] the basis classifiers are trained for whole-

image classification, in our work we use proper image detectors to better capture the

locality of the objects, leveraging the detector model described in the appendix D.

Similarly with [52] we use the response of object detectors as features. However, the

work of [52] is designed and tackles a scene recognition task, whereas we are focusing

on efficient object detection.

In the context of both object localization and detection, several researchers have

attempted to apply deep networks [38, 66, 72, 26]. In [38], a convolutional network [48]

is fine-tuned on ground truth bounding boxes and then applied to classify subwindows

generated by the region proposal algorithm of Uijlings et al. [75]. In [66, 26, 72] a

convolutional network is trained to directly perform regression on the vector-space

of all bounding boxes of an image in order to avoid the high computational cost of

traditional sliding window or region proposal approaches. These deep networks have

shown promising results compared to standard detection schemes relying on hand-

crafted features [32, 75]. However, nearly of all them require manually-annotated

ground truth bounding boxes as training data. In contrast, our method presented

in chapter 6 populates the images in the training set with automatically-generated

bounding boxes, which can be exploited for the learning of arbitrary detectors.

The subwindow proposal methods [3, 75] mentioned before, focus on generating

15

Related work

bounding boxes in order to maximize recall, thus are typically employed at testing

time to replace the classic but computationally expensive sliding window approach.

However, these subwindow proposals cannot be used in lieu of ground truth bounding

boxes to train a detector because of their low precision (i.e., presence of many false

positives). In addition, most of these proposal techniques [3] require ground truth

bounding boxes during training, thus effectively increasing the amount of manual

annotations needed to train a recognition system. The method we introduced in

chapter 6 can also be viewed as a subwindow proposal method but it provides precision

much superior to that of prior methods: detectors trained on our automatically-

generated bounding boxes perform nearly on par with detectors learned from ground-

truth annotations.

Most weakly-supervised object detection methods [23, 13, 68, 70] aim at jointly

learning and inferring both the class and the position of the objects. In chapter 6

we do not attempt to estimate both class and location within a single training stage.

Instead, we leverage on powerful deep network trained with only class labels to auto-

generate training bounding boxes for weakly-supervised detection.

16

Chapter 3

Descriptors for object

categorization

3.1 Introduction

In this chapter we present two compact global image representations, that enable

accurate real-time recognition of arbitrary categories in gigantic image collection, and

are designed to be used with simple linear classifiers, which can be trained efficiently

and can be tested in just a few seconds even on databases containing millions of

images. Rather than optimizing classification accuracy for a fixed set of classes, our

aim is to learn a general image representation which can be used to describe and

recognize arbitrary categories, even novel classes not present in the training set used

to learn the descriptor.

We made publicly available a software called vlg extractor for Linux, Win-

dows, and Mac to extract the descriptors introduced in this chapter. Please refer to

the chapter 7.1 more more details.

17

General framework Descriptors for object categorization

3.2 General framework

In this section we introduce our general framework of classifier-based image descrip-

tors. Similarly as introduced in [74], at a high-level, our approach involves represent-

ing an image x as a C-dimensional vector h(x), where the c-th entry is the output

of a classifier hc evaluated on x:

h(x) =


h1(x)

...

hC(x)

 (3.1)

The classifiers h1...C (the basis classifiers) are learned during an offline stage from a

large labeled dataset of images DS = {(x1, y1), . . . , (xN , yN)}, where xi denotes the

i-th image in the database and yi ∈ {1, . . . , K} indicates the class label of the object

present in the photo. The database DS represents our general visual knowledge-base;

it should be very large and ideally include all possible visual concepts of the world.

Our approaches analyze DS to automatically extract the C visual classifiers h1...C to

be subsequently used as universal image features for class recognition. We call these

C visual features basis classes. The work proposed in [74] uses as basis classes a

pre-defined set of real word classes, whereas in our work the basis classes are abstract

categories, i.e., visual categories that do not necessarily exist in the real-world but

that are useful to represent and discriminate the K classes in DS. This is a critical

difference, which lead to non-trivial descriptor learning methods. In the work of [74]

indeed, the image representation is constrained to have dimensionality equal to the

number of categories of the offline training set DS (thus C = K). In our work instead,

we decouple the number of original classes from the descriptor dimensionality, that

can be specified by the user. Note that we encode in the descriptor all the visual

18

General framework Descriptors for object categorization

information carried by DS, and use it to extract a descriptor from a new image that

potentially will belong to a visual category not present in DS.

Before describing how we define and learn the basis classifiers, we want to discuss

the motivation behind this representation. Intuitively, our descriptor represents an

image in terms of its visual closeness to the set of C basis classes. We propose to

extract this descriptor for every image x in the database where we want to perform the

final recognition. As shown in our experiments, these classifier-based representation

provides us with two fundamental advantages:

1. Compactness. Only C entries are are needed to describe each image. By limiting

C to relatively small values (say, a few thousands), we can store even large

image collections in memory (rather than on the hard-drive) for more efficient

recognition.

2. High accuracy with linear models. This representation enables good classifica-

tion accuracy even with simple linear models of the form θ>h(x). Intuitively

this happens because a linear combination of these C features implements a

powerful weighted sum of C classifiers, which reuses the basis classes as build-

ing blocks to recognize novel categories.

Let us now consider the problem of how to define the basis classifiers. We propose

to train our basis classifiers on a low-level representation of the image: given an image

x we first extract a set of M low-level features {fm(x)}Mm=1, capturing different visual

cues, such as the color distribution, or the spatial layout in the image (our low-level

features include common descriptors such as SIFT [54] and GIST [59]; see sec.3.5.2

for further details). In order to obtain a powerful image representation, we want our

basis classifiers h1...C to be nonlinear functions of features {fm(x)}. This is motivated

by the observation that several recent papers have shown that such nonlinearities

19

General framework Descriptors for object categorization

are crucially necessary to achieve good classification accuracy (see, e.g., [36, 74]).

However, at the same time we want to define a representation that is efficient to

compute. This implies that the basis classifiers h1...C must be fast to evaluate. In

order to achieve this twofold purpose, we lift each feature vector fm(x) ∈ Rdm to a

higher-dimensional feature space via the explicit map proposed in [79] and described

in the appendix B, so that inner products in this space approximate well a predefined

nonlinear kernel distance Km() over the original features fm(x). In other words, this

trick allows us to approximate a computationally-expensive non-linear classifier based

on kernels, with a linear classifier that makes the overall accuracy of the model drop

by only a few percentage points, but allowing us to train the basis classifiers in a

considerably reduced amount of time, but most important the time needed to extract

our image descriptors of a give image is orders of magnitude smaller.

The concatenation of the M lifted-up features produces a vector Ψ(x) of dimen-

sionality D =
∑M

m=1 dm(2r + 1):

Ψ(x) =


Ψ1(f 1(x))

...

ΨM(fM(x))

 (3.2)

Using this formulation based on explicit feature maps, we implement each basis

classifier hc as a linear combination of approximate kernels parameterized by a single

projection vector ac:

hc(x) = τc(a
>
c [Ψ(f(x)); 1]) (3.3)

where τc is a function to either quantize or scale the classifier output. The constant

value 1 is appended to the vector Ψ(x) to implement a bias coefficient without ex-

plicitly keeping track of it. We can then stack together the parameters of all basis

20

General framework Descriptors for object categorization

classifiers in a single matrix:

A = [a1 . . .aC]

For notational convenience, we set the following equivalences: hc(x) ≡ h(x;ac) =

τc(a
>
c [Ψ(f(x)); 1]) and h(x) ≡ h(x;A).

We can now even more clearly recognize the two above-mentioned advantages

enabled by our descriptor, i.e, compactness and high accuracy with linear models.

Specifically, this formulation implies that a simple linear classification model θ>h(x)

trained for a new class effectively implements an approximate linear combination of

multiple low-level kernel distances, using our basis classifiers as individual compo-

nents:

θ>h(x) =
C∑
c=1

θcτc(a
>
c [Ψ(f(x)); 1]) (3.4)

The great advantage is that the model θ, albeit nonlinear in the low-level features,

remains linear in our descriptor and thus can be efficiently trained and tested. More-

over, note that while the extraction of the low-level features {fm(x)}Mm=1 is needed to

calculate the descriptor h(x), the storage of these low-level features is not necessary

for the subsequent recognition. This implies that only the compact feature vectors

h(x) need to be stored in the database.

Note that this approach can also be viewed as a dimensional reduction method:

the function h indeed maps the high-dimensional descriptor represented by Eq. 3.2,

to a space of much lower dimensionality, i.e. C � D. In the experimental section we

will show that such representation is able to retain or even enrich the original repre-

sentation, allowing efficient linear classifiers to achieve state-of-the-art classification

accuracy on several challenging benchmarks.

In the next sections we propose different methods to discover the basis classes and

learn the basis classifiers from a given database DS.

21

PiCoDes Descriptors for object categorization

Figure 3.1: Visualization of PiCoDes. Each row of images illustrates a particular
bit in our 128-bit descriptor. These 6 randomly chosen bits are shown as follows: for
bit c, all images are sorted by non-binarized classifier outputs a>c x and the 10 smallest
and largest are presented on each row. Note that ac is defined only up to sign, so
the patterns to which the bits are specialized may appear in either the “positive” or
“negative” columns.

3.3 PiCoDes

The idea of the PiCoDes approach is quite simple: given that we want to use

basis classifiers as features with linear models, we design our learning objective to

enforce that linear combinations of these basis classifiers must yield good accuracy

with respect to our training set. In other words, rather than hand-designing the

basis classes as done in [74], we learn abstract categories aimed at optimizing linear

classification when they are used as features. This learning objective decouples the

number of training classes from the target dimensionality of the binary descriptor and

thus it allows us to optimize our descriptor for any arbitrary length. Furthermore,

it enables direct optimization of the learning parameters with respect to the desired

quantization function τc, avoiding the suboptimal use of quantizers applied as a post-

processing.

Figure 3.1 provides a visualization of a few basis classifiers learned by our training

procedure. This figure suggests that our learned features describe the image in terms

of binary visually-interpretable properties corresponding, e.g., to particular shape,

22

PiCoDes Descriptors for object categorization

texture or color patterns.

We first introduced this approach in [10]. We called these features PiCoDes,

which stands for “Picture Codes” but also “Pico-Descriptors”. In order to obtain

a highly compact descriptor, we optimize the PiCoDes features to be binary, i.e.,

h(x;ac) = 1[aTc x > 0] (note that this is the same form as in Eq. 3.1 with only

difference that here we choose τc(z) = 1[z > 0]).

Our work improves the technique presented in [74] in the following aspects:

• Our basis classifiers are defined formally and learned jointly by optimizing an

objective that is directly related to their actual usage as features at application

time (see Eq. 3.4). In the prior work instead the learning of the basis classifiers

is completely disjoint from their actual usage.

• The basis classes are not hand-selected real object classes, but automatically

discovered from a given labeled training set. In the prior work instead, the

choice of classes to use is left to the designer of the descriptor but there is no

well-defined criterion to determine the best set of categories.

• We directly optimize to learn a binary descriptor, whereas prior work applies a

quantization scheme as a post-processing and is not considered in the learning

objective of the basis classifiers.

Learning the basis classifiers

In order to learn the PiCoDes basis classifiers, we use a binary encoding of the labels

for the training examples in DS: for each example i, we define yi ∈ {−1,+1}K to be

a vector describing its category label, with yik = +1 iff the i-th example belongs to

class k. As seen shortly, this labeling will allow us to implement a form of “one-vs-

the-rest” strategy for training the basis classifiers. We will continue to let C stand

23

PiCoDes Descriptors for object categorization

for the dimensionality (i.e., number of bits) of our code.

We then define our c-th basis classifier to be a boolean function of the form of the

Eq. 3.3, i.e. a thresholded nonlinear projection of the original low-level features f ,

parameterized by ac ∈ Rn. We want to optimize the parameter matrix A so that lin-

ear combinations of the resulting basis classifiers yield good categorization accuracy

on DS. In order to formalize this objective, for each training class k we introduce

auxiliary parameters (wk, bk), which define a linear classifier operating on the Pi-

CoDes features and distinguishing the k-th class from all the others. Thus, we state

our overall objective as joint optimization over our representation (parameterized by

A) and the auxiliary parameters defining the K linear classifiers so as to obtain the

best possible linear classification accuracy on DS.

Specifically, we use a large-margin formulation which trades off between a small

classification error and a large margin when using the output bits of the basis classi-

fiers as features in a one-versus-all linear SVM:

E(A,w1..K , b1..K) =
K∑
k=1

{
1

2
‖wk‖2 +

λ

N

N∑
i=1

`

[
yi,k(bk +w>k h(xi;A)

]}
(3.5)

where `[·] is the traditional hinge loss function. Expanding, we get

E(A,w1..K , b1..K) =
K∑
k=1

{
1

2
‖wk‖2 +

λ

N

N∑
i=1

`

[
yi,k(bk +

C∑
c=1

wkc1[aTc xi > 0])

]}

We propose to jointly learn the linear SVMs (wk, bk) and the parameters ac of the

basis classifiers using the method described below.

24

PiCoDes Descriptors for object categorization

Optimization

Minimizing this objective requires optimization directly for binary features, which is

difficult and nonconvex. Thus, we use an alternation scheme implementing block-

coordinate descent. We alternate between the two following steps:

1. Learn classifiers.

We fix A and optimize the objective with respect to w and b jointly. This optimiza-

tion is convex and equivalent to traditional linear SVM learning.

2. Learn PiCoDes

Given the current values of w and b, we minimize the objective with respect to A by

updating one basis-classifier at a time.

First, we rewrite our objective function, i.e., eq. 3.5, in expanded form:

E(A,w1..K , b1..K) =
K∑
k=1

{
1

2
‖wk‖2 +

λ

N

N∑
i=1

`

[
yik(bk +

C∑
c=1

wkc1[aTc xi > 0])

]}
.

Fixing the parametersw1..K , b,a1, . . . ,ac−1,ac+1, . . . ,aC and minimizing the func-

tion above with respect to ac, is equivalent to minimizing the following objective:

E ′(ac) =
K∑
k=1

N∑
i=1

`

[
yikwkc1[aTc xi > 0] + yikbk +

∑
c′ 6=c

yikwkc′1[aTc′xi > 0]

]
.

Let us define αikc ≡ yikwkc, and βikc ≡ (yikbk +
∑

c′ 6=c yikwkc′1[aTc′xi > 0]). Then,

we can rewrite the objective as follows:

E ′(ac) =
K∑
k=1

N∑
i=1

`

[
αikc1[aTc xi > 0] + βikc

]

=
N∑
i=1

[
1[aTc xi > 0]

K∑
k=1

`(αikc + βikc)(1− 1[aTc xi > 0])
K∑
k=1

`(βikc)

]

25

PiCoDes Descriptors for object categorization

=
N∑
i=1

[
1[aTc xi > 0]

K∑
k=1

`(αikc + βikc)− `(βikc)
]

+ const .

Finally, it can be seen that optimizing this objective is equivalent to minimizing

E(ac) =
N∑
i=1

vi1[zia
T
c xi > 0] + const (3.6)

Unfortunately, this objective is not convex and not trivial to optimize. Thus,

we replace it with the following convex upper bound defined in terms of the hinge

function `:

Ê(ac) =
N∑
i=1

vi`(zia
T
c xi) (3.7)

This objective can be efficiently globally optimized using an LP solver. However,

note that the objective is equivalent to the one of a SVM without regularizer and

individually-weighted slack variables. In practice, we had optimized this formulation

with the “Weights for data instances” version of LIBLINEAR [29], setting the hyper-

parameter to a very high value, thus canceling the effect of the regularizer.

Note that we have also experimented with several other optimization methods,

including Stochastic Gradient Descent (SGD) applied to a modified version of our

objective, where we replaced the binarization function h(x;ac) = 1[aTc x > 0] with

the sigmoid function σ(x;ac) = 1/(1 + exp(− 2
T
aTc x)) to relax the problem. This

type of minimization is similar to that traditionally used in neural networks, with the

difference that here we are optimizing a large-margin multiclass objective with respect

to our PiCoDes representation. However, the issue with this minimization strategy

is that it no longer optimizes for pure binary features, which is the way we intend to

use them at application time: after learning, we want to replace back σ(x;ac) with

h(x;ac) to obtain binary descriptors. In practice, we found that for this reason codes

26

Meta-Classes Descriptors for object categorization

optimized in this fashion performed much worse than those directly learned via the

coordinate descent procedure described in section 3.3 of the paper.

3.4 Meta-Classes

We have seen that the PiCoDes approach described in the previous section provides

principled learning of abstract basis classes explicitly optimized for good accuracy

with linear models, but it requires a computationally expensive minimization, which

in practice can be run only for very compact dimensionalities (our largest PiCoDes

contain 2048 bits and required several weeks to be learned). We now introduce

a descriptor-learning algorithm that combines the advantages of having a scalable

learning method, and still the automatic discovery of abstract basis-classes yielding

good recognition when used as features with linear models. We originally presented

this approach in [9].

We refer to the basis classes learned by this method as “meta-classes”. Intuitively,

we want our meta-class classifiers to be “repeatable” (i.e., they should produce similar

outputs on images of the same object category) and to capture properties of the image

that are useful for categorization. We formalize this intuition by defining each meta-

class to be a subset of object classes in the training set. Specifically, we hierarchically

partition the set of training object classes such that each meta-class subset can be

easily recognized from the others. This criterion forces the classifiers trained on

the meta-classes to be repeatable. At the same time, since the meta-classes are

superclasses of the original training categories, by definition the classifiers trained

on them will capture common visual properties shared by similar classes while being

effective to discriminate visually-dissimilar object classes.

