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Abstract 7 

This article proposes an approach to multiattribute decision making with incomplete 8 

attribute weight information where individual assessments are provided as interval-valued 9 

intuitionistic fuzzy numbers (IVIFNs). By employing a series of optimization models, the 10 

proposed approach derives a linear program for determining attribute weights. The 11 

weights are subsequently used to synthesize individual IVIFN assessments into an 12 

aggregated IVIFN value for each alternative. In order to rank alternatives based on their 13 

aggregated IVIFN values, a novel method is developed for comparing two IVIFNs by 14 

introducing two new functions: the membership uncertainty index and the hesitation 15 

uncertainty index. An illustrative investment decision problem is employed to 16 

demonstrate how to apply the proposed procedure and comparative studies are conducted 17 

to show its overall consistency with existing approaches. 18 

Keywords: Multiattribute decision making, interval-valued intuitionistic fuzzy numbers 19 

(IVIFNs), uncertainty index, linear programming 20 

1. Introduction   21 

Since the seminal work of Zadeh [39], the traditional 0-1 logic has been extended to 22 

fuzzy logic, characterized by a membership function between 0 and 1. This extension has 23 

triggered significant theoretical developments and numerous successful industrial 24 

applications [17, 41], and provides a powerful alternative other than probability theory to 25 

characterize uncertainty, imprecision, and vagueness in many fields [40]. Intuitionistic 26 

fuzzy sets (IFSs), initiated by Atanassov [1], represent one of the key theoretical 27 

developments, which considers not only to what degree an element belongs to a particular 28 
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set (membership function) but also to what degree this element does not belong to the set 29 

(nonmembership function). The notion of IFSs is further generalized [3] by allowing the 30 

membership and nonmembership functions to assume interval values, thereby introducing 31 

the concept of interval-valued intuitionistic fuzzy sets (IVIFSs).  32 

From a voting perspective, the membership function of an IFS can be loosely 33 

regarded as the percentage of approval votes, the nonmembership function can be 34 

interpreted as the rejection percentage, and the remaining portion that is not included in 35 

either the membership or nonmembership function can be conveniently treated as 36 

abstention. Due to these distinct features in characterizing vagueness and uncertainty in 37 

human decision making processes, IFSs have been widely employed to develop diverse 38 

decision aid tools. For instance, the concept of score functions is introduced by Chen and 39 

Tan [6] to evaluate alternatives under multiple attributes where assessments of each 40 

alternative against the attributes are expressed as vague values, or equivalently, 41 

intuitionistic fuzzy numbers as pointed out by Deschrijver and Kerre [9]. Subsequently, 42 

Hong and Choi [14] indicate that the score function cannot discriminate some alternatives 43 

although they are apparently different and, hence, propose an accuracy function to 44 

measure how accurate are the membership and nonmembership (or negation in the vague 45 

set term) functions, thereby furnishing additional discrimination powers. Liu and Wang 46 

[22] extend this research  by first introducing an evaluation function based on t-norm and 47 

t-conorm and, then defining an intuitionistic fuzzy point operator and developing several 48 

new score functions based on the evaluation function and point operator. If a score 49 

function is employed to rank alternatives, a higher score value means a more preferred 50 

alternative.  51 

Another active research topic is the investigation of multiattribute decision making by 52 

introducing intuitionistic fuzzy aggregation operators. Xu and Yager [37] and Xu [32] 53 

examine geometric and arithmetic aggregation operators, respectively. Multiattribute 54 

decision making under IFSs is further investigated by Li [20], where a series of 55 

optimization models are introduced and manipulated to generate optimal attribute 56 

weights. The applications of IFSs are also extended to decision situations involving 57 

multiple decision-makers (DMs): Szmidt and Kacprzyk [27] put forward some solution 58 

concepts in group decision making with intuitionistic fuzzy preference relations, and 59 
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Szmidt and Kacprzyk [28] further investigate how to reach consensus with intuitionistic 60 

fuzzy preference relations. Atanassov et al. [4] also present an algorithm for multi-person 61 

multiattribute decision making with crisp weights and intuitionistic fuzzy attribute values. 62 

Xu [33] defines consistent, incomplete, and acceptable preference relations and develops 63 

another approach to group decision making under the intuitionistic fuzzy environment.  64 

With the aforesaid extensive research on applying IFSs to decision analysis, it is 65 

natural to expect that IVIFSs play a significant role in enriching decision modeling. 66 

However, the extension from exact numbers to interval values for the membership and 67 

nonmembership functions of IFSs poses considerable challenges in working with IVIFSs. 68 

Current research mainly focuses on basic operations and relations of IVIFSs as well as 69 

their properties [2]. Correlation and coefficient of correlation are first introduced by 70 

Bustince and Burillo [5], and then generalized to a general probability space [13]. 71 

Subsequently, Hung and Wu [15] develop a so-called “centroid” approach to calculating 72 

the correlation coefficient of IVIFSs. Another method is proposed by Xu [31], which 73 

possesses a key property that the correlation coefficient of two IVIFSs is one if and only 74 

if the two IVIFSs are identical. Other aspects of IVIFSs are also investigated, such as 75 

topological properties [25], relationships between IFSs, L-fuzzy sets, interval-valued 76 

fuzzy sets and IVIFSs [7-9], and the entropy and subsethood of IVIFSs [23]. It is still at 77 

an inceptive stage to apply IVIFSs to decision modeling and limited literature exists in 78 

this specialized area. Xu [34] proposes some aggregation operators for interval-valued 79 

intuitionistic fuzzy information and applies them to multiattribute decision analysis. Xu 80 

and Yager [38] further investigate dynamic intuitionistic fuzzy aggregation operators and 81 

devise two procedures for dynamic intuitionistic fuzzy multiattribute decision making 82 

with intuitionistic fuzzy numbers (IFNs) or interval-valued intuitionistic fuzzy numbers 83 

(IVIFNs).  84 

Multiattribute decision approaches provide decision aid by examining tradeoffs 85 

among alternative performances over multiple attributes [16]. Key information required 86 

in a multiattribute decision model includes attribute values or performance measures 87 

(individual assessments on alternatives against each attribute), attribute weights 88 

(reflecting the importance of each attribute to the overall decision problem), and a 89 

mechanism to synthesize this information into an aggregated value or assessment for each 90 
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alternative. With ever increasing complexity in many decision situations in reality, it is 91 

often a challenge for a decision-maker (DM) to provide attribute values and weights in a 92 

precise manner. Therefore, a general trend in the literature is to investigate decision 93 

models with incomplete information. For instance, attribute values have been relaxed to 94 

be a range rather than an exact value [4, 6, 14, 18, 20, 22, 27-30, 33-35, 38], and 95 

incomplete attribute weight information has also been extensively investigated from 96 

different perspectives [18, 26, 36]. In addition, more and more research along this 97 

direction has been conducted within a fuzzy or intuitionistic fuzzy framework [14, 19-22, 98 

27-30, 33-36, 38]. The purpose of this article is to propose a novel approach to 99 

multiattribute decision analysis in which attribute values are expressed as IVIFNs and 100 

incomplete attribute weights are identified as a set of linear constraints that may take any 101 

form as those in [18, 26, 36]. To rank alternatives based on their aggregated IVIFN 102 

values, a new method is devised to compare any two IVIFNs in Section 3. To obtain 103 

aggregated IVIFN values, this approach, motivated by the treatments in [20], starts with 104 

manipulating a series of linear and nonlinear programming models, and eventually 105 

derives a linear program to determine attribute weights for aggregating individual IVIFN 106 

assessments into a single IVIFN value for each alternative (Section 4).  107 

Intuitively, extending from IFNs to IVIFNs furnishes additional capability to handle 108 

vague information because the membership and nonmembership degrees are only needed 109 

to be expressed as ranges of values rather than exact values. When the uncertainty in an 110 

