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A B S T R A C T

The technical, logistical, and ecological challenges associated with offshore wind development necessitate
an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such
as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in
many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic
and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection
process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making
(MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of
neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive
border approximation area comparison that provides formulation flexibility and easy calculation. Further, this
study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is
performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed
model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that
the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals
that changing criteria weightings does not affect the ranking order.
. Introduction

For the past two decades wind energy, primarily onshore, has
een the world’s fastest growing renewable energy source (Deveci
t al., 2020a). Building off of learning and scale gained in onshore
eployments, offshore wind costs have fallen significantly over the
ast 2–3 years. Offshore wind offers increased capacity factors relative
o onshore, reducing some power system integration challenges, and
rovides a renewable energy option for many coastal and island regions
here siting onshore wind or solar photovoltaics is challenging due to

and constraints. These factors, taken together, have driven exponential
rowth in recently constructed and planned offshore wind installations.
pecifically, the offshore wind industry has set yearly installed capacity
ecords in each of the past two years with 5652 MW and 6145 MW
nstalled in 2018 and 2019, respectively, bringing global installed
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capacity of offshore wind to 29,285 MW (Global wind energy council
(GWEC), 2019).

The U.S. is estimated to have the second largest available coastal
area of any country that is suitable for offshore wind installations,
following only China (Neil et al., 2004). The rapidly-growing offshore
wind market in the U.S. is driven primarily by state-level commitments
and procurement goals, with total offshore wind procurement targets
increasing three-fold from 2018 to 2019. This growth has prompted
strong competition for offshore wind lease auctions in the U.S., which
has resulted in increased lease prices and demonstrates industry belief
in the commitments states are making for offshore wind capacity.
Meanwhile, the power purchase agreement (PPA) price for the first
commercial-scale offshore wind project in Massachusetts was lower
than expected and competitive with European prices, signalling that
European costs can serve as a proxy for expected offshore wind pricing
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the U.S. Due to these falling costs and strong policy support, forecasts
for the U.S. offshore wind market project that capacity will grow to
16,000 MW by 2030 (Walter et al., 2004). Within the U.S., interest
in offshore wind has been particularly high in the densely populated
coastal regions of New England and the Middle Atlantic, with states
such as New Jersey (NJ) showing particular interest due to strong
renewable energy policy but poor solar and onshore wind resource.

In the U.S., currently 41 offshore lease areas with a total projected
capacity of 25,824 MW are in various stages of development or de-
ployment (Walter et al., 2004). Among these potential areas, NJ has
access to the U.S.’s largest and most competitive offshore wind lease
areas and is the location of the U.S.’s largest single solicitation for
1100 MW of offshore wind capacity, awarded in 2019. NJ has increased
its commitment to offshore wind via an executive order requiring the
purchase of 7500 MW of offshore wind by 2035. NJ’s lease areas
also have the characteristics necessary for low cost and accelerated
development of Offshore wind farm (OWF). As such, the state’s offshore
wind energy feasibility study estimated that each MW of installed
offshore capacity would result in the production of nearly 3000 MWh
annually and the offshore wind resource could support power densities
of approximately 20 MW per square mile (Neil et al., 2004).

The challenges and considerations for siting an offshore wind in-
stallation in the U.S. include (i) environmental impacts on the marine
nvironment, (ii) necessary infrastructure for construction and main-
enance of the offshore facility, (iii) total installation and operation
osts, which are heavily dependent on site-specific factors (Neil et al.,
004). This multi-variate and diverse set of considerations requires
n extensive site selection analysis (Argin et al., 2019). Therefore,
ffshore site selection is formulated as a multi-criteria decision-making
MCDM) problem (Ayodele et al., 2018) that considers technical, eco-
omic, environmental, and social aspects in an integrated manner.
y addressing challenges associated with the site-specific nature of
ach project, the output of this analysis provides valuable inputs to
egulatory bodies in developing site-specific support mechanisms and
o offshore wind investors in making investment decisions more wisely
hile ensuring the sustainability of offshore wind development. The
im of this study is to develop a MCDM model to evaluate and rank
WF site proposals in NJ’s offshore wind development pipeline for
se by both policy makers and investors to validate or simplify their
ecisions. To do this, in addition to technical and site related param-
ters which include various environmental and social parameters, this
tudy develops and integrates a techno-economic OWF model into the
ecision-making process that yields quantitative economic parameters.
s such, this methodology enables individual expert evaluations to
ugment with quantitative outputs of the techno-economic model.
o handle multiple uncertainties in the decision-making process, this
tudy, then, proposes a new type-2 neutrosophic fuzzy numbers (T2NN)
ased multi-attribute border approximation area comparison (MABAC)
odel. As such, the advantages of neutrosophic numbers sets, which

an represent uncertainties such as vagueness, imprecision, and in-
onsistency (Radwan, 2018), is combined with the MABAC approach
hat provides formulation flexibility and easy calculation. To test and
alidate the model, this study compares this new methodology to three
stablished neutrosophic fuzzy number based approaches: a weighted
ggregated sum product assessment (WASPAS), an additive ratio assess-
ent (ARAS), and a combinative distance-based assessment (CODAS).

inally, the results obtained are compared with the neutrosophic sets
ia a Technique For Order Preference By Similarity To An Ideal Solution
TOPSIS) (Abdel-Basset et al., 2019).

This paper is organized as follows. Section 2 summarizes the ap-
lication of the fuzzy based MCDM approaches for OWF site selection
roblem and relevant literature in the MCDM with neutrosophic fuzzy
ets. Section 3 presents the proposed approach including the offshore
ite description and decision-making criteria considered along with
etailing the techno-economic model. The T2NN based MCDM model is
eveloped in Section 4. Experimental and comparison results, including
sensitivity analysis, are discussed in Section 5. Finally, Section 6

resents concluding remarks and future research needs.
2

2. Literature review

2.1. Fuzzy MCDM in OWF site selection

OWF site selection has been treated as a MCDM problem in the
literature. In addition to the analytic hierarchy process (AHP), fuzzy
based MCDM models have gained interest as they minimize ambiguities
and inconsistencies, which are inherently present in the site selection
analysis (Ayodele et al., 2018; Sánchez-Lozano et al., 2016).

A number of fuzzy sets based MCDM methods have been recently
applied to OWF site selection. Fetanat and Khorasaninejad (2015) pro-
posed a hybrid MCDM approach combining the fuzzy analytic network
process (ANP), fuzzy decision-making trail and evaluation laboratory
(DEMATEL), and fuzzy elimination and choice expressing the real-
ity (ELECTRE) to find the best offshore site. In Wu et al. (2018), a
fuzzy based MCDM approach established a three-layer decision-making
framework. The decision matrix is derived by integrating influencing
factors using fuzzy logic while the weights of the attributes are obtained
using AHP. Deveci et al. (2020a) developed an interval type-2 fuzzy sets
based MCDM model for offshore site selection analysis that integrates
the score functions with positive and negative solutions to achieve
better results. An intuitionistic fuzzy sets based MCDM approach was
employed to handle imprecise information in decision-making appli-
cations in Deveci et al. (2020b). An extended MCDM framework was
proposed to combine triangular intuitionistic fuzzy numbers, ANP, and
the preference ranking organization method for enrichment evaluations
(PROMETHEE) (Wu et al., 2020). In order to reduce information loss
in an intuitionistic fuzzy environment, and thus improve evaluation
quality, Wu et al. (2016) presented the ELECTRE-III based framework
for OWF site selection. In Wu et al. (2017), another MCDM method
based on interval numbers with probability distribution weighted op-
erator and stochastic dominance degree was proposed for the same
site selection problem. In Zhang et al. (2018), a consensus decision
framework that uses picture fuzzy sets was developed to quantify the
uncertain information inserted in another site selection problem.

In addition these, MCDM-based rough set studies have been applied
to decision-making problems in various applications such as fuzzy 𝛼-
eighbourhood-based fuzzy rough set model (Zhang et al., 2020b),
ecision-theoretic rough fuzzy set (Zhan et al., 2020b), rough set
odel based the VIKOR method, fuzzy rough sets based PROMETHEE-
DAS (Zhan et al., 2020a), and TOPSIS — the Weighted Arithmetic
verage (WAA) method (Zhang et al., 2020a).

.2. Fuzzy MCDM using neutrosophic sets

The MCDM methods with neutrosophic fuzzy sets have been used
o better handle uncertainty for various applications, even though they
ave not been applied to the OWF site selection problem which inher-
ntly contains uncertainty. These studies are summarized in Table 1.
he acronyms in the table are: QUALIFLEX is qualitative flexible mul-
iple criteria, EDAS is evaluation based on distance from average solu-
ion, VIKOR is VIšeKriterijumska Optimizacija I Kompromisno Rešenje
n Serbian, BWM is best worst method, and MCGDM is multi-criteria
roup decision-making.

.3. Fuzzy MABAC and other MCDM methods

Apart from the MCDM approaches with fuzzy neutrosophic sets in
able 1, several studies have used various fuzzy sets such as MABAC,
RAS, WASPAS, and CODAS, as reported in Table 2. Recently, there has
een a growing interest into the MABAC method which was originally
ntroduced for MCDM problems by Pamučar and Ćirović (2015). In this
ethod, the distance of the criteria function for each alternative from

he border approximation area is described (Dragan et al., 2018b,a).
ožanić et al. (2016) presented a fuzzy hybrid model that combines
HP and MABAC for a location selection problem. The implementation
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Table 1
Overview of the studies on fuzzy MCDM with neutrosophic sets.

Reference Method Neutrosophic sets Application

Abdel-Basset et al. (2019) TOPSIS Type-2 neutrosophic numbers Supplier selection MCGDM
Peng et al. (2014) ELECTRE Simplified Outranking approach for MCDM
Biswas et al. (2015) Cosine similarity measure Single-valued trapezoidal Find best alternative in MCDM
Biswas et al. (2016) Weighted arithmetic and geometric

averaging operators
Single-valued triangular Find best alternative in MCDM

Zhang et al. (2016) ELECTRE IV Interval-valued Outranking approach for MCDM
Liang et al. (2017) DEMATEL Single-valued trapezoidal E-commerce website evaluation
Peng et al. (2017b) ELECTRE III Multi-valued Outranking approach for MCDM
Peng et al. (2017c) Likelihood-based QUALIFLEX Multi-valued MCDM
Ji et al. (2018) Projection-based TODIM Multi-valued Personnel selection
Pu et al. (2018) MABAC–ELECTRE Single-valued neutrosophic linguistic Outsourcing provider selection
Karaşan and Kahraman (2018) EDAS Interval-valued Prioritization of United Nations national

sustainable development goals
Peng and Dai (2018) MABAC, TOPSIS and similarity measure Single-valued MCDM
Vafadarnikjoo et al. (2018) Weighted arithmetic averaging operator and

fuzzy Delphi
Single-valued trapezoidal Assessment of consumers’ motivations

Wang et al. (2018) Frank Choquet Bonferroni mean operators Bipolar MCDM
Joe and Janani (2019) WASPAS Interval-valued trapezoidal Athlete classification in Paralympics
Liu and Cheng (2019) ARAS Probability multi-valued MCGDM
Karaaslan and Hunu (2020) TOPSIS Type-2 single-valued MCGDM
Nabeeh et al. (2020) BWM, MABAC and PROMETHEE II Bipolar Hospital service assessment
Şahin and Altun (2020) MABAC Probabilistic single-valued neutrosophic

hesitant fuzzy sets
MCDM
Table 2
Overview of the studies on fuzzy MABAC, WASPAS, ARAS, and CODAS.