Each basis classifier hc is implemented as a LP-β classifier [36], while the func-

27

Meta-Classes Descriptors for object categorization

tion τc performs either a hard or soft thresholding of the input value. The hyphotesis

hc is learned from a training set DSc containing the images of meta-class c as positive

examples, and of other meta-classes as negative images. Note that the meta-classes

are abstract basis classes, as they are not necessarily present in the real-world.

Discovering the meta-classes

In this section we describe the procedure to discover the meta-classes. Our method is

an instance of the algorithm for label tree learning described in [6] 1 . This algorithm

learns a tree-structure of classifiers (the label tree) and was proposed to speed up

categorization in settings where the number of classes is very large. Instead, here we

use the label tree training procedure to learn meta-classes, i.e, sets of classes that

can be easily recognized from others. We provide below a review of the label tree

algorithm, contextualized for our objective.

Let `D be the set of distinct class labels in the training set DS, i.e. `D ≡

{1, . . . , K}. The label tree is generated in a top-down fashion starting from the

root of the tree. Each node has associated a set of object class labels. The label set

of the root node is set equal to `D. Let us now consider a node with label set `. We

now describe how to generate its two children 2 . The two children define a partition

of the label set of the parent: if we denote with `L and `R the label sets of the two

children, then we want `L ∪ `R = ` and `L ∩ `R = ∅. Ideally, we want to choose the

partition {`L, `R} so that a binary classifier h(`L,`R)(x) trained to distinguish these

two meta-classes makes as few mistakes as possible. In order to select the best classi-

fier, we should train a classifier for each of the possible (|`|(|`| − 1)/2− 1) partitions

1Note that other label-tree learning methods, such as [35, 21], could also be applied to our task
of meta-class training.

2Although the label tree can have arbitrary branching factor at each node, in our work we use
binary trees. We tried to learn a label tree with branching factor equal to three, and obtained similar
performances.

28

Meta-Classes Descriptors for object categorization

of `, but this operation is prohibitively expensive. Instead, we take inspiration from

the work of [6] and we use the confusion matrix of one-vs-the-rest classifiers learned

for the individual object classes to determine a good partition of `: intuitively, our

goal is to include classes that tend to be confused with each other in the same label

subset. More formally, let ĥ1, . . . , ĥ|`D| be the one-vs-the-rest LP-β classifiers learned

for the individual object classes using the training set DS. Let A ∈ R|`D|×|`D| be the

confusion matrix of these classifiers evaluated on a separate validation set Dval ⊂ DS:

Aij gives the number of samples of class i in Dval that have been predicted to be-

long to class j (we assume the winner-take-all strategy for multiclass classification).

Since this matrix is not symmetric in general, we compute its symmetrized version

as B = (A + AT)/2. Then, for each node we propose to partition its label set ` into

the subsets `L ⊂ `, `R ≡ `− `L that maximize the following objective:

E(`) =
∑
i,j∈`L

Bij +
∑
p,q∈`R

Bpq . (3.8)

The objective encourages to include in the same subset classes that are difficult to tell

apart, thus favoring the creation of meta-classes containing common visual properties.

At the same time, maximizing this objective will tend to produce meta-classes `L,

`R that are easy to separate from each other. Let I` denote the indexes of training

examples having class labels in ` and we form the labeled set D(`L,`R) = {(xi,+1) :

i ∈ I`L} ∪ {(xi,−1) : i ∈ I`R} We repeat this process recursively on each node until

it contains a single class label, i.e., |`| = 1, producing in total C̃ labeled sets.

Note that optimization of eq. 3.8 can be formulated as a graph partitioning prob-

lem [81]. We compute the solution `L by applying spectral clustering [57] to the

matrix B: this is equivalent to solving a relaxed, normalized version of eq. 3.8 that

penalizes unbalanced partitions. We repeat this process recursively on each node until

29

Meta-Classes Descriptors for object categorization

Figure 3.2: Meta-class tree. This figure shows a small portion of the tree learned by
the meta-class approach described in Sec 3.4. The rectangular nodes represent the
leaves of the tree, associated with real categories of the ImageNet dataset. The inner
round nodes represent the meta-classes automatically learned by our method, which
tends to group together categories that are difficult to tell apart.

it contains a single class label, i.e., |`| = 1.

Fig. 3.2 shows a portion of our meta-class tree learned from the ImageNet dataset [19].

As expected, we found that our meta-classes tend to group together object classes

that are visually similar although not necessarily semantically related (e.g., lantern

and electric lamp but also hurricane lamp and perfume).

Learning the meta-class classifiers

The learning of the basis classifiers is now straightforward: at each node ` of the

label tree we train an LP-β classifier (see appendix C) on the binary split {`L, `R}.

Specifically, let I` denote the indexes of training examples having class labels in `.

Then, we form the labeled set D(`L,`R) = {(xi,+1) : i ∈ I`L} ∪ {(xi,−1) : i ∈ I`R}

and use it to train meta-class classifier h(`L,`R)(x). This procedure yields in total

C̃ basis classifiers, where C̃ is the number of inner nodes of the label tree. Note

30

Experiments Descriptors for object categorization

that this learning is embarrassingly parallelizable as we can learn the hypothesis

independently. We also include in the descriptor the outputs of the one-vs-the-rest

classifiers ĥ1, . . . , ĥ|`D|, as we have found that this improves the final performance

of the classifier. The image descriptor h(x) is then a C-dimensional vector, where

C = C̃ + K. We refer to the classifiers ĥ1, . . . , ĥ|`D| as “classemes”, as it represents

in practice a modified more efficient version of the method proposed in [74].

We experiment with two versions of the function τ in Eq. 3.1, thus giving rise to

the two following variants of the meta-class descriptor:

• mc: We convert the raw score of each LP-β classifier into a probabilistic output

by means of a sigmoid function, i.e., we set τc(z) = 1/(1 + exp(−αcz + βc)). We

learn the parameters of the sigmoid by means of Platt’s scaling procedure [62],

using the validation set Dval. We found that this sigmoidal normalization yields

a large boost in the accuracy of the final classifier trained on this representation,

probably as it makes the range of classification scores more homogeneous and

reduces outlier values.

• mc-bit: We create a binary vector by setting set τc(z) = 1[z > 0],∀c ∈

{1, . . . , C}.

3.5 Experiments

3.5.1 Datasets

In this work we make use of several datasets, for both learning and testing our de-

scriptors. Here we summarize briefly their characteristics:

• Caltech 256 [40]: Popular benchmark for object categorization with ∼ 30K images

31

Experiments Descriptors for object categorization

partitioned into 256 visual categories. Each photo contains a single centered object.

Some example images are shown in figure 3.3.

• ImageNet [19] (Spring 2010 release): Large-scale image dataset consisting of more

than 15K object categories and 11M pictures. Most images contain a single object.

ImageNet is based on a collection of visual concepts, that are organized hierarchically

according to WordNet[31]. Each concept, also called “synset”, is described by a set

of words or word phrases (only nouns). The images have been manually annotated,

and most of them contain a single object. Some example images are shown in

figure 3.4.

• ILSVRC-2010 [8]: Large-scale benchmark for object categorization. It is a subset of

the ImageNet dataset: it contains 1000 categories and 1.2M images. The training

set contains a variable number of examples per class, from a minimum of 619 to a

maximum of 3047 yielding in total about 1.2M examples. The validation and test

sets have 50 and 150 images per category, respectively.

3.5.2 Low-level descriptors

As previously described in Sec. 3.2, our descriptors are built upon a set of low-level

features. For the features that are based on the aggregation of local descriptors,

we also exploit the Spatial Pyramid method [51] to encode weak geometry into the

representation. In particular we use a pyramid (SP) of L layers, and for each layer

l ∈ {0, . . . , L− 1} we partition the image into a 2l × 2l grid of cells and we extract a

low-level feature vector from each cell. We use the following low-level features:

• Color GIST [59]: we first resized the images to 32× 32 pixels, without maintaining

the aspect ratio, and then we compute the orientation histograms on a 4 × 4 grid.

32

Experiments Descriptors for object categorization

Figure 3.3: Example images from the Caltech 256 dataset for the category ”dog”

We use 3 scales with the number or orientation per scale being 8, 8, 4.

• Oriented HOG [14] (4 SP layers): Histogram of Oriented Gradients computed using

20 bins.

• Unoriented HOG [14] (4 SP layers): an histogram of unoriented gradients quantized

into 40 bins.

• SSIM [67] (3 SP layers): we compute a histogram by extracting the 30-dimensional

33

Experiments Descriptors for object categorization

Figure 3.4: Example images from the ImageNet dataset for the category ”dog”

self-similarity descriptor every 5 pixels, and by quantizing it into 300 cluster centroids

obtained from K-means.

• SIFT [54] (3 SP layers): We extract the SIFT [54] features for our descriptor ac-

cording to the following pipeline. We first convert each image to gray-scale, then

we normalize the contrast by forcing the 0.01% of lightest and darkest pixels to be

mapped to white and black respectively, and linearly rescaling the values in between.

All images exceeding 786,432 pixels of resolution are downsized to this maximum

34

Experiments Descriptors for object categorization

value while keeping the aspect ratio. The 128-dimensional SIFT descriptors are com-

puted from the interest points returned by a DoG detector [78]. We finally compute

a Bag-Of-Word histogram of these descriptors, using a K-means vocabulary of 500

words. The 128-dimensional SIFT descriptors are computed from the interest points

returned by a Difference of Gaussians (DoG) detector [78]. We finally compute a

Bag-Of-Word histogram of these descriptors, using a K-means vocabulary of 500

words.

In our work we treat each pyramid layer as if it was a separate low-level feature

vector. The concatenation of all these M = 15 feature vectors, yields a 22, 860-

dimensional vector. As described in Sec. 3.2 we make use of the explicit map pro-

posed in [79] to perform efficient non-linear classification with an approximated In-

tersection Kernel. The map is a function Ψ(f ; r, L, γ) that takes a feature vector f

as input and is parametrized by r (number of samples), L (period of the sampling),

and γ (normalization of the kernel). We set r = 1 for all the features, producing

feature vectors three times as big as the original vectors, and γ = 1 as suggested

in [79]. For each feature vector, we select the parameter L by grid search, minimiz-

ing the error between the exact kernel distance K, and the approximated one, i.e.

minL
∑N

i,j=1

∣∣〈Ψ(f i),Ψ(f j)
〉
−K(f i,f j)

∣∣ computed on a validation set consisting of

N = 2560 images randomly sampled from the Caltech 256 dataset [40]. The con-

catenation of all these mapped low-level feature vectors form the vector Ψ introduced

in Eq. 3.2, which for this implementation has dimensionality D = 68, 580. In this

chapter we will refer to this descriptor as Psi. Finally, we want to emphasize that

our approach is obviously not constrained to work only with the particular choice of

low-level features described above. Therefore, it could easily take advantage of more

powerful low-level features, such as the recently introduced Fisher Vectors [65], which

have been shown to lead to state-of-the-art results in object categorization.

35

Experiments Descriptors for object categorization

Name Dimens. Storage size
per image

Our descriptors
Psi (Sec. 3.5.2) 68580 268 KB
PiCoDes (Sec. 3.3) 2048 (bin) 0.25 KB
mc (Sec. 3.4) 15232 60 KB
mc-bit (Sec. 3.4) 15232 (bin) 1.9 KB
mc-LSH (Sec. 3.4) 200 K (bin) 25 KB
X+SPCAT L0L1 (Sec. 4.2) 5× 5×
X+SPLPOOL L0L1 (Sec. 4.2) 2× 2×
X+OBJPOOL (Sec. 4.2) 2× 2×

Prior work
Torresani et al. 2010, [74] (classemes) 2659 11 KB
Torresani et al. 2010, [74] (classemes-bit) 2659 (bin) 0.33 KB
Gong et al. 2011, [39] (ITQ) 2048 (bin) 0.25 KB
Gong et al. 2011 [39] (CCA-ITQ) 2048 (bin) 0.25 KB
Li et al. 2010 [52] (ObjectBank) 44.6 K 175 KB
Lin et al. 2011 [53] 1.1 M 4.5 MB
Sanchez et al. 2011 [65] (FV) 1 M 4 MB
Harzallah et al. 2009 [41] 69.3 K 4.78 MB
Song et al. 2011 [71] 192 K 750 KB
Elfiky et al. 2012 [25] 18 K 71 KB
Xiao et al. 2010 [83] 40 K 155 KB
IFK [61] 262,144 1 MB

Table 3.1: Descriptors considered in our comparison. This table presents: the name
of the descriptor and the section where it is introduced; the native dimensionality
and whether the descriptor is binary; the required memory to store a single image
descriptor.

3.5.3 Learning classifier-based descriptors

In this section we describe in detail how we implemented the classifier-based descrip-

tors proposed in sections 3.3 and 3.4. A summary of the descriptors described in this

section and others from prior work is provided in Table 3.1.

36

Experiments Descriptors for object categorization

PiCoDes

We built the training set DS from 2659 randomly selected ImageNet synsets using

30 images per category, for a total of ∼ 80K images. In order to avoid pre-learning

the test classes in the descriptor, we avoided picking as training synsets categories

belonging to the ILSVRC2010 dataset or related to Caltech 256 (we performed sub-

string matching comparison between the synset tags and the Caltech 256 keywords,

removing in total 711 ImageNet classes). This allows us to evaluate our descriptor in

a scenario where each test class to recognize is effectively novel, i.e., not present in

the training set used to learn the descriptor.

Note that the learning procedure described in Sec. 3.3 is not easily parallelizable,

and it requires continuous access to the high-dimensional image descriptors Ψ(x)

of Eq. 3.2, which are very costly in terms of storage (see Psi in Tab. 3.1). Thus,

in practice, we compress down the vectors via PCA, producing a vector of 6415

dimensions. More formally, for the PiCoDes learning, we set Ψ(x) ≡ PΨ(x) where

P contains the top 6415 PCA components. The dimensionality of 6415 was chosen

based on a preliminary experiment of multiclass classification on Caltech 256, which

is shown in figure 3.5. We used a linear SVM trained on image descriptors Ψ(x) of

varying dimensionality. This study showed that the vector of 6415 dimensions causes

only a small drop in accuracy (∼ 1%) compared to the full 68K-dimensional feature

vector.

Given the training set DS we can train the PiCoDes descriptor as described in

Sec. 3.3, performing 15 iterations. For each target dimensionality C, we learned

multiple descriptors using different values for the hyper-parameter λ, and kept the

descriptor that gave the lowest multiclass error on a validation set consisting of 5

images per class.

37

Experiments Descriptors for object categorization

10
2

10
3

10
4

10
5

16

18

20

22

24

26

28

30

32

Descriptor dimensionality

A
c
c
u
ra

c
y
 (

%
)

Linear SVM on Psi

LP−β using explicit feature maps

LP−β using nonlinear kernels

6415

52K

Figure 3.5: The accuracy versus compactness trade off. The benchmark is Caltech256,
using 10 examples per class. The pink cross shows the multiclass categorization
accuracy achieved by an LP-β classifier using exact kernel distances; the red triangle is
the accuracy of an LP-β classifier that uses “lifted-up” features to approximate kernel
distances; the blue line shows accuracy of a linear SVM trained on PCA projections
of the lifted-up features, as a function of the number of PCA dimensions.

Meta-Classes

We formed the training set DS from 8000 randomly sampled synsets from the Ima-

geNet dataset, using at most 1000 examples per category. We also created a validation

set Dval with the same categories and 80 examples per class. As done for PiCoDes, we

selected the training classes such that the synsets of these categories do not contain

any of the Caltech 256 or ILSVRC2010 class labels, so as to avoid “pre-learning”

the test classes during the feature-training stage. We learned the mc and mc-bit

descriptors following the procedure described in Sec. 3.4, using the validation set to

compute the confusion matrix and the two parameters of the sigmoid function for

38

Experiments Descriptors for object categorization

each meta-class. Since the basis classifiers can be learned independently, we use a

cluster of multiple machines to reduce the training time.

3.5.4 Evaluation setup

The next sections will describe the experimental evaluations that we have done using

our descriptors, as well as other popular image representations. All the experiments

involve the usage of a classifier to predict the correct object/scene label of an image,

and we decided to use the very efficient linear SVM model (with the only exception of

LP-β). In cases of multi-class categorization, we used the 1-vs-the-rest strategy and

performed the prediction using the winner-take-all strategy. The SVM hyperparam-

eter is selected using either 5-fold cross validation or using the validation set when

available. The calculate the accuracy as the mean of the diagonal of the confusion

matrix.

3.5.5 Experiments on Caltech 256

We present experiments obtained with several image descriptors on the challenging

Caltech 256 benchmark. We follow the standard approach of learning the classifier

for different number of training examples per class {5, 10, . . . , 50}. We evaluate the

model on a test set consisting of 25 examples per class. We compare our descriptors

PiCoDes, mc and mc-bit with the following methods:

• Psi: the concatenation of the mapped low-level features (introduced in Sec. 3.5.2).

This baseline is interesting to consider as it shows the accuracy that can be

obtained by directly training the final classifier on the low-level image represen-

tation that we have used to learn our descriptors.

39

Experiments Descriptors for object categorization

• LSPM and KSPM: these baseline methods are the Spatial Pyramid Matching

(SPM) method [51] with a linear and Chi-square kernel respectively, and SIFT

features, as reported from the work of [84].

• ITQ: the embedding method introduced in [39], which learns a binary code

by directly minimizing the quantization error of mapping the input data to

vertices of the binary hypercube. As training data for the learning we use

2560 images from the Caltech 256 dataset: the samples are converted into Psi

descriptors by using the same low-level features, feature mapping, and PCA

projection that we have adopted for PiCoDes. We have tried different PCA

subspace dimensionality; here we report the results obtained with the setting

yielding the best final accuracy. We learn a ITQ descriptor of 2048 bits in order

to compare it with PiCoDes.