IVIFN’s membership and nonmembership degrees diminishes to zero, the IVIFN is 111 

reduced to an IFN. Therefore, compared to the multiattribute decision models in existing 112 

literature [14, 20, 22, 36, 38], the proposed approach makes a useful contribution by 113 

empowering a DM with more flexibility in tackling vagueness and uncertainty in its 114 

assessments, thereby providing an effective means to applying IVIFNs in multiattribute 115 

decision making with incomplete weights. Another key contribution of this article is the 116 

novel comparison method for IVIFNs in Section 3, which is able to differentiate any two 117 

IVIFNs.  118 

An earlier version of this paper was presented at a conference and published in the 119 

proceedings [30]. The current manuscript significantly expands the conference paper by 120 

providing new theorems (Section 4) to validate the proposed approach and introducing a 121 
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new method (Section 3) to compare two IVIFNs rather than depending on a TOPSIS 122 

(technique for order performance by similarity to ideal solution [16]) based approach to 123 

ranking alternatives. Moreover, this paper has been thoroughly rewritten to explain the 124 

procedure more carefully and enhance its readability. The updated illustrative example in 125 

Section 5 demonstrates that two alternatives cannot be distinguished by using the 126 

TOPSIS approach in the conference paper, but a full ranking can be obtained by using the 127 

newly designed approach to comparing two IVIFNs in Section 3. The approach here also 128 

significantly differs from that reported in Wang and Wang [29], from the process of 129 

determining attribute weights (eigenalue-based), to the aggregation operator (weighted 130 

arithmetic average) and ranking method (only score and accuracy functions are employed 131 

there).  132 

The remainder of this paper is organized as follows: Section 2 reviews some basic 133 

concepts related to IFSs and IVIFSs. A novel method is introduced for comparing any 134 

two IVIFNs in Section 3. Section 4 establishes a linear programming approach to 135 

multiattribute decision making under interval-valued intuitionistic fuzzy environment. A 136 

numerical example is developed to demonstrate how to apply the proposed approach and 137 

some comparative studies are conducted in Section 5, followed by some concluding 138 

remarks in Section 6.  139 

2. Preliminaries 140 

Some basic concepts on IFSs and IVIFSs are introduced below to facilitate future 141 

discussions.  142 

Definition 2.1 (Atanassov [1]). Let a set X be fixed, an intuitionistic fuzzy set (IFS) A 143 

in X is defined as 144 

{ , ( ), ( ) | }A AA x x x x X      145 

where the functions : [0,1]A X  , , ( ) [0,1]Ax X x   and : [0,1]A X  , ,x X  146 

( ) [0,1]A x   satisfy the condition 0 ( ) ( ) 1A Ax x    , .x X   147 

( )A x  and ( )A x denote the degrees of membership and nonmembership of element 148 

x X  to set A, respectively. ( ) 1 ( ) ( )A A Ax x x      is usually called the intuitionistic 149 

fuzzy index of x A , representing the degree of indeterminacy or hesitation of x to A. It is 150 
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obvious that 0 ( ) 1A x   for every .x X  151 

Deschrijver and Kerre [9] have shown that IFSs are equivalent to interval-valued 152 

fuzzy sets (also called vague sets [10]) and both can be regarded as L-fuzzy sets in the 153 

sense of Goguen [11]. 154 

In reality, it may not be easy to identify exact values for the membership and 155 

nonmembership degrees of an element to a set. In this case, a range of values may be a 156 

more appropriate measurement to accommodate the vagueness. As such, Atanassov and 157 

Gargov [3] introduce the notion of interval-valued intuitionistic fuzzy set (IVIFS). 158 

Definition 2.2 (Atanassov and Gargov [3]). Let X be a non-empty set of the universe, 159 

and [0,1]D  be the set of all closed subintervals of [0, 1], an interval-valued intuitionistic 160 

fuzzy set (IVIFS) A  in X is defined by 161 

{ , ( ), ( ) | }
A A

A x x x x X     
   162 

where : [0,1]
A

X D  , : [0,1]
A

X D  , with the condition 0 sup( ( ))
A

x   163 

sup( ( )) 1
A

x   for any x X . 164 

Similarly, the intervals ( )
A

x  and ( )
A

x   denote the degree of membership and 165 

nonmembership of  x to A, respectively. But, here, for each x X , ( )
A

x  and ( )
A

x   are 166 

closed intervals rather than real numbers and their lower and upper boundaries are 167 

denoted by ( ), ( ), ( ), ( )L U L U
A A A A

x x x x         , respectively. Therefore, another equivalent way 168 

to express an IVIFS A  is 169 

            { ,[ ( ), ( )],[ ( ), ( )] | }L U L U
A A A A

A x x x x x x X         
    , 170 

where ( ) ( ) 1,0 ( ) ( ) 1,0 ( ) ( ) 1U U L U L U
A A A A A A

x x x x x x                      . 171 

Similar to IFSs, for each element x X  we can compute its hesitation interval relative 172 

to A  as: 173 

         ( ) [ ( ), ( )] [1 ( ) ( ),1 ( ) ( )]L U U U L L
A A A A A A A

x x x x x x x                        174 

If each of the intervals ( )
A

x  and ( )
A

x   contains only one real value, i.e., if for every 175 

x X , 176 

( ) ( ) ( )L U
A A A

x x x       , ( ) ( ) ( )L U
A A A

v x v x v x      177 
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then, the given IVIFS A  is degraded to an ordinary IFS.  178 

For any given x, the pair ( ( ), ( ))
A A

x x    is called an interval-valued intuitionistic 179 

fuzzy number (IVIFN) [34,38]. For convenience, the pair ( ( ), ( ))
A A

x x    is often denoted 180 

by ([ , ],[ , ])a b c d , where [ , ] [0,1]a b D ,[ , ] [0,1]c d D  and 1b d  . 181 

Remark 2.1 182 

For IFSs, ( ) 1 ( ) ( )A A Ax x x      measures a DM’s hesitation about the membership 183 

of x to A and also represents the DM’s uncertainty. For IVIFSs, the uncertainty comes 184 

from three sources: membership uncertainty in ( ), ( )L U
A A

x x      , nonmembership 185 

uncertainty in ( ), ( )L U
A A

x x      , and hesitation uncertainty in ( ) ( ), ( )L U
A A A

x x x           186 

1 ( ) ( ),1 ( ) ( ) .U U L L
A A A A

x x x x              This differentiation of uncertainty sources plays an 187 

instrumental role in devising a novel method for comparing two IVIFNs in Section 3.  188 

3. A novel method for comparing two IVIFNs 189 

In the proposed multiattribute decision approach in Section 4, the eventual evaluation 190 

of each alternative will be based on an aggregated IVIFN. In order to rank alternatives, it 191 

is necessary to consider how to compare two IVIFNs.  192 

For intuitionistic fuzzy numbers (IFNs), Chen and Tan [6] introduce a score function, 193 

defined as the difference of membership and nonmembership function, to evaluate 194 

alternatives and, then, develop a multiattribute decision making approach under the IFS 195 

environment. Later, Hong and Choi [14] note that the score function alone cannot 196 

differentiate many IFNs even though they are obviously different. To make the 197 

comparison method more discriminatory, an accuracy function, defined as the sum of the 198 

membership and nonmembership function, is introduced to measure how accurate are the 199 

membership and nonmembership functions of an IFN. Subsequently, a procedure 200 

combining the score function and accuracy function is designed to handle multiattribute 201 

decision making problems with IFNs [14]. Built upon the concepts of score and accuracy 202 

functions, Xu [32] devises a new approach to comparing two IFNs. 203 

When the comparison of two IFNs is extended to the interval-valued case, a similar 204 

line of thinking can be adopted. For instance, Xu [34] introduces the score and accuracy 205 

functions for IVIFNs and applies them to compare two IVIFNs. However, due to the 206 
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specific characteristics of intervals and the three different types of uncertainty (See 207 

Remark 2.1), the score and accuracy functions together sometimes cannot tell the 208 

difference between two IVIFNs. In this case, it is necessary to examine the difference 209 

between two IVIFNs using two additional functions as detailed below. The first two 210 

functions are proposed by Xu [34], but the last two are introduced in this research. 211 