Reference Method Fuzzy sets Application

Pamučar and Ćirović (2015) DEMATEL–MABAC Triangular Forklifts selection in logistics centre
Božanić et al. (2016) AHP-MABAC Triangular Location selection for preparing laying-up positions
Peng and Yang (2016) MABAC Pythagorean MCGDM
Xue et al. (2016) MABAC Interval-valued intuitionistic Material selection
Gigović et al. (2017) GIS-DEMATEL-ANP-MABAC Triangular Wind farm site selection
Peng et al. (2017a) MABAC Interval-valued fuzzy soft MCDM
Yu et al. (2017) MABAC Interval type-2 Hotel selection on tourism website
Dragan et al. (2018a) BWM-MABAC Interval-valued fuzzy-rough MCDM
Dragan et al. (2018b) Interval rough-AHP-MABAC Triangular University web page evaluation MCGDM
Sun et al. (2018) MABAC Hesitant fuzzy linguistic term Patients’ prioritization
Jia et al. (2019) MABAC Intuitionistic fuzzy rough MCGDM
Liang et al. (2019b) MABAC Intuitionistic MCGDM
Liang et al. (2019a) MABAC Triangular Risk assessment of rockburst
Mishra et al. (2020) MABAC Interval-valued intuitionistic Programming language selection
Turskis and Zavadskas (2010) ARAS Triangular Logistics centre location selection
Zamani et al. (2014) ANP-ARAS Triangular Strategy selection in brand extension
Büyüközkan and Göçer (2018) AHP-ARAS Interval-valued intuitionistic Digital supplier selection MCGDM
Zavadskas et al. (2014) WASPAS Interval-valued intuitionistic MCDM
Keshavarz et al. (2016) WASPAS Interval type-2 Green supplier selection MCGDM
Deveci et al. (2018) WASPAS-TOPSIS Interval type-2 Car sharing station selection
Mishra and Rani (2018) WASPAS Interval-valued intuitionistic Reservoir flood control management policy evaluation
Mishra et al. (2019) WASPAS Hesitant Green supplier selection
Schitea et al. (2019) WASPAS Intuitionistic Hydrogen mobility roll-up site selection
Rani et al. (2020) WASPAS Intuitionistic type-2 Physician selection for patients
Peng and Garg (2018) CODAS Interval-valued fuzzy soft Emergency MCDM
Yeni and Özçelik (2019) CODAS Interval-valued Atanassov intuitionistic MCGDM
Karagoz et al. (2020) CODAS Intuitionistic Authorized dismantling centre location selection
of the proposed model has shown success in practice. Xue et al. in Xue
et al. (2016) proposed a novel approach interval-valued intuitionistic
fuzzy MABAC approach to solve material selection with incomplete
weight information. The results showed that the approach is intelligible
to selection process under uncertainty. Peng and Yang in Peng and
Yang (2016) investigated the MABAC Method based on pythagorean
fuzzy choquet integral operators that confirmed their effectiveness
and practicality with two practical multiple attribute group decision-
making problems. Peng et al. in Peng et al. (2017a) defined three
algorithms to solve interval-valued fuzzy decision making problems by
interval-valued fuzzy sets based MABAC, EDAS, and a new similarity
measure. Sun et al. in Sun et al. (2017) studied a hesitant fuzzy
linguistic projection based MABAC method for patients’ prioritization.
The feasibility of the proposed method was shown on a practical case
study. Yu et al. in Yu et al. (2017) described an interval type-2 fuzzy
likelihood-based MABAC approach for a hotel selection problem on a
3

tourism website. Liang et al. in Liang et al. (2019a) presented a new
framework for assessing the risk of rockburst by a MABAC under a fuzzy
environment. The results showed that the proposed method is reliable
and effective for use in assessing risk problems. Ji et al. in Pu et al.
(2018) provided an integrated MABAC-ELECTRE method using single-
valued neutrosophic linguistic sets for outsourcing provider selection.
Liang et al. in Liang et al. (2019b) proposed an intuitionistic fuzzy
information based MABAC method for human resource management
problems. Bozanic et al. (2020) proposed Z-numbers based on FUCOM
and MABAC model for a location selection problem.

2.4. Motivation

Compared with other MCDM methods, MABAC has the advantages
of simple mathematical calculation and solution stability dependent
upon changes in criteria measurement scale and formulation (Pamučar
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Fig. 1. Flowchart of proposed approach.
and Ćirović, 2015). T2NNs are, on the other hand, an effective tool to
better address expert assessments with ambiguities and inconsistencies
with a decision makers’ appreciation over the alternative. To the best
of the authors’ knowledge, MABAC has not been combined with the
type-2 neutrosophic number. This paper intends to synergize the ad-
vantages of neutrosophic number sets with the flexibility and ease of
MABAC. Due to the uncertain and imprecise data used for the OWF site
selection, this study employs the neutrosophic sets, which specialize in
processing unclear, unpredictable, and indeterminate information, as
they have proven to be an efficient tool for handling impreciseness or
incompleteness in expert judgement (Abdel-Basset et al., 2019). Thus,
this study will be the first attempt to implement the MABAC with type
2 neutrosophic fuzzy numbers to the OWF site selection problem.
4

3. Methodology

3.1. Approach

The proposed T2NN based MABAC approach follows four consecu-
tive steps as shown in Fig. 1:

(1) Preliminary investigation: The objectives for site selection are
defined, including the selection of alternatives and the determination of
general and site-specific criteria. Type-2 neutrosophic linguistic terms
are used to represent the judgement of experts. Data is collected for
each alternative.

(2) Comprehensive analysis & expert review: A techno-economic
model is run with data specific to each site. Individual expert evalu-
ations are then augmented with the outputs of the techno-economic
model.
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Fig. 2. The study area in NJ offshore waters.
(3) Criteria fuzzy weights calculation: Criteria weights are cal-
ulated using type-2 neutrosophic fuzzy scores and fuzzy decision
atrices are created and aggregated.

(4) T2NN MABAC implementation: A T2NN based MABAC is con-
ucted to rank alternatives.

.2. Site description and alternatives

The study area stretches approximately from Egg Island in the
elaware Bay to Long Beach Island in the North Atlantic Ocean,
xtending up to 55 km from shore, located between latitudes 39–40◦N

and longitudes 33–75◦W (Fig. 2). The water depth of the area ranges
from 15 to 90 ft. This study considers five of the specific OWF proposed
sites out of the eleven that are in NJ’s offshore wind pipeline. The OWF
capacities range from 25 MW to 1100 MW, offering the opportunity to
investigate a wide-spectrum of wind farm sizes.

3.3. Determination of decision-making criteria

Based on the features of selected offshore sites, this study speci-
fies 19 evaluation sub-criteria that are qualitatively or quantitatively
assessed. These sub-criteria entail technical, economic, and environ-
mental and social aspects which are described as either benefits or
costs (Fig. 3). Criteria weighted are not pre-supposed, but the degree of
importance for each criterion is evaluated individually by the experts.
The expert reviews rely on existing data sources regarding New Jer-
sey’s coastal and offshore resources and the economic characteristics
calculated via the techno-economic model.

3.3.1. Technical criteria
In addition to quantitative parameters commonly used in OWF site

selection, such as wind speed, capacity factor, sea depth, and proximity
to grid connection point, this study includes one additional quantitative
and two additional qualitative parameters that are not commonly uti-
lized in OWF site selection evaluations. Offshore wind speed values and
apacity factor are gathered from wind speed profiles at 90 m above
ea level and derived from the model output in the Wind Integration
ational Dataset Toolkit (Fig. 4.a) (Caroline et al., 2015). This study
ses annual energy production (AEP) as the measure of power pro-
uction, based on mid-term and long-term wind resource prediction
5

models (Cali, 2011). AEP is calculated using the Virtual Wind Farm
model (Cali et al., 2018). A Gamesa G128 5000 wind turbine with a 140
m hub height was selected for use in the AEP calculations. The power
losses from electricity transmission are assumed to be 5% while the
array efficiency is assumed to be 95% (Kucuksari et al., 2019). Proximity
to grid connection point affects the cost of electricity transmission, which
increases with distance. The 220 kV transmission line at the Atlantic
City Electric Sherman Substation is assumed to be the connection point
for A1, A2, and A3 while A4 and A5 are assumed to connect to a 500
kV transmission line at the JCPL Smithburg Switching station. Sea depth
determines the foundation structure (e.g, monopile, jacket, etc.) needed
at the site and affects the foundation cost, which is a considerable part
of the total capital expenditures (CAPEX) for a OWF (Fig. 4.c). Wind
farm size and wind farm extension capability are assumed to be benefit
parameters since the unit cost of OWF installations generally decreases
with increasing farm size. The specific values for these parameters used
in the quantitative technical evaluation for each potential NJ OWF site
are reported in Table 3.

3.3.2. Techno-economical model for economic criteria
An economic model was developed to calculate net present value

(NPV), CAPEX, and levelized cost of electricity (LCOE) while account-
ing for NJ’s specific offshore wind financial incentives.

The total cost of OWF is the sum of CAPEX and operational expen-
ditures (OPEX). The CAPEX was derived from the model in Dicorato
et al. (2011) as:

𝐶𝑂𝑊 𝐹 = 𝐶𝑂𝑊 𝑇 + 𝐶𝑂𝐹𝑇 + 𝐶𝑈𝐶 + 𝐶𝐵𝐸𝑆 + 𝐶𝑂𝐺𝐼 + 𝐶𝑂𝑃𝐷[𝑘$], (1)

where, 𝐶𝑂𝑊 𝑇 and 𝐶𝑂𝐹𝑇 are the cost of the turbines and the cost
of their foundation and tower, respectively. 𝐶𝑈𝐶 is the underwater
electrical cable cost, 𝐶𝐵𝐸𝑆 is the cost of the electrical system installa-
tion which includes transformers, switchgear, backup generators, and
the offshore substation, 𝐶𝑂𝐺𝐼 is the cost of electrical transmission
integration equipment including power regulation equipment and the
SCADA system, and 𝐶𝑂𝑃𝐷 is the project development cost. The cost
for each component, including any required transportation cost, can
be expressed by

𝐶 = 1.1 ×
(

2.95 × 103 × ln (𝑃 ) − 375.2
)

×𝑁 ×𝑋 [𝑘$], (2)
𝑂𝑊 𝐹 𝑂𝑊 𝑇 𝑂𝑇 𝑒𝑢𝑟∕𝑢𝑠𝑑



M. Deveci, N. Erdogan, U. Cali et al. Engineering Applications of Artificial Intelligence 103 (2021) 104311

𝐶

Table 3
Characteristics of the alternatives for quantitative technical evaluation.
No Criterion Unit Alternative sites