• CCA-ITQ. Same as ITQ but instead of PCA we use Canonical Correlation

Analysis (CCA) (as suggested in [39]), which performs discriminative dimen-

sionality reduction.

• classemes: the descriptor introduced in [74]. The entries of this feature im-

age vector are the outputs of C classifiers trained to predict the presence or

absence of C basis classes, which are manually-specified. Note that the orig-

inal work of [74] makes use standard kernel SVM (see the appendix A). We

re-implemented this work by making use of the approximated feature map de-

scribed in appendix B, which makes the feature extraction orders of magnitude

faster. Moreover, in order to make fair comparisons, we adopted the same

low-level features we used to train our descriptors PiCoDes and mc.

• classemes-bit: Binarized version of the descriptor classemes, obtained by

40

Experiments Descriptors for object categorization

thresholding the output of the basis classifiers at zero.

• ObjectBank: the descriptor introduced in [52] which encodes into a single

vector both semantic and spatial information of objects detected in the input

image, using a set of pre-trained detectors.

• IFK Improved Fisher Kernel, as reported in [61].

• LP-β : this denotes the variant of the LP-β [36] multiple-kernel combiner de-

scribed in the appendix C, based on the same low-level features used by Pi-

CoDes and mc (see Sec. 3.5.2).

Figure 3.6 shows the multi-class recognition accuracy of the different approaches

as a function of the number of training examples per class. We can see that the

simple LSPM baseline performs very poorly with a linear model; note that incorpo-

rating the Chi-square kernel helps a lot but at the cost of the usage of an expensive

non-linear classifier. Nevertheless the performance of both the methods is lower then

all the other methods. The semantic descriptors classemes and classemes-bit

outperform these baselines while having much lower storage cost. Note that the

differences in performance between classemes and classemes-bit is negligible on

this benchmark, probably indicating that the accuracy of the classifier is saturated

at this dimensionality and cannot exploit the additional information provided by the

continuous data. ObjectBank performs moderately well but much worse than our

descriptors. PiCoDes outperforms classemes, showing the improvements gener-

ated by our proposed objective, which explicitly optimizes for linear classification,

that is the actual usage of the descriptors in this test. For the same dimensionality

and storage cost, PiCoDes outperform also ITQ and CCA-ITQ. The methods Psi

and LP-β use multiple features and nonlinear kernels (albeit in approximate form)

41

Experiments Descriptors for object categorization

and hence their recognition accuracies are among the best in the literature. However,

for small numbers of training examples per class, PiCoDes surprisingly matches

LP-β . Furthermore, note from Table 3.1 that the storage cost is 2 order of mag-

nitude higher than PiCoDes. The IFK method exploits only SIFT features but it

perform very well thanks to a more robust encoding; however this technique produces

1MB-descriptors, which are 4 order of magnitudes larger than PiCoDes, making this

approach unsuitable for large-scale scenarios where both storage and computational

costs are critical.

Finally, we can see that our descriptors mc and mc-bit greatly outperform all

the other representations; note that the binarized version (mc-bit) is only 1% worse

than the real-valued descriptor (mc) while being 32 times more compact (the storage

size for mc-bit is less than 2KB per image). Moreover we use a simple linear model,

which enables efficient training and recognition, and the storage requirement for these

descriptors is only a few KBytes per image.

In figure 3.7 we study the accuracy of our descriptors and other binary codes as

a function of the number of bits. We tested different representations on Caltech 256,

using 10 training examples per class and 25 for testing. The classification model is

again a 1-vs-all linear SVM for all methods, with the exception of LP-β.

Note that for our PiCoDes descriptor we could learn many representations, each

optimized for a different number of bits, thus setting C ∈ {128, 192, 256, 512, 1024, 2048}.

Our descriptor was found to be the best compact representation for this task, confirm-

ing the findings of our previous evaluation. We observed that for very small descriptor

dimensionalities, CCA-ITQ performs slightly better than PiCoDes (e.g., by a mar-

gin of 2% for 128 bits). Note however that in our tests the CCA transformation was

given the advantage of using the Caltech 256 classes as training data.

42

Experiments Descriptors for object categorization

Experiments on ILSVRC 2010

Qualitative results The goal of this evaluation is to provide some qualitative

understanding regarding which basis classes of our mc descriptor are found to be

more relevant to describe a few given images. In other words, we want to see which

basis classifiers fire for some given images. For this experiment, we used a few pictures

from the validation set of ILSVRC-2010, and we extracted the mc-1vsAll descriptor,

which consist only of the entries corresponding with the 8000 one-vs-the-rest classeme

classifiers (the leafs of our label tree). Note that each entry is associated with a real

ImageNet category, intuitively measuring how much likely the image contains the an

object of that category. Table 3.2 visualizes the ten highest and ten lowest entries

among the 8,000 values of the descriptor. This visualization shows that this selection

of 8,000 categories generalizes well to novel classes, and the highest scoring classifiers

do not need to be necessarily semantically related to the visual category of the test

images (fact also noted in [74]).

Categorization We now present results for the multiclass recognition task on the

ILSVRC 2010 dataset. Again, we remind the reader that these classes are disjoint

from the training categories used to learn the descriptors PiCoDes, mc, and mc-bit.

The large size of this database poses new challenges and issues that are not present

in smaller databases, as already noted in [18, 65, 53]. Yet, our binary PiCoDes, and

mc-bit features render the learning on this database relatively fast to accomplish

even on a budget PC, as we can represent these descriptors using a single bit per

dimension, storing the entire ILSVRC2010 training set in a few GigaBytes of memory.

This allows us to use efficient software for batch training 4 of linear SVM: we have had

4Note that in this scenario we could have also used a SVM formulation that supports online
learning, like the ones proposed in [11] or [1]. These formulations are based on Stochastic Gradient
Descent (SGD), and substantially have the great advantace that they need to access one example at a

43

Experiments Descriptors for object categorization

success with the package LIBLINEAR [29], properly modified to support non-sparse

binary input data, multi-threading, negative sampling, different strategies to weight

the slack variables. Please refer to section 7.2 for more details.

Again for all the experiments involving our descriptors we use the one-vs-the-rest

strategy to perform multiclass classification. To further speed-up the learning we

reduce the negative training set by sampling n = 150 examples per class. Accord-

ing to a set of preliminary experiments, this sampling causes only a negligible drop

in accuracy (less than 1%). Training a single one-vs-the-rest linear SVM using our

mc-bit descriptor takes on average 50 seconds. So the entire multiclass training for

ILSVRC2010 can be accomplished in 14 hours on a single-core computer. In practice

the learning can be made highly parallel when multiple cores and machines are avail-

able. As a comparison, the winning system of the ILSVRC2010 challenge [53] required

a week of training with a powerful cluster of machines and specialized hardware.

In table 3.3 we show the results of the analysis we made with our descriptors and

other approaches reported in the literature on the ILSVRC2010 dataset.

The mc-LSH method is just a compressed form of mc, obtained using LSH [5, 37]

with 200K binary random projections, thus reducing the storage for the mc from

60 KB to 25KB per image (see Table 3.1). We apply LSH as follows: we first reduce

the dimensionality of the data via PCA, producing a 9000-dimensional descriptor. We

center the vector by subtracting the mean (which has been calculated using a valida-

tion set), and we apply 200,000 random projections drawn from a Gaussian distribu-

tion with 0 mean and unit variance. Figure 3.8 provides an experimental justification

for the number of random projections used to generate the mc-LSH descriptor. The

time during the training phase, so avoiding to keep the entire training set in memory. However, they
introduce additional hyperparameters, like the learning rate, which makes the learning procedure
more complicated and hard to control. We believed that for our use-case a batch method would
have been better as simpler to use.

44

Experiments Descriptors for object categorization

plot shows that 200K dimensions are sufficient to maintain the discriminative power

of the original descriptor (the compression causes a negligible drop in accuracy, < 1%

according to our evaluation using the original real-valued mc descriptors on the same

ILSVRC 2010 benchmark).

We can notice that the performances of the descriptor mc-LSH is remarkably

superior to the binary versions mc-bit, yielding an improvement +5.44%. This in-

dicates that the real-valued descriptors are more informative than the corresponding

binary versions, but this additional expressiveness is exhibited only in large-scale

scenarios (again, we remind the reader that on the small Caltech 256 dataset, no

significant improvement was obtained using real-valued descriptors). In particular

mc-LSH achieves a recognition rate of 42.15% and a top-5 accuracy of 64.01% (top-5

accuracy is the traditional performance measure of ILSVRC 2010). The systems of

[65] and [53] are based on very high-dimensional image signatures and linear classifiers.

Note that although these approaches provides better accuracy, storage requirements

and prediction times are orders of magnitude more costly and clearly inapplicable

in our motivational large scale scenarios. The embedding method proposed in [39],

and the descriptor classemes-bit proposed in [74] produce representations that are

comparable in storage size and recognition time to PiCoDes, but they yield lower

accuracy.

Is the meta-class tree useful? In this paragraph, we want to answer the follow-

ing question in regard or our descriptors mc and mc-bit: does the meta-class tree

provide any advantage over a flat hierarchy composed by only the original classes

(i.e. the leaves of our tree)? The following experiments analyze this question from

different perspectives, finally showing that there is a benefit in using our tree-based

representation.

45

Experiments Descriptors for object categorization

We first calculated the multiclass recognition on the ILSVRC 2010 dataset achieved

with the individual subcomponents of mc-bit:

• mc-bit-tree, which consists of the 7232 meta-class classifiers learned for the

inner nodes of the label tree;

• mc-bit-1vsAll, which contains the outputs of the 8000 one-vs-the-rest classi-

fiers.

mc-bit-tree yields 33.87% of Top-1 accuracy, which is clearly superior to mc-bit-

1vsAll that produces only 30.64% of accuracy. More in detail, figure 3.9 shows the

results achieved with the individual subcomponents of mc-bit as a function of the

descriptor dimensionality, showing that the grouping of classes performed by the label

tree produces features that lead to better generalization on novel classes.

We also applied Recursive Feature Elimination [12] on the full descriptor mc-bit,

and in figure 3.10 we show the accuracy as a function of the descriptor dimensionality.

Also in this case, the feature selection method chooses more features corresponding

to abstract meta-classes (inner nodes) than real object classes (leaves) of the learned

tree.

We also investigated which levels of the meta-class tree are mostly used. In fig-

ure 3.11 we show the number of retained nodes as a function of the tree dept, when

the mc-bit descriptor dimensionality is 2, 000 (obtained by the same feature elimi-

nation procedure). The majority of the selected nodes are in the intermediate levels,

indicating that the information provided by the meta-classes is more important than

single-class nodes (leaves).

These experiments clearly indicate that the grouping of classes performed by the

label tree learning produces features that lead to better generalization on novel classes.

46

Experiments Descriptors for object categorization

However, the complete mc-bit descriptor yields even higher accuracy (36.71%), sug-

gesting that there is value in using both subcomponents.

Different types of meta-class trees We note that the work of [16] showed that

a hand-constructed semantic hierarchy provides semantic knowledge that can be ex-

ploited to define an effective metric for retrieval. Therefore a natural question we

asked to ourself is: how do our learned meta-classes compare to the semantic-classes

of the ImageNet hierarchy?

For this experiment, we pruned the original ImageNet tree so as to leave only

the nodes corresponding to the 8,000 synsets used to train our mc descriptor. This

produced a new semantic tree with 1,528 internal nodes. As before, we then trained

a binary classifier for each of these semantic classes and obtained a new binary de-

scriptor of 1,528 features. As shown in Fig. 3.12, we found that these “semantic

meta-classes” yield an accuracy of 18.37% on ILSVRC 2010. However, a random

selection of 1,528 features from our mc-bit descriptor performs much better, yielding

an average accuracy of 21.14% (the average is computed over 10 random selections

of 1,528 features). This suggests that meta-class features automatically learned by

considering visual relations between classes are more effective than attributes based

on human-defined notions of semantic similarity.

Trade-offs between accuracy, speed, and compactness Figure 3.13 shows the

trade-off between accuracy and storage for different image signatures. Note that our

descriptors are the most compact ones while producing near state-of-the-art classifi-

cation accuracy.

Figure 3.14 shows the storage-speed envelope of modern image descriptors. The

plot shows how our descriptors are among the most compact and fast ones. Note

47

Experiments Descriptors for object categorization

that the times reported here do not include the feature extraction time, since in our

motivating application of object-class search feature extraction is performed during

an offline stage, when the search index is created. However, we also point out that

the time needed to extract our meta-class descriptor is actually in the same order

of magnitude as those of other commonly used features for categorization, including

Fisher Vectors [65]. For example, according to our experiments on a few full-scale

images taken from PASCAL VOC 2007, the extraction of Fisher Vectors takes roughly

1 second per image if sparse SIFT features are used, but it is about 8 seconds if dense

SIFT (single scale at every pixel) are used (as in Perronnin, CVPR 2012 [65]). By

comparison, extraction of our complete mc descriptor (i.e., including computation of

the low-level features) takes on average about 5 seconds. All timing experiments were

done on the same machine using a single core.

Object-class search We present here results for our motivating problem: fast

novel-class recognition in a large-scale database. For this experiment we use again

the ILSVRC2010 data set. However, this time for each class we learn a binary linear

SVM using as positive examples all the images of that class in the ILSVRC2010

training set; as negative examples we use 4995 images obtained by sampling 5 images

from each of the other 999 categories. Then we use the classifier to rank the 150,000

images of the test set. We measure performance in terms of mean precision at K, i.e.,

the average proportion of images of the relevant class in the top-K. Note that for each

class, the database contains only 150 positive examples and 149,850 distractors from

the other classes. Figure 3.15 shows the accuracy obtained with mc-bit, which on this

task outperforms by 15% classemes-bit [74]. We also compared our descriptors to

2048-bit codes learned by ITQ [39] and LSH (we ran these methods on a compressed

version of the representation Psi obtained via PCA). It can be seen that, for the same

48

Experiments Descriptors for object categorization

target dimensionality, all of our methods outperform these baselines.

While the systems described in [65, 53] achieve higher multiclass recognition

accuracy than our method on ILSVRC2010 where the classes are predefined (see

Sec. 3.5.5), we point out that these approaches are not scalable in the context of

real-time object-class search in large databases. Table 3.3 (column three) reports the

storage required by different methods for a database containing 10M images. We

can see that the methods proposed in [65] and [53] require to store high-dimensional

real-valued vectors, making these approaches clearly not scalable in real scenarios.

In addition, our system is also outperforming the other competing methods in

terms of recognition time. The last column of Table 3.3 shows the average search

time per image for a single object-class query. Our methods are by far the fastest.

The system proposed by [65], which was relatively scalable in terms of storage, is the

slowest one. Our approach provides a 10-fold or greater speedup over these systems

and is the only one computing results in times acceptable for interactive search. We

also note that sparse retrieval models and top-k ranking methods [64] could be used

with our binary code to achieve further speedups on the problem of class-search.

49

Experiments Descriptors for object categorization

5 10 15 20 25 30 35 40 50
10

15

20

25

30

35

40

45

50

Number of training examples per class

A
c
c
u
ra

c
y
 (

%
)

PiCoDes

mc−bit

mc

Psi

LP−beta (approximate kernels) [Gehler et al. ICCV 2009]

classemes−bit [Torresani et al. ECCV 2010]

classemes [Torresani et al. ECCV 2010]

ObjectBank [Li et al. NIPS 2010]

ITQ [Gong et al. CVPR 2011]

CCA−ITQ [Gong et al. CVPR 2011]

IFK (SIFT) [Perronnin et al, ECCV 2010]

Sparse Coding [Yang et al, CVPR 2009]

Linear SPM [Yang et al, CVPR 2009]

Chi−square SPM [Yang et al, CVPR 2009]

Figure 3.6: Multi-class recognition on Caltech 256 using different image representa-
tions. The classification model is a linear SVM (except for LP-β). The accuracy is
plotted as a function of the training set size.

50

Experiments Descriptors for object categorization

128 192256 512 1024 2048 162000
5

10

15

20

25

30

35

Descriptor size (number of bits)

A
c
c
u
ra

c
y
 (

%
)

PiCoDes

classemes−bit [Torresani et al. ECCV 2010] + RFE

LSH [Indykand and Motwani, STOC 98]

Spectral Hashing [Weiss et al., NIPS 2009]

ITQ [Gong and Lazebnik, CVPR 2011]

CCA−ITQ [Gong and Laz., CVPR 2011]

LP−β [Gehler and Nowozin, ICCV 2009]

Low−level features

Figure 3.7: Multiclass categorization accuracy on Caltech256 using different binary
codes, as a function of the number of bits. PiCoDes outperform all the other com-
pact codes. PiCoDes of 2048 bits match the accuracy of the state-of-the-art LP-β
classifier.

51

Experiments Descriptors for object categorization

Image Highest-scoring mc-1vsAll Lowest scoring mc-1vsAll

0.99 - wreck
0.99 - beach
0.99 - overcast
0.99 - coral bean tree
0.99 - waterside
0.99 - grey whale
0.99 - gallery
0.99 - shore
0.99 - strand
0.99 - red buckeye

3e-10 - Helvella acetabulum
4e-09 - service club
5e-09 - compressor
6e-09 - stuffed peppers
1e-08 - swamp sunflower
1e-08 - gasoline engine
1e-08 - banquet
2e-08 - spice
2e-08 - traction engine
5e-08 - automobile engine

0.96 - peregrine falcon
0.96 - double knit
0.95 - snood
0.95 - leatherjacket
0.94 - pillbox
0.94 - cloth cap
0.94 - sweater
0.93 - macrame
0.93 - bolero
0.93 - civilian clothing

2e-3 - van
3e-3 - kaffir boom
3e-3 - Link trainer
3e-3 - hatch
4e-3 - giant petrel
4e-3 - passenger van
4e-3 - press
6e-3 - horsebox
6e-3 - seeder
6e-3 - bubble-jet printer

0.97 - workroom
0.97 - mustard
0.96 - wine bottle
0.96 - pop bottle
0.96 - brass
0.95 - bier
0.95 - salon
0.95 - musician
0.95 - wine
0.95 - laundry basket

6e-5 - killifish
1e-3 - eagle ray
1e-3 - harrow
1e-3 - duckbill
2e-3 - water flea
2e-3 - ascidian
2e-3 - badminton equipment
2e-3 - tufted puffin
2e-3 - slope
3e-3 - keeshond

Table 3.2: Visualization showing the highest and lowest entries for our mc-1vsAll
descriptor, calculated on a few test images. Please refer to the text for further details.