1. Score function: The difference between the membership and nonmembership 212 

functions, [ , ]
A

a b   and [ , ]
A

c d  . As these functions are interval-valued, the means 213 

of the respective intervals are employed for the calculation. This difference is comparable 214 

to the score function in the IFN case and, hence, we have: 215 

Definition 3.1 (Xu [34]) For an IVIFN ([ , ],[ , ])a b c d  , its score function is defined 216 

as ( )
2

a b c d
S    

 .  217 

It is obvious that 1 ( ) 1.S     The score function captures the overall degree of 218 

belonging to a certain set by deducting its nonmembership from its membership function 219 

and, hence, can be used as a basis to compare two IVIFNs. For two IVIFNs, the one with 220 

a smaller score function corresponds to a smaller IVIFN. However, two different IVIFNs 221 

may possess an identical score value as shown in the following example. 222 

Example 3.1 Let 1 ([0.2,0.3],[0.2,0.3])   and 2 ([0.4,0.5],[0.4,0.5])  . It is trivial 223 

to confirm that 1 2( ) ( ) 0S S    , but these two IVIFNs are obviously different.  224 

2. Accuracy function: When the score function alone cannot differentiate two 225 

IVIFNs as shown in Example 3.1, additional information, the sum of the membership and 226 

nonmembership functions, should now be considered. This idea is similar to the accuracy 227 

function in [14] except that the mean values of the intervals are employed here.   228 

Definition 3.2 (Xu [34]) For an IVIFN ([ , ],[ , ])a b c d  , its accuracy function is 229 

defined as ( )
2

a b c d
H    

 .  230 

Generally speaking, the accuracy function measures the amount of information 231 

captured by the membership and nonmembership functions, and the remaining portion 232 

characterizes the degree of hesitation. When the score function is the same for two 233 

IVIFNs, the smaller the accuracy function, the larger the hesitation and, hence, the 234 
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smaller the corresponding IVIFN. For the two IVIFNs in Example 3.1, since their score 235 

function value is identical but 1( ) 0.5H   < 2( ) 0.9H   , we have 1 2   .  236 

It is clear that the introduction of the accuracy function increases the discriminatory 237 

power. Nevertheless, in some situations, the score and accuracy functions together still 238 

cannot tell the difference between two distinct IVIFNs. For instance, 239 

Example 3.2 Let 1 ([0,0.4],[0.3,0.4])  , 2 ([0.1,0.3],[0.3,0.4])  , 3 ([0,0.4],   240 

[0.18,0.52]) , 4 ([0.05,0.35],[0.2,0.5])  ,  5 ([0.2,0.2],[0.3,0.4])  . It is easy to verify 241 

that 1 2 3 4 5( ) ( ) ( ) ( ) ( ) 0.15S S S S S               and 1 2 3( ) ( ) ( )H H H        242 

4 5( ) ( ) 0.55H H    . Therefore, these five IVIFNs are still indistinguishable.  243 

As a matter of fact, for any two IVIFNs, as long as the means of their membership 244 

and nonmembership intervals are respectively equal, the score and accuracy functions of 245 

the two IVIFNs will be identical and, hence, indistinguishable under these two functions.  246 

3. Membership uncertainty index function: When both score and accuracy functions 247 

fail to distinguish two IVIFNs, the difference of the uncertainty in the membership and 248 

nonmembership functions is considered. 249 

Intuitively, the uncertainty of a membership (nonmembership) function is measured 250 

by the width of the interval: the wider a membership (nonmembership) interval, the more 251 

uncertain an element’s membership (nonmembership) is. When the width of the interval 252 

diminishes to zero, it is known exactly to what degree an element belongs (does not 253 

belong) to a particular set. In this case, no uncertainty exists about an element’s 254 

membership (nonmembership) to the set. 255 

Definition 3.3 For an IVIFN ([ , ],[ , ])a b c d  , its membership uncertainty index is 256 

defined as ( )T b c a d     .  257 

It is easy to tell that 1 ( ) 1T    . Understandably, when the score and accuracy 258 

functions are equal for two IVIFNs, the larger a ( )T   value, the smaller the corresponding 259 

IVIFN is. For the five IVIFNs in Example 3.2, applying Definition 3.3 yields 1( ) 0.3T   ,  260 

2( ) 0.1T   , 3( ) 0.06T   , 4( ) 0T   , and 5( ) 0.1T    . As 1 2 3( ) ( ) ( )T T T        261 

4 5( ) ( )T T   , one can have 1 2 3 4 5            . 262 

However, with the three functions, ( ), ( ),  and ( )S H T   , some IVIFNs still cannot be 263 
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differentiated. For example, 264 

Example 3.3 Assume that 1 ([0.05,0.35],[0.25,0.55])  , 2 ([0.1,0.3],[0.3,0.5])  , 265 

3 ([0.15,0.25],[0.35,0.45])  ,   4 ([0.2,0.2],[0.4,0.4])  , then,  266 

1 2 3 4( ) ( ) ( ) ( ) 0.2S S S S            267 

      1 2 3 4( ) ( ) ( ) ( ) 0.6H H H H           268 

    1 2 3 4( ) ( ) ( ) ( ) 0T T T T           269 

Therefore, 1 2 3 4, , ,  and         cannot be differentiated by using ( ), ( ),  and ( )S H T   .  270 

In general, for any two IVIFNs 1 1 1 1([ , ],[ , ])a b c d   and 2 2 2 2([ , ],[ , ])a b c d  , if a1 + 271 

b1 = a2 + b2, c1 + d1 = c2 + d2, b1 + c1 = b2 + c2, and a1 + d1 = a2 + d2, then, ( ) ( ),S S    272 

( ) ( ),  and ( ) ( ),H H T T        hence, the three functions will not be able to distinguish 273 

these two IVIFNs. In this case, the uncertainty contained in the hesitation interval has to 274 

be examined.  275 

4. Hesitation uncertainty index function: Once again, the uncertainty in the 276 

hesitation interval, ( ) [ ( ), ( )] [1 ,1 ]L U
A A A

x x x b d a c            , is measured by its width.  277 

Definition 3.4 For an IVIFN ([ , ],[ , ])a b c d  , its hesitation uncertainty index is 278 

defined as ( )G b d a c     . 279 

When the other three functions are equal, a larger hesitation uncertainty corresponds 280 

to a smaller IVIFN. By introducing ( )G  , the four IVIFNs in Example 3.3 can be ranked. 281 

As 1( ) 0.6G   > 2( ) 0.4G   > 3( ) 0.2G   > 4( ) 0G   , 1 2 3       4  . 282 

Given these analyses, we can now introduce a procedure to compare any two IVIFSs.  283 

Definition 3.5 For any two IVIFNs 1 1 1 1([ , ],[ , ])a b c d   and 2 2 2 2([ , ],[ , ])a b c d  ,  284 

If  ( ) ( )S S   , then   is smaller than  , denoted by    ; 285 

If  ( ) ( )S S   , then   is greater than  , denoted by    ; 286 

If  ( ) ( )S S   , then 287 

1) If ( ) ( )H H   , then   is smaller than  , denoted by    ; 288 

2) If ( ) ( )H H   , then   is greater than  , denoted by    ; 289 

3) If ( ) ( )H H   , then 290 



 11

i) If ( ) ( )T T   , then   is smaller than  , denoted by    ; 291 

ii) If ( ) ( )T T   , then   is greater than  , denoted by    ; 292 

iii) If ( ) ( )T T   , then 293 

a) If ( ) ( )G G   , then   is smaller than  , denoted by    ; 294 

b) If ( ) ( )G G   , then   is greater than  , denoted by    ; 295 

c) If ( ) ( )G G   , then   and   represent the same information, denoted by 296 

    297 

Remark 3.1  298 

Definition 3.5 establishes a novel approach to comparing any two IVIFNs by taking a 299 

prioritized sequence of score, accuracy, membership uncertainty index, and hesitation 300 

uncertainty index functions. When two IVIFNs are compared, this sequence follows a 301 

logic order of examining the overall belonging degree, the level of accuracy or hesitation, 302 

the membership uncertainty index, and the hesitation uncertainty index. The comparison 303 

process continues until the two IVIFNs are distinguished by one of the four functions in 304 