A1 A2 A3 A4 A5

C1 Mean offshore wind speed at 90 m m/s 7.75–8.0 8.25–8.5 8.25–8.5 8.75–9.0 8.75–9.0
C2 Net Annual energy production per turbine MWh 14,981.7 17,116.3 16,562.9 17,432.5 17,946.4
C3 Capacity factor % 38 43 42 44 45
C4 Sea depth feet 10–20 50–60 10–20 60–70 80-90
C5 Proximity to grid connection point km 33 72 54 80 112
C6 Offshore wind farm size MW 381.6 350 25 350 1,100
Fig. 3. Evaluation criteria, their attributes, and perspectives.
𝐶𝑂𝐹𝑇 = 1.5×
(

320 × 𝑃𝑂𝑊 𝑇 ×
(

1 + 0.02 ∗ (𝐷𝑠 − 8)
)

×
(

1 + 0.8 × 10−6 ×
(

𝐻𝐻 ×
𝐷𝑅
2

)2 − 105
) )

×𝑁𝑂𝑇 ×𝑋𝑒𝑢𝑟∕𝑢𝑠𝑑 [𝑘$],
(3)

𝐶𝑈𝐶 =
(

(0.4818 ×𝐷𝐸𝐶 + 99.153) ×𝐿𝐸𝐶 + (365 ×𝐿𝐸𝐶 )
)

×𝑋𝑒𝑢𝑟∕𝑢𝑠𝑑 [𝑘$], (4)

𝐶𝐵𝐸𝑆 =
(

(

42.69 × 𝑃 0.7513
𝑇

)

+
( (

40.453 + 0.76 × 𝑉𝑆𝐺
)

×𝑁𝑆𝐺 +
(

21.242 + 2.069
)

×𝑁𝑂𝑇 ×𝑁𝑂𝑊 𝑇 +
(

2534 + 88.7
)

×𝑁𝑂𝑇 ×𝑁𝑂𝑊 𝑇
)

)

×𝑁𝑂𝑇 ×𝑋𝑒𝑢𝑟∕𝑢𝑠𝑑 [𝑘$],
(5)

𝑂𝐺𝐼 = 1.1 ×
(

( 2
3
× (42.688 × 𝑃 0.7513

𝑇 )
)

+
(

75 ×𝑁0𝑇
)

)

×𝑋𝑒𝑢𝑟∕𝑢𝑠𝑑 [𝑘$], (6)

𝐶𝑂𝑃𝐷 = 46.8 × 𝑃0𝑊 𝑇 ×𝑁0𝑇 ×𝑋𝑒𝑢𝑟∕𝑢𝑠𝑑 [𝑘$], (7)

where, 𝑃0𝑊 𝑇 is the individual turbine power capacity, 𝑁𝑂𝑇 is the
number of turbines in the plant, 𝑋 is the exchange rate of the euro
𝑒𝑢𝑟∕𝑢𝑠𝑑

6

to U.S. dollar, 𝐷𝑆 (𝑚) is sea depth, 𝐻𝐻 (𝑚) is hub height, 𝐷𝑅(𝑚) is rotor
diameter, 𝐷𝐸𝐶 (𝑚𝑚) is the diameter of the electrical cable, 𝐿𝐸𝐶 (𝑘𝑚) is
the underwater electrical cable length, 𝑃𝑇 (𝑀𝑉𝐴) is the transformer’s
rated power output, 𝑉𝑆𝐺(𝑘𝑉 ) is the switchgear voltage, and 𝑁𝑆𝐺 is the
number of switchgear. Note that a value of 1.31 is used for 𝑋𝑒𝑢𝑟∕𝑢𝑠𝑑 as
in Dicorato et al. (2011) as it is assumed that CAPEX has fluctuated
proportionally with exchange rates.

OPEX was assumed to be a fixed value, per kW, that is identical to
those for New York found in Saraswati et al. (2017). The Surface Effect
Ship methodology was selected to minimize OPEX and maintain greater
than 95% equipment reliability.

The state of NJ is currently providing offshore wind renewable
energy credits (ORECs). These ORECs are given via an auction process
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Fig. 4. Maps for evaluation criteria, (a) offshore wind speed*, (b) military zone restrictions*, (c) sea depth, (d) aviation restrictions, (e) fishing areas, (f) extreme weather events,
(g) vessel and shipping lanes, (h) obstruction areas. * Maps are adopted from NREL’s wind prospector (Caroline et al., 2015). The rest of maps are taken from Neil et al. (2004).
that requires bids be submitted using the required revenue model to
calculate project LCOE. The lowest bid(s) wins ORECs equal in value
to the LCOE given in the bid, but the project must reimburse NJ for
any revenue received from power sales into the wholesale electricity
market (State of New Jersey Board of Public Utilities, 2018). Therefore,
the gross revenue, 𝑅𝑔𝑟𝑜𝑠𝑠, to the project can be defined as

𝑅𝑔𝑟𝑜𝑠𝑠 = 𝐸 × (𝑃𝑂𝑅𝐸𝐶 + 𝑃𝑊𝑀 ), (8)

where, 𝐸, 𝑃𝑂𝑅𝐸𝐶 , and 𝑃𝑊𝑀 stand for the electricity generated, the
OREC price, and the electricity price on the wholesale market, respec-
tively. Net revenue, 𝑅𝑛𝑒𝑡, must account for reimbursement of wholesale
market proceeds to NJ and is given by

𝑅𝑛𝑒𝑡 = 𝑅𝑔𝑟𝑜𝑠𝑠 − 𝐸 × 𝑃𝑊𝑀 = 𝐸 × 𝑃𝑂𝑅𝐸𝐶 . (9)

The financial assumptions for the base case are summarized in Table 4.
It was also assumed that the project would not qualify for the U.S.
production tax credit.

The 𝐿𝐶𝑂𝐸 calculation methodology employed was the required
revenue model, as specified by the NJ auction process (Short et al.,
7

Table 4
Financial assumptions for the case of NJ state.
Item Value

Project Life 25 years
Debt Fraction 0.55
Loan Period 7 years
Cost of Debt 0.06
Cost of Equity 0.09
Inflation 0.025
Property Tax Rate 3.85% [20]
Insurance Rate 0.01
Property Tax and Insurance Rate Escalation 1%/year
Federal Income Tax Rate 0.21
State Income Tax Rate 9% [19]
City/Local Tax Rate 0
Depreciation Schedule 5-year MACRS

1995). 𝐿𝐶𝑂𝐸 is expressed by Cali et al. (2018):

𝐿𝐶𝑂𝐸 =

∑𝐿
𝑛=0

𝐶𝐴
(1+𝑟𝑁 )𝑛

∑𝐿 𝐴𝐸𝑃 , (10)

𝑛=1 (1+𝑟𝐷)𝑛
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Table 5
Estimated values of economical criteria.
No Criteria Unit Alternative sites

A1 A2 A3 A4 A5

C8 LCOE $/MWh 124.95 128.63 155.72 127.65 126.25
C9 CAPEX per MW $ 2,593,427.45 2,875,373.71 3,537,542.50 2,916,769.56 2,987,696.68
C10 Net present value $ 96,256,876.75 106,721,509.80 9,378,454.89 108,257,945.95 348,512,860.69
w
d
d
s
r

4

s
o

D
b

𝐴

w
𝛾
(

(

𝛾
[

D
𝐴
(

(

s
d

where 𝐶𝐴 is total project costs, including 𝑂𝑃𝐸𝑋 and financing; 𝑟𝑁 is
the nominal cost of debt, and 𝐿 is the OWF lifetime. 𝑟𝐷 is the nominal
cost of debt if calculating the nominal 𝐿𝐶𝑂𝐸 or the real cost of debt if
calculating a real 𝐿𝐶𝑂𝐸. 𝑁𝑃𝑉 is calculated by Cali et al. (2018)

𝑁𝑃𝑉 =
𝑁
∑

𝑛=0

𝐶𝑛
(1 + 𝑟𝑁 )𝑛

, (11)

where 𝐶𝑛 is the cash flow in year 𝑛 and 𝑁 is the economic lifetime of
the plant, which is assumed to be the same as the OWF lifetime in this
study. The economic results for each potential OWF site are given in
Table 5.

3.3.3. Environmental and social criteria
This study included 8 qualitative criteria to address site-specific

environmental and social considerations that are essential for an OWF
development to meet associated regulations. While expert evaluation
on these criteria is inherently subjective, to provide some objective
context expert judgement was supported with data describing NJ’s
offshore areas (Neil et al., 2004). As the navigable airspace around
an OWF is affected by the height and rotor diameter of the wind
turbine and, due to the fact there are several public and military air
facilities in proximity to the NJ coast, proximity to aviation restrictions
and military zone restrictions are considered to be a cost parameter in
the model (Fig. 4.b and d). The NJ coasts are on the migratory route
of marine mammals and birds and are rich in fishery resources and
sea turtles. Therefore, effects of marine ecological resources are included
to account for ecological impact issues that must be considered by
marine biologists (Fig. 4.e). Proximity to seaports & infrastructure is
considered a benefit parameter that has a bearing on OWF installation
costs and schedules. Extreme weather events are included to provide a
scope for potential cost increases due to increased loading on turbines
and foundations (Fig. 4.f). Proximity to shore accounts for visual and
noise impact, both of which are concerns that residents and tourists
may have with offshore wind turbines. NJ offshore waters are high sea
traffic areas due to the proximity to New York City, which calls for the
inclusion of vessel and shipping lanes (Fig. 4.g). Several obstructions areas
on the sea floor, such as fishing areas, marine cable routes, and sand
barrow areas, can also be found in NJ offshore waters (Fig. 4.h) and
affect the siting of offshore wind turbines.

4. Development of multi-criteria decision-making models

4.1. Preliminaries

4.1.1. Type-1 neutrosophic set
Neutrosophic sets are a generalization of Inconsistent Intuitionistic

Fuzzy Set which is equivalent to the Picture Fuzzy Set, Pythagorean
Fuzzy Set, Spherical Fuzzy Set, and q-Rung Orthopair Fuzzy Set. More-
over, all these sets are more general than Intuitionistic Fuzzy Set
(IFS) (Smarandache, 2019). IFS can handle incomplete information, but
not indeterminate information and inconsistent information in fuzzy
systems (Smarandache, 1998). A neutrosophic set can be characterized
by three membership functions. Those are a truth membership function
‘T’, an indeterminacy membership function ‘I’, and a falsity membership
function ‘F’ (Kahraman and Otay, 2019), where the new parameter ‘‘in-
determinacy’’ was incorporated into the IFS definition (Smarandache,
1999).
8

Definition 1 (Pawlak, 1982). Let �̆� be an initial universe of discourse,
with a generic element in �̆� denoted by �̆�. The neutrosophic set is an
object having the form

�̆� =
{

⟨�̆� ∶ 𝛼�̆�(�̆�), 𝛽�̆�(�̆�), 𝛾�̆�(�̆�)⟩|�̆� ∈ �̆�
}

, (12)

here, the functions 𝛼, 𝛽, 𝛾 ∶ �̆� → ]−0, 1+[ define, respectively, the
egree of membership (or Truth), the degree of indeterminacy, and the
egree of non-membership (or Falsehood) of the element �̆� ∈ �̆� to the
et �̆� with the condition 0− ≤ 𝛼�̆�(�̆�) + 𝛽�̆�(�̆�) + 𝛾�̆�(�̆�) ≤ 3+. There is no
estriction on the sum of 𝛼�̆�(�̆�), 𝛽�̆�(�̆�), and 𝛾�̆�(�̆�).