52

Experiments Descriptors for object categorization

Method Top-1 accu-
racy (%)

Storage 10M
images (GB)

Recognition
time (µs)

PiCoDes 22.66 2.38 5.14
mc-bit 36.71 18 38.23
mc-LSH 42.15 232 501.97

Lin et al. 2011 [53] 52.9 43,945 796.60
Sanchez et al. 2011 [65] (FV) n/a 39,041 603.1
Sanchez et al. 2011 [65]
(FV+PQ)

54.3 1,220 2131.0

Gong et al. 2011, [39] (ITQ) 21.24 2.38 5.14
classemes-bit 22.15 3.09 6.67
classemes 29.95 99.05 1.53

Table 3.3: Object class recognition on ILSVRC 2010. For each descriptor, we report:
the top-1 accuracy on the test set; the storage size of an hypothetical database con-
sisting of 10 million images; the average time required to evaluate a linear classifier
on a single image 3 , without including the feature-extraction time. All the methods
use linear SVM as classifier.

5128K 25K 100K 200K
5

10

15

20

25

30

35

40

45

dimensionality (number of Random Projections)

A
c
c
u

ra
c
y
 (

%
)

mc−LSH (RFE)

Figure 3.8: Multiclass recognition accuracy on ILSVRC2010 as a function of the
number of random projections used to generate the mc-LSH descriptor. We use
Recursive Feature Elimination to reduce the dimensionality of the descriptor. The
plot shows that 200K dimensions provide a significant compression of the original
descriptor, at a negligible drop in accuracy (note that the axes use the log scale). See
the text for more details.

53

Experiments Descriptors for object categorization

5121000 2000 4000 74568000
10

15

20

25

30

35

dimensionality

A
c
c
u
ra

c
y
 (

%
)

mc−bit−1vsAll (RFE)
mc−bit−tree (RFE)

Figure 3.9: Multiclass recognition accuracy on ILSVRC2010 as a function of the
dimensionality of the image descriptor. We use Recursive Feature Elimination to re-
duce the dimensionality of all descriptors. The two curves correspond to the results
achieved with the individual subcomponents of mc-bit: “mc-bit-tree”, which con-
sists of the 7232 meta-class classifiers learned for the inner nodes of the label tree, and
“mc-bit-1vsAll”, which contains the outputs of the 8000 one-vs-the-rest classeme
classifiers (the leaves of the tree). Note that the accuracy obtained using only the
inner node features is clearly superior to the one generated by only the leaves-features.

54

Experiments Descriptors for object categorization

512 2000 4000 8000 10256 15458
10

15

20

25

30

35

40

45

50

55

60

dimensionality

A
c
c
u
ra

c
y
 (

%
)

52%

35%
39%

40%

40%

40%

40%

mc−bit (RFE)

Figure 3.10: Multiclass recognition accuracy as a function of mc-bit dimensionality
on ILSVRC2010. We use Recursive Feature Elimination [12] to reduce the dimen-
sionality of our mc-bit descriptor. The percentage at each dimensionality indicates
the proportion of classeme features retained in the descriptor. Although initially the
full descriptor contains more classemes than meta-classes, the majority of features
selected at each step are meta-classes.

55

Experiments Descriptors for object categorization

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

Tree Depth

N
u
m

b
e
r

o
f
n
o
d
e
s
 r

e
ta

in
e
d
 i
n
 t
h
e
 d

e
s
c
ri
p
to

r

Figure 3.11: Number of retained nodes as a function of the tree dept, when the mc-bit
descriptor dimensionality is 2, 000, obtained by a Recursive Feature Elimination [12]
procedure applied to the original vector.

56

Experiments Descriptors for object categorization

512 1000 1528
12

14

16

18

20

22

dimensionality

A
c
c
u

ra
c
y
 (

%
)

mc−bit−tree (Random Feature Selection)
mc−bit−ImageNetTree (RFE)

Figure 3.12: Comparison between label trees on ILSVRC2010. The curve for mc-
bit-tree shows the accuracy achieved with the inner-node features of mc-bit (the
7232 abstract meta-classes in our learned tree). The mc-bit-ImageNetTree curve
corresponds to the inner nodes of the ImageNet semantic tree (we use a pruned version
of this tree, containing only the 8,000 synsets that we used to train our mc descriptor).
We used Random Feature Selection for the mc-bit-tree descriptor, and Recursive
Feature Elimination for mc-bit-ImageNetTree. Note that the accuracy obtained
with our learned label tree is clearly superior to the one generated using the semantic
ImageNet tree (despite we use for this last one a more powerful feature selection
algorithm, Recursive Feature Elimination instead of Random Feature Selection).

57

Experiments Descriptors for object categorization

20 30 40 50 60
10

2

10
3

10
4

10
5

10
6

10
7

C
o

m
p

a
c
tn

e
s
s
 (

im
a

g
e

s
 p

e
r

G
B

)
−

 l
o

g
 s

c
a

le

Accuracy (%)

acc=22.66

acc=36.71

acc=42.15

acc=22.15

acc=29.95

acc=52.9

acc=53.3

PiCoDes

mc−bit
mc−LSH

classemes−bit [Torresani et al. ECCV 2010]

classemes [Torresani et al. ECCV 2010]
[Lin et al. CVPR 2011]

[Sanchez et al. CVPR 2011] (FV−PQ)

Figure 3.13: Accuracy versus compactness of different image descriptors. On both
axes, higher is better (note the logarithmic axes). The number next to each point
indicates the multi-class accuracy obtained on the benchmark ILSVRC 2010.

10
0

10
2

10
4

10
2

10
3

10
4

10
5

10
6

10
7

C
o

m
p

a
c
tn

e
s
s
 (

im
a

g
e

s
 p

e
r

G
B

)
−

 l
o

g
 s

c
a

le

Speed (µs) − log scale

acc=22.66

acc=36.71

acc=42.15

acc=22.15

acc=29.95

acc=52.9

acc=53.3

PiCoDes

mc−bit
mc−LSH

classemes−bit [Torresani et al. ECCV 2010]

classemes [Torresani et al. ECCV 2010]
[Lin et al. CVPR 2011]

[Sanchez et al. CVPR 2011] (FV−PQ)

Figure 3.14: Compactness versus recognition time for different image descriptors.
Note that the recognition time does not include the feature extraction time (see
text). The number next to each point indicates the multi-class accuracy obtained on
the benchmark ILSVRC 2010.

58

Experiments Descriptors for object categorization

1 3 5 7 10 15 20 25
25

30

35

40

45

50

55

60

K

M
e

a
n

 P
re

c
is

io
n

 @
 K

 (
%

)

mc−bit

mc−bit (2048dims)

PiCoDes

classemes−bit [Torresani et al. ECCV 2010]

ITQ [Gong et al. CVPR 2011]

LSH

Figure 3.15: Object-class search on ILSVRC-2012: precision in retrieving images of
a novel class from a dataset of 150,000 photos. For each query, the true positives are
only 0.1% of the database. The classification model is a linear SVM.

59

Chapter 4

Descriptors for scene recognition

4.1 Introduction

In the previous chapter, our final goal was to perform efficient full-image recognition

in large image collections. For this task, there was an inherent assumption that each

image contains essentially a single object of interest. This is reflected by most of

the standard benchmarks of the fields. For instance, as we can see from figures 3.3

and 3.4, pictures of the Caltech 256 and ILSVRC-2012 are associated with a single

label, representing a single type of object. We also observe that in case of Caltech

256, the objects are typically centered and occupy most of the area of the image.

The framework described in Sec. 3.2 describes methods to compute global classifier-

based descriptors, i.e., feature vectors where each individual entry is the output of

a classifier evaluated over the entire image. While our experiments show that these

representations produce high accuracy on the task of whole-image classification, they

are clearly not suitable for recognition when the object of interest occupies only a

small region of the photo. In this chapter we describe how to extend our framework

to encode local information in the descriptor so as to handle cases when the image

60

Methods Descriptors for scene recognition

contains small or multiple objects.

We present three different strategies to capture local information. Each of these

local encoding methods can be applied to any of the descriptors described in Sec. 3.3,

and 3.4. At a high-level, each local encoding method is defined by a splitting function

s that decomposes the image into a set of M sub-images, and a combiner m that

aggregates the M vectors produced by extracting our classifier-based descriptor h

from the individual sub-images. More formally, let X be the space of all images. Thus,

the splitting function s : X → XM takes an image x ∈ X as input and outputs M

rectangular sub-images {x(m)}Mm=1. Then, we define our final global image descriptor

h̄(x) capturing local information as h̄(x) = m(h(x(1)), . . . ,h(x(M))).

In the next subsections we describe several choices of functions s and m, giving

rise to different h̄(x).

4.2 Methods

SPCAT: Spatial Pyramid + Concatenation

This is an instantiation of the spatial pyramid method proposed in [51] where the

function s decomposes the image into a hierarchical partition of rectangular sub-

images. The pyramid consists of L layers, where the first layer (layer 0) is the image

itself. Each layer spatially subdivides each sub-image of the previous layer into a grid

of 2x2 sub-images of equal size. Hence the total number of rectangular sub-images

defined by the pyramid is M =
∑L−1

l=0 4l.

The combiner m takes as input the set of descriptors computed from the individual

sub-images of the pyramid, and concatenates them together:

h̄(x) =
[
h(x(1))>, . . . ,h(x(M))>

]>
.

61

Methods Descriptors for scene recognition

Figure 4.1: Example images taken from the MIT 67 dataset for the category ”Art
Studio”

The final descriptor h̄ has dimensionality C ·M , where C is the length of the individual

descriptors associated to the regions (as defined in Sec. 3.2).

SPLPOOL: Spatial Pyramid + Layer Pooling

In this strategy the function s still implements a Spatial Pyramid. Instead, the com-

biner function m now concatenates descriptors obtained by pooling (or aggregating)

the feature vectors within each layer.

62

Methods Descriptors for scene recognition

Figure 4.2: Example images from the dataset SUN 397 for the category ”Veterinarians
office”

Specifically, let x(l,g) be the g-th sub-image of the l-th layer. In case of binary

descriptors (PiCoDes, mc-bit, and classemes-bit i.e. the descriptor proposed

in [74]) we keep the final features binary by performing max-pooling within each

63

Methods Descriptors for scene recognition

layer:

h̄(x) =



h(x)

maxg=1,...,4 h(x(1,g))

...

maxg=1,...,4L−1 h(x(L−1,g))


where the function max computes the component-wise maximum. In case of real-

valued descriptors (mc, and classemes [74]), instead we average the feature values

within each layer (thus replacing max with the sample mean of each feature). We also

tried max-pooling for the real-valued descriptor but we found empirically that this

yields lower accuracy. Note that with this local encoding strategy, the final vector

h̄(x) has dimensionality L · C.

OBJPOOL: Objectness + Pooling

The encoding methods of subsections 4.2 and 4.2 are limited by the fact that the

subdivision of the image is fixed, and does not take into account the actual locations

of the objects in the photo. Intuitively, we would like the function s to split the image

into regions containing objects so as to encode more relevant sub-images

To this end, we propose to implement s as a class-generic object detector producing

a candidate set of regions that are likely to contain an object. For this purpose, we

define the function s to return the M rectangular sub-images {x(m)}Mm=1 that have

the greatest ObjectNess measure [4]. Note that that ObjectNess method provides also

the probability a given subwindow contains a generic object; we tried to exploit this

information, by using the subwindows whose have such probability above a certain

threshold thus discarding irrelevant regions, but on a preliminary set of experiments

it did not provide any significant help.

Then, the combiner m performs average pooling, i.e., computes the average of

64

Experiments Descriptors for scene recognition

each feature entry over all M sub-images. Even in this case we tried max-pooling,

but again we found this strategy to produce inferior results compared to average

pooling. We append the resulting descriptor to the feature vector computed from the

entire image:

h̄(x) =

[
h(x)>,

1

M

M∑
m=1

h(x(m))>

]>
.

Thus, the final dimensionality is in this case 2 · C.

4.3 Experiments

4.3.1 Datasets

In this work we make use of several datasets, for both learning and testing our de-

scriptors. Here we summarize briefly their characteristics:

• PASCAL VOC 2007 [27]: Benchmark for object detection and classification includ-

ing 20 object categories and 9,963 images. Despite the small size of this dataset,

the classification is very challenging as each image might contain multiple objects

whose positions and scales vary greatly. The images have been manually annotated

with rectangular regions containing objects. There are a total of 24,640 annotated

objects. The database is divided into training, validation and test sets. Folllowing

the PASCAL VOC specifications, we assess the quality of our method independently

for each class, using Average Precision (AP) as measure. We then average the AP

of the classes, ending up with a single scalar number, mAP.

• MIT 67 [63]: Benchmark for indoor scene recognition. It consists of 67 indoor scenes

(e.g. corridors, bookstores) for a total of 15,620 images, each containing multiple

objects. This dataset is challenging as the scenes are characterized by the objects

65

Experiments Descriptors for scene recognition

Method mAP

PiCoDes 0.437
PiCoDes + SPLPOOL L0L1 0.455
mc-bit 0.527
mc-bit + SPLPOOL L0L1 0.53
mc 0.532
mc + OBJPOOL 0.55

classemes-bit [74] 0.427
classemes-bit [74] + SPLPOOL L0L1 0.452
classemes [74] 0.438
classemes [74] + SPLPOOL L0L1 0.447
Li et al. 2010 [52] (ObjectBank) 0.452
Harzallah et al. 2009 [42]∗ 0.635
Song et al. 2011 [71]∗ 0.705

Table 4.1: Object-class categorization results obtained on PASCAL-VOC-2007 using
our descriptors and other methods in the literature. The performance measure is the
mean of the Average Precision. Note that the methods marked with ∗make additional
use of ground truth bounding boxes for training the model. For our descriptors, the
classification model is a linear SVM.

contained in the scene. The dataset is split into training and test sets, with 80 and

20 examples per class respectively. Figure 4.1 shows some example images.

• SUN 397 [83]: Large-scale benchmark for indoor/outdoor scene recognition. It con-

tains 397 scene categories for a total number of 108,754 images. The dataset is

divided into training and test sets with 50 examples for each class. Figure 4.2 shows

some example images.

PASCAL 2007

We now present categorization results on PASCAL 2007. To the best of our knowl-

edge, this is the first comprehensive analysis of the recognition accuracy of classifier-

based descriptors on a detection dataset, which includes images containing multiple

objects whose position and scale varies greatly. For this reason we tested our de-

66

Experiments Descriptors for scene recognition

Method Accuracy

mc-2048dims 44.6
mc-2048dims + SPCAT L0L1 46.9
mc-2048dims + SPLPOOL L0L1L2 49.6
mc-2048dims + OBJPOOL 49.6
mc + OBJPOOL 55.9

Elfiky et al. 2012 [25] 48.9
Nakayama et al. 2010 [56] 45.5
Pandey et al. 2011 [60] 43.1
Li et al. 2010 [52] (ObjectBank) 37.6

Table 4.2: Scene recognition on MIT 2007 using our descriptors and other methods
in the literature. For our image representations, the classification model is a linear
SVM. Our descriptor mc +OBJPOOL outperforms all prior methods on this test.

scriptors using the local-encoding extensions described in Sec. 4.2. We implemented

SPLPOOL L0L1 using a pyramid of two levels, and the extension OBJPOOL

using the 25 subwindows with the greatest ObjectNess score. We tried additional

pyramid levels as well as increasing the number of ObjectNess subwindows, but we

did not see a significant improvement in accuracy. Table 4.1 summarizes the results

in terms of mAP. Despite the simplicity of the linear classification model that we are

using, we can see that our descriptors yield good accuracy while enabling extremely

efficient prediction. Also for this benchmark mc and mc-bit are the best performing

ones, followed by PiCoDes, classemes [74] and classemes-bit [74] respectively.

Moreover note that all the proposed local-encoding strategies boost the accuracies of

the raw descriptors. In particular OBJPOOL produces the best results while only

doubling the storage cost.

MIT 67

In this section we present experiments performed on the MIT 67 benchmark. As said

before this dataset is composed of images containing indoor-scenes, therefore incor-

67

Experiments Descriptors for scene recognition

porating multiple objects. We tested our descriptor mc and the variants described

in Sec. 4.2. Specifically: for a first set of experiments, we tested the descriptor

mc-2048dims created by selecting from mc the 2048 most active features according

to the criterion of Recursive Feature Elimination [12] (RFE). The feature selection

was performed using ILSVRC 2010, by removing at each iteration 50% of the fea-

tures. This lower-dimensional descriptor reduced the computational requirements and

allowed us to easily perform an extensive set of evaluations. Table 4.2 summarizes the

results of our experiments, and includes the recognition rates of several other methods

presented in the literature. We can see that the plain descriptor mc-2048dims is al-

ready very competitive, yielding accuracy close to other state-of-the-art methods. All

the local encoding variants of Sec. 4.2 are able to boost the accuracy. In particular the

method mc-2048dims+SPLPOOL L0L1L2 is superior to mc-2048dims+SPCAT

L0L1 while producing a smaller descriptor; mc-2048dims+OBJPOOL is the best

method as it produces a descriptor that is only twice as big as the original one and

it yields the best recognition accuracy (+2.5% over mc-2048dims). Finally the full-

dimensional mc +OBJPOOL yields an accuracy of 56% that, to the best of our

knowledge, is the best published result for this benchmark.