Definition 3.5. Once these two IVIFNs are differentiated at a certain priority level, the 305 

calculation terminates and functions at lower priority levels will not be computed. This 306 

prioritized sequence of comparison method has many applications in reality. For instance, 307 

many Canadian research-intensive institutions recruit their tenure-track faculty members 308 

following a priority order of research first, teaching second, and service last. Theorem 3.1 309 

below confirms that any two different IVIFNs will always be distinguishable by 310 

Definition 3.5. 311 

Theorem 3.1 Let 1 1 1 1([ , ],[ , ])a b c d  and 2 2 2 2([ , ],[ , ])a b c d  be two IVIFNs, then 312 

    iff a1 = a2, b1 = b2, c1 = c2, d1 = d2. 313 

Proof: The sufficient condition obviously holds true. Next, if    ,  then Definition 314 

3.5 implies that ( ) ( )S S   ， ( ) ( )H H   ，  ( ) ( )T T   ，and ( )G    ( )G  . 315 

From the definitions of ( ), ( ), ( ),  and ( )S H T G    , we have  316 

a1 + b1 – c1 – d1 = a2 + b2 – c2 – d2,  a1 + b1 + c1 + d1 = a2 + b2 + c2 + d2 317 

b1 + c1 – a1 – d1 = b2 + c2 – a2 – d2,  b1 + d1 – a1 – c1 = b2 + d2 – a2 – c2 318 

By solving the four equations, we have a1 = a2, b1 = b2, c1 = c2, d1 = d2.                  Q.E.D. 319 
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Definition 3.6 Let 1 1 2 2[ , ],[ , ]a b a b  be two interval numbers over [0, 1]. A relation “ ” 320 

in [0,1]D  is defined as: 1 1 2 2[ , ] [ , ]a b a b  iff 1 2 1 2 and a a b b  .  321 

This definition can be treated as a special case of Definition 2.1 in [8] and, hence, 322 

[0,1]," "D    constitutes a complete lattice. 323 

For any two IVIFNs,  and   ,  denote  iff  or             . 324 

Theorem 3.2 Let 1 1 1 1([ , ],[ , ])a b c d   and 2 2 2 2([ , ],[ , ])a b c d  be two IVIFNs, if 325 

1 1 2 2[ , ] [ , ]a b a b  and 1 1 2 2[ , ] [ , ]c d c d , then    .    326 

Proof:  Since 1 1 2 2[ , ] [ , ]a b a b  and 1 1 2 2[ , ] [ , ]c d c d , Definition 3.6 implies that  327 

1 2 1 2 1 2,  ,  a a b b c c   , and 1 2d d . 328 

     By the definition of score functions, we have 1 1 1 1( ) ( ) ( ) / 2S S a b c d        329 

2 2 2 2( ) / 2a b c d   1 1 2 2 2 2 1 1( ) / 2 ( ) / 2 0a b a b c d c d         . Two cases have to 330 

be considered: 331 

1) if  ( ) ( ) 0S S   , then     as per Definition 3.5. Otherwise, 332 

2) if ( ) ( ) 0S S    then  333 

1 1 1 1 2 2 2 2a b c d a b c d                                    (3.1)  334 

Rearranging the terms yields 335 

1 1 1 1 2 2 2 2c d a b a b c d                                   (3.2) 336 

According to the definition of accuracy functions,  337 

1 1 1 1( ) ( ) ( ) / 2H H a b c d        2 2 2 2( ) / 2a b c d             (3.3) 338 

Plugging (3.2) into (3.3), one can have ( ) ( )H H  
1 2 1 2( ) ( ) 0a a b b     . Once 339 

again, two cases may arise 340 

       a)  if  ( ) ( ) 0H H    then     by Definition 3.5. Otherwise, 341 

       b)  if  ( ) ( ) 0H H   , i.e., ( ) ( )H H  
1 2 1 2( ) ( ) 0,a a b b      then  342 

1 1 2 2a b a b                       (3.4) 343 

 (3.4) – (3.1) leads to 1 1 2 2c d c d   . By rearranging these terms, we have  344 

1 2 2 1a a b b   ， 1 2 2 1c c d d                   (3.5) 345 
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As 1 2 2 10 and 0a a b b    , the first equation in (3.5) implies that 1 2 2 1a a b b   = 346 

0. Similarly, as 1 2 2 10 and 0c c d d    , the second part of (3.5) yields 347 

1 2 2 1 0c c d d    . Therefore, we have 1 2 1 2 1 2 1 2, , ,  and a a b b c c d d    and, hence,    .                              348 

Q.E.D. 349 

The proof also reveals that any two IVIFNs satisfying the conditions of Theorem 3.2 350 

can be differentiated by the score and accuracy functions. 351 

4. An approach to multiattribute decision making with interval-valued 352 

intuitionistic fuzzy assessments and incomplete weights 353 

This section puts forward a framework for multiattribute decision making with 354 

incomplete weight information, where assessments of alternatives against attributes are 355 

given as interval-valued intuitionistic fuzzy numbers and incomplete attribute weight 356 

information is provided by the DM as a set of linear constraints. 357 

4.1 Problem formulations 358 

Given an alternative set 1 2{ , , , }nX x x x  , consisting of n non-inferior decision 359 

alternatives, and an attribute set 1 2( , , )mA a a a  . Each alternative is assessed on each of 360 

the m attributes and the assessment is expressed as an IVIFN, describing the satisfaction 361 

and dissatisfaction degree of the alternative to a fuzzy concept of “excellence” as per a 362 

particular attribute. The decision problem is to select a most preferred alternative from X  363 

or obtain a ranking of all alternatives based on the overall assessments of all alternatives 364 

on the m attributes.  365 

More Specifically, let ( ) (([ , ],[ , ]))ij n m ij ij ij ij n mR r a b c d    be the interval-valued 366 

intuitionistic fuzzy decision matrix, where [ , ]ij ija b  and [ , ]ij ijc d  are the membership and 367 

nonmembership intervals of alternative ix  on attribute ja  as per a fuzzy concept 368 

“excellence” given by a decision-maker (DM), indicating to what degree ix  satisfies and 369 

does not satisfy the “excellence” requirement as per ,ja  respectively. By Definition 2.2, 370 

[ , ] [0,1],ij ija b D  [ , ] [0,1],ij ijc d D  and 1 ij ijb d ,  1, 2, ,i n , 1, 2, ,j m . It is clear 371 

that the lowest satisfaction degree of ix  with respect to ja  is [ , ]ij ija b , as given in the 372 
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membership function, and the highest satisfaction degree of ix  with respect to ja  is 373 

[1 ,1 ] ij ijd c , in the case that all hesitation is treated as membership or satisfaction.  374 

In a multiattribute decision making problem, different weights on attributes reflect 375 

their varying importance in choosing the optimal alternative. Let 1 2( , , , )T
mw w w w   be 376 

the attribute weight vector, where 0jw , 1, 2, ,j m , and the weight vector is often 377 

normalized to one, i.e. 
1

1



m

j
j

w . In reality, due to the increasing complexity of many 378 

practical decision situations, the DM may not be confident in providing exact values for 379 

attribute weights. Instead, the DM may only possess partial knowledge about attribute 380 

weights [18].  This phenomenon has triggered significant research on developing decision 381 

models for handling incomplete attribute weights [18,26,36].  Generally speaking, the 382 

incomplete attribute weight information can be expressed as the following relationships 383 

among the weights:   384 

1) A weak ranking:
1 2 1 2{ },j jw w j j   ;  385 

2) A strict ranking: 
1 2 1 2 1 2{ ( 0)}, ;j j j jw w j j     386 

3) A ranking with multiples:
1 1 2 2

{ }j j j jw w , 
1 2 1 20 1, ;j j j j    387 

4) An interval form:{ }j j j jw     , 0 1j j j      ; 388 

5) A ranking of differences: 
1 2 3 4

{ }j j j jw w w w   , for 1 2 3 4j j j j   .  389 

In a particular decision problem, the partial knowledge about the attribute weights can 390 

be a subset of the aforementioned relationships, denoted by H.  391 

As mentioned earlier, the satisfaction degree of ix  with respect to ja , denoted by  392 