.1.2. Type-2 neutrosophic set
T2NN set represents an expansion of single-valued neutrosophic

ets using triangular fuzzy numbers. First, some basic concepts and
perators of T2NN set are introduced.

efinition 2 (Abdel-Basset et al., 2019). A T2NN set �̆� in �̆� is defined
y:

̆ =
{⟨

�̆�, 𝛼�̆�(�̆�), 𝛽�̆�(�̆�), 𝛾�̆�(�̆�)
⟩

|

|

|

�̆� ∈ �̆�
}

, (13)

here 𝛼�̆�(�̆�) ∶ �̆� → 𝛼[0, 1], 𝛽�̆�(�̆�) ∶ �̆� → 𝛽[0, 1], and 𝛾�̆�(�̆�) ∶ �̆� →
[0, 1]. The elements of the T2NN set can be expressed as 𝛼�̆�(�̆�) =
𝛼𝛼�̆� (�̆�), 𝛼𝛽�̆� (�̆�), 𝛼𝛾�̆� (�̆�)

)

, 𝛽�̆�(�̆�) =
(

𝛽𝛼�̆� (�̆�), 𝛽𝛽�̆� (�̆�), 𝛽𝛾�̆� (�̆�)
)

, and 𝛾�̆�(�̆�) =

𝛾𝛼�̆� (�̆�), 𝛾𝛽�̆� (�̆�), 𝛾𝛾�̆� (�̆�)
)

.

𝛼�̆�(�̆�) =
(

𝛼1
�̆�
(�̆�), 𝛼2

�̆�
(�̆�), 𝛼3

�̆�
(�̆�)

)

, 𝛽�̆�(�̆�) =
(

𝛽1
�̆�
(�̆�), 𝛽2

�̆�
(�̆�), 𝛽3

�̆�
(�̆�)

)

, and

�̆�(�̆�) =
(

𝛾1
�̆�
(�̆�), 𝛾2

�̆�
(�̆�), 𝛾3

�̆�
(�̆�)

)

, where 𝛼�̆�(�̆�), 𝛽�̆�(�̆�) and 𝛾�̆�(�̆�) are �̆� →

0, 1]. For every �̆� ∈ �̆� ∶ 0 ≤ 𝛼1
�̆�
(�̆�) + 𝛽1

�̆�
(�̆�) + 𝛾1

�̆�
(�̆�) ≤ 3 are stated.

efinition 3 (Abdel-Basset et al., 2019). Let
̆1 =

⟨(

𝛼𝛼�̆�1
(�̆�), 𝛼𝛽�̆�1

(�̆�), 𝛼𝛾�̆�1
(�̆�)

)

,
(

𝛽𝛼�̆�1
(�̆�), 𝛽𝛽�̆�1

(�̆�), 𝛽𝛾�̆�1
(�̆�)

)

,

𝛾𝛼�̆�1
(�̆�), 𝛾𝛽�̆�1

(�̆�), 𝛾𝛾�̆�1
(�̆�)

)⟩

and �̆�2 =
⟨(

𝛼𝛼�̆�2
(�̆�), 𝛼𝛽�̆�2

(�̆�), 𝛼𝛾�̆�2
(�̆�)

)

,

𝛽𝛼�̆�2
(�̆�), 𝛽𝛽�̆�2

(�̆�), 𝛽𝛾�̆�2
(�̆�)

)

,
(

𝛾𝛼�̆�2
(�̆�), 𝛾𝛽�̆�2

(�̆�), 𝛾𝛾�̆�2
(�̆�)

)⟩

be T2NNs in the
et of real numbers. Some basic math operations for T2NNs can be
efined as follow (Biswas et al., 2016; Abdel-Basset et al., 2019):

�̆�1 ⊕ �̆�2 =
⟨(

𝛼𝛼�̆�1
(�̆�) + 𝛼𝛼�̆�2

(�̆�) − 𝛼𝛼�̆�1
(�̆�) ⋅ 𝛼𝛼�̆�2

(�̆�), 𝛼𝛽�̆�1
(�̆�) + 𝛼𝛽�̆�2

(�̆�)−

𝛼𝛽�̆�1
(�̆�) ⋅ 𝛼𝛽�̆�2

(�̆�), 𝛼𝛾�̆�1
(�̆�) + 𝛼𝛾�̆�2

(�̆�) − 𝛼𝛾�̆�1
(�̆�) ⋅ 𝛼𝛾�̆�2

(�̆�)
)

,
(

𝛽𝛼�̆�1
(�̆�) ⋅ 𝛽𝛼�̆�2

(�̆�), 𝛽𝛽�̆�1
(�̆�) ⋅ 𝛽𝛽�̆�2

(�̆�), 𝛽𝛾�̆�1
(�̆�) ⋅ 𝛽𝛾�̆�2

(�̆�)
)

,
(

𝛾𝛼�̆�1
(�̆�) ⋅ 𝛾𝛼�̆�2

(�̆�), 𝛾𝛽�̆�1
(�̆�) ⋅ 𝛾𝛽�̆�2

(�̆�), 𝛾𝛾�̆�1
(�̆�) ⋅ 𝛾𝛾�̆�2

(�̆�)
) ⟩

.

(14)

�̆�1 ⊗ �̆�2 =
⟨(

(

𝛼𝛼�̆�1
(�̆�) ⋅ 𝛼𝛼�̆�2

(�̆�), 𝛼𝛽�̆�1
(�̆�) ⋅ 𝛼𝛽�̆�2

(�̆�), 𝛼𝛾�̆�1
(�̆�) ⋅ 𝛼𝛾�̆�2

(�̆�)
)

,
(

𝛽𝛼�̆�1
(�̆�) + 𝛽𝛼�̆�2

(�̆�) − 𝛽𝛼�̆�1
(�̆�) ⋅ 𝛽𝛼�̆�2

(�̆�)
)

,
(

𝛽𝛽�̆�1
(�̆�) + 𝛽𝛽�̆�2

(�̆�) − 𝛽𝛽�̆�1
(�̆�) ⋅ 𝛽𝛽�̆�2

(�̆�)
)

,
(

𝛽𝛾�̆�1
(�̆�) + 𝛽𝛾�̆�2

(�̆�) − 𝛽𝛾�̆�1
(�̆�) ⋅ 𝛽𝛾�̆�2

(�̆�)
)

)

,
(

(

𝛾𝛼�̆�1
(�̆�) + 𝛾𝛼�̆�2

(�̆�) − 𝛾𝛼�̆�1
(�̆�) ⋅ 𝛾𝛼�̆�2

(�̆�)
)

,
(

𝛾𝛽�̆�1
(�̆�) + 𝛾𝛽�̆�2

(�̆�) − 𝛾𝛽�̆�1
(�̆�) ⋅ 𝛾𝛽�̆�2

(�̆�)
)

,
(

𝛾 (�̆�) + 𝛾 (�̆�) − 𝛾 (�̆�) ⋅ 𝛾 (�̆�)
)

)⟩

.

(15)
𝛾�̆�1
𝛾�̆�2

𝛾�̆�1
𝛾�̆�2
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𝜃�̆� =
⟨ (

1 − (1 − 𝛼𝛼�̆� (�̆�))
𝜃 , 1 − (1 − 𝛼𝛽�̆� (�̆�))

𝜃 , 1 − (1 − 𝛼𝛾�̆� (�̆�))
𝜃
)

,
(

(𝛽𝛼�̆� (�̆�))
𝜃 , (𝛽𝛽�̆� (�̆�))

𝜃 , (𝛽𝛾�̆� (�̆�))
𝜃
)

,
(

(𝛾𝛼�̆�1
(�̆�))𝜃 , (𝛾𝛽�̆� (�̆�))

𝜃 , (𝛾𝛾�̆� (�̆�))
𝜃
) ⟩

,

(16)

here 𝜃 > 0.

�̆�𝜃 =
⟨ (

(𝛼𝛼�̆� (�̆�))
𝜃 , (𝛼𝛽�̆� (�̆�))

𝜃 , (𝛼𝛾�̆� (�̆�))
𝜃
)

,
(

1 − (1 − 𝛽𝛼�̆� (�̆�))
𝜃 , 1 − (1 − 𝛽𝛽�̆� (�̆�))

𝜃 , 1 − (1 − 𝛽𝛾�̆� (�̆�))
𝜃
)

,
(

1 − (1 − 𝛾𝛼�̆� (�̆�))
𝜃 , 1 − (1 − 𝛾𝛽�̆� (�̆�))

𝜃 , 1 − (1 − 𝛾𝛾�̆� (�̆�))
𝜃
) ⟩

,

(17)

here, 𝜃 > 0.

efinition 4 (Abdel-Basset et al., 2019). The score function of �̆�1, 𝑆(�̆�1),
s described by:

(�̆�1) =
1
12

⟨

8 +
(

𝛼𝛼�̆�1
(�̆�) + 2

(

𝛼𝛽�̆�1
(�̆�)

)

+ 𝛼𝛾�̆�1
(�̆�)

)

−
(

𝛽𝛼�̆�1
(�̆�) + 2

(

𝛽𝛽�̆�1
(�̆�)

)

+ 𝛽𝛾�̆�1
(�̆�)

)

−
(

𝛾𝛼�̆�1
(�̆�) + 2

(

𝛾𝛽�̆�1
(�̆�)

)

+ 𝛾𝛾�̆�1
(�̆�)

)⟩

. (18)

Definition 5 (Abdel-Basset et al., 2019). The accuracy function of �̆�1,
𝐴(�̆�1), is expressed by:

𝐴(�̆�1) =
1
4

⟨(

𝛼𝛼�̆�1
(�̆�) + 2

(

𝛼𝛽�̆�1
(�̆�)

)

+ 𝛼𝛾�̆�1
(�̆�)

)

−
(

𝛾𝛼�̆�1
(�̆�) + 2

(

𝛾𝛽�̆�1
(�̆�)

)

+ 𝛾𝛾�̆�1
(�̆�)

)⟩

.

(19)

Definition 6 (Abdel-Basset et al., 2019). Let 𝑆(�̆�𝑖) and 𝐴(�̆�𝑖) denote the
core and accuracy functions for the T2NNs �̆�𝑖(𝑖 = 1, 2), respectively.
he following relations can be written:

1. If 𝑆(�̆�1) > 𝑆(�̆�2), then �̆�1 > �̆�2,
2. If 𝑆(�̆�1) = 𝑆(�̆�2) and 𝐴(�̆�1) > 𝐴(�̆�2), then �̆�1 > �̆�2,
3. If 𝑆(�̆�1) = 𝑆(�̆�2) and 𝐴(�̆�1) = 𝐴(�̆�2), then �̆�1 = �̆�2.