SUN 397

To conclude, we present experiments on the large-scale scene recognition bench-

mark SUN 397. We tested our binary descriptors PiCoDes and mc-bit, and the real-

valued mc. We compare our representations against the binary descriptor classemes-

bit introduced in [74]. We use an efficient linear SVM A as usual for all our experi-

ments involving these descriptors.

Table 4.3 shows our results. As already noticed in our prior evaluations, Pi-

CoDes outperforms classemes-bit, and the larger mc-bit is the best performing

68

Experiments Descriptors for scene recognition

Method Accuracy

PiCoDes 27.1
mc-bit 34.8
mc 36.8

classemes-bit [74] 17.6
Xiao et al. 2010 [83] 38.00

Table 4.3: Scene recognition on SUN 397 using our descriptors and other methods
in the literature. The classification model for our image representations is a linear
SVM.

one. The accuracy obtained with mc approaches the results provided by [83] which is

a multiple-kernel combiner with 15 types of features, and thus orders of magnitudes

more expensive to train and test and requiring much higher storage size.

69

Chapter 5

Descriptors for object detection

5.1 Introduction

Object recognition is one of the fundamental open challenges of computer vision,

which may take two subtly-different forms: whole-image classification and detection.

In the previous Chapter 3 of this thesis we dealt with the problem of whole-image

classification, where the goal was to categorize a holistic representation of the image.

In this chapter, we want to study the problem of object detection, which instead aims

at detect the presence and localize objects in the image. Object detection provides

several other benefits over holistic classification, besides having the ability to localize

objects in the picture. It provides robustness to irrelevant visual elements, such as

uninformative background, clutter or the presence of other objects.

The problem of object detection has been traditionally approached as the task of

exhaustive sub-image recognition [41, 32]: for every category of interest, a classifier

is evaluated at every possible rectangular subwindow of the image, thus performing a

brute-force sliding window search. In order to maintain the computation manageable

despite the large number of subwindows to consider, these approaches are constrained

70

Introduction Descriptors for object detection

to use features that are extremely fast to extract. Representative efficient sub-image

descriptors include the Histograms of Oriented Gradients (HOG) [14] and the Haar

features [80] which can be calculated in constant time at every location by using

integral images [80].

Recently, a few authors [2, 75] have introduced the idea of efficiently identifying

inside the image the rectangular subwindows that are most likely to contain objects,

regardless of their class. Particularly the method of Selective Search (SS) originally

proposed in [75] shows a recall (fraction of the true objects that are identified by

the method) approaching 97% for a small number of candidate subwindows (on av-

erage about 1500 per image). This desirable property, coupled with the efficiency

of their algorithm, implies that relatively few subwindows need to be considered to

accurately localize and recognize objects. In turn, this enables the practical applica-

tion of sophisticated features and object detection models, which instead would be

prohibitive in a traditional sliding-window scenario. For example, the system of [75]

achieves state-of-the-art results by training a nonlinear SVM on a spatial pyramid

of histograms computed from 3 distinct local appearance descriptors. Despite the

complexity of this model, the computational cost of recognition remains low if the

classifier is applied only to the 1500 candidate sub-images rather being exhaustively

evaluated over all possible subwindows.

In this work we increase further the sophistication of these object detection mod-

els by replacing bag-of-word features with higher-level visual concepts learned during

an offline training stage. We propose to describe each candidate subwindow in terms

of the outputs of a set of pre-trained object detectors. Given a new object class to

detect, we simply train a linear classifier on this representation, thus using the pre-

learned object detectors as a basis for detection of new categories. This idea is akin

to the use of attributes [49, 30, 50] or classifier-based descriptors [82, 74, 16], which

71

DetClassemes Descriptors for object detection

have gained popularity for the task of whole-image recognition. Our contribution is to

demonstrate that these representations can be successfully extended to the problem

of object detection and enable efficient localization of objects when used in conjunc-

tion with methods for selective subwindow search. Our results on the challenging

PASCAL-VOC-2007 dataset approach the best published results in the literature.

However, we want to point out that our features are learned from image examples

taken from an independent dataset (ImageNet) and thus our representation is general

and not specifically tuned for the test classes of thePASCAL-VOC-2007 benchmark.

Furthermore, our approach involves simple linear classification of mid-level descriptors

obtained from low-level bag-of-word features. This conceptual simplicity means that

our method is much easier to implement than most currently dominant approaches

in detection, such as the high-performing part-based model described in [32], which

uses spatially-sensitive pictorial structures to represent objects.

5.2 DetClassemes

5.2.1 Modeling our descriptor

In this section we introduce in detail our framework. The new proposed descriptor is

learned from a labeled dataset of images D = {(x1, y1, G1, S1), ..., (xN , yN , GN , SN)}.

Here xi denotes the i-th image in the database which contain ni objects of a particular

visual category labeled by the scalar yi ∈ {1, ..., C}. The matrix Gi ∈ N4×ni contains

the ground truth bounding box locations associated with the objects, and Si ∈ N4×si

contains the location of the top si bounding boxes retrieved by the Selective Search

salient detector introduced by van de Sande [75]. We will refer to these subwindows

as SS bounding boxes.

72

DetClassemes Descriptors for object detection

We indicate with h(x) = [h1(x), ..., hC(x)]> our C-dimensional descriptor as-

sociated with the subwindow x. Each entry hc(x) is the maximum-pooled output

of a set of binary classifiers, each trained to detect a particular visual object by

leveraging a specific visual feature. More formally, we first describe a subwindow

x with a fixed set of visual low-level features {fm(x)}Mm=1, which are introduced

in section 5.3.1. For each visual category c of the offline dataset D, we then learn

a set of classifiers {hmc }Mm=1 each trained on a different feature m. We finally per-

form max-pooling, hence relying on the feature that provides the highest score:

hc(x) = maxm∈{1...M} h
m
c (fm(x))} . We use an efficient SVM as classifier, using

the approximated Intersection Kernel map introduced in [79] and described in the

Appendix B to obtain a more robust non-linear boundary. More in detail, we lift-up

each feature vector fm(x) in a high-dimensional feature space by mean of the feature

map Ψ, and then learn a linear SVM in this augmented space (see the appendix for

details).

In addition, we produce a probability score by learning the parameters of a sigmoid

squashing function σ by mean of the method proposed in [62]. This scaling acts as

a sort of feature regularization and it has been shown to boost the performance in

tasks while object-recognition [9] or similarity-search when used with attribute-based

descriptors [16]. In summary, each entry hc(x) is an instance of the following efficient

model:

hc(x) = max
m∈{1...M}

{σc,m(wc,mΨ(fm(x)) + bc,m)}

where σ(z) = 1/(1 + e(αz+β)) is the sigmoidal function, each parameterized by the

scalars α and β.

We will refer to our descriptor h(x) as DetClassemes.

73

DetClassemes Descriptors for object detection

5.2.2 Learning the descriptor

In this section we provide the details of the training procedure for our descriptor Det-

Classemes. The hypothesis hmc are trained using all the ground-truth subwindows

containing the object c as posive examples, and a varying, random subset of candidate

subwindows belonging to images not containing the c object as negative examples.

Each hypothesis is trained using the procedure described in the appendix D, which

involves training the model multiple times while adding hard-negative examples. The

negative set of examples used to train the first model is composed by 10 randomly-

sampled SS bounding boxes from each positive image, which overlap by 20-50% with

the ground-truth positive subwindows. In addition, we randomly sample one SS

bounding box for each negative image. We perform a single iteration of hard-negative

mining. The hyperparamter of the SVM is chosen from a candidate list by 5-fold-cross

validation, by selecting the one that produces the highest cross-validation Average

Precision.

Note that this stage of training the parameters for h is done in an offline stage, and

does not need to be repeated for a new given problem, as described in the following

section.

5.2.3 Utilize our descriptor

After the training of the parameters for our descriptor h is complete, we can now

exploit this new representation to tackle and efficiently solve an object localization

task. Given a new dataset Dtest, we extract our low-dimensional descriptors from both

the GT and SS subwindows. We then train a very efficient linear SVM using this

new representation as input, while leveraging the iterative procedure of hard-negative

mining introduced in the appendix D to make the model more robust. We found that

74

Experiments Descriptors for object detection

the model successfully converges in 3 iterations. Also here the SVM hyperparameter

is chosen from a candidate list by 5-fold-cross validation, by selecting the one that

produces the highest cross-validation Average Precision. This particular model se-

lection follows naturally given the task of object detection, where the quality of the

scoring value is more important than the accuracy in classifying the subwindows.

Given a test image, the evaluation is performed by first applying the model to all

the SS subwindows. The scores are then sorted, while greedily removing subwindows

that overlap for more than 30% with a subwindow with an higher score. The presence

of the object of interested can be inferred by obtaining a boolean value by binariz-

ing the scores according to a specific threshold. However, we vary the threshold to

calculate precision-recall curves, as normal practice in an object-detection task.

5.3 Experiments

5.3.1 Implementation of our descriptor

As introduced in section 5.2 we represent an image with a set of low-level features

{fm(x)}Mm=1, each of which capturing a different visual clue. More in details we

set M = 3 and extract the local descriptors SIFT [54], Opponent-SIFT [76] and

RGB-SIFT [78], at every pixel of the image. These local visual vectors are finally

quantized in a Bag-of-Word vector, and we use a Spatial Pyramid [51] to encode

some weak visual spatial information into the descriptor. For SIFT we use a K-means

quantizer with 4000 clusters and a 4-level pyramid, whereas for OpponentSIFT and

RGBSIFT we use Hierarchical-K-means with 3300 centers and a 3-level pyramid. All

the dictionaries have been trained from a random subset of patches (between 1 and 5

million) extracted from the training and validation set of the dataset PASCAL-VOC-

75

Experiments Descriptors for object detection

Class mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbik pers plant sheep sofa train tv
Our 28.9 43.0 43.0 16.0 18.0 11.0 40.0 45.0 32.0 14.0 25.0 31.0 22.0 31.0 39.0 24.0 12.0 26.0 29.0 38.0 39.0
[75] 25.2 35.0 39.0 6.0 13.0 5.0 32.0 42.0 29.0 11.0 11.0 31.0 17.0 33.0 44.0 23.0 7.0 23.0 22.0 41.0 39.0
[33] 29.0 32.8 56.8 2.5 16.8 28.5 39.7 51.6 21.3 17.9 18.5 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1

Table 5.1: Average Precision results obtained with our descriptor and other state-
of-the-art object detection pipelines on the benchmark PASCAL-VOC-2007. Our
method was able to match the complex DPM model introduced in [32] while being
more efficient and conceptually much simpler.

2007. We used the library VLFeat [78] for the feature extraction and quantization.

Each low-level feature vector is finally lifted-up using the approximated feature map

Ψm : Rdm → Rdm(2r+1) proposed in [79] and explained in the appendix B, in order to

approximate an Intersection Kernel. We set r = 1 that results in a vector three times

bigger. We define the vector Psi made of the concatenation of the three lifted-up

BoW descriptors, which yields a 565,000-dimensional vector.

The training set used to train our descriptor is composed by randomly selecting

C = 3380 categories from Fall-2011 release of the dataset ImageNet [19]. The selected

categories contain a variable number of labeled bounding boxes, ranging from 50 to

600 per class. We compose a negative set by randomly selecting 20, 280 images.

We finally learn the parameters of our descriptor using the procedure described in

section 5.2.2.

Once this step is done, we can extract our descriptor from any subwindows from

any given image. The next section will show how employ our feature vector for an

object localization task.

5.3.2 Experiments on PASCAL 2007

Object detection In this section we compare our proposed framework with other

competing methods on the PASCAL-VOC-2007 benchmark [28], already introduced

in section 4.3.1. We remind the reader that this dataset contains twenty visual cat-

egories, for a total of 9,963 images. Each image contains multiple objects belonging

76

Experiments Descriptors for object detection

to different visual categories, for a total of 24,640 ground truth bounding boxes.

In this experiment the task is to predict from a given test image the presence

or absence of an object of a specific category. If the image contains the object, the

system must return the location of the bounding box surrounding the object. We

consider as true positive a predicted bounding box whose relative overlap with the

ground truth is at least 50%. In particular, we use the standard Average Precision

criteria of PASCAL VOC [28], which also penalizes multiple predictions on the same

location.

Table 5.1 shows the results of our evaluations. The SS+BOW entry is our im-

plementation of the method introduced in [75]. Note that the authors of [75] reports

0.33 mAP on the same benchmark. A controlling experiment showed that the gap

is due to minor differences in the SIFT features used. More in detail, the method

introduced in [75] uses a variant of SIFT features introduced in [76], whereas we use

the conventional SIFT version available with the package VlFeat [78].

This comparison shows that our descriptor outperforms the original low-level rep-

resentation Psi, while being 167 more compact. Note that in our implementation,

the vector Psi is very sparse, due to the fact that many entries are the results of a

BoW encoding strategy applied to a sparse set of local descriptors 1. If we take into

account the sparsity, our descriptor is still approximately 20 times more compact.

Note that despite the simplicity of our method, we were able to match the context

version of the complex state-of-the-art DPM model introduced in [32].

Effect of number of categories In this experiment we want to quantify the effect

that the number of ImageNet categories have to the final impact of the detection

1More in detail, as explained in section 3.5.2, we use the DoG interest-point detector [78], which
yields less than 1,000 keypoints. Empirically, many of these points are very similar, therefore the
BoW quantization creates a very sparse histogram. Finally, the approximated feature map described
in the appendix B preserves the sparsity as it maps each zero element to zero.

77

Experiments Descriptors for object detection

500 1000 1500 2000 2500 3000 3500
0.26

0.265

0.27

0.275

0.28

0.285

0.29

0.295

0.3

number of categories

m
A

P

SS+BD (this paper)

Figure 5.1: mean Average Precision obtained for the object detection task on
PASCAL-VOC-2007 with RFE, using our descriptor DetClassemes

system. We start from the 3380-dimensional descriptor and apply Recursive Feature

Elimination [12] to remove the associated basis detectors. The results are shown in

Figure 5.1. This evaluation suggests that the proposed framework is very sensible

to the training set size, as a greater number of training classes corresponds to a

increasing in the final performance of the system.

78

Chapter 6

Weakly-supervised object detection

6.1 Introduction

In this thesis we study the general problem of image recognition. In chapters 3 and 4

we dealt with the particular task of whole-image classification, where the goal was to

categorize a holistic representation of the image. In chapter 5 we considered the task

of object detection, which instead aims at detect the presence and localize objects in

the image. The reader might have noticed that while whole-image classifiers can be

trained with image examples labeled merely with class information (e.g. “chair” or

“pedestrian”), detectors require richer labels consisting of manual selections specifying

the region or the bounding box containing the target object in each individual image

example. Unfortunately, such detailed annotations are expensive and time-consuming

to acquire. In general, while many efforts have been made to generate annotations

using crowdsourcing (e.g. [20] for fine-grained recognition), we are convinced that

it is difficult to scale human annotations to millions of categories, given the high-

specific knowledge required to understand the visual content of certain fine-grained

categories. In summary, we believe that generating rich manual annotations for an

79

Introduction Weakly-supervised object detection

Figure 6.1: The original image (first row), a grayed-out version of the image (second
row) and the respective outputs of different layers of the deep convolutional net-
work [48]. For each layer, a 3 × 3 grid of convolutional kernel responses are shown
(C=convolution, P=pooling, FC=fully-connected). The final classification score for
the goldfish class is reported at the far right. Better seen in color.

image dataset is a crucial limit of the current state of the art in object localization and

detection, which effectively limits the applicability of detectors to scenarios involving

only few categories (e.g., [38]). Furthermore, these manual selections are often rather

subjective and noisy, and as such they do not provide optimal ground truth regions

for training detectors.

Note that this is a limit also for the approach introduced in chapter 5, which

requires a large amount of bounding box annotations. Moreover the approach intro-

duced in section 4.2 is partially affected as well, as it uses the ObjectNess measure

which made use of bounding box information at training time.

In this chapter, we1 introduce self-taught object localization, a novel approach

to localize objects with minimal human supervision by leveraging the output of a

whole-image classifier, trained without object location information but only full-image

labels.

The key idea is to analyze how the recognition score of the classifier varies as

we artificially “gray-out” (i.e. obscure) different regions in the image. Intuitively,

1This project has been developed in collaboration with Loris Bazzani

80

Introduction Weakly-supervised object detection

we expect that when the region containing the object is obscured the whole-image

classification score will drop significantly. Fig. 6.1 shows how the partial graying

out of the input is propagated through the deep network and how this affects the

recognition score. We combine this idea with a hierarchical clustering technique that

merges regions according to their relative drop in classification score in addition to

criteria of spatial vicinity and size of the segments. This produces for each image a

set of subwindows that are deemed likely to contain the object.

In this thesis we also investigate the use of these weakly-supervised-generated

subwindows as training data to learn a pool of weakly-supervised object detectors,

which will focus on recognizing the regions most likely to contain the object, rather

than the full image. By doing so, we effectively replace the traditional manually-

annotated bounding boxes with regions automatically estimated from training images

annotated only with object-class labels. We want to stress that, unlike manual region

annotations, category labels are easy to obtain even for a large number of training

images. In summary, this framework enables scalable training of object detectors at a

much reduced human cost, since no manual annotation of regions is needed. Besides

the reduced labeling effort, we demonstrate in our experiments that detectors trained

on our subwindow proposals achieve recognition accuracy surprisingly close to that

obtained using ground-truth bounding boxes as training data.