[ , ] ij ij , should lie between [ , ]ij ija b  and [1 ,1 ] ij ijd c . When all individual assessments 393 

of alternative ix  is aggregated by incorporating attribute weights, it is expected that the 394 

optimal satisfaction degree should also satisfy this condition, i.e., 395 

[ , ] [ , ] [1 ,1 ]ij ij ij ij ij ija b d c     . According to Definition 3.6, ij and ij  should satisfy 396 

1  ij ij ija d  and 1  ij ij ijb c . 397 

Notice that as ,ij ija b ij ijc d and 1 ij ijb d , we have 1  ij ij ija b d 1 ijc  . 398 

4.2   An optimization model for deriving aggregated IVIFN values 399 
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Assume that the satisfaction degree interval of alternative ix  with respect to ja   is 400 

given as [ , ] ij ij , its aggregated interval value incorporating attribute weights can be 401 

expressed as  402 

1 1

[ , ] [ , ]
m m

L U
i i ij j ij j

j j

z z w w 
 

   , i = 1,2,…,n. 403 

As the aggregated value [ , ]L U
i iz z reflects the overall satisfaction degree of alternative 404 

ix  to the fuzzy concept of “excellence”, the greater the [ , ]L U
i iz z , the better the alternative 405 

ix  is. Therefore, a reasonable attribute weight vector 1 2( , , , )T
mw w w  is to maximize 406 

[ , ]L U
i iz z . Motivated by the optimization models for multiattribute decision making under 407 

IFSs presented by Li [20], this article extends the idea and proposes a similar framework 408 

to handle multiattribute decision making problems with incomplete attribute weights 409 

under IVIFSs. 410 

As per Definition 3.6, the following two optimization models can thus be established 411 

for each alternative: 412 

1

1

max

1 ( 1,2, , ; 1, 2, , ),

. . ,

1

m
L
i ij j

j

ij ij ij

m

j
j

z w

a d i n j m

s t w H

w









 
 

 

     
 

 






                    (4.1) 413 

and 414 

1

1

max

1 ( 1,2, , ; 1, 2, , ),

. . ,

1

m
U
i ij j

j

ij ij ij

m

j
j

z w

b c i n j m

s t w H

w









 
 

 

     
 

 






                    (4.2) 415 

for each i = 1, 2, …, n. 416 



 16

Similar to the treatment in Li [20], (4.1) can be converted to the following two linear 417 

programs:  418 

                  

1

1

min

,

. .
1

m
LL
i ij j

j

m

j
j

z a w

w H

s t
w





 
 

 



 






                              (4.3) 419 

and 420 

1

1

max (1 )

,

. .
1

m
LU
i ij j

j

m

j
j

z d w

w H

s t
w





 
  

 



 






                    (4.4) 421 

for each i=1,2,…,n. 422 

By following the same manner, (4.2) is transformed to the following two linear 423 

programs: 424 

1

1

min

,

. .
1

m
UL
i ij j

j

m

j
j

z b w

w H

s t
w





 
 

 



 






                              (4.5) 425 

and 426 

1

1

max (1 )

,

. .
1

m
UU
i ij j

j

m

j
j

z c w

w H

s t
w





 
  

 



 






                         (4.6) 427 

for each i=1,2,…,n. 428 

Models (4.3)-(4.6) are standard linear programs that can be conveniently solved. 429 

Denote their optimal solutions by 1 2( , , , )LL LL LL LL T
i i i imW w w w    , 1 2( , , , )LU LU LU LU T

i i i imW w w w    , 430 

1 2( , , , )UL UL UL UL T
i i i imW w w w    and 1 2( , , , )UU UU UU UU T

i i i imW w w w     (i = 1, 2, …, n), respectively, 431 

and let 432 
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1

1

1

1

(1 )

(1 )

m
LL LL
i ij ij

j

m
UL UL
i ij ij

j

m
LU LU
i ij ij

j

m
UU UU
i ij ij

j

z a w

z b w

z d w

z c w





















 

 

 

 

                                       (4.7) 433 

for each i=1,2,…,n. Then Theorem 4.1 follows. 434 

Theorem 4.1 Assume that , ,LL UL LU
i i iz z z   , and UU

iz  are respectively defined by (4.7), 435 

then , ,LL UL LU UU
i i i iz z z z      and , 1, 2,...,UL LU

i iz z i n   . 436 

  Proof. Note that 1 2( , , , ) ,LL LL LL LL T
i i i imW w w w     1 2( , , , ) ,LU LU LU LU T

i i i imW w w w     1( ,UL UL
i iW w   437 

2 , , )UL UL T
i imw w  , and 1 2( , , , )UU UU UU UU T

i i i imW w w w     are optimal solutions of (4.3), (4.4), (4.5), 438 

and (4.6), respectively, and ij ija b  and ij ijc d . According to (4.3), we have 439 

1 1 1

m m m
LL LL UL UL UL
i ij ij ij ij ij ij i

j j j

z a w a w b w z
  

         440 

where the first inequality is due to the fact that LL
ijw  is an optimal solution of (4.3) and 441 

UL
ijw  is a feasible solution of this minimization problem, and the second inequality holds 442 

true as ij ija b .  443 

Similarly, from (4.6), one can obtain 444 

1 1 1

(1 ) (1 ) (1 )
m m m

LU LU LU UU UU
i ij ij ij ij ij ij i

j j j

z d w c w c w z
  

            445 

where the first inequality is confirmed since 1 1ij ijd c    or equivalently, 0 1,ij ijc d    446 

and the second inequality is derived because UU
ijw  is an optimal solution of (4.6) and LU

ijw  447 

is a feasible solution of this maximization problem.  448 

Furthermore, since 1 ij ijb d , or equivalently, 1ij ijb d  , as per (4.4), we have 449 

1 1 1

(1 ) (1 )
m m m

UL UL UL LU LU
i ij ij ij ij ij ij i

j j j

z b w d w d w z
  

           450 
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Once again, the first inequality holds as 1ij ijb d  , and the second inequality comes 451 

from the fact that LU
ijw  is an optimal solution of the maximization problem in (4.4) and 452 

UL
ijw  is a feasible solution. The proof is thus completed.                                   Q.E.D. 453 

Theorem 4.1 indicates that the optimal aggregated value of ix X  can be 454 

characterized by a pair of intervals: [ , ]LL UL
i iz z   and [ , ]LU UU

i iz z  . As , ,LL UL LU UU
i i i iz z z z      455 

one can have ,1 1LL UL UU LU
i i i iz z z z       . Furthermore, since UL LU

i iz z  , it is implied that 456 

1 1UL LU
i iz z    . Therefore, written in an IVIFN format, the optimal aggregated value of 457 

the alternative ix X  can be given as  458 

 

1 1 1 1

, , 1 ,1

, , ,

LL UL UU LU
i i i i i

m m m m
LL UL UU LU

ij ij ij ij ij ij ij ij
j j j j

z z z z

a w b w c w d w



   

        

    
          

   

    

   
                        (4.8) 459 

As the weight vectors , , ,  and LL LU UL UU
i i i iW W W W     are independently determined by the 460 

four linear programs (4.3), (4.4), (4.5) and (4.6), respectively, it is understandable that 461 

they are generally different, i.e., LL LU UL UU
i i i iW W W W       for ix X , or LL LU

ij ijw w   462 

UL UU
ij ijw w    for i = 1, 2, …, n and j = 1, 2, …, m. Therefore, it is not fair to compare the 463 

aggregated values of all alternatives based on the different weight vectors. A more 464 

reasonable common ground for comparing the aggregated values is to derive a unified 465 

weight vector and apply this same weight vector to all alternatives. The following 466 

discussions aim to obtain such a weight vector. The general procedure is similar to that 467 

reported in [20], but it has been adapted to accommodate the specific structure of IVIFNs. 468 

Since X is a non-inferior alternative set, no alternative dominates or is dominated by 469 

any other alternative. Hence, when all alternatives, rather than a single alternative in (4.3) 470 

and (4.4), have to be considered, the contribution to the objective function from each 471 

alternative should be treated with an equal weight of  1/n. Therefore, parallel to (4.3) and 472 

