866 research outputs found

    An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights

    Get PDF
    This article proposes an approach to multiattribute decision making with incomplete attribute weight information where individual assessments are provided as interval-valued intuitionistic fuzzy numbers (IVIFNs). By employing a series of optimization models, the proposed approach derives a linear program for determining attribute weights. The weights are subsequently used to synthesize individual IVIFN assessments into an aggregated IVIFN value for each alternative. In order to rank alternatives based on their aggregated IVIFN values, a novel method is developed for comparing two IVIFNs by introducing two new functions: the membership uncertainty index and the hesitation uncertainty index. An illustrative investment decision problem is employed to demonstrate how to apply the proposed procedure and comparative studies are conducted to show its overall consistency with existing approaches

    An interval-valued intuitionistic fuzzy multiattribute group decision making framework with incomplete preference over alternatives

    Get PDF
    This article proposes a framework to handle multiattribute group decision making problems with incomplete pairwise comparison preference over decision alternatives where qualitative and quantitative attribute values are furnished as linguistic variables and crisp numbers, respectively. Attribute assessments are then converted to interval-valued intuitionistic fuzzy numbers (IVIFNs) to characterize fuzziness and uncertainty in the evaluation process. Group consistency and inconsistency indices are introduced for incomplete pairwise comparison preference relations on alternatives provided by the decision-makers (DMs). By minimizing the group inconsistency index under certain constraints, an auxiliary linear programming model is developed to obtain unified attribute weights and an interval-valued intuitionistic fuzzy positive ideal solution (IVIFPIS). Attribute weights are subsequently employed to calculate distances between alternatives and the IVIFPIS for ranking alternatives. An illustrative example is provided to demonstrate the applicability and effectiveness of this method

    A new fuzzy multi-attribute group decision-making method based on TOPSIS and optimization models

    Full text link
    In this paper, a new method based on TOPSIS and optimization models is proposed for multi-attribute group decision-making in the environment of interval-valued intuitionistic fuzzy sets.Firstly, by minimizing the sum of differences between individual evaluations and the overallconsistent evaluations of all experts, a new optimization model is established for determining expert weights. Secondly, based on TOPSIS method, the improved closeness index for evaluating each alternative is obtained. Finally, the attribute weight is determined by establishing an optimization model with the goal of maximizing the closeness of each alternative, and it is brought into the closeness index so that the alternatives can be ranked. Combining all these together, the complete fuzzy multi-attribute group decision-making algorithm is formulated, which can give full play to the advantages of subjective and objective weighting methods. In the end, the feasibility and effectiveness of the provided method are verified by a real case study

    Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA.

    Get PDF
    The technical, logistical, and ecological challenges associated with offshore wind development necessitate an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making (MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive border approximation area comparison that provides formulation flexibility and easy calculation. Further, this study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals that changing criteria weightings does not affect the ranking order

    An Extended TODIM Method for Group Decision Making with the Interval Intuitionistic Fuzzy Sets

    Get PDF
    For a multiple-attribute group decision-making problem with interval intuitionistic fuzzy sets, a method based on extended TODIM is proposed. First, the concepts of interval intuitionistic fuzzy set and its algorithms are defined, and then the entropy method to determine the weights is put forward. Then, based on the Hamming distance and the Euclidean distance of the interval intuitionistic fuzzy set, both of which have been defined, function mapping is given for the attribute. Finally, to solve multiple-attribute group decision-making problems using interval intuitionistic fuzzy sets, a method based on extended TODIM is put forward, and a case that deals with the site selection of airport terminals is given to prove the method

    An Extended TOPSIS Method for the Multiple Attribute Decision Making Problems Based on Interval Neutrosophic Set

    Get PDF
    The interval neutrosophic set (INS) can be easier to express the incomplete, indeterminate and inconsistent information, and TOPSIS is one of the most commonly used and effective method for multiple attribute decision making, however, in general, it can only process the attribute values with crisp numbers. In this paper, we have extended TOPSIS to INS, and with respect to the multiple attribute decision making problems in which the attribute weights are unknown and the attribute values take the form of INSs, we proposed an expanded TOPSIS method. Firstly, the definition of INS and the operational laws are given, and distance between INSs is defined. Then, the attribute weights are determined based on the Maximizing deviation method and an extended TOPSIS method is developed to rank the alternatives. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness
    corecore