A critical aspect of our approach is the choice of whole-image classifier used to

bootstrap the training of the detector via self-taught localization. In this work we

choose to utilize deep networks since, although they perform holistic image recogni-

tion, they have been shown to be impressively accurate even in presence of clutter

and multiple objects [48]. In addition, deep networks are particularly suited for our

strategy because they operate directly on pixels, which we gray out, in contrast to

other models (such as those based on bag of visual words) that discard the spatial

81

Self-taught Object Localization Weakly-supervised object detection

information. Another advantage of deep networks is that the intermediate features

learned for whole-image classification can be reutilized as the representation for the

subwindow proposals used to train the object detectors.

In section 6.2 we introduce our method to automatically generate bounding-boxes

containing the objects of interest, by making use only of the whole-image label. In

section 6.3 we present how to use these bounding boxes to train a weakly-supervised

object detector. In section 6.4 we will present experiments on the benchmark [17]

showing a great improvements in terms of precision and recall with respect to the state

of the art in subwindow proposals for object localization. Finally, we demonstrate

that the subwindows automatically-generated by our approach can be directly used

as positive training examples to learn object detectors without any additional human

supervision. Our results on 200 classes of ILSVRC2012 are close to those obtained

with detectors trained on manually annotated bounding boxes.

6.2 Self-taught Object Localization

The aim of Self-Taught Localization (in brief STL) is to generate bounding boxes that

are very likely to contain objects. The proposed approach relies on the idea of graying

out regions of an image provided as input to a deep network (Sec. 6.2.1). The drop

in recognition score caused by the graying out is embedded into an agglomerative

clustering method which merges regions for object localization (Sec. 6.2.2).

6.2.1 Input Grayout

Let us assume to have a deep network f : RN 7→ RC that maps an image x ∈ RN

of N pixels to a vector y ∈ RC of C classes. The class vector is defined as y =

[y1, y2, . . . , yC], where yi corresponds to the classification score of the i-th class.

82

Self-taught Object Localization Weakly-supervised object detection

We propose to gray out the input image x by replacing the pixel values in a given

rectangular region of the image b = [bx, by, w, h] ∈ N4 with the 3-dimensional vector g

(one dimension for each image channel), where bx and by are the x and y coordinates

and w and h are the width and height, respectively. The graying vector g is learned

from a training set as the mean value of the individual image channels2. We denote

the function that grays out the image x given the region b using the vector g as

hg : RN × N4 7→ RN . Please note that the output of the function is again an image.

We then define the variation in classification score of the image x subject to the

graying out of a bounding box b as the output value of function δf : RN ×N4 7→ RC

defined as

δf (x,b) = max(f(x)− f(hg(x,b)), 0) (6.1)

where the max and the difference operators are applied component-wise. This func-

tion compares the classification scores of the original image to those of the grayed-out

image. Intuitively, if the difference for the c-th class is large, it means that the

grayed-out region is very discriminative for that class. Therefore the image is likely

to contain an object of class c in that position.

In this work, we define two versions of “drop in classification score”, depending

on the availability of the class label for the image. When the ground truth class label

c of x is provided, we use drop function dCL : RN × N4 7→ R defined as dCL(x,b) =

δf (x,b)T Ic, where Ic ∈ NC is an indicator vector with 1 at the c-th position and zeros

elsewhere. This drop function enables us to generate class-specific window proposals

in order to populate a training set with bounding boxes likely to contain instances of

class c. We denote the method that uses dCL as STL-CL.

2The mean value is a color close to gray, this motivates the name of the procedure, that is called
grayout.

83

Self-taught Object Localization Weakly-supervised object detection

If the class information is not available, for example when testing a detector, we use

the top CI classes predicted by the whole-image classifier to define dU : RN ×N4 7→ R

as dU(x,b) = δf (x,b)T Itop, where Itop ∈ NC is an indicator vector with 1s at the CI

top predictions for the image x and zeros elsewhere. Since the function is not using

the class label, the setup is unsupervised and as a consequence class-agnostic. The

STL method that uses dU is named STL-U.

As deep convolutional network f we use the model introduced in [48] which has

been proven to be very effective for image classification. Even though our input

grayout idea is general and can be use with arbitrary classifiers, here we evaluate it

using deep networks. In this context, the action of replacing regions of the image with

the learned mean RGB value corresponds to zeroing out parts of the actual input of

the network. Fig. 6.1 shows how the deactivation of the grayed-out input units is

propagated through the different layers of the network.

In the next section, we describe how the drop in classification score is used into

an agglomerative clustering method to generate window proposals.

6.2.2 Agglomerative Clustering

The initialization point of the proposed agglomerative clustering is a set of K rectan-

gular regions {b1,b2, . . .bK} generated for an image x using the image segmentation

method proposed in [34]. Our aim is to gray-out regions of the image containing pix-

els having coherent appearance. Note that in our approach we gray out rectangular

bounding boxes enclosing segments rather than the segments themselves. The reason

is that if we grayed out the segments, the shape information of the segment would

be passed to the network, which could use it for recognition. Instead, we consider

the rectangular region enclosing each segment, so that the edges of the segment are

84

Self-taught Object Localization Weakly-supervised object detection

removed from consideration and the drop in classification is more significant.

The goal of the agglomerative clustering is to fuse regions and generate windows

that are likely to contain an object. We propose an iterative method that greedily

compares the available regions, and merges the two regions that maximize the simi-

larity function discussed below at each iteration (Eq. 6.2). This procedure terminates

when only one region is left and it covers the whole image. The similarity score of the

regions for an image are then sorted, removing the ones that overlap for more than

50% with a subwindow with an higher score.

We define the concept of similarity between regions using three terms capturing

the following intuitions: two bounding boxes are likely to contain parts of the same

object if 1) they have a diverse drop in classification score, 2) have similar sizes and

3) are not far apart. These three insights are implemented in the following similarity

function for region bi and bj:

s(bi,bj,x) = α1(dk(x,bi)− dk(x,bj)) + α2ssize(bi,bj,x) + α3sfill(bi,bj,x) (6.2)

where the index k ∈ {CL,U} in the first term selects STL-CL or STL-U presented in

Sec. 6.2.1. The last two terms terms ssize : N4×N4×RN 7→ R and sfill : N4×N4×RN 7→

R are borrowed from [75] and defined as:

ssize = 1− size(bi)− size(bj)

size(x)
and sfill = 1− size(bi,j)− size(bi)− size(bj)

size(x)

(6.3)

where bi,j is the bounding box that contains bi and bj. In practice, ssize encourages

to merge small regions and sfill favours regions that are close to each other. The

overall effect of Eq. 6.2 is that it locally combines regions similar in appearance that

85

Weakly-Supervised Detection using STL Weakly-supervised object detection

are more and more diverse in terms of drop in classification score.

There are many advantages of the proposed similarity with respect to [75]. First

of all, it does not rely on hand-engineered features (like SIFT), because we exploit

the features learned by the deep network. Moreover, our similarity exploits the dis-

criminant power of the deep convolutional network enabling our method to generate

class-specific window proposals. Yet, our method can work also in the class-agnostic

regime like [75] (by using dU instead of dCL).

6.3 Weakly-Supervised Detection using STL

We propose a weakly-supervised detection approach relying on our self-taught lo-

calizer. The idea is to exploit the bounding boxes generate by STL (Sec. 6.2) as

positive examples when training a pool of object detectors, thus eliminating the need

for ground truth annotations. Let us consider the training of an object detector for

class c.

Our desired object detector is a function that takes a subwindow bi,j, extracts a

meaningful feature representation, and maps it to a score measuring the confidence

that the bounding box contains an object of class c. In spirit similar to [38], the

feature representation that our detectors are trained on is the last fully-connected

layer (before the soft-max) of the deep convolutional network. We refer the reader

to [38] for additional details.

Our object detector is iteratively trained using the hard negative mining procedure

introduce in [75] and described in details in the appendix D. The initial training

set considers as positive examples the Bi bounding boxes produced by STL-CL on

training images of class c (i.e., we use the class label information for localization of

positive examples). The negative set is built by selecting the Selective Search [75]

86

Experiments Weakly-supervised object detection

bounding boxes that overlap less than 30% with any Bi from the positive images,

and one randomly-chosen selective search bounding box from each negative image.

At testing time, each detector is tested on the SS subwindows of a given image,

the detection scores are sorted and a procedure of Non Maximum Suppression is then

applied.

6.4 Experiments

The experiments were performed to assess the contributions of the proposed method

for self-taught localization (Sec. 6.4.1) and weakly-supervised detection (Sec. 6.5.1)

on challenging datasets making comparisons with state-of-the-art methods.

6.4.1 Self-taught Localization

Given a test image, the task is to propose a set of bounding boxes that enclose the

objects of interest with high probability. We consider as True Positive a bounding

box whose Intersection-Over-Union overlap with the ground truth is at least 50%, as

commonly done for the PASCAL benchmark [27]. The performance is then measured

using the per-class recall and precision, following the evaluation protocol introduced

in [75].

In our experiments, we used the Convolutional Neural Network software Caffe [45]

for classification, and the model trained on ILSVRC-2012 provided by the authors.

Note that the training of the network does not make use of bounding-box annotations.

Given an image, we gray-out the input pixels and perform the agglomerative

clustering as described before, outputting a set of bounding boxes likely to contain

all the objects of interest. We compare the proposed STL technique introduced in

Sec. 6.2 with other competing methods on the following benchmarks:

87

Experiments Weakly-supervised object detection

• PASCAL-VOC-2007 [27], which was introduced in section 4.3.1. We remind that

reader that it contains twenty visual categories, for a total of 9,963 images divided

into training-validation and testing splits. Each image contains multiple objects

belonging to different categories at different positions and scales, for a total of 24,640

ground truth bounding boxes.

• ILSVRC-2012-LOC [17], which is a large-scale benchmark for visual object localiza-

tion containing 1000 categories. Note that this is a subset of the dataset introduced

in section 3.5.1, which is the dataset used to train our classification network. The

training set contains 544, 546 images with 619, 207 annotated bounding boxes. The

validation set contains 50K images for a total of 76, 750 annotated bounding boxes.

We will name ILSVRC-2012-LOC-200rnd a subset of 200 randomly-chosen categories

that will be also used for the weakly-supervised detection task in the next section.

STL is compared against Selective Search [75] (fast version) , state-of-the-art

class-agnostic bounding boxes proposal methods. One baseline is also the conventional

Sliding Window method: a fixed set of rectangular windows is slid and evaluated by

computing the confidence score as the sum of the classification scores of the top-5

classes predicted by the deep network. The set of subwindows is generated by sliding

a square box across the image, using 7 different scales. This produces a number of

subwindows that is comparable to the one produced by our method, thus yielding to a

similar computational cost. This comparison is important as it shows the performance

obtained by using a bounding box sampling strategy, as opposed as having a system

that generates subwindows.

Figure 6.2 (a, b) show the results in terms of recall and precision on ILSVRC-2012-

LOC-200rnd (training) and ILSVRC-2012-LOC (validation) set respectively. Note

that while ILSVRC-2012-LOC-200rnd (training) includes images that were used as

88

Experiments Weakly-supervised object detection

(a) ILSVRC-2012-LOC-200rnd (training set, 200 classes)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

number of bboxes per image

m
e

a
n

 r
e

c
a

ll
p

e
r

c
la

s
s

STL−CL (our method)

STL−U (our method)

Sliding Window

Selective Search [Uijlings et al, IJCV 2013]

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

number of bboxes per image
m

e
a

n
 p

re
c
is

io
n

 p
e

r
c
la

s
s

STL−CL (our method)

STL−U (our method)

Sliding Window

Selective Search [Uijlings et al, IJCV 2013]

(b) ILSVRC-2012-LOC-200rnd (validation set, 200 classes)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

number of bboxes per image

m
e

a
n

 r
e

c
a

ll
p

e
r

c
la

s
s

STL−CL (our method)

STL−U (our method)

Sliding Window

Selective Search [Uijlings et al, IJCV 2013]

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

number of bboxes per image

m
e

a
n

 p
re

c
is

io
n

 p
e

r
c
la

s
s

STL−CL (our method)

STL−U (our method)

Sliding Window

Selective Search [Uijlings et al, IJCV 2013]

Figure 6.2: Comparison of different bounding-box proposal methods on the bench-
mark ILSVRC-2012-LOC-200rnd (200 classes). The left column reports the mean
recall per class, as a function of the number of proposed subwindows. The right
column reports the mean precision per class. The first row shows the evaluation for
ILSVRC-2012-LOC-200rnd (training), which is part of the data used to train the deep
network. Note that both our STL-CL and STL-U outperform all the competitors
for the first 100 subwindows. The second row contains the evaluations on ILSVRC-
2012-LOC (validation), which shows the capability of our methods to generalize to
unseen images.

89

Experiments Weakly-supervised object detection

ILSVRC-2012-LOC (validation set, 1000 classes)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

number of bboxes per image

m
e

a
n

 r
e

c
a

ll
p

e
r

c
la

s
s

STL−U (our method)

Selective Search [Uijlings et al, IJCV 2013]

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

number of bboxes per image

m
e

a
n

 p
re

c
is

io
n

 p
e

r
c
la

s
s

STL−U (our method)

Selective Search [Uijlings et al, IJCV 2013]

Figure 6.3: Comparison of different bounding-box proposal methods on ILSVRC-
2012-LOC-200rnd (validation set, 200 classes). The left column reports the mean
recall per class, as a function of the number of proposed subwindows. The right
column reports the mean precision per class. The evaluation shows the capability of
our methods to generalize on unseen images.

PASCAL-VOC-2007 (test set)

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

number of bboxes per image

m
e

a
n

 r
e

c
a

ll
p

e
r

c
la

s
s

STL−U (our method)

Selective Search [Uijlings et al, IJCV 2013]

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

number of bboxes per image

m
e

a
n

 p
re

c
is

io
n

 p
e

r
c
la

s
s

STL−U (our method)

Selective Search [Uijlings et al, IJCV 2013]

Figure 6.4: Comparison of different bounding-box proposal methods on the bench-
mark PASCAL-VOC-2007. The left column reports the mean recall per class, as a
function of the number of proposed subwindows. The right column reports the mean
precision per class. The evaluation shows the capability of our methods to generalize
on unseen images.

90

Experiments Weakly-supervised object detection

training examples to learn the deep network, ILSVRC-2012-LOC (validation) does

not and thus it is useful to assess the ability of STL to work on new images not

seen during the training of the whole-image classifier. We can see that our method

significantly outperforms all the other methods for the first 100 proposed subwindows

(+33% relative to SS for 5 bounding boxes). The Sliding Window approach performs

very poorly (−60% in absolute value for 5 bounding boxes) demonstrating the need for

a method that generates bounding boxes of appropriate positions and shapes rather

than based on a fixed grid and scale. Note that the performance of using the class

label of the image (STL-CL) and not using it (STL-U) is negligible. This indicates

that our STL approach works equally well when not given the class label information.

Fig. 6.3 shows performance on ILSVRC-2012-LOC (validation), i.e., on images

not used for the training of the deep network. Our methods is the best also in

this case, indicating that it naturally generalize to unseen examples. Note that the

results on the validation sets of ILSVRC-2012-LOC and ILSVRC-2012-LOC-200rnd

are comparable, showing that the random selection of the 200 classes represent well

the full dataset.

The methods SS was designed to obtain high recall when using a large number of

proposals, which is a necessary property at testing time. However it yields precision

not sufficiently high to train a detector. In contrast, our proposed method is designed

to produce both high precision and high recall when using a small number of proposals.

Although SS shows higher recall when using more than 100 bounding boxes, STL

remains competitive even at this regime. Furthermore STL is by far the best in a

scenario involving having a small number of proposed subwindows.

We finally show the capability of our method to generalize to unseen datasets

and classes, using the popular benchmark PASCAL-VOC-2007 [27]. The images of

this benchmark have very different statistics than the ones present in ILSVRC-2012-

91

Qualitative results Weakly-supervised object detection

LOC, as each image can contain objects belonging to different categories. Moreover,

we point out that our classification network was neither trained nor fine-tuned on

this dataset. Nevertheless, our method is able to generalize to this new scenario,

as shown in Fig. 6.4, outperforming again all the compared methods. Finally we

notice again that the results of the two proposed methods STL-CL and STL-U are

almost identical. This remarkable result shows that STL-U can perform well in the

unsupervised setup, as the categories of PASCAL-VOC-2007 are disjoint from those

of ILSVRC-2012-LOC.

First of all, we report an additional experiment of the self-taught localization

method on ILSVRC-2012-LOC-200rnd. We tested both STL-CL and STL-U against

Selective Search and Sliding Window. Figures 6.2 and 6.3 show that that dif-

ference in performance between the datasets ILSVRC-2012-LOC-200rnd and ILSVRC-

2012-LOC is negligible. This demonstrates that 1) the randomly-selected 200 classes

represent in a proper way the difficulty of the 1000-classes dataset and again 2) the

proposed method is able to generalize to unseen images.

6.5 Qualitative results

We show some qualitative examples of the effect of the gray-out operation on images

in Figure 6.5, 6.6 and 6.7. Each row reports the original image and each of the 5

convolutional layers of the network along with the last fully-connected layer (last

column) For the obfuscated image, usually right after the original image, we also

show the drop of the recognition score.

In Fig. 6.5, we can see some cases where the proposed method success. In Fig. 6.6,

some harder example where the drop is not very significant . Finally, Fig. 6.7 shows

the examples where our method is prone to fail (in fact the drop in recognition is not

92

Qualitative results Weakly-supervised object detection

high).