(4.4), we have the following two aggregated linear programs. 473 
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1 1
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1

min

,

. .
1

n m
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m

j
j
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w

 



 
   
 
  



 






                          (4.9) 474 

and 475 

1 1
0

1

(1 )

max

,

. .
1

n m

ij j
i jLU

m

j
j

d w

z
n

w H

s t
w

 



 
   

 
  



 






                    (4.10) 476 

Note that (4.9) can be converted to an equivalent maximization linear programming 477 

model in (4.11) by multiplying its objective function with -1. 478 

1 1
0

1

max

,

. .
1

n m

ij j
i jLL

m

j
j

a w

z
n

w H

s t
w

 



 
    
 
  



 






                       (4.11) 479 

Since (4.10) and (4.11) are both maximization problems and share the same constraints, 480 

if we treat the two objective functions as equally important, a typical way to translate the 481 

bi-objective linear programs into a single linear program is given below: 482 
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1 1

1

(1 )

max

,

. .
1

n m

ij ij j
i jL

m

j
j

a d w

z
n

w H

s t
w

 



 
    

 
  



 






             (4.12) 483 

By applying the same procedure, (4.5) and (4.6) can be transformed to the following 484 

linear program: 485 

1 1

1

(1 )

max

,

. .
1

n m

ij ij j
i jU

m

j
j

b c w

z
n

w H

s t
w

 



 
    

 
  



 






                     (4.13) 486 

Once again, as (4.12) and (4.13) are both maximization problems and have the same 487 

constraints, they can be combined to formulate the following linear program: 488 

1 1

1

(2 )

max

,

.
1

n m

ij ij ij ij j
i j

m

j
j

a b c d w

z
n

w H

s t
w

 



 
      

 
  



 






       (4.14) 489 

Remark 4.1  490 

If  and , 1, 2,..., ; 1, 2,...,ij ij ij ija b c d i n j m    , the IVIFNs in the decision matrix are 491 

reduced to IFNs, and (4.14) is equivalent to Eq. (15) in [20] if the weight constraint 492 

w H  in (4.14) takes the same form of being bounded on the lower and upper sides as 493 

that in [20]. From this perspective, the proposed approach can be treated as a natural 494 

extension of the work reported in [20] from the IFN to IVIFN environment.  495 
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Similarly, the linear programming model (4.14) can be easily solved by using the 496 

simplex method or an appropriate optimization computer package. Denote its optimal 497 

solution by 0 0 0 0
1 2( , , , ) ,T

mw w w w  and follow the similar notation as (4.7) to define:  498 

0 0

1

0 0

1

0 0

1

0 0

1

(1 )

(1 )

m
LL

i ij j
j

m
UL

i ij j
j

m
LU

i ij j
j

m
UU

i ij j
j

z a w

z b w

z d w

z c w





















 

 

 

 

            (4.15) 499 

As ,ij ija b ij ijc d and 1 ij ijb d , it follows that 0 0LL UL
i iz z , 0 0LU UU

i iz z  and 500 

0 0UL LU
i iz z . Therefore, the optimal aggregated value of alternative ix  using a unified 501 

weight vector 0w  can be determined by a pair of closed intervals, 0 0[ , ]LL UL
i iz z  and 502 

0 0[ , ]LU UU
i iz z . Equivalently, this aggregated value can be expressed as an IVIFN:  503 

 0 0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

, , 1 ,1

, , 1 (1 ) ,1 (1 )

, , ,

LL UL UU LU
i i i i i

m m m m

ij j ij j ij j ij j
j j j j

m m m m

ij j ij j ij j ij j
j j j j

z z z z

a w b w c w d w

a w b w c w d w



   

   

        

    
             
    

          

   

   



            (4.16) 504 

for each i = 1, 2, …, n. Note that 0 0

1 1

1 (1 )
m m

ij j ij j
j j

c w c w
 

     and 0

1

1 (1 )
m

ij j
j

d w


    505 

0

1

m

ij j
j

d w

  are due to the fact that 0

1

1
m

j
j

w


 . Now Theorem 4.2 can be established. 506 

Theorem 4.2 For , 1, 2,..., ,ix X i n   assume that IVIFNs i  and 0
i are defined by 507 

(4.8) and (4.16), respectively, then  508 

0 0 0 0[ , ] [ , ] [ , ] [ , ]LL UL LL UL LU UU LU UU
i i i i i i i iz z z z z z z z       509 

Proof. As 0 0 0 0
1 2( , , , )T

mw w w w   is an optimal solution of (4.14), it is also a feasible 510 

solution of (4.3), (4.4), (4.5) and (4.6) as these linear programs share the same constraints. 511 
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Note that 1 2( , , , )LL LL LL LL T
i i i imW w w w     and 1 2( , , , )LU LU LU LU T

i i i imW w w w     are an optimal 512 

solution of (4.3) and (4.4), respectively, and ij ija b and 1ij ijb d  , it follows that 513 

0 0 0 0 0

1 1 1 1 1

(1 ) (1 )
m m m m m

LL LL LL LU LU LU
i ij ij ij j i ij j ij j i ij ij i

j j j j j

z a w a w z b w d w z d w z
    

                514 

Here the first inequality holds true because LL
ijw  is an optimal solution of (4.3) and 0

jw  515 

is a feasible solution of this minimization problem. The 2nd and 3rd inequalities are due to 516 

1ij ij ija b d   . The last inequality is confirmed because the objective function value of a 517 

feasible solution 0
jw  is always no more than that of an optimal solution LU

ijw  for the 518 

maximization problem (4.4). Therefore, we have 0 0LL LL LU LU
i i i iz z z z    .  519 

Similarly, as 1 2( , , , )UL UL UL UL T
i i i imW w w w     and 1 2( , , , )UU UU UU UU T

i i i imW w w w     are an 520 

optimal solution of (4.5) and (4.6), respectively, and ij ijc d and 1ij ijb d  , following 521 

similar arguments, one can have 522 

0 0 0 0 0

1 1 1 1 1

(1 ) (1 ) (1 )
m m m m m

UL UL UL UU UU UU
i ij ij ij j i ij j ij j i ij ij i

j j j j j

z b w b w z d w c w z c w z
    

               523 

 i.e., 0 0 .UL UL UU UU
i i i iz z z z     524 

By Definition 3.6, the proof of Theorem 4.2 is completed.                                  Q.E.D. 525 

Remark 4.2 526 

Theorem 4.2 confirms that the aggregated value of ix  obtained by (4.14) is always 527 

bounded by that obtained by (4.3) – (4.6) in terms of Definition 3.6. 528 

Based on the aforesaid analyses, we are now in a position to formulate an interval-529 

valued intuitionistic fuzzy approach to multiattribute decision making with incomplete 530 

attribute weight information as described in the following steps. 531 

Step 1. Obtain an optimal weight vector 0 0 0 0
1 2( , , , )T

mw w w w   as per (4.14). 532 

Step 2. Determine the optimal aggregated value 0
i  for all alternatives ix X , 533 

1,2, ,i n   by plugging w0 into (4.16). 534 

Step 3. Calculate the values of the score function 0( )iS  , accuracy function 0( )iH  , 535 

membership uncertainty index 0( )iT  , and hesitation uncertainty index 0( )iG   for each 536 

alternative in a sequential order, and rank all alternatives as per Definition 3.5 and/or 537 
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choose the best alternative(s).  538 

Remark 4.3 539 

In an actual decision process, it is often unnecessary to calculate the values for all 540 

four functions. For instance, if the purpose of the decision problem is to choose the best 541 

alternative(s) and the sequential order in Definition 3.5 is followed to compute the 542 

function values, whenever no tie is found for the best value of a function (largest for 543 

( ) and ( )S H  , but smallest for ( ) and ( )T G  ), the best choice is ascertained and it is not 544 

necessary to calculate remaining function values in any lower hierarchy as detailed in 545 

Definition 3.5. Even if the decision problem is to obtain a full ranking of all alternatives, 546 

calculations may terminate before all four functions are entertained. For an example, see 547 