Definition 7 (Ruipu and Wende, 2017). Let �̆�1 =
(

(𝛼1, 𝛼2, 𝛼3),

(𝛽1, 𝛽2, 𝛽3), (𝛾1, 𝛾2, 𝛾3)
)

and �̆�2 =
(

(𝑇1, 𝑇2, 𝑇3), (𝐼1, 𝐼2, 𝐼3), (𝐹1, 𝐹2, 𝐹3)
)

be
T2NNs. The distance measure 𝑑(�̆�1, �̆�2) between �̆�1 and �̆�2 can be
defined as :

𝑑(�̆�1, �̆�2) = 1

−
∑3

𝑖=1 𝛼𝑖𝑇𝑖 +
∑3

𝑖=1 𝛽𝑖𝐼𝑖 +
∑3

𝑖=1 𝛾𝑖𝐹𝑖
(

∑3
𝑖=1(𝛼𝑖)2 +

∑3
𝑖=1(𝛽𝑖)2 +

∑3
𝑖=1(𝛾𝑖)2

)

×
(

∑3
𝑖=1(𝑇𝑖)2 +

∑3
𝑖=1(𝐼𝑖)2 +

∑3
𝑖=1(𝐹𝑖)2

) .

(20)

.2. MABAC method

The MABAC method is used to address uncertain and complex
ecision-making issues by calculating the distance between each alter-
ative and the border approximation area (Dragan et al., 2018a). The
teps of implementing the fuzzy MABAC method are as follows:
Step 1: Construct the fuzzy decision matrix �̆� = (�̆�𝑖𝑗 )𝑚×𝑛. �̆�𝑖𝑗 is the

valuation value of the alternatives 𝑎𝑖 (𝑖 = 1, 2,… , 𝑚) with respect to
he criteria 𝑠𝑗 (𝑗 = 1, 2,… , 𝑛),

̃ = (�̆�𝑖𝑗 )𝑚×𝑛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴1 𝐴2 ⋯ 𝐴𝑚

𝑆1 �̆�11 �̆�12 ⋯ �̆�1𝑛
𝑆2 �̆�21 �̆�22 ⋯ �̆�2𝑛
⋮ ⋮ ⋮ ⋱ ⋮

𝑆𝑛 �̆�1𝑚 �̆�2𝑚 ⋯ �̆�𝑚𝑛

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (21)

here 𝑚 and 𝑛 indicate the number of alternatives and criteria, respec-
ively.
Step 2: Normalization of the elements of the decision matrix �̆� =

̆
�̆�𝑖𝑗 )𝑚×𝑛 into 𝑅 = (�̆�𝑖𝑗 )𝑚×𝑛. Normalization values for the benefit and the o

9

ost criteria are calculated by (22) and (23), respectively.

�̆�𝑖𝑗 =
�̆�𝑖𝑗 − �̆�−𝑖
�̆�+𝑖 − �̆�−𝑖

, (22)

�̆�𝑖𝑗 =
�̆�𝑖𝑗 − �̆�+𝑖
�̆�−𝑖 − �̆�+𝑖

, (23)

here �̆�+𝑖 = max(�̆�𝑖𝑗 ) and �̆�−𝑖 = min(�̆�𝑖𝑗 ) are benefit and cost criteria
hich represent maximum or minimum values of the observed criteria

or alternatives, respectively. �̆�𝑖𝑗 are the normalized values which are
btained from �̆�𝑖𝑗 .
Step 3: Calculate the weighted normalized matrix 𝑉 = (�̆�𝑖𝑗 )𝑚×𝑛 using

̆ = �̆�1, �̆�2,… , �̆�𝑛 of the criteria 𝑠𝑗 (𝑗 = 1, 2,… , 𝑛) as follows:

𝑉 = �̆�𝑖𝑗 = 𝑤𝑗 × �̆�𝑖𝑗 ⟹

⎛

⎜

⎜

⎜

⎜

⎝

𝐴1 𝐴2 ⋯ 𝐴𝑚

𝑆1 �̆�11 �̆�12 ⋯ �̆�1𝑛
𝑆2 �̆�21 �̆�22 ⋯ �̆�2𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑆𝑛 �̆�1𝑚 �̆�2𝑚 ⋯ �̆�𝑚𝑛

⎞

⎟

⎟

⎟

⎟

⎠

, (24)

here 𝑤𝑗 represents the weight of each criterion.
Step 4: Calculate the approximate border area matrix 𝐵. The border

approximate area (BAA) for each criterion is obtained by:

𝑏𝑗 =

( 𝑚
∏

𝑖=1
�̆�𝑖𝑗

)1∕𝑚

, (25)

here 𝑏𝑗 and 𝑚 represent BAA for the criterion 𝐶𝑗 and the total number
f alternatives, respectively. The 𝐵 can be also expressed in form (1×𝑛)
s follows:

=
(

𝑆1 𝑆2 ⋯ 𝑆𝑚

𝑏1 𝑏2 ⋯ 𝑏𝑛
)

(26)

Step 5: Calculate the distance matrix 𝛥 = (𝜕𝑖𝑗 )𝑚×𝑛. The distances of
ach alternative from the BAA are calculated by:

= 𝑉 − 𝐵 ⟹

⎡

⎢

⎢

⎢

⎢

⎣

�̆�11 − 𝑏1 �̆�12 − 𝑏2 … �̆�1𝑛 − 𝑏𝑛
�̆�21 − 𝑏1 �̆�22 − 𝑏2 … �̆�2𝑛 − 𝑏1

⋮ ⋮ ⋱ ⋮
�̆�𝑚1 − 𝑏1 �̆�𝑚2 − 𝑏2 ⋯ �̆�𝑚𝑛 − 𝑏𝑛

⎤

⎥

⎥

⎥

⎥

⎦

. (27)

The alternative 𝐴𝑖 can belong to the upper approximate area (𝐵+),
ower approximate area (𝐵−), or BAA (𝐵), ∀𝑖 ∈

{

𝐵∨𝐵+∨𝐵−} as shown
n Fig. 5. 𝐵+ is an area in which the ideal alternative is found to be
𝐴+), while 𝐵− is an area in which the anti-ideal alternative is found to
e (𝐴−). Whether the alternative (𝐴𝑖) belongs to the approximate area
𝐵+, 𝐵 or 𝐵−) is determined by:

𝑖 ∈

⎧

⎪

⎨

⎪

⎩

𝐵+ if 𝜕𝑖𝑗 > 0
𝐵 if 𝜕𝑖𝑗 = 0
𝐵− if 𝜕𝑖𝑗 < 0.

(28)

Step 6: Gather the final values of the criteria function and rank the
lternatives. 𝜔𝑖 is the overall values of each alternative, which can be
xpressed by:

𝑖 =
𝑚
∑

𝑖=1
𝜕𝑖𝑗 , i=1, 2, . . . , m and j=1, 2, . . . , n (29)

fter the summation the normalization process (𝛩𝑖) is applied using the
ollowing equation:

𝑖 =
𝜔𝑖

∑𝑚
𝑖=1 𝜔𝑖

(30)

Finally, the alternatives are ranked from highest to lowest according to
their (𝛩𝑖) values.

.3. WASPAS method

The WASPAS method was introduced to solve multi-criteria
ecision-making problems in 2012 (Zavadskas et al., 2012). The steps
f the WASPAS method are summarized below (Keshavarz et al., 2016):
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Fig. 5. The border approximation area.

Step 1: Linear normalization of performance values are obtained by:

�̆�𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

�̆�𝑖𝑗
𝑚𝑎𝑥𝑖 �̆�𝑖𝑗

∀𝑖 if 𝑗 ∈ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡
𝑚𝑖𝑛𝑖 �̆�𝑖𝑗
�̆�𝑖𝑗

∀𝑖 if 𝑗 ∈ 𝐶𝑜𝑠𝑡,
(31)

Step 2: The measures of weighted sum (𝛱1
𝑖 ) and weighted product

𝛱2
𝑖 ) for each alternative are defined as follows:

1
𝑖 =

𝑚
∑

𝑗=1
�̆�𝑗 �̆�𝑖𝑗 , (32)

nd

2
𝑖 =

𝑚
∏

𝑗=1
(�̆�𝑖𝑗 )

�̆�𝑗 . (33)

Step 3: The aggregated measure is found by:

𝑖 = 𝜂𝑖.𝛱
1
𝑖 + (𝜂𝑖′ .)𝛱2

𝑖 , (34)

here the parameter of the WASPAS method is defined as 𝜂, which is
he set of numbers between 0 and 1. If 𝜂 = 1, the WASPAS method is
ransformed into WS, whereas 𝜂 = 0 leads to WP.
Step 4: The alternatives are ranked in decreasing order according to

he values of 𝛱𝑖.

.4. ARAS method

The ARAS method was proposed by Zavadskas and Turskis (2010)
nd is designed to solve complex problems, including MCDM. The steps
f the ARAS method are summarized below:
Step 1: Normalize the decision matrix.

�̆�𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

�̆�𝑖𝑗
𝑚𝑎𝑥𝑖 �̆�𝑖𝑗

∀𝑖 if 𝑗 ∈ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡
𝑚𝑖𝑛𝑖 �̆�𝑖𝑗
�̆�𝑖𝑗

∀𝑖 if 𝑗 ∈ 𝐶𝑜𝑠𝑡
(35)

Step 2: Obtain the weighted normalized matrix.

= �̆�𝑖𝑗 = �̆�𝑗 × �̆�𝑖𝑗 (36)

here �̆�𝑗 is the weight of the 𝑗th criterion and �̆�𝑖𝑗 is the weighted
ormalized decision matrix.
Step 3: Calculate the values of the optimality function.

𝑖 =
𝑛
∑

𝑗=1
�̆�𝑖𝑗 (37)

here 𝑂𝑖 represents the overall performance rating of the 𝑖th alterna-
ive.
 2
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Step 4: Calculate the utility degree (𝛶𝑖) of the alternative.

𝑖 =
𝑂𝑖
𝑂0

(38)

Step 5: The alternatives are ranked in ascending order using 𝛶𝑖
values.

4.5. CODAS method

The CODAS method developed by Keshavarz Ghorabaee et al.
(2016) uses Euclidean and Hamming distances from the negative-ideal
point to calculate the overall performance of alternatives (Peng and
Garg, 2018). The steps of CODAS method are summarized below:

Step 1: Obtain the normalized decision matrix.

�̆� =
[

�̆�𝑖𝑗
]

𝑛𝑥𝑚 and �̆�𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

�̆�𝑖𝑗
𝑚𝑎𝑥𝑖 �̆�𝑖𝑗

∀𝑖 if 𝑗 ∈ 𝐵𝑒𝑛𝑒𝑓𝑖𝑡

1 − �̆�𝑖𝑗
𝑚𝑎𝑥𝑖 �̆�𝑖𝑗

∀𝑖 if 𝑗 ∈ 𝐶𝑜𝑠𝑡
(39)

Step 2: Determine the weighted normalized decision matrix.

𝑉 =
[

�̆�𝑖𝑗
]

𝑛𝑥𝑚 and �̆�𝑖𝑗 = �̆�𝑗 × �̆�𝑖𝑗 (40)

Step 3: Calculate the negative-ideal solution.

𝑁𝐺 =
[

𝑛𝑔𝑗
]

1𝑥𝑚 and 𝑛𝑔𝑗 = 𝑚𝑖𝑛
{

�̆�𝑖𝑗
}

(41)

where 𝑛𝑔𝑗 represents the negative-ideal solution.
Step 4: Calculate Euclidean (𝜙∗

𝑖 ) and Hamming distances (𝜙−
𝑖 ).