Moreover, we show in Tables 6.1, 6.2 the highest-scoring bounding box for some

images of the dataset ILSVRC-2012-LOC-200rnd (training), for different bounding

box proposal methods. We notice how the quality of our STL-CL bounding boxes

are better than the SS ones. However, our method does not always work in presence

of multiple objects, or when the object gets very confused with the background.

6.5.1 Weakly-supervised Detection

In this section we analyze the effect of training a set of object detectors using the

proposed self-taught localization subwindows. To this aim, we trained 200 detectors

(one for each class in ILSVRC-2012-LOC-200rnd), each having a training set with

50 positive and 4, 975 negative images (25 examples from each negative class). The

test set is composed by 10, 000 images of the ILSVRC-2012-LOC validation set. The

detector uses as feature representation the layer fc7 (the last fully-connected layer)

of the deep convolutional network used in [38]. Note that unlike [38], we do not use

the context surrounding the bounding boxes (padding).

We carried out three experiments. The proposed approach is trained in the self-

taught setup with the top-K bounding boxes generated by STL-CL for the positive

images. We set K = 3 to obtain a recall/precision trade-off by qualitatively looking

at the results in Figure 6.2. We also try training the detector using as positive boxes

the top-K windows generated by Selective Search [75] on each positive image. Finally,

we report the results of the detectors trained using the ground truth bounding boxes

in the fully-supervised setup. This represents an upper bound in terms of accuracy of

the self-taught setup. Note that our method exploits the class labels provided during

training to generate the bounding boxes, but no ground truth location information is

93

Qualitative results Weakly-supervised object detection

GT bbox STL-CL bbox SS bbox [75]

Table 6.1: Highest-scoring bounding boxes generated by different methods for the
class n01530575 of the dataset ILSVRC-2012-LOC-200rnd, for a few selected images.

.

94

Qualitative results Weakly-supervised object detection

GT bbox STL-CL bbox SS bbox [75]

Table 6.2: Highest-scoring bounding boxes generated by different methods for the
class n01693334 of the dataset ILSVRC-2012-LOC-200rnd, for a few selected images.

.

95

Qualitative results Weakly-supervised object detection

used in the self-taught setup.

In Fig. 6.8 (left), we report the results in terms of Average Precision (AP, x-axis)

for each of the 200 classes (y-axis) comparing the fully-supervised setup with the

proposed method. For better visualization, the classes are sorted according to the

AP values of the fully-supervised method. For many classes our proposed method

achieves accuracy similar to that obtained when using ground truth data. For some

classes the drop in average precision is significant, while for other classes STL-CL

performs even better the fully supervised method.

Fig. 6.8 (right) shows the difference in average precisions between STL-CL and

Selective Search [75] (both used in the weakly-supervised detection setup). The figure

shows that our method outperforms Selective Search for more than 120 classes and

that for some the difference is significant (greater than 10% in absolute terms). The

mAP (mean AP over all classes) is 20.06% for STL-CL and 18.31% for SS.

Table 6.3 shows the best-10 and worst-5 classes for each method along with the

mean average precision (mAP) across all the 200 classes (last row). We notice that 7

out of 10 best categories are shared between the detectors trained on the ground truth

annotations and our STL-CL. This shows that our subwindows do not differ much in

nature to the fully-annotated ones. In terms of mAP, STL-CL shows a relative drop

in performance of only 21% with respect to the fully supervised method, which is a

remarkable result given that our method uses only class labels. Our method yields a

relative improvement of 9.5% over Selective Search.

96

Qualitative results Weakly-supervised object detection

Ground truth boxes STL-CL SS [75]
leopard = 65.28 leopard = 67.07 leopard = 59.29
Crock Pot = 62.60 koala = 54.30 car mirror = 50.86
teapot = 59.12 teapot = 53.59 koala = 49.23
admiral = 58.55 car mirror = 51.97 admiral = 44.96
car mirror = 58.28 admiral = 50.07 giant panda = 44.19
koala = 55.63 orangutan = 49.99 crib = 41.21
cabbage butterfly = 54.73 Crock Pot = 48.39 bullfrog = 41.00
frilled lizard = 52.10 pickup = 47.61 maze = 40.67
police van = 51.86 giant panda = 44.18 orangutan = 40.66
giant panda = 51.68 frilled lizard = 44.08 whiskey jug = 38.27
reel = 2.17 pop bottle = 1.09 screwdriver = 0.65
Windsor tie = 2.16 swimming trunks = 0.89 muzzle = 0.51
steel drum = 1.43 nipple = 0.69 flute = 0.22
matchstick = 1.05 punching bag = 0.37 swimming trunks = 0.21
flagpole = 0.71 flute = 0.27 steel drum = 0.20
flute = 0.65 croquet ball = 0.15 croquet ball = 0.20
punching bag = 0.63 steel drum = 0.10 punching bag = 0.12
hair spray = 0.54 basketball = 0.07 hair spray = 0.03
screwdriver = 0.41 hair spray = 0.03 basketball = 0.01
nail = 0.10 nail = 0.03 pole = 0.01
pole = 0.05 pole = 0.02 nail = 0.01
mAP = 25.40 mAP = 20.06 mAP = 18.31

Table 6.3: Each column contains the best classes (blue color), and the worst classes
(red color) for the object-detectors listed at the top, all trained on ILSVRC-2012-
LOC-200rnd. Average Precision (%) is provided for each class. The mAP is calculated
as the mean across all 200 classes.

97

Qualitative results Weakly-supervised object detection

data norm1 norm2 conv3 conv4 pool5

0 1000
−9

35

fc8

Drop = 1.000

data norm1 norm2 conv3 conv4 pool5

0 1000
−5

8

fc8

data norm1 norm2 conv3 conv4 pool5

0 1000
−9

39
fc8

Drop = 1.000

data norm1 norm2 conv3 conv4 pool5

0 1000

−6

9
fc8

Figure 6.5: Easy successful examples

98

Qualitative results Weakly-supervised object detection

data norm1 norm2 conv3 conv4 pool5

0 1000

−6

19
fc8

Drop = 0.646

data norm1 norm2 conv3 conv4 pool5

0 1000
−5

7
fc8

data norm1 norm2 conv3 conv4 pool5

0 1000

−6

13

fc8

Drop = 0.706

data norm1 norm2 conv3 conv4 pool5

0 1000

−4

7
fc8

Figure 6.6: Harder successful example

99

Qualitative results Weakly-supervised object detection

data norm1 norm2 conv3 conv4 pool5

0 1000

−5

13

fc8

Drop = 0.116

data norm1 norm2 conv3 conv4 pool5

0 1000

−5

14
fc8

data norm1 norm2 conv3 conv4 pool5

0 1000

−6

8

fc8

Drop = 0.189

data norm1 norm2 conv3 conv4 pool5

0 1000
−5

9
fc8

Figure 6.7: Failure examples

100

Qualitative results Weakly-supervised object detection

0 0.2 0.4 0.6 0.8 1

25

50

75

100

125

150

175

200

C
la

s
s
e

s

Average Precision

Ground truth mAP = 0.25

STL−CL (our method) mAP = 0.20

−0.2 −0.1 0 0.1 0.2 0.3
0

50

100

150

200

C
la

s
s
e

s

Difference in Average Precision

STL−CL (our method)
−minus−
Selective Search [Uijlings et al, IJCV 2013]
(AVG=0.0175)

Figure 6.8: Results for weakly-supervised object detection. We trained detectors for
the 200 categories of ILSVRC-2012-LOC-200rnd using as positive examples either 1)
the ground truth bounding boxes, 2) our STL-CL boxes (automatically generated by
making use only of the class labels), or 3) those generated by SS. The left plot shows
the average precision of the proposed method STL-CL and the one that uses the
ground truth manually-annotated bounding boxes. The right plot reports the differ-
ence in average precision for each class between STL-CL and Selective Search [75].

101

Chapter 7

Software

7.1 vlg extractor

We1 wrote a software named vlg extractor, that extracts our image descriptors

PiCoDes and Meta-Class introduced in Chapter 3 of this thesis, as well as the

third-part descriptor classemes presented in [74].

The implementation of [74] is order of magnitude more efficient than the one

proposed in the original paper, as we make use of approximated feature maps to

realize the kernel trick (see the appendix B).

The software supports several images types (Jpeg, Png, Tiff, and others) and it

is available for Microsoft Windows, GNU/Linux and Mac OSX. It has been written

in C/C++ using GCC, OpenCV for image processing routines, and BLAS for fast

matrix calculus.

The software is available at the following link: http://vlg.cs.dartmouth.edu/

projects/vlg_extractor/

1We thank Chen Fang for help in implementing the feature extractions modules described in
Sec. 3.5.2

102

http://vlg.cs.dartmouth.edu/projects/vlg_extractor/
http://vlg.cs.dartmouth.edu/projects/vlg_extractor/

LIBLINEAR bitmap Software

7.2 LIBLINEAR bitmap

The large-scale experiments presented in section 3.5.5 required non-trivial investiga-

tions for a proper training methodology of the linear SVM classifier.

As motivational application, consider the following real use-case. We want to rep-

resent using our descriptor mc-bit the 1.2 million training images of the dataset ILSVRC-

2010. To the best of our knowledge, the best state-of-the-art software package for

batch linear SVM learning is LIBLINEAR [29], which is incredibly fast and supports

sparse data. It can be shown that empirically our mc-bit descriptor has approxi-

mately 30% of non-zero elements. However, if we would have used the software as it

is, we would need more than 81 GB of memory2 , which greatily exceeds that capacity

of our hardware. Instead, we notice that if we would have used a dense bitmap to

represent the data (1 bit for each value), the storage would be only 2 GB which can

be fit in any modern low-budget computer3 .

Therefore we modified LIBLINEAR [29] to efficiently support the following type

of data:

• the original data sparse format, i.e. sparse double-precision floating point data;

• non-sparse binary data, organized as a dense bitmap;

• non-sparse single-precision floating point data, organized as a matrix.

Many other features have been added, such as multi-core supports via PThreads,

several 1-vs-all classification models, down-sampling of the training data, polyno-

mial kernel, b-bit Minwise Hashing as the compression method. It has been tested

2We have that on a 64-bit machine each non-zero element requires 16 bytes: 8 for the data itself,
and 8 for the step. Therefore we have: (1.2e6 ∗ 15232 ∗ 0.30 ∗ 16)/230 ≈ 81.71 GB

3In this case we have: (1.2e6 ∗ 15232/8.0)/230 ≈ 2.12 GB

103

LIBLINEAR bitmap Software

on a database with 1.2M of training examples and 100K dimensions on low-budget

computers. Written in C/C++ using GCC and PThreads.

http://www.cs.dartmouth.edu/~aleb/#Code

104

http://www.cs.dartmouth.edu/~aleb/#Code

Conclusions

In this thesis we studied and made progress in the field of image recognition. We

have first presented in chapter 3 two novel image descriptors, which measure the

closeness of a given image to a set of high-level visual concepts, called basis classes,

that are automatically learned. We implement this similarity measure using the out-

puts of non-linear classifiers trained on an offline labeled dataset. Our descriptors

are designed to be very compact, yet they achieve state-of-the art accuracy even with

simple linear classifiers. We showed compelling results for tasks of object recognition

and novel object-class search. Thank to the compactness and the rich visual infor-

mation incorporated into the descriptors, the proposed framework enables real-time

object-class training and search in databases containing millions of images with good

accuracy. The software for the extraction of all our descriptors is publicly available.

In chapter 4 we also extended this framework to aggregate the outputs of the

basis classifiers evaluated on subwindows of the image into a single feature vector,

thus rendering the descriptor more robust to clutter and multiple objects. We showed

that this modified descriptors produce great results for object categorization in images

containing multiple objects at different scales and positions, using cheap linear models.

We also successfully tackled the task of scene recognition, yielding state-of-the-art

results.

We proposed in chapter 5 a new descriptor suitable for the task of object detection,

105

LIBLINEAR bitmap Software

using the output of a bank of object detectors trained in an offline stage as features

to represent the content of bounding boxes. We successfully apply this idea showing

improvements on a standard detection benchmark in terms of precision, while lowering

the storage requirements.

We pointed out that generating manual bounding box annotations for many train-

ing images has been a crucial limit of state-of-the-art methods for object localization

and detection. In this regard, we presented in chapter 6 a self-taught localization

method that leverages the discriminant power of deep convolutional networks to de-

termine the most likely bounding boxes containing the objects of interest. We tested

the proposed methodology on the task of object localization and window proposal us-

ing different datasets and showed that it consistently outperforms the current state-

of-the-art. We have also shown that detectors trained on localization hypotheses

automatically generated by our method achieve performance nearly comparable to

those produced when training on manual bounding boxes.

This thesis proposes many different paths to explore for future work. The descrip-

tors proposed in Ch. 3 and 5 are currently limited in using hand-designed low-level

features. Moreover, the proposed learning methods are flats, i.e. a single layer of rep-

resentation is actually learned. These two shortcomings could be tackled by making

use of the recently-proposed deep convolutional networks, which elaborate raw pixels

while providing an hierarchical representation.

The aggregation methods in Ch. 4 are limited to fixed pyramids and number of

Objectness subwindows. In particular the pooling stage could potentially benefit by

knowing the likelihood of a subwindow containing an object. Moreover, the combi-

nation of the different proposed methods has not been studied, and could bring great

improvement in the final performances.

For the methods presented in Ch. 6 there is the need to understand the behavior

106

LIBLINEAR bitmap Software

of the deep network when it is fine-tuned on new datasets and tasks, since this could

potentially bring additional performances.

Finally, we could make use of the method proposed in Ch. 6 to generate training

data for the descriptor proposed in Ch. 5, thus learning a powerful descriptor for

object detection making use solely of full-image annotations.

107

Appendix A

Support Vector Machine

Support Vector Machines [77] is a learning framework suitable for many tasks, like

classification, as treated in this section. For the fully-supervised binary classification

problem, each example x ∈ Rd is associated with a label y ∈ {+1,−1} that could be

either “positive” or “negative”. The goal is to realize a function g(x) of the form:

g : Rd −→ R which takes an example x as input and outputs a positive score if the

example belongs to the positive class, and negative otherwise.

For the linear SVM model, the decision function g(x) is realized by a simple linear

projection of the example x on the hyperplane w:

g(x) = w>x+ b (A.1)

Note that the addition of the bias term b could be embedded in the linear projection

by simply appending a unitary value to the feature vectors x← [x>1]>, and so just

realize g(x) = w>x.

Given a training data set D = {(xi, yi)}Ni=1, we want to learn a hyperplane w so

that it discriminates well the two classes. More in detail, in the SVM framework the

108

Support Vector Machine

goal is to minimize the empirical mis-classification error while maximizing the margin,

i.e. the distance between the closest correctly-classified examples to the hyperplane.

This is achieved by minimizing the following objective function:

min
w,ξ1,...,ξN

1

2
‖w‖2 + C

N∑
i=1

ξi (A.2)

subject to yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0

In the objective above, we have that the variable ξi is greater than zero if the

example xi is mis-classified, and zero otherwise. It can be shown that the first term

‖w‖2 maximizes the margin (see [77] for more details), while implementing a regu-

larization method, which encourages simple hyperplanes in order to avoid overfitting.

The hyperparameter C controls the trade-off of the importance of the regularizer

versus the empirical error.

The objective function is convex, and the unique global minimum can be found by

optimizing either the primal (eq. A.2), or the dual formulation (see [77]). We note [77]

that in the dual objective function, the feature vectors {xi}Ni=1 appear only in form

of dot-product with other feature vectors, i.e. 〈xi,xj〉 for some i, j. This particular

form allows the usage of the kernel trick, which allows the realization of non-linear de-

cision boundaries. In simplified terms, the kernel function K : Rd × Rd → R realizes

the dot-product between two examples in an high-dimensional space (which is never

constructed in practice). We can then substitute every dot-product of examples in

the SVM dual formulation with a kernel function. In order to obtain a linear model,

we use a linear kernel i.e. K(xi,xj) = 〈xi,xj〉. Non-linear kernels instead, pro-

duce non-linear decision boundaries. The decision function for the dual formulation

109

Support Vector Machine

becomes [77]:

g(x) =
N∑
i=1

αiK(x,xi) + b (A.3)

which consists of a weighted sum over all the training examples, where αi ∈ R. We

note a great disadvantage of this kernel formulation: the evaluation time is bounded

by the number of training examples, whereas the linear model of Eq. A.1 is not.

110

Appendix B

Approximated feature map

This appendix introduces briefly the method proposed in [79], i.e. ”Efficient Additive

Kernels via Explicit Feature Maps”, Vedaldi and Zisserman, PAMI 2011.

The work of [79] presents a method to approximate an homogeneous additive

kernel K (see the appendix A for general notions about what is a kernel). Briefly,

and in simplified terms, the authors proposed a finite-dimensional function Ψ, which

takes a d-dimensional vector as input, and projects it to a higher dimensional space:

Ψ : Rd −→ Rd(2r+1) r ∈ N0 (B.1)

such that the non-linear kernel distance in the original feature space is approximated:

K(x,y) ≈ 〈Ψ(x),Ψ(y)〉 ∀x,y ∈ Rd

The great advantage of this method is that it allows to approximate a non-linear

model based on an homogeneous kernel, by a simple linear model learned on the top

of the features Ψ(x). This is particularly useful when dealing in the SVM framework,

as a linear SVM is extremely more fast to learn and test than a non-linear one. In

111

Approximated feature map

particular at test time given an example x, the complexity of a classic non-linear

kernel machine g(x) is bounded by the number of support vectors, whereas with the

approximated feature maps we just have to realize the mapping Ψ and perform a

dot-product:

g(x) =
N∑
i=1

αiK(x,xi) ≈ 〈w,Ψ(x)〉

We note that in this thesis we have always used the Intersection Kernel, which is

an additive homogeneous kernel. Moreover, in practice the mapping Ψ is very fast

to compute, and produce a very good approximation when r = 1 in eq. B.1 (thus

producing feature vectors three times as big as the original ones).