Section 5. 548 

Remark 4.4 549 

From the modeling process, one can understand that the proposed framework here is 550 

able to handle incomplete weight information characterized by a subset of linear 551 

relationships given in Section 4.1. In addition, the aggregation process is achieved 552 

through a series of optimization models that take the individual IVIFN assessments as 553 

input, and the conversion from IVIFNs to real values is delayed until the last step when 554 

different alternatives’ aggregated IVIFN values are compared. This treatment avoids loss 555 

of information due to conversions at early stages. Another advantage of this framework is 556 

its novel comparison method that is able to distinguish any two different IVIFNs as 557 

shown in Section 3. In terms of limitations of the proposed approach, an inherent 558 

assumption of the aggregation process is that the attributes are independent and the 559 

individual membership and nonmembership functions are linearly additive. If other forms 560 

of information fusion schemes are required, this model would not be applicable. In 561 

addition, the proposed approach requires that all individual assessment information must 562 

be provided as IVIFNs in full and no missing data are allowed in the decision matrix. 563 

Further research is necessary to expand this approach to accommodate these needs for 564 

different fusion mechanisms and missing assessment data. 565 

5   An illustrative example 566 
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This section adapts an investment decision problem in [12] to demonstrate how to 567 

apply the proposed approach. Although this example is provided in the context of 568 

selecting an optimal investment opportunity from a list of four choices in respect to four 569 

attributes against which each choice is assessed, it should be noted that, as suggested and 570 

illustrated by Merigo and Gil-Lafuente [24] and Xu and Yager [38], the proposed 571 

approach can be easily applied to a host of practical decision problems that involve 572 

choosing an optimal alternative from a list of alternatives when multiple attributes must 573 

be onsidered. For instance, selecting the best candidate to fill a tenure-track faculty 574 

position at a Canadian university typically requires each recruitment committee member 575 

to rank short-listed applicants based on different criteria such as research achievements/ 576 

potentials, teaching/presentation skills, ability to attract funding from government 577 

agencies and industries, and service to the profession and academic community. From 578 

each committee member’s perspective, this is a typical mutltiattribute decision making 579 

situation and the weights among different attributes can be conveniently captured by a list 580 

of constraints as shown in Section 4.1 and individual assessments may well be expressed 581 

as IVIFNs.  582 

For the following example, assume that a fund manager in a wealth management 583 

firm is assessing four potential investment opportunities, 1 2 3 4{ , , , }.X x x x x  The firm 584 

mandates that the fund manager has to evaluate each investment against four attributes: 585 

risk 1( )a , growth 2( )a , socio-political issues 3( )a , and environmental impacts 4( )a . In 586 

addition, the fund manager is only comfortable with providing his/her assessment of each 587 

alternative on each attribute as an IVIFN and the decision matrix is 588 



([0.42,0.48],[0.4,0.5]) ([0.6,0.7],[0.05,0.25]) ([0.4,0.5],[0.2,0.5]) ([0.55, 0.75],[0.15, 0.25])

([0.4,0.5],[0.4,0.5]) ([0.5,0.8],[0.1,0.2]) ([0.3,0.6],[0.3,0.4]) ([0.6, 0.7],[0.1, 0.3])

([0.3,0.5],[0.4,0
R

 
 
 
 
 
 

.5]) ([0.1,0.3],[0.2,0.4]) ([0.7,0.8],[0.1,0.2]) ([0.5, 0.7],[0.1, 0.2])

([0.2,0.4],[0.4,0.5]) ([0.6,0.7],[0.2,0.3]) ([0.5,0.6],[0.2,0.3]) ([0.7, 0.8],[0.1, 0.2])

 589 

Each element of this matrix is an IVIFN, representing the fund manager’s assessment 590 

as to what degree an alternative is and is not an excellent investment as per an attribute. 591 

For instance, the top-left cell, ([0.42, 0.48], [0.4, 0.5]), reflects the fund manager’s belief 592 

that alternative 1x  is an excellent investment from a risk perspective ( 1a ) with a margin 593 
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of 42% to 48% and 1x  is not an excellent choice given its risk profile ( 1a ) with a chance 594 

between 40% and 50%.  595 

If the fund manager is able to provide the following attribute weight information: 596 

1 20.13 (risk), 0.17 (growth),w w  3 0.39 (socio-political issues),w  and 4w  0.31 597 

(environmental impacts) , calculations for our proposed approach start with Step 2 and 598 

determine as follows the aggregated IVIFN values for the four alternatives by plugging 599 

the given weights into (4.16):  600 

1 ([0.4831,0.6089],[0.1850,0.3800])  ， 601 

2 ([0.4400,0.6520],[0.2170,0.3480])  , 602 

3 ([0.4840,0.6450],[0.1560,0.2730])  , 603 

4 ([0.5400,0.6530],[0.1950,0.2950])  . 604 

Next, Step 3 applies Definition 3.5 to compare the four alternatives based on their 605 

aggregated IVIFNs. As 1 2( ) ( ) 0.2635S S    , 3( ) 0.35S   , 4( ) 0.3515S   , one can 606 

tell that 4 3 1 2{ , }x x x x  , but the score function cannot distinguish 1x  and 2x  as they 607 

have the same score function value. Therefore, we move on to calculate the accuracy 608 

function values for 1x  and 2x , 1 2( ) ( ) 0.8285H H    . Note that we do not need to 609 

compute 3( )S   and 4( )S   as 3x  and 4x  are differentiated by the score function at a 610 

higher priority level. Since the accuracy function values are also identical for 1x  and 2x , 611 

it is necessary to move to the next priority level and calculate the membership uncertainty 612 

index function values, 1( ) 0.0692T    , 2( ) 0.081T   . Now a full ranking of the four 613 

alternatives is obtained as: 4 3 1 2x x x x   .  614 

This assumption of complete knowledge on attribute weights allows a comparative 615 

study with other approaches in the current literature that require complete weight 616 

information. The comparative study will utilize the decision matrix R  and the aforesaid 617 

weights to compare the ranking result of our proposed approach with those obtained from 618 

Procedure II (p = 1) in Xu and Yager [38] and Xu [34] (both weighted arithmetic and 619 

weighted geometric average aggregation operators). 620 

To begin, the same decision matrix R  and weights are fed into the approach, 621 

Procedure II, developed by Xu and Yager [38] (Note that Procedure I therein handles the 622 
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case with IFN assessments rather than IVIFNs and, hence, is omitted here for the 623 

comparative study). Let p = 1 and R  be the resulting decision matrix from Step 1 therein. 624 

Then, the closeness coefficient of each alternative (See Eq (73) on p258 in [38]) can be 625 

rewritten as follows by using the notation in this article: 626 

1

1

(2 ( ))

( )
(4 ( ) ( ))

m

j ij ij
j

i m

j ij ij ij ij
j

w c d

c x
w a b c d





 


   




                           (5.1) 627 

Plugging the decision matrix and weights into (5.1) yields 1( ) 0.6125,c x  2( )c x   628 

3 40.6125, ( ) 0.6433, ( ) 0.6517.c x c x   Based on the decision rule in Xu and Yager [38], 629 

the larger a closeness coefficient of an alternative, the better the alternative. Therefore, 630 

the ranking result from this approach is 4 3 1 2{ ? }x x x x  , where the question mark 631 

indicates that this approach cannot differentiate 1x  from 2x . 632 

Xu [34] also develops weighted arithmetic and weighted geometric average 633 

aggregation operators for IVIFN information fusions. Both operators are employed to 634 

obtain rankings for the four alternatives here. As per the weighted arithmetic average 635 

aggregation operator, the aggregated IVIFN value of an alternative is determined by [34, 636 

Eqs. (14) and (16)]: 637 

1 1 1 1 1

1 (1 ) ,1 (1 ) , ,j j j j
m m m mm

w w w w

i j ij ij ij ij ij
j j j j j

r a b c d 
    

    
              
               (5.2) 638 

Based on (5.2), the aggregated IVIFNs for the four alternatives are derived as  639 