𝜙∗
𝑖 =

√

√

√

√

1
2

𝑛
∑

𝑗=1
(𝑛𝑔𝑖𝑗 − 𝑛𝑔∗𝑗 )2 and 𝜙−

𝑖 = |

1
2

𝑛
∑

𝑗=1
(𝑛𝑔𝑖𝑗 − 𝑛𝑔−𝑗 )

2
| (42)

Step 5. Calculate the relative assessment matrix (𝛺).

= [𝜍𝑖𝑠]𝑚×𝑚 and 𝜍𝑖𝑠 = (𝜙∗
𝑖 − 𝜙∗

𝑠 ) + (𝜉(𝜙∗
𝑖 − 𝜙∗

𝑠 ) × (𝜙−
𝑖 − 𝜙−

𝑠 )) (43)

here 𝑠 ∈ {𝑖 = 1, 2,… , 𝑚} and 𝜉 is a threshold function that can be
efined as follows:

(𝑥) =

{

1 if |𝑥| ≥ 𝛿
0 if |𝑥| < 𝛿

(44)

here 𝛿 denotes the threshold parameter of the 𝜉 function, which can
e set by the decision makers.
Step 6. Obtain the overall score (𝛬𝑖) for each alternative.

𝑖 =
𝑚
∑

𝑠=1
𝜍𝑖𝑠 (45)

Step 7. The alternatives are ranked according to the decreasing order
f the overall scores 𝛬𝑖.

. Experimental results and discussions

Each criterion and alternative OWF site were evaluated by a set of
ndependent decision makers (DMs). The importance degree of each
riterion was evaluated independently using the linguistic terms given
n Table A.1. Then, the alternative OWF sites were evaluated with
espect to each criterion using the linguistic terms in Table A.2. The
inguistic evaluations of the criteria and the evaluation ratings for each
lternative are reported in Table A.3 and Table A.4, respectively.

.1. Results of the T2NN based MABAC approach

Step 1. The fuzzy decision matrix was first constructed using the
alues in Table A.1. The aggregated fuzzy weights of the eighteen
riteria were calculated using Eqs. (14), (20), and (21). The normalized
eights of each criterion calculated are provided in Table 6. For
xample, the evaluations of the 𝐶2 criterion for four potential decision
akers are defined as 𝐻 , 𝑉 𝐻 , 𝑉 𝐻 , and 𝑀 . The corresponding type-
neutrosophic numbers are given in Table A1. These neutrosophic
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Table 6
The normalized criteria weights.

Criteria 𝛼�̆�(�̆�) 𝛽�̆�(�̆�) 𝛾�̆�(�̆�) Score
value

Normalized
value

𝛼�̆�(�̆�) 𝛽�̆�(�̆�) 𝛾�̆�(�̆�) 𝛼�̆�(�̆�) 𝛽�̆�(�̆�) 𝛾�̆�(�̆�) 𝛼�̆�(�̆�) 𝛽�̆�(�̆�) 𝛾�̆�(�̆�)

C1 0.736 0.719 0.746 0.000 0.000 0.000 0.000 0.000 0.000 0.910 0.059
C2 0.694 0.675 0.701 0.000 0.000 0.000 0.000 0.000 0.000 0.895 0.058
C3 0.729 0.710 0.737 0.000 0.000 0.000 0.000 0.000 0.000 0.907 0.058
C4 0.694 0.675 0.701 0.000 0.000 0.000 0.000 0.000 0.000 0.895 0.058
C5 0.630 0.627 0.637 0.001 0.001 0.002 0.000 0.000 0.001 0.876 0.056
C6 0.419 0.475 0.454 0.010 0.016 0.033 0.005 0.012 0.008 0.809 0.052
C7 0.323 0.359 0.299 0.016 0.030 0.035 0.008 0.034 0.027 0.760 0.049
C8 0.736 0.719 0.746 0.000 0.000 0.000 0.000 0.000 0.000 0.910 0.059
C9 0.593 0.564 0.533 0.002 0.001 0.005 0.001 0.001 0.002 0.853 0.055
C10 0.678 0.659 0.661 0.000 0.000 0.001 0.000 0.000 0.000 0.888 0.057
C11 0.421 0.432 0.398 0.004 0.010 0.006 0.001 0.004 0.008 0.803 0.052
C12 0.720 0.698 0.714 0.000 0.000 0.000 0.000 0.000 0.000 0.903 0.058
C13 0.561 0.536 0.517 0.001 0.002 0.002 0.000 0.001 0.002 0.845 0.054
C14 0.484 0.527 0.527 0.006 0.010 0.023 0.004 0.006 0.004 0.833 0.054
C15 0.685 0.647 0.673 0.000 0.000 0.000 0.000 0.000 0.000 0.888 0.057
C16 0.532 0.489 0.492 0.002 0.005 0.002 0.001 0.002 0.003 0.832 0.054
C17 0.532 0.489 0.492 0.002 0.005 0.002 0.001 0.002 0.003 0.832 0.054
C18 0.729 0.710 0.737 0.000 0.000 0.000 0.000 0.000 0.000 0.907 0.058
t
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Table 7
The ranking of the alternatives utilizing the proposed model.

Alternatives Score values Normalized values Ranking

A1 0.4174 0.1522 4
A2 0.6617 0.2412 1
A3 0.4154 0.1514 5
A4 0.5975 0.2178 3
A5 0.6512 0.2374 2

numbers were aggregated by Eqs. (14) and (21). The average value
of 𝐶2 were found to be: (0.694, 0.675, 0.701), (0,0,0), (0,0,0). The
core values were then calculated using Eq. (20) as follows: (1∕12) ∗
8 + (0.694 + 2 ∗ 0.675 + 0.701) − (0 + 2 ∗ 0 + 0) − (0 + 2 ∗ 0 + 0)) = 0.895.

The aggregated decision matrix for each alternative is given in Table
.7 using the values in Table A.4 and Eqs. (14), (20), and (21).
Step 2. The fuzzy normalized decision matrix was calculated by

qs. (22) and (23) and is reported in Table A.5.
Step 3. The weighted normalized decision matrix was calculated by

q. (24) using Table A.5 and is reported in Table A.6.
Step 4. The approximate border area matrix was found by Eq. (25)

sing Table A.6.
Step 5. The distance matrix for the alternatives was obtained by

qs. (27) and (28) using the border approximation values given in Table
.8.
Step 6. The overall values were calculated by Eq. (29) using Table

.8 . These values were normalized by Eq. (30) and are reported in
able 7.

The alternatives were ranked with respect to their normalized val-
es. The final ranking for each alternative is given in Table 7. 𝐴2
as found to be the most feasible alternative while 𝐴3 was the least

easible option. Regarding the expert ranking of criteria, the results in
able A.3 reveal that wind speed, LCOE, and obstructions on the sea
loor were found to have the highest importance degree while OWF
ize and extension capability had the lowest importance degree.

If more traditional and simplistic methodologies were utilized to
ank the alternatives the results would have differed from what was
ound. If ranking were based upon mean wind speed and AEP values,
s reported in Table 3, the alternative ranking would be 𝐴5 ≻ 𝐴4 ≻

𝐴2 ≻ 𝐴3 ≻ 𝐴1. If LCOE, which is reported in Table 5, were used the
ranking would be 𝐴1 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴3. However, the mean wind
speed and LCOE values for 𝐴2, 𝐴4, and 𝐴5 are very similar, which
makes a decision process based solely upon these metrics both risky
and difficult. Therefore, even though the use of these straightforward

approaches does provide value into the site selection decision-making e

11
process, the inclusion of other technical, economic, environmental,
and social aspects into the investigation, as done with the proposed
approach, reveals salient features (advantages and disadvantages) that
results in a more robust and, ultimately, differing rank order of the
OWF site alternatives.

5.2. Comparative analysis

To test and validate the proposed approach, it has been compared
with other T2NN based fuzzy MCDM models, including the T2NN based
fuzzy TOPSIS (Abdel-Basset et al., 2019). The neutrosophic numbers
based fuzzy WASPAS, ARAS, CODAS and TOPSIS approaches were
also implemented. The implemented models used the same normalized
criteria weights given in Table 6 that are calculated using the same
expressions given by Eqs. (14), (20), and (21). The ranking results for
each of these methodologies are reported in Table 8.

Each approach found 𝐴2 to be the best alternative while 𝐴3 is
he less feasible alternative for all approaches. The primary reason for
3 being the worst alternative is that it has the highest LCOE and

owest NPV owing to its relatively small proposed OWF capacity. The
ommunity/public acceptance criterion also brings down the score of
his site, as it is located in the vicinity of marine wildlife and is nearest
o land. Moreover, 𝐴3 also has the lowest size extension capability due
o its location. While 𝐴2, 𝐴5, and 𝐴4 have similar techno-economic
etrics in terms of wind speed, capacity factor, CAPEX, and LCOE, 𝐴2

ecame the most prominent option due to some less prominent tech-
ical, environmental, and social aspects. Among the three options, 𝐴2
as the shallowest sea depth and is closest to a grid connection point,
eaports, and transportation infrastructure. 𝐴2 is also less affected by
bstructions on sea floor and proximity to shipping lanes. 𝐴5 has a
ignificantly larger NPV relative to the alternatives due to it having
he largest OWF capacity. However, it is also located furthest from the
hore, making it far from a grid connection point and causing the sea
epth to be the deepest in this location. Each of these factors increase
APEX and LCOE values for 𝐴5. Additionally, the proposed OWF size

or 𝐴5 requires 500 kV transmission lines, which do not currently exist
long the NJ coastline. Access to transmission lines with this higher
apacity nearer to the coastline would likely make 𝐴5 become the best
lternative.

In general, each of the T2NN based fuzzy models yielded very
imilar ranking results for each of the alternatives. The only differ-
nce found between the methodologies was how the TOPSIS approach
anked 𝐴4 and 𝐴5. The main reason for this difference lies in the
ositive and negative ideal solution characteristics of TOPSIS. How-
ver, based on the surveyed decision makers’ industrial experience in
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Table 8
Comparison of T2NN based fuzzy MCDM approaches.

Models Alternatives

Newport Nearshore (A1) Garden State (A2) FERN Blue (A3) Brigantine (A4) Pavillion (A5)

M1: T2NN based MABAC 4 1 5 3 2
M2: T2NN based WASPAS 4 1 5 3 2
M3: T2NN based ARAS 4 1 5 3 2
M4: T2NN based CODAS 4 1 5 3 2
M5: T2NN based TOPSIS (Abdel-Basset et al., 2019) 4 1 5 2 3
Fig. 6. Sensitivity analysis of four proposed approaches using differing criteria weights.
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ffshore wind energy, 𝐴5 should in fact be a better alternative relative
o 𝐴4 thanks to its relatively higher wind resource, resulting in a higher
PV and lower LCOE. Therefore, consistency with the majority of the
2NN based fuzzy models and this additional expert validation serves
o verify the reliability of the proposed model.

.3. Sensitivity analysis

Given there was a range of criteria weightings, a sensitivity analysis
as performed for each proposed approach to study the impact of
eightings on the ranking. The weightings considered are reported in
able A.9 in the supplementary document. The obtained rankings of
lternatives for each experiment are shown in Fig. 6. The sensitivity
nalysis revealed that varying the weighting of the criteria did not
hange the ranking order of the alternatives.