112

Appendix C

Multiple-kernel combiner

This section introduces a variant of the LP-β [36] model, which makes use of ap-

proximated feature maps.

The LP-β classifier is defined as a linear combination ofM non-linear kernel SVMs,

each trained on a different low-level feature vector fm(x). It has been shown to yield

state-of-the-art results on several whole-image categorization benchmarks. Note that

while [36, 74] employ exact kernels to render the classifier nonlinear, in this thesis we

use approximate kernel distances by adopting the explicit feature map described in

the Appendix B. This trick allows us to approximate the traditional LP-β classifier,

which is computationally very expensive to train, with a linear combination of linear

classifiers, which can be learned much more efficiently. We found that approximat-

ing the kernel distance via explicit maps decreases the overall accuracy of the LP-β

classifier by only a few percentage points, but it allows us to speed up the training

procedure by several orders of magnitude.

Formally, the LP-β binary classification model h(x) is defined as:

h(x) = τ

(M∑
m=1

βm
[
wT
mΨm(fm(x)) + bm

])
(C.1)

113

Multiple-kernel combiner

Note that by re-arranging the terms in Eq. C.1, we can expresses h in the same

form as Eq. 3.3. Following the customary training scheme of LP-β, we first learn the

parameters {wm, bm} for each feature m independently by training the hypothesis

hm(x) =
[
wT
mΨm(fm(x)) + bm

]
using the traditional SVM large-margin objective on

a training set. In a second step, we optimize over parameter vector β = [β1, . . . , βm]T

subject to the constraint
∑

m βm = 1. This last optimization can be shown to reduce

to a simple linear program (see [36] for further details).

114

Appendix D

Object detector model

This section briefly introduces the object detector model used in the work of [75], i.e.

”Selective search for object recognition”, Uijlings, van de Sande et al., IJCV 2013.

Let us consider the training of an object detector for class c. Let us suppose to

have a dataset of M training images Dc = {(xi,Bi,yi)}Mi=1, where xi is the i-th image,

Bi = {bi,j}Ki
j=1 is a set of Ki bounding boxes of the i-th image and yi = {yi,j}Ki

j=1

contains the corresponding binary labels for detection, with yi,j = 1 denoting a box

containing an object of class c, while yi,j = −1 indicates a candidate box. The

candidate bounding boxes might be, for instance, the ones produced by the method

introduced in [75]. We say an image is “positive” if it contains at least a positive

bounding box, and “negative” otherwise.

Our desired object detector is a function that takes a subwindow bi,j, extracts a

meaningful vectorized feature representation, and maps it to a score measuring the

confidence that the bounding box contains an object of class c. This function is imple-

mented with a linear SVM [29], automatically choosing the hyper-parameter from a

candidate list by mean of 5-fold-cross validation, selecting the one that produces the

highest cross-validation Average Precision. This particular model selection follows

115

Object detector model

naturally given the task of object detection, where the quality of the scoring value is

more important than the accuracy in classifying the subwindows.

The procedure introduced in [75] involves training the model multiple times while

performing mining of hard negative examples as technique to reinforce the model.

More in detail, we compose an initial training set by considering all the {bi,j∀i, j|yi,j =

1} bounding boxes as positive examples. The negative set of examples is built by

selecting the candidate bounding boxes that overlap less than 70% (this is a parameter

that might change) with any bi,j from the positive images, and one randomly-chosen

candidate bounding box from each negative image.

We then perform a stage of hard-negative data mining, where the initial model is

evaluated over all the candidate bounding boxes of the negative images of the training

set, augmenting the negative set by adding for each negative image the bounding box

with the highest positive score. We finally re-train the model with this augmented

training set.

Given a test image, the evaluation is performed by first applying the model to

all the candidate subwindows. The scores are then sorted, while greedily removing

subwindows that overlap for more than 30% (this parameter might change) with a

subwindow with an higher score. The presence or absence of the object of interested

could be inferred by binarizing the scores according to a specific threshold.

116

Bibliography

[1] Akata, Z., Perronnin, F., Harchaoui, Z., and Schmid, C. Good practice

in large-scale learning for image classification. IEEE Trans. Pattern Anal. Mach.

Intell. 36, 3 (2014), 507–520.

[2] Alexe, B., Deselaers, T., and Ferrari, V. What is an object? In CVPR

(2010), pp. 73–80.

[3] Alexe, B., Deselaers, T., and Ferrari, V. Measuring the objectness of

image windows. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 34, 11 (2012), 2189–2202.

[4] Alexe, B., Deselaers, T., and Ferrari, V. Measuring the objectness of

image windows. IEEE PAMI 34, 11 (2012), 2189–2202.

[5] Andoni, A., and Indyk, P. Near-optimal hashing algorithms for approximate

nearest neighbor in high dimensions. Commun. ACM 51, 1 (2008), 117–122.

[6] Bengio, S., Weston, J., and Grangier, D. Label embedding trees for large

multi-class tasks. In NIPS (2010).

[7] Bengio, Y., and Courville, A. Deep learning of representations. In Hand-

book on Neural Information Processing. Springer, 2013, pp. 1–28.

117

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Berg, A., Deng, J., and Fei-Fei, L. Large scale visual recognition challenge,

2010. http://www.image-net.org/challenges/LSVRC/2010/.

[9] Bergamo, A., and Torresani, L. Meta-class features for large-scale object

categorization on a budget. CVPR 0 (2012), 3085–3092.

[10] Bergamo, A., Torresani, L., and Fitzgibbon, A. W. Picodes: Learning

a compact code for novel-category recognition. In NIPS (2011), pp. 2088–2096.

[11] Bottou, L., and LeCun, Y. Large scale online learning. In Advances in

Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf,

Eds. MIT Press, Cambridge, MA, 2004.

[12] Chapelle, O., and Keerthi, S. S. Multi-class feature selection with support

vector machines. Proc. Am. Stat. Ass. (2008).

[13] Cinbis, R. G., Verbeek, J., and Schmid, C. Multi-fold MIL Training

for Weakly Supervised Object Localization. In IEEE Conference on Computer

Vision & Pattern Recognition (2014).

[14] Dalal, N., and Triggs, B. Histograms of oriented gradients for human

detection. In CVPR (2005).

[15] Datta, R., Joshi, D., Li, J., and Wang, J. Z. Image retrieval: Ideas,

influences, and trends of the new age. ACM Computing Surveys 40, 2 (2008),

1–60.

[16] Deng, J., Berg, A., and Li, F.-F. Hierarchical semantic indexing for large

scale image retrieval. In CVPR (2011).

118

BIBLIOGRAPHY BIBLIOGRAPHY

[17] Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., and Li,

F.-F. Large scale visual recognition challenge, 2012. http://www.image-

net.org/challenges/LSVRC/2012/.

[18] Deng, J., Berg, A. C., Li, K., and Li, F.-F. What does classifying more

than 10, 000 image categories tell us? In ECCV (2010).

[19] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.

ImageNet: A Large-Scale Hierarchical Image Database. In CVPR (2009).

[20] Deng, J., Krause, J., and Li, F.-F. Fine-grained crowdsourcing for fine-

grained recognition. In CVPR (2013), pp. 580–587.

[21] Deng, J., Satheesh, S., Berg, A. C., and Li, F.-F. Fast and balanced:

Efficient label tree learning for large scale object recognition. In NIPS (2011),

pp. 567–575.

[22] Deng, L., Hinton, G., and Kingsbury, B. New types of deep neural network

learning for speech recognition and related applications: An overview. In ICASSP

(2013), pp. 8599–8603.

[23] Deselaers, T., Alexe, B., and Ferrari, V. Weakly supervised localization

and learning with generic knowledge. Int. J. Comput. Vision 100, 3 (Dec. 2012),

275–293.

[24] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E.,

and Darrell, T. Decaf: A deep convolutional activation feature for generic

visual recognition. In ICML (2014).

119

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Elfiky, N. M., Gonzàlez, J., and Roca, F. X. Compact and adaptive

spatial pyramids for scene recognition. Image Vision Comput. 30, 8 (2012),

492–500.

[26] Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. Scalable object

detection using deep neural networks. In IEEE CVPR (2014).

[27] Everingham, M., Van Gool, L., Williams, C. K. I.,

Winn, J., and Zisserman, A. The PASCAL Visual Object

Classes Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

[28] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and

Zisserman, A. The PASCAL Visual Object Classes Challenge 2008 (VOC2008)

Results.

[29] Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J.

Liblinear: A library for large linear classification. JMLR 9 (2008).

[30] Farhadi, A., Endres, I., Hoiem, D., and Forsyth, D. Describing objects

by their attributes. In CVPR (2009).

[31] Fellbaum, C., Ed. WordNet: An Electronic Lexical Database (Language,

Speech, and Communication), illustrated edition ed. The MIT Press, May 1998.

[32] Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D.

Object detection with discriminatively trained part-based models. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on 32, 9 (Sept 2010), 1627–

1645.

120

BIBLIOGRAPHY BIBLIOGRAPHY

[33] Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan,

D. Object detection with discriminatively trained part-based models. IEEE

Transactions on Pattern Analysis and Machine Intelligence 32, 9 (2010), 1627–

1645.

[34] Felzenszwalb, P. F., and Huttenlocher, D. P. Efficient graph-based

image segmentation. Int. J. Comput. Vision 59, 2 (Sept. 2004), 167–181.

[35] Gao, T., and Koller, D. Discriminative learning of relaxed hierarchy for

large-scale visual recognition. In ICCV (2011).

[36] Gehler, P., and Nowozin, S. On feature combination for multiclass object

classification. In ICCV (2009).

[37] Gionis, A., Indyk, P., and Motwani, R. Similarity search in high dimen-

sions via hashing. In VLDB (1999), pp. 518–529.

[38] Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature

hierarchies for accurate object detection and semantic segmentation. In IEEE

CVPR (2014).

[39] Gong, Y., and Lazebnik, S. Iterative quantization: A procrustean approach

to learning binary codes. In CVPR (2011), pp. 817–824.

[40] Griffin, G., Holub, A., and Perona, P. Caltech-256 object category

dataset. Tech. Rep. 7694, California Institute of Technology, 2007.

[41] Harzallah, H., Jurie, F., and Schmid, C. Combining efficient object

localization and image classification. In ICCV (2009), pp. 237–244.

[42] Harzallah, H., Jurie, F., and Schmid, C. Combining efficient object

localization and image classification. In ICCV (2009), pp. 237–244.

121

BIBLIOGRAPHY BIBLIOGRAPHY

[43] Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning algorithm

for deep belief nets. Neural Computation 18, 7 (2006), 1527–1554.

[44] Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., and

Schmid, C. Aggregating local image descriptors into compact codes. IEEE

Trans. on PAMI (2011).

[45] Jia, Y. Caffe: An open source convolutional architecture for fast feature em-

bedding. http://caffe.berkeleyvision.org/, 2013.

[46] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar,

R., and Fei-Fei, L. Large-scale video classification with convolutional neural

networks. In CVPR (2014).

[47] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification

with deep convolutional neural networks. In NIPS (2012), pp. 1106–1114.

[48] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification

with deep convolutional neural networks. In NIPS (2012), pp. 1106–1114.

[49] Kumar, N., Berg, A., Belhumeur, P., and Nayar, S. Attribute and

simile classifiers for face verification. In ICCV (2009).

[50] Lampert, C. H., Nickisch, H., and Harmeling, S. Learning to detect

unseen object classes by between-class attribute transfer. In CVPR (2009).

[51] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories. In CVPR (2006).

[52] Li, L., Su, H., Xing, E., and Fei-Fei, L. Object Bank: A high-level image

representation for scene classification & semantic feature sparsification. In NIPS

(2010).

122

http://caffe.berkeleyvision.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[53] Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., and

Huang, T. S. Large-scale image classification: Fast feature extraction and svm

training. In CVPR (2011).

[54] Lowe, D. Distinctive image features from scale-invariant keypoints. IJCV 60,

2 (2004), 91–110.

[55] Maji, S., and Berg, A. C. Max-margin additive classifiers for detection. In

ICCV (2009).

[56] Nakayama, H., Harada, T., and Kuniyoshi, Y. Global gaussian approach

for scene categorization using information geometry. In CVPR (2010), IEEE,

pp. 2336–2343.

[57] Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral clustering: Analysis

and an algorithm. In NIPS (2001).

[58] Nistér, D., and Stewénius, H. Scalable recognition with a vocabulary tree.

In Proc. CVPR (2006), pp. 2161–2168.

[59] Oliva, A., and Torralba, A. Building the gist of a scene: The role of global

image features in recognition. Visual Perception, Progress in Brain Research 155

(2006).

[60] Pandey, M., and Lazebnik, S. Scene recognition and weakly supervised ob-

ject localization with deformable part-based models. In ICCV (2011), pp. 1307–

1314.

[61] Perronnin, F., Sánchez, J., and Mensink, T. Improving the fisher kernel

for large-scale image classification. In ECCV (4) (2010), pp. 143–156.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[62] Platt, J. C. Probabilistic outputs for support vector machines and compar-

isons to regularized likelihood methods. In Advances in Large Margin Classifiers

(1999), MIT Press.

[63] Quattoni, A., and Torralba, A. Recognizing indoor scenes. In CVPR

(2009), pp. 413–420.

[64] Rastegari, M., Fang, C., and Torresani, L. Scalable object-class retrieval

with approximate and top-k ranking. In ICCV (2011).

[65] Sánchez, J., and Perronnin, F. High-dimensional signature compression

for large-scale image classification. In CVPR (2011), pp. 1665–1672.

[66] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and

LeCun, Y. Overfeat: Integrated recognition, localization and detection using

convolutional networks. In ICLR (2014).

[67] Shechtman, E., and Irani, M. Matching local self-similarities across images

and videos. In CVPR (2007).

[68] Shi, Z., Hospedales, T. M., and Xiang, T. Bayesian joint topic mod-

elling for weakly supervised object localisation. In International Conference on

Computer Vision (ICCV) (2013).

[69] Simonyan, K., Vedaldi, A., and Zisserman, A. Deep fisher networks for

large-scale image classification. In NIPS (2013), pp. 163–171.

[70] Song, H. O., Girshick, R., Jegelka, S., Mairal, J., Harchaoui, Z.,

and Darrell, T. One-bit object detection: On learning to localize objects

with minimal supervision. In ICML (2014).

124

BIBLIOGRAPHY BIBLIOGRAPHY

[71] Song, Z., Chen, Q., Huang, Z., Hua, Y., and Yan, S. Contextualizing

object detection and classification. In CVPR (2011), pp. 1585–1592.

[72] Szegedy, C., Toshev, A., and Erhan, D. Deep neural networks for ob-

ject detection. In Advances in Neural Information Processing Systems (2013),

pp. 2553–2561.

[73] Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. DeepFace: Closing

the gap to human-level performance in face verification. In CVPR (2014).

[74] Torresani, L., Szummer, M., and Fitzgibbon, A. Efficient object category

recognition using classemes. In ECCV (2010).

[75] Uijlings, J., van de Sande, K., Gevers, T., and Smeulders, A. Selective

search for object recognition. International journal of computer vision 104, 2

(2013), 154–171.

[76] van de Sande, K. E. A., Gevers, T., and Snoek, C. G. M. Evaluation

of color descriptors for object and scene recognition. In CVPR (2008).

[77] Vapnik, V. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[78] Vedaldi, A., and Fulkerson, B. VLFeat: An open and portable library of

computer vision algorithms. http://www.vlfeat.org/, 2008.

[79] Vedaldi, A., and Zisserman, A. Efficient additive kernels via explicit feature

maps. PAMI (2011).

[80] Viola, P. A., and Jones, M. J. Rapid object detection using a boosted

cascade of simple features. In CVPR (1) (2001), pp. 511–518.

125

http://www.vlfeat.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[81] von Luxburg, U. A tutorial on spectral clustering. Statistics and Computing

17, 4 (Dec. 2007), 395–416.

[82] Wang, G., Hoiem, D., and Forsyth, D. Learning image similarity from

flickr using stochastic intersection kernel machines. In ICCV (2009).

[83] Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. Sun

database: Large-scale scene recognition from abbey to zoo. In CVPR (2010),

pp. 3485–3492.

[84] Yang, J., Yu, K., Gong, Y., and Huang, T. S. Linear spatial pyramid

matching using sparse coding for image classification. In CVPR (2009), pp. 1794–

1801.

126

	Methods for efficient object categorization, detection, scene recognition, and image search
	Recommended Citation

	Introduction
	Related work
	Descriptors for object categorization
	Introduction
	General framework
	PiCoDes
	Meta-Classes
	Experiments
	Datasets
	Low-level descriptors
	Learning classifier-based descriptors
	Evaluation setup
	Experiments on Caltech 256

	Descriptors for scene recognition
	Introduction
	Methods
	Experiments
	Datasets

	Descriptors for object detection
	Introduction
	DetClassemes
	Modeling our descriptor
	Learning the descriptor
	Utilize our descriptor

	Experiments
	Implementation of our descriptor
	Experiments on PASCAL 2007

	Weakly-supervised object detection
	Introduction
	Self-taught Object Localization
	Input Grayout
	Agglomerative Clustering

	Weakly-Supervised Detection using STL
	Experiments
	Self-taught Localization

	Qualitative results
	Weakly-supervised Detection

	Software
	vlg_extractor
	LIBLINEAR_bitmap

	Appendix
	Support Vector Machine
	Approximated feature map
	Multiple-kernel combiner
	Object detector model
	References