1 ([0.4904,0.6283],[0.1581,0.3585])  ， 640 

2 ([0.4553,0.6653],[0.1838,0.3347])  , 641 

3 ([0.5271,0.6839],[0.1347,0.2535])  , 642 

4 ([0.5632,0.6761],[0.1765,0.2827])  . 643 

According to the score and accuracy functions developed by Xu [34] and given in 644 

Section 3 here, one can determine that 1 2( ) 0.30105, ( ) 0.30105,s s    3( ) 0.4114,s    645 

4( ) 0.39005s   . It is clear that the score function ranks the four alternatives as 646 

3 4 1 2{ ? }x x x x   and it cannot differentiate 1x  from 2x . Then, it is necessary to calculate 647 
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the accuracy functions for the aggregated IVIFN values for 1x  and 2x , 1( ) 0.81765,H     648 

2( ) 0.81955.H    Therefore, this approach generates a full ranking: 3 4 2 1x x x x    . 649 

Similarly, the weighted geometric average aggregation operator given in Eqs. (15) 650 

and (17)  by Xu [34] is reproduced below for self-containment.  651 

1 1 1 1 1

, , 1 (1 ) ,1 (1 )j j j j j
m m m m m

w w w w w

i ij ij ij ij ij
j j j j j

r a b c d
    

    
              
               (5.3) 652 

Plugging R  and the weights into (5.3) yields the following aggregated IVIFNs:  653 

1 ([0.4760,0.5972],[0.1915,0.3926])  ， 654 

2 ([0.4211,0.6454],[0.2260,0.3546])  , 655 

3 ([0.4057,0.6112],[0.1632,0.2833])  , 656 

4 ([0.5081,0.6389],[0.2007,0.3016])  . 657 

The corresponding score function values are 1 2( ) 0.24455, ( ) 0.24295,s s     658 

3 4( ) 0.2852, ( ) 0.32235s s    , resulting in a full ranking 4 3 1 2x x x x   . 659 

In summary, the results of this comparison study can be shown in Table 1. 660 

Table 1. A comparative study when attribute weight information is complete 661 

Decision approach Reference Ranking result 

Procedure II, p = 1 Xu and Yager [38] 4 3 1 2{ ? }x x x x   

Arithmetic operator Xu [34] 3 4 2 1x x x x    

Geometric operator Xu [34] 4 3 1 2x x x x    

This approach This article 4 3 1 2x x x x    

Table 1 demonstrates the overall consistency of the ranking results based on the 662 

proposed approach in this article and other approaches. All of the four approaches rank 663 

3x  and 4x  as the first two alternatives, with 4x  being identified as the most preferred 664 

investment opportunity by three approaches except the weighted arithmetic average 665 

aggregation operator in Xu [34]. For the remaining two investment opportunities, 1x  and 666 

2x , the weighted geometric average aggregation operator in Xu [34] and our approach 667 

rank 1x  first, but the weighted arithmetic average aggregation operator in Xu [34] ranks 668 

2x  in front of 1x , and the Xu and Yager [38] approach cannot distinguish these two 669 
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alternatives. The subtle differences in ranking are simply due to the distinct information 670 

fusion mechanisms in these approaches.  671 

It should be noted that the two approaches in Xu [34] do not always provide a full 672 

ranking for the alternatives under consideration because the comparison mechanism there 673 

utilizes only score and accuracy functions. As indicated in Section 3, it is possible that 674 

certain alternatives cannot be distinguished by these two functions only. Similarly, the 675 

first approach in Xu and Yager [38] sometimes cannot differentiate all distinct 676 

alternatives, either. Furthermore, to make the comparative study possible, it is assumed 677 

that the attribute weight information is completely known as the other three approaches 678 

cannot handle the case when attribute weights are incomplete.  679 

In reality, however, complete weight information is not always readily available. 680 

Instead only partial knowledge of attribute weights may be obtained as a group of linear 681 

constraints such as those given in Section 4.1. For instance, assume that the fund manager 682 

can only provide his/her incomplete knowledge about the weights as follows: 683 

1 2

3 4 1 3

{0.15 0.3,0.15 0.25,

         0.25 0.4,0.3 0.45,2.5 }

H w w

w w w w

    
    

 684 

In this case, the other three approaches in the previous comparative study would not 685 

be applicable, but the proposed approach in this article will be able to solve the problem. 686 

According to (4.14), the following linear program is established. 687 

 1 2 3 4

1

2

3

4

1 3

4

1

max (1.2 2 1.4 1.3 ) / 4

0.15 0.3,

0.15 0.25,

0.25 0.4,

. . 0.3 0.45,

2.5 ,

1j
j

z w w w w

w

w

w

s t w

w w

w


   

 
  
  


 
 






                             (5.4) 688 

Solving this linear programming, one can obtain its optimal solution as: 689 

0 0 0 0 0
1 2 3 4( , , , )Tw w w w w  (0.1500,0.1750,0.3750,0.3000)T  690 
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Note that the derived weight vector slightly differs from that given in the comparative 691 

study. Plugging the weight vector 0w  and individual assessments in the decision matrix 692 

R  into (4.16), the optimal aggregated values for the four alternatives are determined. 693 

0
1 ([0.48300,0.60700],[0.18875,0.38125])  , 694 

0
2 ([0.44000,0.65000],[0.22000,0.35000])  , 695 

0
3 ([0.4750,0.6375],[0.1625,0.2800])  , 696 

0
4 ([0.5325,0.6475],[0.2000,0.3000])  . 697 

Next, the score function is calculated for each aggregated value as 698 

0 0 0 0
1 2 3 4( ) 0.2600, ( ) 0.2600, ( ) 0.3350, ( ) 0.3400S S S S           699 

Obviously, 0 0 0 0
4 3 1 2( ) ( ) ( ) ( )S S S S          and, hence, 4 3 1 2{ ? }x x x x  . The score 700 

function values indicate that the most preferred alternative is 4x , followed by 3x , and 701 

then 1x  and 2x . As 0
1  0

2 , the question mark between 1x  and 2x  indicates that their 702 

ranking cannot be determined by the score function as both have the same score of 703 

0.2600.  If the purpose is to choose the best investment alternative only, the problem is 704 

completed now. On the other hand, if the fund manager is interested in a full ranking of 705 

the four investments, it is necessary to calculate the accuracy function values of 0
1  and 706 

0
2  for the first two investment opportunities. 707 

By Definition 3.2, it is easy to verify that 708 

   0 0
1 2( ) ( ) 0.8300H H  709 

Once again, the ranking between 1x  and 2x  still cannot be determined. Therefore, we 710 

proceed with the membership uncertainty index 0( )iT  (i = 1, 2) 711 

    0 0
1 2( ) 0.0685, ( ) 0.08T T  712 

As 0 0 0 0 0 0
1 2 1 2 1 2( ) ( ), ( ) ( ), ( ) ( )S S H H T T             , by Definition 3.5, we have 713 

1 2x x . Therefore, a full ranking of all four alternatives is obtained as  714 

4 3 1 2x x x x   . 715 

6   CONCLUSIONS 716 
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This article puts forward a framework to tackle multiattribute decision making 717 

problems with interval-valued intuitionistic fuzzy assessments and incomplete attribute 718 

weight information. The proposed approach employs a series of optimization models to 719 

derive a unified weight vector and this weight vector is then applied to synthesize 720 

individual IVIFN assessments into an aggregated IVIFN value for each alternative. To 721 

rank alternatives based on aggregated IVIFNs, a novel method is devised to compare any 722 

two IVIFNs.  723 

An illustrative example is developed to demonstrate how to apply the proposed 724 

procedure and comparative studies show its overall ranking consistency with existing 725 

research. Numerical experiments illustrate the benefit of this proposed framework: it is 726 

capable for handling incomplete weights and a full ranking can always be obtained as 727 

long as the alternatives’ aggregated IVIFN values are not identical. On the other hand, 728 

this approach is not without limitations as the decision matrix must be provided without 729 

any missing assessments and the information fusion mechanism is essentially linearly 730 

additive. Further research is required to extend the proposed approach to accommodate 731 

the cases when the decision matrix contains missing data and different aggregation 732 

schemes have to be entertained. 733 
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