.4. Limitations

Although the proposed MCDM method has provided considerable
nsights into the decision-making process, there are still some limi-
ations that warrant further study and model enhancement. As some
WF proposals considered are relatively near to each other, more

ite-specific criteria such as seabed conditions and more specific and
12
etailed marine impacts could be included into the site evaluation to
mprove decision making. Further, this study considered only one type
f turbine. Dependent upon the wind class at each site, several different
ind turbine types could be utilized and this should be evaluated.

Additionally, the proposed MCDM approaches could be hybridized
ith the BWM approach developed in Rezaei (2015) where the best
nd worst criteria are identified first by decision makers, which could
mprove the decision making. Finally, the approach could be improved
hrough building the linguistic evaluations of criteria with a pairwise
omparison matrix.

. Conclusion

This study proposed a T2NN based fuzzy MABAC model for an
WF site selection problem. Unlike general qualitative evaluation cri-

eria commonly used in the literature, this study developed a techno-
conomic model and integrated quantitative outputs into the decision-
aking process.

Considering multiple technical, economic, environmental, and so-
ial criteria, the proposed model was used to evaluate 5 potential
WF sites in NJ. The model chose site 𝐴2 as the best alternative

while 𝐴3 was found to be the least attractive option. The ranking
order for the other alternatives was found to be 𝐴5 ≻ 𝐴4 ≻ 𝐴1. The
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results demonstrate that the inclusion of some technical, economic,
environmental, and social parameters into the decision-making process
can reveal distinguishing features in alternatives which otherwise have
similar techno-economic parameters, as is the case with sites 𝐴2, 𝐴4
nd 𝐴5 in this study, which makes the decision process difficult when
sing more traditional and simplistic decision-making processes. As
result, this approach has identified a different ranking order than

he traditional OWF site selection practices. Moreover, the comparison
nalysis revealed a consistency among the results of the implemented
CDM models. As such, all T2NN based fuzzy models, apart from
OPSIS, yielded the same ranking order with the lone difference stem-
ing from the positive and negative ideal solution characteristics of

he TOPSIS approach. However, the decision makers’ practical offshore
ind experience validated the results of the proposed model given this

ingular discrepancy with the other MCDM models. Finally, a sensitivity
nalysis confirmed that changing criteria weightings did not affect the
anking order of the alternatives.

Additionally, this study calculated techno-economic characteristics
f potential offshore wind energy investments in NJ as a case study.
he LCOE findings were found to be slightly less competitive relative
o European counterparts. Future studies of U.S. offshore wind may
onsider other locations, improvements in the U.S. offshore wind sup-
ly chain, and improvements in technology such as novel foundations
ypes and larger turbine sizes that may result in improved CAPEX and
PEX values. Additionally, other states may offer differing support
echanisms from NJ for offshore wind installations, which would affect
roject LCOE, NPV, and payback period, that warrant further study.
inally, deep sea (>100 m) installations would require changes in
echnology, to floating foundations, and may present differing logistic,
nvironmental, and social challenges that require further analysis.
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1. PRELIMINARIES

A. Type-1 neutrosophic set
The neutrosophic sets are extensions and generalizations of intuitionistic fuzzy sets (IFS). IFS can handle incomplete information,
but not indeterminate information and inconsistent information in fuzzy systems [1]. A neutrosophic set can be characterized by
three membership functions. Those are a truth membership function ‘T’, an indeterminacy membership function ‘I’, and a falsity
membership function ‘F’ [2], where the new parameter “indeterminacy” was incorporated into the IFS definition [3].

Definition 1 [4]. Let X̆ be an initial universe of discourse, with a generic element in X̆ denoted by x̆. The neutrosophic set is an
object having the form

Ă =
{
〈x̆ : αĂ(x̆), βĂ(x̆), γĂ(x̆)〉|x̆ ∈ X̆

}
, (S1)

where, the functions α, β, γ : X̆ → ]−0, 1+[ define, respectively, the degree of membership (or Truth), the degree of indeterminacy, and
the degree of non-membership (or Falsehood) of the element x̆ ∈ X̆ to the set Ă with the condition 0− ≤ αĂ(x̆), βĂ(x̆), γĂ(x̆) ≤ 3+.

B. Type-2 Neutrosophic Set
T2NN set represents expansions of single-valued neutrosophic sets using triangular fuzzy numbers. First, some basic concepts and
operators of T2NN set are introduced.

Definition 2 [5]. A T2NN set Ă in X̆ is defined by:

Ă =
{〈

x̆, αĂ(x̆), βĂ(x̆), γĂ(x̆)
〉∣∣∣x̆ ∈ X̆

}
, (S2)

where, αĂ(x̆) : X̆ → α[0, 1], βĂ(x̆) : X̆ → β[0, 1], and γĂ(x̆) : X̆ → γ[0, 1]. The elements of T2NN set can be expressed as

αĂ(x̆) =
(

ααĂ
(x̆), αβĂ

(x̆), αγĂ
(x̆)
)

, βĂ(x̆) =
(

βαĂ
(x̆), ββĂ

(x̆), βγĂ
(x̆)
)

, and γĂ(x̆) =
(

γαĂ
(x̆), γβĂ

(x̆), γγĂ
(x̆)
)

.

αĂ(x̆) =
(

α1
Ă
(x̆), α2

Ă
(x̆), α3

Ă
(x̆)
)

, βĂ(x̆) =
(

β1
Ă
(x̆), β2

Ă
(x̆), β3

Ă
(x̆)
)

, and γĂ(x̆) =
(

γ1
Ă
(x̆), γ2

Ă
(x̆), γ3

Ă
(x̆)
)

, where αĂ(x̆), βĂ(x̆) and

γĂ(x̆) are X̆ → [0, 1]. For every x̆ ∈ X̆ : 0 ≤ α1
Ă
(x̆) + β1

Ă
(x̆) + γ1

Ă
(x̆) ≤ 3 are stated.

Definition 3 [5]. Let Ă1 =
〈(

ααĂ1
(x̆), αβĂ1

(x̆), αγĂ1
(x̆)
)

,
(

βαĂ1
(x̆), ββĂ1

(x̆), βγĂ1
(x̆)
)

,
(

γαĂ1
(x̆), γβĂ1

(x̆), γγĂ1
(x̆)
)〉

and Ă2 =
〈(

ααĂ2
(x̆), αβĂ2

(x̆), αγĂ2
(x̆)
)

,
(

βαĂ2
(x̆), ββĂ2

(x̆), βγĂ2
(x̆)
)

,
(

γαĂ2
(x̆), γβĂ2

(x̆), γγĂ2
(x̆)
)〉

be
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T2NNs in the set of real numbers. Some basic math operations for T2NNs can be defined as follow [5, 6]:

Ă1 ⊕ Ă2 =
〈(

ααĂ1
(x̆) + ααx̆2

(x̆)− ααĂ1
(x̆) · ααĂ2

(x̆), αβĂ1
(x̆) + αβĂ2

(x̆)−

αβĂ1
(x̆) · αβĂ2

(x̆), αγĂ1
(x̆) + αγĂ2

(x̆)− αγĂ1
(x̆) · αγĂ2

(x̆)
)

,(
βαĂ1

(x̆) · βαĂ2
(x̆), ββĂ1

(x̆) · ββĂ2
(x̆), βγĂ1

(x̆) · βγĂ2
(x̆)
)

,(
γαĂ1

(x̆) · γαĂ2
(x̆), γβĂ1

(x̆) · γβĂ2
(x̆), γγĂ1

(x̆) · γγĂ2
(x̆)
)〉

.

(S3)

Ă1 ⊗ Ă2 =
〈((

ααĂ1
(x̆) · ααĂ2

(x̆), αβĂ1
(x̆) · αβĂ2

(x̆), αγĂ1
(x̆) · αγĂ2

(x̆)
)
,(

βαĂ1
(x̆) + βαĂ2

(x̆)− βαĂ1
(x̆) · βαĂ2

(x̆)
)
,
(

ββĂ1
(x̆) + ββĂ2

(x̆)− ββĂ1
(x̆) · ββĂ2

(x̆)
)
,(

βγĂ1
(x̆) + βγĂ2

(x̆)− βγĂ1
(x̆) · βγĂ2

(x̆)
))

,
((

γαĂ1
(x̆) + γαĂ2

(x̆)− γαĂ1
(x̆) · γαĂ2

(x̆)
)
,(

γβĂ1
(x̆) + γβĂ2

(x̆)− γβĂ1
(x̆) · γβĂ2

(x̆)
)
,
(
γγĂ1

(x̆) + γγĂ2
(x̆)− γγĂ1

(x̆) · γγĂ2
(x̆)
))〉

.

(S4)

θĂ =
〈(

1− (1− ααĂ1
(x̆))θ , 1− (1− αβĂ1

(x̆))θ , 1− (1− αγĂ1
(x̆))θ

)
,(

(βαĂ1
(x̆))θ , (ββĂ1

(x̆))θ , (βγĂ1
(x̆))θ

)
,(

(γαĂ1
(x̆))θ , (γβĂ1

(x̆))θ , (γγĂ1
(x̆))θ

)〉
,

(S5)

where θ > 0.

Ăθ =
〈(

(ααĂ1
(x̆))θ , (αβĂ1

(x̆))θ , (αγĂ1
(x̆))θ

)
,(

1− (1− βαĂ1
(x̆))θ , 1− (1− ββĂ1

(x̆))θ , 1− (1− βγĂ1
(x̆))θ

)
,(

1− (1− γαĂ1
(x̆))θ , 1− (1− γβĂ1

(x̆))θ , 1− (1− γγĂ1
(x̆))θ

)〉
,

(S6)

where, θ > 0.
Definition 4 [5]. The score function of Ă1, S(Ă1) is described by:

S(Ă1) =
1
12

〈
8 +

(
ααĂ1

(x̆) + 2
(

αβĂ1
(x̆)
)
+ αγĂ1

(x̆)
)
−
(

βαĂ1
(x̆) + 2

(
ββĂ1

(x̆)
)
+ βγĂ1

(x̆)
)
−
(

γαĂ1
(x̆) + 2

(
γβĂ1

(x̆)
)
+ γγĂ1

(x̆)
)〉

. (S7)

Definition 5 [5].The accuracy function of Ă1, A(Ă1) is expressed by:

A(Ă1) =
1
4

〈(
ααĂ1

(x̆) + 2
(

αβĂ1
(x̆)
)
+ αγĂ1

(x̆)
)
−
(

γαĂ1
(x̆) + 2

(
γβĂ1

(x̆)
)
+ γγĂ1

(x̆)
)〉

. (S8)

Definition 6 [5]. Let S(Ăi) and A(Ăi) denote the score and accuracy functions, for the T2NNs Ăi(i = 1, 2), respectively. The following
relations can be written:

1. If S(Ă1) > S(Ă2), then Ă1 > Ă2,

2. If S(Ă1) = S(Ă2), A(Ă1) > A(Ă2) then Ă1 > Ă2,

3. If S(Ă1) = S(Ă2), A(Ă1) = A(Ă2) then Ă1 = Ă2.

Definition 7 [7]. Let Ă1 =
(
(α1, α2, α3), (β1, β2, β3), (γ1, γ2, γ3)

)
and Ă2 =

(
(T1, T2, T3), (I1, I2, I3), (F1, F2, F3)

)
be T2NNs. The

distance measure d(Ă1, Ă2) between Ă1 and Ă2 can be defined as :

d(Ă1, Ă2) = 1− ∑3
i=1 αi Ti+∑3

i=1 βi Ii+∑3
i=1 γi Fi(

∑3
i=1(αi)2+∑3

i=1(βi)2+∑3
i=1(γi)2

)
×
(

∑3
i=1(Ti)2+∑3

i=1(Ii)2+∑3
i=1(Fi)2

) . (S9)
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The evaluation and calculation tables

Table A.1. The type-2 neutrosophic number linguistic variables for evaluating the criteria [5].

Linguistic variables/terms A = [(αα, αβ, αγ), (βα, ββ, βγ), (γα, γβ, γγ)]

Low (L) ((0.20,0.30,0.20), (0.60,0.70,0.80), (0.45,0.75,0.75))

Medium Low (ML) ((0.40,0.30,0.25), (0.45,0.55,0.40), (0.45,0.60,0.55))

Medium (M) ((0.50,0.55,0.55), (0.40,0.45,0.55), (0.35,0.40,0.35))

High (H) ((0.80,0.75,0.70), (0.20,0.15,0.30), (0.15,0.10,0.20))

Very High (VH) ((0.90,0.85,0.95), (0.10,0.15,0.10), (0.05,0.05,0.10))

Table A.2. The type-2 neutrosophic number linguistic variables for evaluating the alternatives [5].

Linguistic variables/terms A = [(αα, αβ, αγ), (βα, ββ, βγ), (γα, γβ, γγ)]

Very Bad (VB) ((0.20,0.20,0.10), (0.65,0.80,0.85), (0.45,0.80,0.70))

Bad (B) ((0.35,0.35,0.10), (0.50,0.75,0.80), (0.50,0.75,0.65))

Medium Bad (MB) ((0.50,0.30,0.50), (0.50,0.35,0.45), (0.45,0.30,0.60))

Medium (M) ((0.40,0.45,0.50), (0.40,0.45,0.50), (0.35,0.40,0.45))

Medium Good (MG) ((0.60,0.45,0.50), (0.20,0.15,0.25), (0.10,0.25,0.15))

Good (G) ((0.70,0.75,0.80), (0.15,0.20,0.25), (0.10,0.15,0.20))

Very Good (VG) ((0.95,0.90,0.95), (0.10,0.10,0.05), (0.05,0.05,0.05))

Table A.3. The importance ratings of the criteria by decision makers.

CriteriaDecision

Makers C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

DM1 VH H H VH M M M VH M H ML VH ML M VH ML ML H

DM2 VH VH VH M M L ML VH ML VH L H L M VH M ML VH

DM3 VH VH VH H H M L VH H H L H H M H ML M VH

DM4 VH M VH VH VH M L VH H M VH VH VH M ML VH VH VH
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Table A.4. Evaluation ratings of offshore wind farm alternatives.

Criteria
Alternatives

Decision

makers C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

DM1 MG B B B VB M VB B VB VB M M G G G G VG MG

DM2 MG M M VB VB G VB MB B M MB VB G MG MG G G M

DM3 MG MG MG B VB MG B M B M MB B VG M G G G MG
A1: Newport Nearshore Windpark

DM4 M M VB VB G M MB B M MB MB G G B G B MB MB

DM1 G MG M MB M MB MG M B MB MB MG B M MG B MB MB

DM2 MG G G B MB G VB MG MB MG B G B MG MG MB B B

DM3 G VG VG M M MG B MG MB G B MG MB M G MB MB B
A2: Garden State OWF

DM4 MG VG VG B M G M MB M MG B M MB B MG M MB B

DM1 G M MB B MB VB VB VG G B M M MB VG M VG MG M

DM2 MG MG MG VB VB VB VB VG VG VB MG B MB VG MB VG B B

DM3 G G G B VB VB B VG VG B M B M G M VG B M
A3: FERN Blue Ribbon Wind Farm I

DM4 MG G G VB MB VB VB MG VG VB M B MG MG MG G G MG

DM1 VG G MG MG MG MB MG MB MB M MB MG B MB MG MB MB MB

DM2 G G G MG MB G G M M G B G B MG MG B MB M

DM3 VG VG VG G M MG MG MG M G B MG MB M M M MB MB
A4: Brigantine OffshoreMW Phase 1

DM4 G G VG MG M G M MB M MG G MG MB MB MG M G MG

DM1 VG VG G VG VG VG VG MB M VG B MG MB B B VB B B

DM2 G VG VG G VG VG G M M VG VB VG B VB B VB MG MG

DM3 VG VG VG VG VG VG MG M M VG VB G MB B MB B MG B
A5: Pavillion Energy Surf City W

DM4 G VG VG VG VG VG VB MB MG VG G MG MB MB MG B G MG

Table A.5. The normalized decision matrix.

Criteria
Alternatives

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.000 0.000 0.000 1.000 1.000 0.779 0.258 1.000 1.000

A2 0.480 0.862 0.870 0.654 0.451 0.766 0.533 0.744 0.623

A3 0.480 0.522 0.507 1.000 0.686 0.000 0.000 0.000 0.000

A4 1.000 0.865 0.885 0.303 0.423 0.766 0.915 0.818 0.529

A5 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.875 0.476

Alternatives C10 C11 C12 C13 C14 C15 C16 C17 C18

A1 0.397 0.291 0.916 0.000 0.760 0.000 0.098 0.000 0.000

A2 0.655 1.000 0.260 1.000 0.392 0.062 0.588 1.000 1.000

A3 0.000 0.000 1.000 0.696 1.000 0.576 0.000 0.673 0.223

A4 0.752 0.184 0.233 1.000 0.429 0.386 0.570 0.583 0.133

A5 1.000 0.686 0.000 0.899 0.000 1.000 1.000 0.491 0.346
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Table A.6. The weighted normalized decision matrix.

Criteria
Alternatives

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.000 0.000 0.000 0.058 0.056 0.041 0.013 0.059 0.055

A2 0.028 0.050 0.051 0.038 0.025 0.040 0.026 0.044 0.034

A3 0.028 0.030 0.030 0.058 0.039 0.000 0.000 0.000 0.000

A4 0.059 0.050 0.052 0.017 0.024 0.040 0.045 0.048 0.029

A5 0.059 0.058 0.058 0.000 0.000 0.052 0.049 0.051 0.026

Alternatives C10 C11 C12 C13 C14 C15 C16 C17 C18

A1 0.023 0.015 0.053 0.000 0.041 0.000 0.005 0.000 0.000

A2 0.037 0.052 0.015 0.054 0.021 0.004 0.031 0.054 0.058

A3 0.000 0.000 0.058 0.038 0.054 0.033 0.000 0.036 0.013

A4 0.043 0.009 0.014 0.054 0.023 0.022 0.030 0.031 0.008

A5 0.057 0.035 0.000 0.049 0.000 0.057 0.054 0.026 0.020

Table A.7. The aggregated decision matrix of the alternatives.

Criteria
Alternatives

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.824 0.801 0.801 0.696 0.670 0.860 0.728 0.785 0.709

A2 0.863 0.898 0.897 0.770 0.804 0.857 0.776 0.816 0.785

A3 0.863 0.860 0.857 0.696 0.747 0.670 0.684 0.906 0.911

A4 0.906 0.898 0.898 0.846 0.811 0.857 0.842 0.807 0.804

A5 0.906 0.914 0.911 0.911 0.914 0.914 0.857 0.800 0.814

Alternatives C10 C11 C12 C13 C14 C15 C16 C17 C18

A1 0.782 0.795 0.761 0.898 0.860 0.850 0.890 0.880 0.816

A2 0.839 0.749 0.842 0.767 0.801 0.846 0.785 0.780 0.749

A3 0.696 0.814 0.750 0.807 0.898 0.811 0.911 0.813 0.801

A4 0.860 0.802 0.846 0.767 0.807 0.824 0.789 0.822 0.807

A5 0.914 0.769 0.875 0.780 0.738 0.782 0.696 0.831 0.793
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Table A.8. The distance matrix of the alternatives.

Criteria
Alternatives

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 0.000 0.000 0.000 0.058 0.056 0.041 0.013 0.059 0.055

A2 0.028 0.050 0.051 0.038 0.025 0.040 0.026 0.044 0.034

A3 0.028 0.030 0.030 0.058 0.039 0.000 0.000 0.000 0.000

A4 0.059 0.050 0.052 0.017 0.024 0.040 0.045 0.048 0.029

A5 0.059 0.058 0.058 0.000 0.000 0.052 0.049 0.051 0.026

Alternatives C10 C11 C12 C13 C14 C15 C16 C17 C18

A1 0.023 0.015 0.053 0.000 0.041 0.000 0.005 0.000 0.000

A2 0.037 0.052 0.015 0.054 0.021 0.004 0.031 0.054 0.058

A3 0.000 0.000 0.058 0.038 0.054 0.033 0.000 0.036 0.013

A4 0.043 0.009 0.014 0.054 0.023 0.022 0.030 0.031 0.008

A5 0.057 0.035 0.000 0.049 0.000 0.057 0.054 0.026 0.020

Table A.9. The sensitivity analysis of T2NN based MABAC approach.

AlternativesExperiment

number A1 A2 A3 A4 A5
Description

1 0.417 0.663 0.409 0.598 0.654 Set 1 (All criteria=L)

2 0.417 0.663 0.409 0.598 0.654 Set 2 (All criteria= ML)

3 0.417 0.663 0.409 0.598 0.654 Set 3 (All criteria= M)

4 0.417 0.663 0.409 0.598 0.654 Set 4 (All criteria= H)

5 0.417 0.663 0.409 0.598 0.654 Set 5 (All criteria= VH)

6 0.390 0.663 0.419 0.575 0.644 Set 6 (Half criteria= L; Half criteria=ML)

7 0.396 0.663 0.417 0.581 0.647 Set 7 (Half criteria= ML; Half criteria=M)

8 0.392 0.663 0.418 0.577 0.645 Set 8 (Half criteria= M; Half criteria=H)

9 0.409 0.663 0.412 0.591 0.651 Set 9 (Half criteria= H; Half criteria=VH)

10 0.371 0.663 0.426 0.559 0.637 Set 10 (Half criteria= L; Half criteria=M)

11 0.350 0.663 0.434 0.540 0.630 Set 11 (Half criteria= L; Half criteria=H)

12 0.344 0.663 0.437 0.535 0.628 Set 12 (Half criteria= L; Half criteria=VH)

13 0.372 0.663 0.426 0.560 0.638 Set 13 (Half criteria= ML; Half criteria=H)

14 0.365 0.663 0.428 0.554 0.636 Set 14 (Half criteria= ML; Half criteria=VH)

15 0.384 0.663 0.421 0.570 0.642 Set 15 (Half criteria= M; Half criteria=VH)

16 0.369 0.668 0.416 0.557 0.631
Set 16 (C1-C4= L;C5-C8= ML; C9-C12= M;

C13-C16= H; C17-C18= VH; )
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